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We study the saddle points of the p-spin model—the best understood example of a “complex” (rugged)
landscape—when its N variables are complex. These points are the solutions to a system of N random equations
of degree p — 1. We solve for A/, the number of solutions averaged over randomness in the N — oo limit. We
find that it saturates the Bézout bound In A ~ N In (p — 1) The Hessian of each saddle is given by a random
matrix of the form CC, where C is a complex symmetric Gaussian matrix with a shift to its diagonal. Tts
spectrum has a transition where a gap develops that generalizes the notion of “threshold level” well known in
the real problem. The results from the real problem are recovered in the limit of real parameters. In this case,
only the square root of the total number of solutions are real. In terms of the complex energy, the solutions are
divided into sectors where the saddles have different topological properties.
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I. INTRODUCTION

Spin glasses are the paradigm of many-variable “complex
landscapes,” a category that also includes neural networks
and optimization problems like constraint satisfaction [1]. The
most tractable family of these are the mean-field spherical
p-spin models [2] (for a review see [3]) defined by the energy
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where J is a symmetric tensor whose elements are real Gaus-
sian variables and z € R" is constrained to the sphere z/z =
N. This problem has been studied in the algebra [4] and proba-
bility literature [5,6]. It has been attacked from several angles:
the replica trick to compute the Boltzmann—Gibbs distribution
[2], a Kac—Rice [7-9] procedure (similar to the Fadeev—Popov
integral) to compute the number of saddle points of the en-
ergy function [10], and gradient-descent (or more generally
Langevin) dynamics starting from a high-energy configura-
tion [11]. Thanks to the simplicity of the energy, all these
approaches yield analytic results in the large-N limit.

In this paper we extend the study to complex variables:
we shall take z € CY and J to be a symmetric tensor whose
elements are complex normal, with |J|2 = p!/2N?~! and J? =
K« |J|? for complex parameter |k| < 1. The constraint remains
zZf'z=N.

The motivations for this paper are of three types. On the
practical side, there are indeed situations in which complex
variables appear naturally in disordered problems: such is
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the case in which the variables are phases, as in random
laser problems [12]. Quiver Hamiltonians—used to model
black hole horizons in the zero-temperature limit—also have
a Hamiltonian very close to ours [13]. A second reason is that,
as we know from experience, extending a real problem to the
complex plane often uncovers underlying simplicity that is
otherwise hidden, shedding light on the original real problem,
e.g., as in the radius of convergence of a series.

Finally, deforming an integral in N real variables to a
surface of dimension N in 2N-dimensional complex space has
turned out to be necessary for correctly defining and analyzing
path integrals with complex action (see [14,15]), and as a
useful palliative for the sign problem [16—18]. In order to do
this correctly, features of the action’s landscape in complex
space—such as the relative position of saddles and the exis-
tence of Stokes lines joining them—must be understood. This
is typically done for simple actions with few saddles, or for
a target phenomenology with symmetries that restrict the set
of saddles to few candidates. Given the recent proliferation of
“glassiness” in condensed matter and high energy physics, it
is inevitable that someone will want to apply these methods
to a system with a complex landscape, and will find they
cannot use approaches that rely on such assumptions. Their
landscape may not be random: here we follow the standard
strategy of computer science by understanding the generic
features of random instances of a simple case, expecting that
this sheds light on practical, nonrandom problems. While in
this paper we do not yet address analytic continuation of
integrals, understanding the distribution and spectra of critical
points is an essential first step.

Returning to our problem, the spherical constraint is en-
forced using the method of Lagrange multipliers: introducing
€ € C, our constrained energy is
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One might balk at the constraint z z = N—which could ap-
propriately be called a hyperbolic constraint—by comparison
with z'z = N. The reasoning behind the choice is twofold.

First, we seek to draw conclusions from our model that
are applicable to generic holomorphic functions without any
symmetry. Samples of Hy nearly provide this, save for a single
anomaly: the value of the energy and its gradient at any point z
correlate along the z direction, with HydHy o Hy(dHp)* « z.
This anomalous direction should thus be forbidden, and the
constraint surface z’ z = N accomplishes this.

Second, taking the constraint to be the level set of a holo-
morphic function means the resulting configuration space is
a bona fide complex manifold, and therefore permits easy
generalization of the integration techniques referenced above.
The same cannot be said for the space defined by zz = N,
which is topologically the (2N — 1)-sphere and cannot admit
a complex structure.

Imposing the constraint with a holomorphic function
makes the resulting configuration space a bona fide complex
manifold, which is, as we mentioned, the situation we wish
to model. The same cannot be said for the space defined by
7'z = N, which is topologically the (2N — 1)-sphere, does not
admit a complex structure, and thus yields a trivial structure of
saddles. However, we will introduce the bound 7% = 77z /N <
R? on the “radius” per spin as a device to classify saddles. We
shall see that this “radius” r and its upper bound R are insight-
ful parameters in our present problem, revealing structure as
they are varied. Note that taking R = 1 reduces the problem
to that of the ordinary p spin.

The critical points are of H given by the solutions to
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foralli = {1, ..., N}, which for fixed € is a set of N equations

of degree p — 1, to which one must add the constraint. In this
sense this study also provides a complement to the work on
the distribution of zeros of random polynomials [19], which
are for N = 1 and p — oo. We see from (3) that at any critical
point € = Hy/N, the average energy.

Since H is holomorphic, any critical point of Re H is also
one of Im H, and therefore of H itself. Writing z = x + iy for
X,y € RN, Re H can be considered a real-valued function of
2N real variables. The number of critical points of H is thus
given by the usual Kac—Rice formula applied to Re H:

N(k,e,R) = fdxdyé(axReH)B(ayReH)
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This expression is to be averaged over J to give the complex-
ity ¥ as N = In N, a calculation that involves the replica
trick. Based on the experience from similar problems [3], the
annealed approximation N¥ ~ In N is expected to be exact
wherever the complexity is positive.

The Cauchy-Riemann equations may be used to write
(4) in a manifestly complex way. With the Wirtinger deriva-
tive 9 = %(GX —idy), one can write d, Re H =RedH and
dyRe H = —Im 0H. Carrying these transformations through,

one finds

N(k,€e,R) = / dxdy8(Re dH)S(Im dH)

X |det
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= f dxdy8(Re dH)S(Im dH)| det[(3dH ) 9o H]|

=/dxdya(ReaH)a(Im OH)| det D9H 2. (5)

This gives three equivalent expressions for the determinant
of the Hessian: as that of a 2N x 2N real symmetric matrix,
that of the N x N Hermitian matrix (30H)"89H, or the norm
squared of that of the N x N complex symmetric matrix d0H .
These equivalences belie a deeper connection between the
spectra of the corresponding matrices. Each positive eigen-
value of the real matrix has a negative partner. For each such
pair £A, A2 is an eigenvalue of the Hermitian matrix and |A|
is a singular value of the complex symmetric matrix. The
distribution of positive eigenvalues of the Hessian is therefore
the same as the distribution of singular values of d0H, or the
distribution of square-rooted eigenvalues of (39H ) 00H.

II. CALCULATION

A useful property of the Gaussian J is that gradient and
Hessian at fixed energy € are statistically independent [9,20],
so that the § functions and the Hessian may be averaged inde-
pendently. First we shall compute the spectrum of the Hessian,
which can in turn be used to compute the determinant. Then
we will treat the § functions and the resulting saddle point
equations.

The Hessian d0H = ddHy — pel is equal to the uncon-
strained Hessian with a constant added to its diagonal. The
eigenvalue distribution p is therefore related to the uncon-
strained distribution pg by a similar shift: p(A) = po(A + pe).
The Hessian of the unconstrained Hamiltonian is

N
pip—1)
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which makes its ensemble that of Gaussian complex symmet-
ric matrices, when the anomalous direction normal to the con-
straint surface is neglected. Given its variances |9;d;Ho|> =
p(p—1)r’2/2N and (8;9;Ho)> = p(p — 1)kc/2N, po(%) is
constant inside the ellipse

Re(re®) \* Im(re®) \°
— ) + <
(=) + (#53)
where 6 = %arg/c [21]. The eigenvalue spectrum of d0H is
therefore constant inside the same ellipse translated so that its
center lies at —pe. Examples of these distributions are shown
in the insets of Fig. 1.

The eigenvalue spectrum of the Hessian of the real part
is not the spectrum p(A) of ddH, but instead the square-
root eigenvalue spectrum of (d0H Y'ddH; in other words, the
singular value spectrum p(o) of d0H. When x = 0 and the
elements of J are standard complex normal, this is a complex

pip—1)
2rp=2

.
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FIG. 1. Eigenvalue and singular value spectra of the Hessian
d0H of the 3-spin model with k = 3¢~"/4_ Pictured distributions
are for critical points at ‘radius’ r = /5/4 and with energy per spin
() € =0, (b) € = —jenl, (c) € = —|ew|, and (d) € = —3|eq|. The
shaded region of each inset shows the support of the eigenvalue
distribution (7). The solid line on each plot shows the distribution
of singular values (10), while the overlaid histogram shows the
empirical distribution from 2'° x 2! complex normal matrices with
the same covariance and diagonal shift as 00H.

Wishart distribution. For « # O the problem changes, and to
our knowledge a closed form is not in the literature. We have
worked out an implicit form for the singular value spectrum
using the replica method.

Introducing replicas to bring the partition function into the
numerator of the Green function [22] gives

Gto) = tim [ dcdc* &y

X exp {% Z [(;i(“))*;(“)a —Re (g}“);;”a[a,H)]},
(3)

with sums taken over repeated latin indices. The average
is then made over J and Hubbard-Stratonovich is used to
change variables to the replica matrices Nagg = (¢@)7¢®
and N xqp = (¢©)T¢®), and a series of replica vectors. The
replica-symmetric ansatz leaves all replica vectors zero, and
Uap = Ologaﬂ, Xap = XOSaﬁ- The result is

G(o) :Nlin})/doto dxodxi oo
n—

pp—1) ,_ e
X exp {nN|:l + 1—6}’” ‘o — -
1 2 2
+ Eln (Olo — I Xol )
—1
+§Re((p8 )"*Xg_e*m)]}' ©

The argument of the exponential has several saddles. The
solutions « are the roots of a sixth-order polynomial, and
the root with the smallest value of Re g gives the correct
solution in all the cases we studied. A detailed analysis of the

saddle point integration is needed to understand why this is
so. Evaluated at such a solution, the density of singular values
follows from the jump across the cut, or

1 .
po)=—( lim

ijTN Imo—

G(o)— lim_G(o)). (10)
o+ Imo—0—

Examples can be seen in Fig. 1 compared with numeric exper-
iments.

The formation of a gap in the singular value spectrum
naturally corresponds to the origin leaving the support of the
eigenvalue spectrum. Weyl’s theorem requires that the product
over the norm of all eigenvalues must not be greater than the
product over all singular values [23]. Therefore, the absence of
zero eigenvalues implies the absence of zero singular values.
The determination of the threshold energy—the energy at
which the distribution of singular values becomes gapped—is
reduced to the geometry problem of determining when the
boundary of the ellipse defined in (7) intersects the origin, and
yields

p—1 (1 — 82272
2p 1+|8|% —2|8| cos(argk + 2 arge)

an

2
l€m|” =

for 8 = kr~P~2_ Notice that the threshold depends on both
the energy per spin € on the “radius” r of the saddle.

We will now address the § functions of (5). These are con-
verted to exponentials by the introduction of auxiliary fields
Z = X + iy. The average over J can then be performed. A gen-
eralized Hubbard—Stratonovich allows a change of variables
from the 4N original and auxiliary fields to eight bilinears
defined by Nr =z'z, N# =22, Na= 2"z, Nb=12"z, and
Né = 377 (and their conjugates). The result, to leading order
in N, is

Nk, e, R) = / drdfdada*dbdb*dedé e T enO,

(12)
where the argument of the exponential is
1 r b a
1 Llr 1 a b
f_2+§lndet5 b oo o P
a b* 7 &

1
+/dxd,\*p(x)1n|x|2+pRe{gmp—'
+(p— DIPrP 2+ k@ + (p— 1d)] — ea}. (13)

The spectrum p is given in (7) and is dependant on r alone.
This function has an extremum in 7, a, b, and ¢ at which its
value is

1 4 r2—1
f=ltah (?rw—” - |x|2>
+ / dr p(AM)In A2 — 2C, [Re(ee )]?

—2C_[Im(ee™)]?, (14)
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FIG. 2. The complexity of the 3-spin model as a function of the
maximum ‘“radius” R at zero energy and several values of «. The
dashed line shows % In (p — 1), while the dotted shows In (p — 1).

where 6 = % argk and

(L4 p(? = 1) F Ik
PrE (p = Dre(? = Dl = PP

Cy= (15)
Notice that level sets of f in energy € also give ellipses, but of
different form from the ellipse in (7).

III. RESULTS

This expression is maximized for r = R, its value at the
boundary, for all values of ¥ and €. Evaluating the complexity
at this saddle, in the limit of unbounded spins, gives

Jim InN(k,e,R)=NIn(p—1). (16)

This is, to leading order, precisely the Bézout bound, the
maximum number of solutions to N equations of degree p — 1
[24]. That we saturate this bound is perhaps not surprising,
since the coefficients of our polynomial equations (3) are
complex and have no symmetries. Reaching Bézout in (16) is
not our main result, but it provides a good check. Analogous
asymptotic scaling has been found for the number of pure
Higgs states in supersymmetric quiver theories [25].
For finite R, everything is analytically tractable at € = 0:

1 [1—|c]PR*P=D
Y(k,0,R) =1 -)—=In|——+—]. (17
(€ 0.R)=In(p—1) = I { ——— (17)

This is plotted as a function of R for several values of « in
Fig. 2. For any |«| < 1, the complexity goes to negative infin-
ity as R — 1, i.e., as the spins are restricted to the reals. This
is natural, since volume of configuration space vanishes in this
limit like (R> — 1)V. However, when the result is analytically
continued to ¥ = 1 (which corresponds to real J) something
novel occurs: the complexity has a finite value at R = 1. This
implies a §-function density of critical points on the r = 1
(or y = 0) boundary. The number of critical points contained
there is

lim lim InN(k,0,R)=4iNIn(p— 1), (18)
half of (16) and corresponding precisely to the number of
critical points of the real p-spin model. (Note the role of
conjugation symmetry, already underlined in [19].) The full
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FIG. 3. The value of bounding “radius” R for which

¥(k,e,R)=0 as a function of (real) energy per spin € for
the 3-spin model at several values of k. Above each line the
complexity is positive and critical points proliferate, while below
it the complexity is negative and critical points are exponentially
suppressed. The dotted black lines show the location of the ground
and highest exited state energies for the real 3-spin model.

€ dependence of the real p-spin is recovered by this limit as €
is varied.

In the thermodynamic limit, (17) implies that most critical
points are concentrated at infinite radius r. For finite N the
average radius of critical points is likewise finite. By differen-
tiating AV with respect to R and normalizing, one obtains the
distribution of critical points as a function of r. This yields
an average radius proportional to N'/4. One therefore expects
typical critical points to have a norm that grows modestly with
system size.

These qualitative features carry over to nonzero €. In Fig. 3
we show that for ¥ < 1 there is always a gap in r close to
one in which solutions are exponentially suppressed. When
k = l—the analytic continuation to the real computation—
the situation is more interesting. In the range of energies
where there are real solutions this gap closes, which is only
possible if the density of solutions diverges at r = 1. Outside
this range, around “deep” real energies where real solutions
are exponentially suppressed, the gap remains. A moment’s
thought tells us that this is necessary: otherwise a small per-
turbation of the Js could produce an unusually deep solution
to the real problem, in a region where this should not happen.

The relationship between the threshold and ground, or ex-
tremal, state energies is richer than in the real case. In Fig. 4
these are shown in the complex-€ plane for several examples.
Depending on the parameters, the threshold might have a
smaller or larger magnitude than the extremal state, or cross
as a function of complex argument. For sufficiently large r
the threshold is always at a larger magnitude. If this were
to happen in the real case, it would likely imply our replica
symmetric computation were unstable, since having a ground
state above the threshold implies a ground state Hessian with
many negative eigenvalues, a contradiction. However, this is
not an contradiction in the complex case, where the energy
is not bounded from below. The relationship between the
threshold, i.e., where the gap appears, and the dynamics of,
e.g., a minimization algorithm, deformed integration cycle, or
physical dynamics, are a problem we hope to address in future
work.
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FIG. 4. Energies at which states exist (green shaded region)
and threshold energies (black solid line) for the 3-spin model with
K = %e*"}”/“ and (a) r = V2, (b) r = 4/1.325, (c) r = +/1.125, and
(d) r = 1. No shaded region is shown in (d) because no states exist
at any energy.

This paper provides a first step towards the study of com-
plex landscapes with complex variables. The next obvious
step is to study the topology of the critical points, the sets
reached following gradient descent (the Lefschetz thimbles),
and ascent (the antithimbles) [14-16,18,26], which act as
constant-phase integrating “contours.” Locating and count-
ing the saddles that are joined by gradient lines—the Stokes
points, which play an important role in the theory—is also
well within reach of the present-day spin-glass literature
techniques. We anticipate that the threshold level, where the
system develops a mid-spectrum gap, plays a crucial role
in determining whether these Stokes points proliferate under
some continuous change of parameters.
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