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Microcavity-based generation of full Poincaré beams with arbitrary skyrmion numbers

Wenbo Lin ,1,2,* Yasutomo Ota ,3 Yasuhiko Arakawa,3 and Satoshi Iwamoto 1,2,3

1Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
2Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

3Institute for Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

(Received 29 June 2020; accepted 5 April 2021; published 19 April 2021)

A full Poincaré (FP) beam possesses all possible optical spin states in its cross section, which constitutes an
optical analog of a skyrmion. Until now FP beams have been exclusively generated using bulk optics. Here we
propose a generation scheme of an FP beam based on an optical microring cavity. We position two different
angular gratings along with chiral lines on a microring cavity and generate an FP beam as a superposition of two
light beams with controlled spin and orbital angular momenta. We numerically show that FP beams with tailored
skyrmion numbers can be generated from this device, opening a route for developing compact light sources with
unique optical spin fields.
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I. INTRODUCTION

Spin angular momentum (SAM; s) and orbital angular
momentum (OAM; l) are fundamental parameters character-
izing photons [1,2] in terms of the polarization state and a
helical wavefront, respectively. Recent progress in the control
of SAM and OAM in optical beams has led to the generation
of various vector beams with textured optical spin fields [3–6].
Among them, full Poincaré (FP) beams exhibit extremely dis-
tinctive photonic spin distributions: an FP beam possesses all
possible photonic spin states in its beam cross section [7]. This
unique optical spin field is receiving significant attention with
potential for various applications, such as novel polarization
sensing [8] and optical tweezers [9,10]. It is known that FP
beams (and some beams with similar space-variant polariza-
tion states [11,12]) can be generated by superposing two light
beams with opposite SAM states and different OAM states.
Until now this method has been examined using bulk optics,
resulting in the generation of Laguerre-Gaussian [7,13–16]
and Bessel-type [17,18] FP beams.

A notable property of FP beams is that their optical spin
textures constitute skyrmions in two dimensions [19,20]. A
skyrmion is a topological elementary excitation character-
ized by a topological number or a skyrmion number, Nsk.
Skyrmions have been observed in various condensed-matter
systems, such as chiral magnetic materials [21], Bose-Einstein
condensates [22], and chiral liquid crystals [23]. Optical
skyrmions and their derivatives have been observed in some
optical fields, including confined modes in nanophotonic
structures [24–29] as well as in FP beams [19,30]. In conjunc-
tion with the concept of optical skyrmion, FP beams offer an
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interesting area for exploring rich physics, such as the transfer
of topological charges between light and matter [19] and the
formation of photonic Möbius strips [31].

Until now, FP beams have been exclusively generated us-
ing bulk optics, which is not suitable for practical applications
that require robustness and compactness of light sources. For
unlocking the potential of FP beams in various applications
and physics, it is highly desired to develop FP beam genera-
tors on chip.

Here we propose a scheme for generating an FP beam
based on an optical microring cavity. Our approach utilizes
a tightly confined whispering-galley mode (WGM), in which
the spin–orbit interaction of light provides polarization sin-
gularities [32–34], enabling SAM-controlled light diffraction
transferring the OAM into free space by the tailored perturba-
tion of the structure. We perturb the cavity by patterning two
types of angular diffraction gratings [35–37]. Accordingly, an
FP beam is synthesized as a superposition of two diffracted
beams with controlled SAM and OAM in the far field. We
analytically show that this method in principle can produce
FP beams with arbitrary Nsk, and numerically demonstrate the
generation of FP beams with various Nsk’s. Our scheme could
facilitate the integration of FP beam sources with different
Nsk’s on a single chip, which may widen the application of
FP beams.

II. OPERATION PRINCIPLE

An arbitrary polarization state or a spin state of a photon
can be described using a normalized Stokes vector composed
of three parameters: s = (S1, S2, S3)/S0. Each parameter cor-
responds to an expectation value of a Pauli matrix for a
photonic spin state [38]. s denotes the orientation of a photonic
spin, which can be visualized by a vector arrow drawn in
a unit Poincaré sphere, as shown in Fig. 1(a). Figure 1(b)
schematically depicts a cross-sectional Stokes vector field of
an example FP beam and its projection to the surface of a
unit Poincaré sphere. An FP beam possesses any possible spin
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FIG. 1. (a) Unit Poincaré sphere defined in a space spanned by
the normalized Stokes parameters, which represent the degree of
linear polarization (s1), diagonal polarization (s2), and circular polar-
ization (s3), respectively. A vector from the origin to a point on the
sphere surface defines a Stokes vector and indicates the orientation
of the optical spin. (b) Schematic of a cross-sectional Stokes vector
field of an example FP beam and its projection to a unit Poincaré
sphere.

states in the cross section, and hence, projecting them to the
surface completely wraps the sphere. The topological property
or the order of an FP beam is characterized by a skyrmion
number that counts the number of times the photonic spins
in a certain area (A) wrap a unit Poincaré sphere, which is
expressed as

Nsk = 1

4π

∫
A

s · [∂xs × ∂ys]dx dy. (1)

For an FP beam generated by superposing two beams with op-
posite SAMs (s2 = −s1) and different absolute OAMs (|l2| �=
|l1|), Eq. (1) yields the OAM difference, i.e., Nsk = (l2 − l1) =
�l . This expression is obtained by integrating Eq. (1) for
a domain A where the spin state of the superposed beam
flips from s1 to −s1 (derivation can be found in Appendix
C. Therefore, FP beams with any skyrmion numbers can be
generated by controlling the OAMs of the beams under su-
perposition [13,14]. The capability of generating skyrmions
with Nsk’s much larger than 1 could be of interest, because
the extensively investigated magnetic skyrmions frequently
exhibit Nsk values of only 1 or 2 [39,40].

Now we discuss our scheme of the microcavity-based
generation of FP beams. We consider a microring cavity sup-
porting a WGM rotating within the cavity. The tight spatial
confinement for the propagating mode induces the spin-orbit
interaction of light [32–34] and thus leads to the coupling be-
tween the spin and orbit degrees of freedom within the mode.
Consequently, the WGM can be described by a superposi-

tion of spin-up and spin-down components ψ± with angular
momentum states of |s, l〉 = |±1, m ∓ 1〉, where m is the
azimuthal order of the WGM and yields the total angular mo-
mentum on multiplication with h̄. Figure 2(a) schematically
presents the distribution of the net spin density (S3 = |ψ+|2 −
|ψ−|2) of a counterclockwise transverse electric (TE)-like
WGM in a microring cavity. The spatial profiles of the spin-up
and spin-down modes differ, resulting in the emergence of
purely spin polarized lines, known as C-lines [41–43]. We
utilize this phenomenon for achieving SAM-controlled light
scattering from the WGM. We apply a small refractive index
perturbation aligned to a C-line, which selectively scatters
circularly polarized photons, with the handedness depending
on the polarity of the C-line, as schematically shown in the
right inset in Fig. 2(a).

By arranging a circular, periodic array of index perturba-
tions, we can control the OAM of the scattered light according
to the angular momentum conservation law expressed as
(m − s) − l = ng [35,36]. Here m − s is the effective OAM of
the WGM that the angular grating feels, l is the OAM of the
diffracted light, n is the diffraction order, and g is the number
of grating elements. Hereafter, we focus on the first-order
diffraction of n = 1. Figures 2(b) and 2(c) show example
behaviors of the microcavity with gratings. When an angular
grating with g = m − 1 is patterned on the C-line of s = +1,
a light beam described by |s, l〉 = |+1, 0〉 will be generated
[Fig. 2(b)]. Meanwhile, positioning a grating of g = m on
the C-line of s = −1 generates a beam with |s, l〉 = |−1,+1〉
[Fig. 2(c)].

By arranging the above two gratings in parallel, an FP
beam can be synthesized in the far field as a superposition
of the light beams diffracted by the two gratings, as shown in
Fig. 2(d).

The far-field amplitude profile, A(θ, φ), of a beam
diffracted by one of the two angular gratings can be analyt-
ically approximated by

A(θ, φ) = J|l|(kd0 sin θ ) exp

[
i

(
lφ − |l|π

2

)]
, (2)

where J|l| is the |l|th-order Bessel function of the first kind,
k is the wave number, d0 is the radius of the circle where the
angular grating is patterned, φ is the azimuth angle, and θ is
the elevation angle (θ = 0 corresponds to the direction normal
to the device plane). This analytical expression was derived
with a toy model that assumes each grating element acts as a
small electric dipole (see Appendix A). Equation (2) gives a
good approximation to the profile of a diffracted beam when
θ is relative small (approximately less than 30◦).

III. SIMULATION RESULTS

As a specific design of an FP beam generator, we consider a
silicon microring cavity with a radius of 3 μm. The waveguide
of the cavity has a width of 450 nm and a height of 200 nm,
confining a single TE mode at the telecommunication C band.
The refractive indices of silicon and the background environ-
ment were set to 3.4 and 1.0, respectively. The ring cavity
supports a WGM of an azimuthal order of 24 around a wave-
length of 1.57 μm with a large free spectral range of ≈30 nm.
After augmented with angular gratings as we will discuss
later, the cavity mode exhibits a much lower Q on the order of

023055-2



MICROCAVITY-BASED GENERATION OF FULL … PHYSICAL REVIEW RESEARCH 3, 023055 (2021)

FIG. 2. (a) Schematic showing a photonic spin distribution for a counterclockwise WGM in a micoring cavity. The region with high
positive (negative) spin density is indicated by red (blue). There are two singular lines with pure spin polarization of s = +1 or −1, called
C-lines. The inset shows a zoomed image of the microring, presenting light scattering due to the refractive index perturbations on the C-lines.
The scattered light is circularly polarized, and its polarity corresponds to that of the perturbed C-line. (b) Light diffraction from a ring with an
angular grating of g = m − 1 on the C-line of s = +1. The diffracted light is in an angular momentum state of |s, l〉 = |+1, 0〉. (c) Same as
(b) but with a grating of g = m positioned on the C-line of s = −1. The diffracted light is in an angular momentum state of |s, l〉 = |−1, +1〉.
(d) Synthesis of the two diffracted light beams in (b) and (c) by simultaneously arranging the two gratings on the microring, resulting in the
generation of an FP beam with an Nsk of 1.

104, which indicates that the radiation from the device is dom-
inated by that induced by the angular gratings. We focus on the
counterclockwise WGM and analyze it using finite-difference
time-domain (FDTD) simulations. A calculation domain of
3.5 × 3.5 × 1.0 μm3 and a grid size of 10 × 10 × 10 nm3

were employed in the simulation. We selectively excited the
mode in the simulator and continued the computation until the
stationary state was reached. Figure 3(a) shows a computed
mode profile of the unperturbed micoring cavity. We found
C-lines of s = +1 and s = −1 at the positions respectively
deviated by −0.14 μm and +0.125 μm from the waveguide
center in the radial direction. Along each C-line, we arranged
an array of air holes with a radius and a depth of both 40 nm.
The far fields radiated from the structure were calculated from
the obtained near fields using the near-to-far field conversion
technique.

First, we designed an FP beam generator emitting a beam
with Nsk = +1. We patterned 23 holes on the C-line of s = +1
and 24 holes on the C-line of s = −1, so that the beams
in the states of |s, l〉 = |+1, 0〉 and |s, l〉 = |−1,+1〉 will be
respectively diffracted and superposed. Figure 3(b) presents
the intensity profile of the calculated far field within an el-
evation angle of θ � 30◦ projected onto a flat plane after
collimating the beam virtually. The red dashed line in Fig. 3(b)
indicates θ of 13◦. The values of θ = 13◦ and 30◦ approxi-
mately correspond to the first and second minimums in the
intensity profile of the light diffracted only by the angular
grating of s = +1 (see Appendix B). Thus, the directions of
the spins are expected to be aligned downward (s ≈ −1) at
these angles. Figure 3(c) shows the spatial distribution of the
optical spin field within θ � 13◦. Spins are directed upward
near the center, rotate with changing azimuth angle, and grad-
ually flip their direction to downward as the domain edge is
approached. Figure 3(d) plots a projection of the spin texture
to a unit Poincaré sphere. The full coverage of the surface
demonstrates that the generated beam is indeed an FP beam.
The projection map suggests that the observed optical spin
field forms a Bloch-type skyrmion. We note that other types
of skyrmions, such as the Néel-type one can be generated by
rotating one of the angular gratings with respect to the other
(see Appendix F).

Subsequently, we calculated Nsk according to Eq. (1). The
integration was performed from the center to a particular θ

and for all φ. Figure 3(e) displays the θ dependence of Nsk.
At θ ≈ 13◦, Nsk reaches a near unity value of 0.98, which
compares well with the designed value of Nsk = +1. The

FIG. 3. (a) Calculated mode profile of a counterclockwise TE-
like WGM with an azimuthal order of 24. The out-of-plane magnetic
field is shown. (b) Projected far-field intensity when two angular
gratings of g = 23 and 24 are applied along the C-lines of s = +1
and s = −1, respectively. Here we considered the collimation of the
far field and its projection to a flat plane. The conversion to the
Cartesian coordinates in the flat plane (X, Z) can be achieved by
multiplying an appropriate scale factor to the coordinates defined
using the elevation (θ ) and the azimuth (φ) angles. (c) Stokes vector
field within θ = 13◦. (d) Stokes vector of (c) projected to a unit
Poincaré sphere. (e) Skyrmion number Nsk versus elevation angle θ .
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remaining error of 0.02 may be caused by the imperfect cir-
cular polarization of the scattered light, resulting from the
finite size of the scatter and/or from the multiple reflection
of the scattered light before exiting the structure. We also
analytically deduced values of Nsk using our toy model and
overlaid the result on the plot in Fig. 3(e). The analytical
curve explains well the FDTD results, in particular when θ is
small, in which case the toy model can be regarded as a good
approximation. For both the FDTD and analytical results,
we observed oscillations in Nsk for θ > 13◦. The maxima
and minima of the oscillations correspond to the point where
the intensity of one of the two scattered beams under super-
position approaches zero. Analytically, Nsk should oscillate
between 0 and the designed Nsk, leading to the generation of
a skyrmion and an antiskyrmion alternately. This skyrmionic
structure is known as a skyrmion multiplex [44], the simplest
case of which is known as skyrmionium. Another skyrmion
state with Nsk = 1/2, called half skyrmion or meron [45],
could also be produced by spatially filtering the beam by a
diaphragm passing only θ < 8◦.

Next, we synthesized an FP beam with Nsk = −1 or an
antiskyrmionic beam. For this, g of the grating on the C-line
of s = −1 was changed from 24 to 26, so that a beam in
a state of |s, l〉 = |−1,−1〉 will be radiated from the grat-
ing. Figures 4(a) and 4(b), respectively, show the computed
far-field intensity profile and the corresponding optical spin
field within θ = 13◦. The latter texture shows an antivortex
behavior as expected. The calculated Nsk reaches −1.07 at
θ = 13◦, as presented in Fig. 4(c). These results demonstrate
that an antiskyrmionic FP beam can also be generated within
our scheme. Finally, we present an example device generating
an FP beam with a large Nsk of −5. For this demonstration,
g of the grating on the C-line of s = −1 was increased to
30, which radiates a beam in the state of |s, l〉 = |−1,−5〉.
Figures 4(d) and 4(e) show the computed far-field intensity
profile and the corresponding spin field, respectively. From
the latter plot, it can be observed that the optical spins wind
five times around the field center. Figure 4(f) displays the θ

dependence of the calculated Nsk. The minimum Nsk of −5.22
was found at θ = 30◦, demonstrating an FP beam with a large
Nsk of −5. Meanwhile, for the toy model, Nsk should reach −5
close to θ = 13◦ [indicated by cyan broken lines in Figs. 4(d)–
4(f)]. However, we did not observe an Nsk of approximately
−5 at θ = 13◦ in the FDTD simulations. This unexpected
behavior in the computation model seemingly arises from the
weak diffracted beam in the state of |s, l〉 = |−1,−5〉 close
to θ = 13◦, which can be confirmed in the corresponding
far-field pattern displayed in Appendix B. The weak signal
is obscured by the background noise in the simulator and,
thus, yields an unpredictable result. Here the large l of the
beam induces the weak signal at small θ values. More robust
generation of FP beams with high Nsk’s could be possible by
engineering the size and/or shape of the microring and the
pattern of the far fields (see Appendix G).

IV. CONCLUSION

In summary, we numerically demonstrated FP beam gen-
eration from a microring cavity. We augmented the microring
by angular gratings patterned on the C-lines, which diffracted

FIG. 4. Generation of FP beams with different Nsk’s. (a)–(c)
Beam properties of the device designed for generating an FP beam
with Nsk of −1: (a) projected far-field intensity profile, (b) Stokes
vector field, and (c) calculated skyrmion number versus elevation
angle. (d)–(f) Same as (a)–(c) but for the device designed with Nsk

of −5.

SAM-controlled beams with different OAMs. We showed that
the superposition of the beams from the microcavity results
in an FP beam with an arbitrary controllable Nsk. We exam-
ined concrete designs of silicon-based microring cavities and
verified the generation of FP beams with various Nsk’s. We
believe that the compact FP beam generators could find broad
applications in optical communication and optical sensing and
play a significant role in exploring condensed matter physics.
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APPENDIX A: A TOY MODEL FOR DESCRIBING
DIFFRACTION PATTERNS

We develop a toy model consisting of a circular array of
radiative dipoles for analytically deriving diffraction patterns
of angular diffraction gratings interacting with a whispering-
galley mode (WGM). We consider infinitesimal dipoles, the
respective polarization of which emulates the local optical
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polarization of the WGM. We assumed that other scattering
mechanisms occurring in the microring cavity are negligible
and solely considered the radiation from the dipoles located
equidistantly. The radiation from one of the dipoles can be
written using a well-known approximated form given by

Efar,single(r) ∝ r − r0

|r − r0| ×
[

r − r0

|r − r0| × EWGM(r0)

]
eik|r−r0|

|r − r0| ,

(A1)

where r0 is the position of the dipole and k is the wave number.
The source dipole moment is replaced by a local electric
field vector of the WGM, EWGM(r0), so as to express the
scattered radiation of the mode by a grating element at r0. In
far-field region (kr � 1 and r � r0), Eq. (A1) can be further
approximated to a spherical wave:

Efar,single(r) ∼ r × [r × EWGM(r0)]

r2

eikr

r
exp

[
−ik

r · r0

r

]

= Pfar,single(φ, θ )R(r)Ẽfar,single(φ, θ ). (A2)

In the last equal of this equation, we decomposed the far field
into three components. The first factor, Pfar,single(φ, θ ) = r ×

[r × EWGM]/r2, represents the vectorial nature of the field.
The set of the cross products, r × r×, projects the polar-
ization of the source dipole field (which equals EWGM) to
the plane normal to the wave vector (or to the vector r).
The second factor, R(r) = eikr/r, expresses the propagation
of a scalar spherical wave. The third factor, Ẽfar,single(φ, θ ) =
exp [−ikr · r0/r], is also a scalar part of the far field. The last
two factors merely describe the field intensity distribution in
the far field and do not scramble the light polarization. There-
fore, the polarization distribution can be solely represented
by Pfar,single(φ, θ ). We evaluate the vector part or the light
polarization on a coordinate described by

⎛
⎝ER

EX

EY

⎞
⎠ =

⎛
⎝1 0 0

0 cos φ − sin φ

0 sin φ cos φ

⎞
⎠

⎛
⎝Er

Eθ

Eφ

⎞
⎠. (A3)

EX and EY components correspond to the light polarization in
the collimated far field. Then Pfar,single can be expressed as

Pfar,single(φ, θ ) = −
⎛
⎝ 0

EWGM,x

EWGM,y

⎞
⎠ +

⎛
⎝EWGM,x

EWGM,y

EWGM,z

⎞
⎠ ·

⎛
⎝(1 − cos θ ) cos φ

(1 − cos θ ) sin φ

sin θ

⎞
⎠

⎛
⎝ 0

cos φ

sin φ

⎞
⎠. (A4)

The second term in the right-hand side becomes negligible as
far as both Ez and θ are small. These conditions match with
our case, where light scattering from a TE mode (Ez ≈ 0)
is considered mainly for θ of no more than 30◦. We note
that, even at θ = 30◦, radiation from a circular dipole exhibits
a high degree of circular polarization of |s3| = |S3/S0| =
−2 Im [EY

∗EX ]/(EX
∗EX + EY

∗EY ) ≈ 0.99 in the far field,
well sustaining the one-to-one correspondence between the
polarization of a local source dipole and that of the collimated
far field. These discussions render an approximated equation,
Pfar,single ∼ −(0, EWGM,x, EWGM,y) for small θ .

Now we discuss a far field created by an array of the scat-
tering elements. Considering the phase difference of radiation
among the grating elements, the superposed radiation field can
be expressed as

Efar (r) ∼
g−1∑
j=0

r − r j

|r − r j |

×
(

r − r j

|r − r j | × EWGM, j exp

[
im2π

j

g

])
eik|r−r j |

|r − r j | .

(A5)
Here g is the number of grating elements. r j =
d0(cos [2π j/g], sin [2π j/g], 0) is the position of the jth
grating element. The grating elements are arranged with
equal intervals on a circle in the x-y plane having a center
(0,0,0) and a radius d0. EWGM, j is the polarization vector
of the WGM at r j . m is the azimuthal order of the WGM.
Following the discussion about the single dipole, the vector
part of Eq. (A5) also sustains the one-to-one correspondence

with the polarization of the local source dipole for small
θ . This means that the polarization distribution becomes
homogeneous within the approximation if all the grating
elements scatter light with the same polarization. Here
we assume that EWGM, j is a circular polarization with a
spin angular momentum (SAM) of s. Then EWGM, j can
be rewritten to EWGM,0 exp [−is2π j/g], where EWGM,0 is
the polarization vector of the WGM at (d0, 0, 0). Taking
into account this additional phase factor of exp [−is2π j/g],
together with exp [im2π j/g] in Eq. (A5), the r-independent
scalar part of Eq. (A5), Ẽfar, can be written as

Ẽfar (φ, θ ) ∝ 1

g

g−1∑
j=0

exp

[
−iρ cos

(
2π

j

g
− φ

)]

× exp

[
i(m − s)2π

j

g

]
, (A6)

where ρ = k sin θd0. This equation takes a form of inverse
discrete Fourier transform. We consider the limit of infinite g
and obtain a continuous Fourier transform given by

Ẽfar (φ, θ )
g→∞−−−→

∞∑
n=−∞

1

2π

∫ 2π

0
exp [−iρ cos (ξ − φ)]

× exp [ilnξ ] dξ, (A7)

where ln = m − s − ng is the orbital angular momentum
(OAM) order of the diffracted light of nth-order diffraction.
The integral in Eq. (A7) constitutes an inverse Fourier trans-
form of a so-called perfect optical vortex with an OAM of
ln and is known to be a lnth order Bessel function of the first
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FIG. 5. Calculated counterclockwise WGM of the azimuthal order of 24 for the unperturbed microring cavity: (a) field intensity profile;
(b) spatial distribution of the degree of circular polarization, which equals to the normalized Stokes parameter s3. The right inset is a magnified
view of the area surrounded by the green dashed line. The green dots in the inset show the radial positions and dimensions of the grating
elements on the C-lines.

kind, Jln (ρ) [46,47]. Indeed, we can show that Eq. (A7) can be
interpreted as a Fourier transform of the generating function
of Jln (ρ). The generating function is expressed as

exp
[ρ

2
(t − t−1)

]
=

∞∑
ln=−∞

Jln (ρ)t ln . (A8)

By replacing t → −ieiξ , we get a Fourier series

exp [−iρ cos ξ ] =
∞∑

ln=−∞
Jln (ρ) exp

[
− iln

π

2

]
eiξ ln , (A9)

which yields

1

2π

∫ 2π

0
exp [−iρ cos ξ ] exp [ilnξ ]dξ = Jln (ρ) exp

[
−iln

π

2

]
.

(A10)

This equation has the same form with the integral in Eq. (A7).
By substituting Eq. (A10) into Eq. (A7), we finally obtain

Ẽfar (φ, θ ) ∝
∞∑

n=−∞
J|ln|(kd0 sin θ ) exp

[
i

(
lnφ − |ln|π

2

)]
.

(A11)
This equation gives a good approximation to Eq. (A6) when
the spatial sampling rate or g is large and when the spatial
frequency or θ is small. These conditions also correspond with
the situation discussed in the main text, where the first-order
diffraction is treated and the dominant radiation is concen-
trated to the region with small θ as far as m ≈ g.

APPENDIX B: DETAILED FDTD RESULTS

In this section, we discuss more details of the results com-
puted by the finite-difference time-domain (FDTD) method.
Figures 5(a) and 5(b), respectively, show the calculated in-
tensity distribution and photonic spin density distribution
[s3 = −2 Im [Ez

∗Ex]/(Ex
∗Ex + Ez

∗Ez )] of a WGM without
gratings. Here, we computed a TE-like counterclockwise-
rotating WGM with the azimuthal order of 24. The intensity
distribution is nearly constant in the azimuthal direction but
with slight modulation. The wavy pattern is induced by the

intrusion of the counter-rotating WGM, which was weakly
excited in the simulator due to the imperfect mode selection.
The similar distribution can be found in the spin density dis-
tribution, which shows two wavy lines with mutually opposite
polarity. The spin-up (-down) region is found near the inner
(outer) edge of the microring, which is very clearly displayed
in the inset of Fig. 5(b). The light-green dots show the radial
positions of the grating elements. They are placed above the
C-lines.

We computed far fields based on the near-to-far field con-
version method, using near fields recorded at a plane just
above the microring cavity. Figures 6(a)–6(d) show computed
far-field patters for a perturbed ring cavity with a 23-element
grating on the C-line of s = +1, which is designed to diffract a
beam in a state of |s, l〉 = |+1, 0〉. The intensity profile plotted
in Fig. 6(a) exhibits a circularly symmetric beam pattern.
Figure 6(b) shows a phase profile of the diffracted beam. In
the azimuth direction, the phase is almost constant, which
corresponds to an OAM state of l = 0. Figure 6(c) shows
the spatial distribution of the spin density distribution [s3 =
−2 Im [EZ

∗EX ]/(EX
∗EX + EZ

∗EZ )]. Nearly pure and homo-
geneous spin-up polarization is observed across the entire far
field, suggesting the successful radiation of circularly polar-
ized light from the C-line. The minor blue regions, where the
spin state is not pure spin-up anymore, occur in the places
where the far-field intensity itself is very weak. We consider
that, at these regions in the far field, unspecified background
noise in the simulator causes the unexpected spin flip. Fig-
ure 6(d) shows a slice of the far field along with the line of
Z = 0. For comparison, we also plot the result obtained by the
toy model. The two lines results agree well within the range
of θ � 30◦.

Figures 6(e)–6(h) show the same set of results with those
depicted in Figs. 6(a)–6(d) but of the device with a 24-
element grating on the C-line of s = −1, which is designed
to diffract a beam in a state of |s, l〉 = |−1,+1〉. The intensity
plot shows a doughnut-like distribution around the far-field
center. Together with this result, the phase distribution plot
demonstrates that the far field carry OAM of l = −1. The
spin density distribution shows that the dominant spin state
is s = −1. Again, the unwanted spin flip occurs in the region
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FIG. 6. (a)–(d) Far field of the light diffracted by the angular grating with 23 grating elements on the s = +1 C-line: (a) Projected intensity
profile, (b) phase distribution of the projected electric field EX , (c) photonic spin density distribution, (d) field intensity plot along with the
line of Z = 0. The color of the dot reflects the local spin state. The gray solid line shows the corresponding result obtained by the toy model.
(e)–(h) Same as (a)–(d) but computed for the device with an angular grating of g = 24 on the C-line of s = −1. (i)–(l) Same as (e)–(h) but
with a grating of g = 30.

with weak far-field intensity, which is more visible in the
current case. Nevertheless, we confirmed a good agreement
between the FDTD and the toy models as in Fig. 6(h).

The same calculations were also performed for the device
with a 30-element grating on the C-line of s = −1, as plot-
ted in Figs. 6(e)–6(h). In this case, the far field in the state
of |s, l〉 = |−1,−5〉 will be diffracted from the cavity. The
intensity plot exhibits an even wider doughnut pattern in the
far field, which was confirmed to carry OAM of l = −5 in
conjunction with the plot of the phase pattern. The spin distri-
bution exhibits the unwanted spin flip even near the far-field
center (θ ≈ 0◦). This unexpected result arises from further
weaker field intensity around the field center owing to the
widened hole in the doughnut beam with the increased |l|.
Even in this situation, the FDTD result agrees well with the
toy mode when θ < 30◦.

APPENDIX C: ANALYTICAL SKYRMION NUMBER
FOR AN FP BEAM

Here we analytically derive an expression for a skyrmion
number of an FP beam generated by superposing two vortex

beams with different OAM and opposite SAM values. We use
a Jones vector |s1〉 for expressing a polarization state. |s1〉 is
defined in a x-y plane and can be fully described with two
parameters: an amplitude ratio (tan α) and a phase difference
(δ) between the x and y electric field components. Then |s1〉 is
expressed as

|s1〉 =
(

cos α

eiδ sin α

)
. (C1)

The opposite (or orthogonal) polarization state |s2〉 is
written as

|s2〉 =
( − sin α

eiδ cos α

)
, (C2)

which satisfies 〈s2 | s1〉 = 0. The polarization state |s1〉 can
also be described using a three-component Stokes vector

s1 =
⎛
⎝ cos 2α

sin 2α cos δ

sin 2α sin δ

⎞
⎠, (C3)

and the Stokes vector for the orthogonal state is s2 = −s1.
Meanwhile, the other angular momentum, orbital angular
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momentum (OAM), can be characterized by a spiral wave-
front. It is known that the mode cross section of an optical
beam carrying a well-defined OAM is circularly symmetric in
general, and the spiral wavefront can be written as

ψ (r, φ) = A(r)ei[lφ+γ (r)], (C4)

where r is the radial distance from the beam center, φ is the
azimuth angle, A is the amplitude, l is the order of OAM, and
γ is the phase offset.

Accordingly, the polarization state of an FP beam gener-
ated as the superposition of two different OAM beams with
opposite SAMs can be written as

ψ(r, φ) = A1(r)ei[l1φ+γ1(r)]

(
cos α

eiδ sin α

)

+ A2(r)ei[l2φ+γ2(r)]

( − sin α

eiδ cos α

)
, (C5)

and the normalized Stokes vector deduced from ψ is given by

s = A2
1 − A2

2

A2
1 + A2

2

s1 + 2A1A2

A2
1 + A2

2

×
⎛
⎝ sin 2α cos (�lφ + �γ )

cos 2α cos (�lφ + �γ ) cos δ − sin (�lφ + �γ ) sin δ

cos 2α cos (�lφ + �γ ) sin δ + sin (�lφ + �γ ) cos δ

⎞
⎠, (C6)

where �l = l2 − l1 and �γ (r) = γ2(r) − γ1(r).
The skyrmion number of a certain region A =
{(r, φ) | r1 � r � r2, 0 � φ � 2π} is then given by

Nsk = 1

4π

∫∫
A

s · [∂xs × ∂ys]dx dy

= 1

4π

∫∫
A

s · [∂rs × ∂φs]dr dφ

= 1

4π

∫∫
A

4�l
A1A2[A1∂rA2 − ∂rA1A2]

[A2
1 + A2

2]2 dr dφ

= �l

2π

∫ 2π

0
dφ

∫ r2

r1

∂r
−A2

1

A1
2 + A2

2

dr

= �l

[
A1(r1)2

A1(r1)2 + A2(r1)2 − A1(r2)2

A1(r2)2 + A2(r2)2

]
. (C7)

Therefore, the skyrmion number Nsk is proportional to the
difference in OAM �l , and exactly equals �l when the
spin states are |s1〉 at r1 (or A2(r1) = 0) and |s2〉 at r2 (or
A1(r2) = 0). Nsk does not depend on the phase offset γ (r).
Since the mode profile is known to depend on |l|, r1 and r2

satisfying such a condition often exist under the condition of
|l2| �= |l1|. For analytically calculating the skyrmion number
of an FP beam generated by our microring cavity, we assumed
the Bessel-like far-field distribution discussed in Eq. (A11)
and obtained

Nsk (θ ) = �l
J|l1|(0)2

J|l1|(0)2 + J|l2|(0)2

−�l
J|l1|(kd1 sin θ )2

J|l1|(kd1 sin θ )2 + J|l2|(kd2 sin θ )2 , (C8)

where d1(d2) is the radius of the angular grating that
diffracts a beam in an angular momentum state of |s, l〉 =
|+1, l1〉 (|−1, l2〉).

APPENDIX D: DETAILED FAR-FIELD PROFILE
OF AN FP BEAM

In this section, we take a closer look to the field pattern of
an FP beam. We consider an FP beam with Nsk = +1, which is
synthesized from two beams in the angular momentum states

of |s, l〉 = |+1, 0〉 and |−1,+1〉. Each beam in the different
angular momentum state can be independently generated by
solely placing a single angular grating on the microring. The
far-field pattern of such a beam generated by the single grating
can be described by a Bessel function, as derived in a previous
section. Figure 7(a) shows results obtained with the toy model.
The far-field pattern is overlaid with the plot of spin distribu-
tion. The top panel of the right bottom inset of Fig. 7(a) shows
far-field patterns diffracted from individual angular gratings.
It is obvious that the two beams (colored in red and blue)
generated from the different angular gratings have different
positions of intensity zero, at which complete spin flips occur
in the superposed beam (light green). The spin flip induces the
oscillation of Nsk as computed in the bottom panel in the right
bottom inset of Fig. 7(a). The behavior of spin flip is visual-
ized in the left bottom inset. The structure that skyrmions and
antiskyrmions appear alternately is known as a skyrmion mul-
tiplex [44]. In the skyrmionic structure, one can find a variety
of skyrmionic structures, such as skyrmionium, skyrmion, and
meron. These states may be obtained by spatially filtering the
FP beam carrying the skyrmion multiplex.

Figure 7(b) shows the same set of results calculated using
the FDTD method. Overall, the FDTD simulations reproduce
the results obtained by the toy model in particular when θ is
small. One noticeable deviation can be found in the behavior
of Nsk, which does not return to zero when varying θ . This
is due to the imperfection in the spin flips at the zero field
intensity points. In the case of FDTD simulations, unspeci-
fied background radiation scrambles the spin state where the
diffracted signal is weak. The behavior of Nsk also signifi-
cantly deviates when θ is large, where the approximation used
in the toy model does not stand. The use of a microring with a
larger radius would be helpful for focusing the beam power to
the region with small θ and thereby for generating more ideal
FP beams.

APPENDIX E: SIMULATING BEAMS WITH Nsk = ±2,±3

In this section, we discuss the generation of FP beams
with Nsk = ±2 and ±3 to further confirm the generality of
our scheme. Similar to the cases discussed in Fig. 3 for the
beam with Nsk = +1 and in Fig. 4 for Nsk = −1, we properly
change g for the grating emitting s = −1 beam to control its
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FIG. 7. Far-field intensity and spin distribution of an FP beam with Nsk = +1, which is synthesized from two beams in the angular
momentum states of |s, l〉 = |+1, 0〉 and |−1, +1〉. (a) Results by the toy model. The right bottom insets show slices of field intensity and
evolution of Nsk. The left bottom inset shows spin distributions between neighbor oscillations of Nsk. Each of the spin distribution constitutes
a skyrmion or an antiskyrmion with |Nsk| = 1. (b) Results from the FDTD calculations.

l , while keeping the same g for that emitting s = +1 beam. In
this way, �l is controlled so as to generate the beam with a
target Nsk. For example, by changing g of an s = −1 angular
grating to 23, a beam in a state of |s, l〉 = |−1,+2〉 will be
radiated from the grating, resulting in an FP beam with an Nsk

of +2, as shown in Fig. 8(a). Figures 8(b)–8(d) show that FP
beams with an Nsk = +3(−2,−3) can also be generated by
changing g of s = −1 angular grating to 22(27,28) so that a
beam in a state of |s, l〉 = |−1,+3(−2,−3)〉 will be radiated
from the angular grating.

APPENDIX F: CONTROLLING THE HELICITY
OF A SKYRMION

Our scheme is also suitable for generating different types
of skrymions other than the Bloch type demonstrated in Fig. 3.
The type of skyrmion is determined by the helicity γ [48],
which corresponds to the phase offset between two orthogonal
spin states. The phase offset for the case of the angular grat-
ings that are aligned at φ = 0 as depicted in the left panel of
Fig. 9 is γ = exp [−i�|l|π/2], which can be easily estimated
using Eq. (A11). In this case, γ becomes −π/2 for the beam
with Nsk (= �l ) = +1, resulting in a Bloch-type skyrmion
shown in the left panel in Fig. 9. By rotating one of the
two angular gratings by a certain angle (φ0) in the azimuth
direction, the diffracted beams gain an additional relative
phase offset of exp [igφ0], where g is the number of grating
elements. Therefore, by rotating the s = −1 angular grating

by π/2
g(=24) = 3.75◦, γ becomes 0 and we obtain a Néel-type

skyrmion beam, as shown in the right panel in Fig. 9.

APPENDIX G: ROBUST GENERATION OF A BEAM
WITH A LARGE Nsk

We observed that Nsk did not reach the designed value of
−5 near θ = 13◦ for the device discussed in Fig. 4(f). This
discrepancy arises from the weak signal of the OAM beam
with a large l at low θ . The weak signal was obscured by
background noise straying in the simulator, resulting in the un-
expected behavior of Nsk. The weak signal even at a moderate
θ stems from the donut shape of the OAM beam, the diameter
of which becomes larger as l increases. The background noise
could originate from imperfections in the isolated excitation
of the target WGM and the radiation from the microring cavity
induced by anything other than the grating. Indeed, with the
FDTD method, we have detected the presence of the radiation
from the other WGM that was unintentionally excited in the
simulator. The discrepancy of the FDTD simulations from the
toy model can also be caused by the finite size of the grating
element, which prevents generating pure circular polarization
upon scattering and by the imperfections in the placement of
grating elements from the ideal positions. The fine tuning of
the simulator model to resolve these issues would lead to a
good agreement between the simulator and the toy model,
though such an approach is cumbersome and obviously not
smart.
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FIG. 8. Generation of FP beams with Nsk = ±2 and ±3. (a–d) Same set of plots as Figs. 4(a)–4(c) but for the beams with a designed Nsk

of (a) +2, (b) +3, (c) −2, and (d) −3.

A simpler method to improve the simulator model is to
reconsider the numbers of grating elements g on both angular
gratings. In the main text, we have modified only one of the
two gratings when controlling the Nsk of a generated beam.
This leads to a large discrepancy among the beam diameters
of the beams radiated from the two gratings and thus to the low

FIG. 9. Schematic showing a method to control the helicity of
skyrmion. The rotation of one of the angular gratings (blue dotted)
in the azimuthal direction by 3.75◦ transforms a Bloch-type skymion
beam (left) to a Néel-type one (right).

spatial overlap between them. Meanwhile, the spatial overlap
can be increased by minimizing the difference in the l (�|l|)
of the two beams. In this way, the area occupied by the weak
signal will be minimized and the effect of the background will
be mitigated. Here we consider the generation of orthogonally
spin-polarized two beams with l = +1 and −4. While �|l|
is reduced to 3, �l is still −5 such that we can expect the
generation of a skyrmion beam with Nsk of −5 through the
superposition of the two beams in the states of |−1,−4〉 and
|+1,+1〉. The former (latter) state can be generated from an
s = −1 (s = +1) grating with a grating number of 29 (22) by

FIG. 10. Generation of an FP beam with Nsk = −5 by synthesiz-
ing two optical vortices with non-zero OAMs. (a) Projected far-field
intensity profile. (b) Stokes vector field. (c) Calculated skyrmion
number versus elevation angle.
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exciting a WGM with the azimuthal order of 24. Figure 10
shows the corresponding results, which exhibit a good agree-
ment with the results of the toy model in the range θ � 30◦.
We note that some discrepancy between the simulation and
the toy model remains near the beam center at low θ . This
originates from the weak signal stemming from the donut
shape of the two beams.

Another strategy for better generating a skyrmion beam
with a large Nsk is to modify the microring cavity structure
itself. The beam diameter becomes smaller with increasing

the size of the microring. Therefore, we could use two dif-
ferent microrings coaxially arranged on the same chip for
separately generating the beams with different l , while match-
ing the diameters of the two beams. In this way, even using
the beams with l = 0 and a large l , we will be able to
maintain a large spatial overlap between the two beams with-
out having a low signal region near the beam cross-section
center. We note that the coaxial two microrings could be
replaced with a single microring with a wider waveguide
width.
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