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Hubbard model on the Bethe lattice via variational uniform tree states:
Metal-insulator transition and a Fermi liquid
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We numerically solve the Hubbard model on the Bethe lattice with finite coordination number z = 3, and
determine its zero-temperature phase diagram. For this purpose, we introduce and develop the “variational
uniform tree state” (VUTS) algorithm, a tensor-network algorithm which generalizes the variational uniform
matrix product state algorithm to tree tensor networks. Our results reveal an antiferromagnetic insulating phase
and a paramagnetic metallic phase, separated by a first-order doping-driven metal-insulator transition. We show
that the metallic state is a Fermi liquid with coherent quasiparticle excitations for all values of the interaction
strength U , and we obtain the finite quasiparticle weight Z from the single-particle occupation function of
a generalized “momentum” variable. We find that Z decreases with increasing U , ultimately saturating to a
nonzero, doping-dependent value. Our work demonstrates that tensor-network calculations on tree lattices,
and the VUTS algorithm in particular, are a platform for obtaining controlled results for phenomena absent
in one dimension, such as Fermi liquids, while avoiding computational difficulties associated with tensor
networks in two dimensions. We envision that future studies could observe non-Fermi liquids, interaction-driven
metal-insulator transitions, and doped spin liquids using this platform.
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I. INTRODUCTION

The Hubbard model is a cornerstone of condensed mat-
ter physics. As a paradigmatic model of strongly correlated
electrons [1], it is simple to formulate yet rich in behavior.
In two dimensions (relevant, e.g., to cuprate superconductors)
observed behaviors include, but are not limited to, antifer-
romagnetism, unconventional metallic behavior characterized
by a pseudogap, and deviations from Fermi-liquid theory
[2–6], as well as stripe orders [7,8] closely competing with
superconducting states at low temperatures [9]. But, despite
decades of effort, a comprehensive understanding of the phase
diagram of the two-dimensional Hubbard model has not yet
been fully reached. Therefore, any solutions of the Hubbard
model, whether obtained analytically or by accurate and con-
trolled numerical techniques, are of great value.

The most reliable and comprehensive solutions of the Hub-
bard model obtained so far have been mainly in (quasi-)one
dimension [10] and in infinite dimensions (infinite lattice co-
ordination number) [11–13]. In one dimension, solutions can
be obtained by integrability [14] and bosonization methods
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[15], as well as numerically with matrix product state (MPS)
tensor-network methods [16,17]. The latter can also reliably
treat quasi-one-dimensional ladder or cylindrical geometries
with a small transverse size. In the limit of infinite dimen-
sions the Hubbard model is again numerically tractable due
to the fact that dynamical mean-field theory (DMFT) be-
comes exact [13]. Using this technique, the phase diagram of
the infinite-dimensional Hubbard model can be mapped out
and a detailed understanding of the interaction-driven Mott-
insulator-to-metal transition has been established (for reviews,
see Refs. [13,18–21]).

While they provide useful insights into the physics of the
two-dimensional Hubbard model, these limiting cases also
have peculiarities which limit the generality of the conclusions
that can be drawn from their study. In the limit of infinite
dimensions, the metallic state is found to be a Fermi liquid,
with interactions affecting one-particle properties in a local
(momentum-independent) manner only. Hence, in this limit,
the feedback of long-wavelength collective modes or even
short-range spatial correlations on quasiparticle properties is
entirely absent. These effects are important, in particular close
to a critical point. In two dimensions, they are, for example,
responsible for the formation of a pseudogap [4,22–25]. In
contrast, in one dimension the low-energy excitations consist
only of bosonic collective modes, associated with charge and
spin degrees of freedom. There is no notion of a Fermi liquid
and the metallic behavior of the Hubbard model is a Luttinger
liquid which lacks coherent quasiparticles and displays spin-
charge separation [15].
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FIG. 1. A portion of the infinite Bethe lattice with coordination
number z = 3. The figure depicts four “generations” of the tree
structure, with a particular site chosen to be the “center” site. Note
that in the actual Bethe lattice there is no special site, and generations
can be counted from any of the sites.

In this work we perform a controlled and accurate numer-
ical study of the ground state of the Hubbard model on the
Bethe lattice with a finite coordination number z, focusing
on the case z = 3. This is an infinite lattice that has a tree
structure, where every site is connected to the same number
of other sites (z) but there are no loops. We show a portion
of this lattice in Fig. 1. This lattice provides an intermediate
case between one dimension (z = 2) and infinite dimensions
(z = ∞), with the key virtue that it admits controlled solutions
via tensor-network methods, including away from half-filling
and in the presence of strong interactions.

Exact solutions of models on the Bethe lattice have a
long history in statistical mechanics [26], starting with the
pioneering article of Bethe [27]. Solutions on the finite coor-
dination number Bethe lattice provide a better approximation
to thermodynamic quantities than the mean-field approxima-
tion (corresponding to the infinite-dimensional limit) [26–28].
Models studied on the Bethe lattice include classical and
quantum spin models [29–35], spin-glass systems [36–39],
the Bose Hubbard model [40], and models of Anderson local-
ization [41–45]. The fermionic Hubbard model on the finite
version of the z = 3 Bethe lattice (known as a Cayley tree)
has also been studied previously using a variant of the density
matrix renormalization group (DMRG) algorithm [46], but
only the case of half-filling was studied (which is a charge in-
sulator) and only local ground-state quantities given (energy,
staggered magnetization and its fluctuations, and neighboring
spin correlations). Since that time, there have been significant
advances in DMRG and related algorithms for infinite one-
dimensional systems, which we generalize here to the Bethe
lattice and use to obtain our results. Notably, there has been
no previous study of metallic states on the finite connectivity
Bethe lattice, to the best of our knowledge.

We determine the full phase diagram of the fermionic
Hubbard model on the z = 3 Bethe lattice, allowing for a
two-site unit cell, and find an antiferromagnetic insulator and
a paramagnetic metal as the only two phases. We establish the
nature of the doping-driven Mott-insulator-to-metal transition
(MIT). We find that it is first order, and that for every value
of interaction strength there is a region of forbidden density.

Therefore, in the interaction-density plane the model exhibits
phase separation at low doping levels. We find that, for all
allowed values of the density, the doped metallic ground state
does not display magnetic long-range order.

The restriction of the unit-cell size to two sites has the
potential to exclude lower-energy states that have a smaller
“ordering wave vector” (the concept of momentum does not
apply on the Bethe lattice). In the two-dimensional Hubbard
model in particular, initial findings of phase separation [47]
have been superseded by lower-energy states with complex
orders involving large two-dimensional “supercells” [8,48].
However, a very recent work suggests that actually phase sep-
aration does indeed occur, with multiple first-order transition
being present in between the insulator at half-filling and the
heavily doped Fermi liquid [49]. On the other hand, in one
dimension, it is known from the exact solution via Bethe
Ansatz that there are only two phases [14], the same ones
as found in this paper, and the transition between them is
continuous [50,51]. The Bethe lattice and the one-dimensional
lattice share the property of being loopless, and we believe
that this feature is the crucial one when it comes to the phase
diagram since the orders found in two dimensions always have
a two-dimensional nature (i.e., the “supercell” has a nontrivial
thickness). It is therefore reasonable to expect that no other
orders are present, and a two-site unit cell is sufficient to
capture the physics of this model, but of course further study
allowing for larger unit cells is required to definitively answer
this question. On the other hand, when it comes to the order
of the transition, the Bethe lattice differs from one dimension,
and might be more similar to two dimensions.

The main motivation of our work is to study the metallic
state. Generally, it is difficult for tensor networks to accurately
describe interacting metallic states above one dimension, al-
though much progress has been made in this direction [48,52–
54]. Our work provides an alternate route to this agenda,
avoiding the computational challenges of two-dimensional
tensor networks, while going beyond the restrictions of one-
dimensional physics. We demonstrate that the doped metal
hosts coherent quasiparticles at all studied values of the
interaction strength U , from weak to strong coupling, and
determine the behavior of the quasiparticle weight as a func-
tion of U . This answers in the affirmative the question of
whether Fermi-liquid behavior applies as soon as the peculiar
kinematic constraints of one dimension are alleviated, and
also provides a concrete description of a Fermi-liquid ground
state with tensor networks.

We obtain our results by generalizing a recently developed
MPS method, variational uniform MPS (VUMPS) [55], to
tree tensor-network (TTN) states [56–58], which we dub the
variational uniform tree state algorithm (VUTS). We further
introduce the fermionic version of the VUTS algorithm, using
the swap-gate method of Refs. [52,59]. The VUTS algorithm
works directly in the thermodynamic limit, which is important
in the study of models on the Bethe lattice. The alternative is
to study the finite Cayley tree and perform a finite-size scaling
analysis. However, the number of boundary sites on the Cay-
ley tree is always more than half of the total, and therefore
finite-size effects are unusually strong and can even lead to
conclusions that do not hold on the Bethe lattice [26,60,61].
Working directly in the infinite-size limit is therefore
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important for models on trees. All previous works study-
ing quantum models on the (infinite) Bethe lattice using
tensor networks have used a variant of the infinite time-
evolving block decimation (iTEBD) algorithm [62]. In the
one-dimensional case, the VUMPS algorithm [55] has been
found to be much more efficient than other methods that
work in the thermodynamic limit, such as iTEBD or earlier
infinite DMRG algorithms [63–66], and indeed we find its
extension in the form of the VUTS algorithm we develop to be
very efficient. Our method scales as O(χ z+1) where χ is the
bond dimension of the tensor network being optimized. For
z = 3 this scaling is significantly better than that of the most
modern and accurate projected entangled pair states (PEPS)
algorithms that scale as O(χ10) for PEPS bond dimension χ

(assuming the boundary MPS bond dimension scales as χ2)
[48,67–71], but is more challenging than the O(χ3) scaling of
DMRG. However, the steeper scaling is mitigated by the fact
that the typical bond dimension required to reach an accurate
solution generally decreases as one goes to higher dimensions
and larger coordination numbers due to the monogamy of
entanglement and more mean-field-like properties of the wave
function.

The accuracy of tensor-network methods is often measured
by the truncation error, denoted by ερ , which measures the
typical loss of fidelity incurred during the truncation step of
the optimization algorithm. In this work, for a bond dimension
of χ = 100, we are able to achieve ερ < 10−3 in the most
computationally challenging part of the phase diagram (most
entangled ground state), and ερ < 10−7 in the best cases. At
face value, ερ ∼ 10−3 lies in-between the accuracy standards
of DMRG and PEPS. For DMRG the high-end standard is
ερ ∼ 10−8. For (i)PEPS one needs to define a different but
similar truncation error denoted by w [53], which currently
has an accuracy standard of w ∼ 10−1 in the doped regime of
the Hubbard model (computationally more challenging than
the half-filled case) [8,48]. However, the more important met-
ric for the accuracy of results is their scaling and extrapolation
with either bond dimension or truncation error. In our work,
we observe that all the quantities we measure have a relatively
smooth dependence on the bond dimension that is well ap-
proximated to be linear for the larger bond dimensions we use.
Therefore, our extrapolations to the infinite bond dimension
limit are expected to be reliable. In particular, the smooth
behavior in χ of the correlation functions and their proper-
ties at all distances give a similarly smooth behavior of the
occupation function near the Fermi energy, which allows us
to reliably extract information about quasiparticle coherence
in the metallic phase. This demonstrates that our method can
be used to reliably study critical phases of matter on the Bethe
lattice already at the level of accuracy we achieve here.

This work suggests promising future directions for study-
ing the behavior of strongly correlated electrons in a
controlled setup. Because Fermi-liquid behavior is a rather
generic feature of metallic states, this study allows to establish
a controlled platform which can be used to study how Fermi-
liquid behavior can be broken by further perturbations to the
model considered here, or in other fermionic models. In the
concluding section of this paper, we discuss possible routes
towards achieving this goal. If successful, tensor-network
solutions of correlated electrons on the z = 3 Bethe lattice

|Ψ(A) = A A

A

AA

A

FIG. 2. A finite portion of the infinite tree tensor-network (TTN)
state describing the many-body wave function on the Bethe lattice.
The physical legs (green dashed lines) form the nodes of the lattice,
while the virtual legs (straight black lines) form the edges. In this
case, a single tensor A comprises the state, and the unit cell is just a
single site.

could provide a new platform for studying non-Fermi liquids
[72,73] in a controlled and accurate manner. Other potential
applications are the study of the interaction-driven MIT in
frustrated fermionic systems, and the study of fermions on
closely related treelike lattices, such as the Husimi cactus on
which the Heisenberg model and other spin models have been
shown to display spin-liquid phases [74]. We elaborate on all
these directions and others at the end of the paper.

This paper is organized as follows. In Sec. II we describe
the general VUTS method, applicable to generic Hamiltoni-
ans. In Sec. III we define the Hubbard model on the Bethe
lattice and show the phase diagram obtained from the VUTS
solution. Section IV discusses the calculation of the quasi-
particle weight from the occupation function, as well as
Luttinger’s theorem. Finally, in Sec. V we summarize and
discuss future directions.

II. VARIATIONAL UNIFORM TREE STATE ALGORITHM

In this section we introduce the variational uniform tree
state algorithm (VUTS), a generalization of the variational
uniform matrix product state algorithm (VUMPS) [55], for
optimizing infinite tree tensor-network (TTN) states. We start
with a Bethe lattice of quantum degrees of freedom. For
simplicity we focus on the algorithm for coordination number
z = 3, which is the value for the model studied in this paper,
but the extension to general z is straightforward. We use an
infinite TTN as our Ansatz to approximate quantum states on
the Bethe lattice. For z = 3, the infinite TTN with a one-site
unit cell consists of an order 4 tensor A ∈ Cχ×χ×χ×d , with
one physical leg (s) which runs over the physical degrees of
freedom 1, . . . , d , and three virtual legs (l0, l1, l2) that run
over virtual degrees of freedom 1, . . . , χ . The virtual legs of
neighboring tensors connect to each other, forming the same
geometry as the Bethe lattice, as shown in the tensor-network
diagram in Fig. 2.

The Hamiltonians we will focus on here are isotropic and
have an equivalence between all sites (the analog of trans-
lational invariance for hypercubic lattices). The ground state
will potentially break this isotropy completely, and break the
site equivalence down to a nontrivial unit cell. In this pa-
per, we allow for the state to be fully anisotropic between
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FIG. 3. Diagrammatic version of the gauge conditions of Eq. (1).
The bonds labeled k, n, m have link indices lk, ln, lm, respectively
(and the uncontracted m bond on the ket has link index l ′

m). The
unlabeled dashed bond is the physical degree of freedom with
index si.

the different directions emanating from a given site, but for
simplicity we focus exclusively on the case when the unit cell
consists of no more than two sites (generalizing to arbitrary
unit cells is straightforward). The infinite TTN state we study
therefore has a two-site unit cell, and is parametrized by a set
of 2z tensors Ai,m, where i = 0, 1 labels the location in the
unit cell, and m = 1, . . . , z labels the direction of the gauge
(defined below). Again, each tensor has one physical index
si = 1, . . . , d and three virtual “link” indices l0, l1, l2.

Because the TTN has no loops, it is straightforward to work
in the canonical gauge, i.e. the gauge where the tensors are
constrained to be orthonormal bases when viewed as a matrix
from two link indices ln, lk and the physical index si to the
remaining link index lm. This constraint on the tensors is very
useful for making the variational optimization faster and more
stable, and is standard in a wide variety of tensor-network
algorithms, particularly in one-dimensional (1D) algorithms
like VUMPS and DMRG. The constraint on the tensors is
written as ∑

si,ln,lk

Āsi,l ′m,ln,lk
i,m Asi,lm,ln,lk

i,m = 1l ′m,lm
i,m , (1)

where we use Ā to denote the complex conjugation of A.
The matrices 1i,m are identities. Diagrammatically, Eq. (1)
is equivalent to Fig. 3. The arrows on the links denote the
gauge of the A tensors (the outgoing link is the direction of
the gauge). Any TTN can be brought into the form where the
tensors obey Eq. (1) (or equivalently Fig. 3) by inserting a
particular set of “gauge transformations” onto the link degrees
of freedom, i.e., inserting a particular set of resolutions of
the identity XX −1 (where X is an invertible matrix) onto the
links of the TTN. Note that the gauge transformation does
not affect the observables of the system, and any TTN can
be transformed into the canonical gauge efficiently.

Examples of the TTN state with a two-site unit cell in
the canonical gauge are shown in Fig. 4. In the top diagram,
the gauge center is C2. Here, C2 represents the projection of
the infinite wave function of the system onto the finite-sized
Hilbert space of that link of the network. The center matrices
Cm constitute invertible gauge transformations relating the
A tensors to each other via Ai,mCm = Ai,nCn, where i = 0, 1
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FIG. 4. The same portion of the Bethe lattice as in Fig. 2, but with
the bonds labeled with m = 0, 1, 2, which have link indices l0, l1, l2,
respectively. Additionally, each tensor is labeled with subscripts i, m,
where i = 0, 1 is the unit-cell index and m is the direction of the
gauge. In the top diagram, the gauge center C2 is shown on a bond
labeled by 2. The next equality shows that the C2 tensor can be
absorbed into the A1,2 tensor to put the gauge center on the site tensor,
creating A1,C .

and n �= m. The center matrices Cm also contain important
information like the entanglement spectrum between the two
infinite halves of the system split by that link. Additionally,
the gauge center can be absorbed onto an A tensor, defining the
center site tensors Ai,C = Ai,mCm for any m. This is shown in
the lower diagram of Fig. 4. In this case, Ai,C would represent
the infinite wave function of the system projected onto a
single site (and again, different spectra of that tensor relate to
entanglement spectra of different bipartitions of the lattice).

We describe the algorithm for the case of H = ∑
〈i, j〉 hi, j ,

where hi, j is a two-site operator that acts on nearest neighbors
only. The case of longer-range operators is treatable using
techniques like those described in Appendix C of Ref. [55].
The total energy is given by E = ∑

〈i, j〉〈ψ |hi, j |ψ〉, and we
want to minimize E , treating the tensor elements of our TTN
as variational parameters. As in VUMPS (and many related
tensor-network ground-state methods), VUTS proceeds in
three main steps that are iterated until convergence:

(1) Compute the projected Hamiltonians (the Hamiltonian
projected into the basis corresponding to the virtual degrees of
freedom of the network) to turn the global optimization into a
local optimization problem.

(2) Find the optimized tensors by minimizing the energy
of the projected Hamiltonian.

(3) Update the tensor network with the new optimized
tensors.

023054-4



HUBBARD MODEL ON THE BETHE LATTICE VIA … PHYSICAL REVIEW RESEARCH 3, 023054 (2021)

=

mn

n

Ai,m

m

Aī,n
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FIG. 5. (a) The first few terms of the series for H1,2, the projected
Hamiltonian contribution for one of the three branches of the infinite
Bethe lattice connected to the center site tensor A0,C (on the i = 0
sublattice). (b) Definition of the hi,m tensors used in (a), which are
a sum of two local Hamiltonian environment tensors sitting on two
branches of the Bethe lattice. Note that the tensor labeled h represents
the two-site operator term hi, j , which the Hamiltonian is made up of.

To begin, say we are interested in optimizing a one-site
projected wave function Ai,C , as defined in Fig. 4. Step 1
requires computing infinite sums of local Hamiltonian terms,
projected into the basis of our gauged TTN (defined by the
tensors Ai,m), for each of the z = 3 infinite subtrees connected
to Ai,C . In order to perform the infinite sum, we focus on sum-
ming the energy contributions of a single subtree. An example
for the series that needs to be summed for the m = 2 direction
in order to optimize the A0,C tensor is shown in Fig. 5. In
Fig. 5 and onwards we use the notation 0̄ = 1, 1̄ = 0 for the
unit-cell indices. We define the results of these summations
as the matrices Hi,m. The summation can be carried out by
making use of the fact that the sum is a geometric series.
However, care has to be taken to project out infinite energy
contributions to keep the series convergent (i.e., keep the norm
of the solution Hi,m from diverging). The procedure of per-
forming the summation and projecting out the infinite energy
contributions is a generalization of the one in Appendix D of
Ref. [55], and we discuss it in more detail in Appendix A 1.

Once the environment tensors are found, we can proceed
to step 2 of the algorithm, which we begin by optimizing Ai,C .
This is done by finding the ground state of the Hamiltonian
projected onto the sublattice site i, a standard procedure in
VUMPS and DMRG. The eigenvalue equation for Ai,C is
shown diagrammatically in Fig. 6, and is solved iteratively
(using a Hermitian eigensolver such as Lanczos). To find the
TTN ground state, we obtain the eigenvector with the smallest
eigenvalue. As in the VUMPS algorithm, in addition to opti-
mizing Ai,C , we also optimize Cm. Ai,C and Cm are then used to
solve for Ai,m, which make up the updated infinite TTN state
(see next paragraph). The eigenvalue equation for Cm is shown
diagrammatically in Fig. 7.

Finally, once Ai,C,Cm for all i = 0, 1, m = 0, 1, 2 are opti-
mized, we can proceed to step 3 of the algorithm and solve for
our new Ai,m tensors by minimizing

εi,m = min
A†

i,mAi,m =1i,m

||Ai,C − Ai,mCm||. (2)

This minimization problem can be solved optimally using
techniques described in Eqs. (18)–(22) of Ref. [55]. The new
Ai,m we obtain constitute our updated TTN, and steps 1–3 are
repeated until convergence. Convergence is achieved when the
largest error found in Eq. (2), εprec ≡ max{εi,m}, falls below a
chosen threshold (e.g., εprec < 10−12).

The VUTS algorithm with a one-site update, as we de-
scribe here, scales as O(χ z+1) which becomes O(χ4) for
the z = 3 Bethe lattice and O(χ3) for z = 2, thus reducing
to the scaling of VUMPS in the z = 2 case. Additionally, a
two-site update can be formulated, analogous to the two-site
DMRG algorithm which is commonly used. This requires a
slight modification of the algorithm where ground states of
two-site and one-site projected Hamiltonians are computed
(as opposed to one-site and zero-site projected Hamiltonians
in the version of the algorithm described above). This can lead
to improved convergence since a larger local Hilbert space is
explored, but has a higher computational cost of O(χ5) for
z = 3. We use this technique at lower bond dimensions in
more challenging parts of the phase diagram (near the phase
transition), and switch to the one-site algorithm later in the
calculation to reach higher bond dimensions. To dynamically
change the bond dimensions, we use a generalization of the
subspace expansion procedure described in Appendix B of
Ref. [55].

For fermionic models like the Hubbard model, we need to
use a fermionic version of VUTS. We use the method outlined
in Refs. [52,59]. Every tensor is now endowed with a fermion
parity Z2 quantum number and is parity preserving. When two
tensor legs cross on a planar projection of a tensor diagram, a
fermionic swap gate is placed at the crossing. In order to em-
ploy this method, we need to use a fixed ordering convention
for the legs of the tensors Ai,m, Ai,C,Cm, which must be kept
consistent in all of the diagrams in the calculation. We address
the associated subtleties and details of this approach in Ap-
pendix A 2. Other symmetries beyond the Z2 parity can also
be used, such as U(1) particle number conservation (to fix the
filling), U(1) spin projection symmetry in the z direction, and
also the spin SU(2) symmetry. The inclusion of these sym-
metries makes the tensors more sparse and should therefore
make the tensor operations more efficient, allowing us to reach
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FIG. 6. The eigenvalue equation for Ai,C . The sum over m is a sum over the contributions from each leg of the Ai,C tensor.

larger bond dimensions. In this work, we only employ parity
quantum numbers, and leave the use of additional symmetries
for future work.

III. MODEL AND PHASE DIAGRAM

The Hubbard Hamiltonian is given by

H = −t
∑
〈i, j〉

∑
σ=↑,↓

c†
i,σ c j,σ + U

∑
i

ni,↑ni,↓ − μ
∑
i,σ

ni,σ , (3)

+

m

m

m
Cm

H0,m
+

n

m

h n

m
A0,m

Ā0,m Ā1,m

A1,mCm

m m

k k

m

m

m
Cm

H1,m

= m m
CmλC

FIG. 7. The eigenvalue equation for Cm.

where the site index i now runs over the Bethe lattice and
ni,σ = c†

i,σ ci,σ is the onsite density for an electron of spin
σ . We set t = 1 and vary U � 0 and μ. Since the model
is particle-hole symmetric, we only need to consider δμ ≡
μ − U

2 � 0. To obtain the phase diagram, we compute the
ground state of the Hubbard model using the fermionic VUTS
algorithm for several values of the bond dimension χ . The de-
tails of the numerical calculation are given in Appendix B. We
perform extrapolations in χ , the results of which we describe
below. The additional plots of the finite χ results and details
of the extrapolations are in Appendix C.

At half-filling, δμ = 0, the system is a charge insula-
tor with antiferromagnetic order for all U > 0, as in one
dimension. To illustrate this we compute the staggered mag-
netization of the bipartite sublattice ms ≡ |(〈�SA〉 − 〈�SB〉)/2|.
The extrapolated values ms(χ → ∞) are shown in Fig. 8.
We can see that for any U > 0 the magnetization is nonzero,
tending to zero as U → 0. From general mean-field theory
considerations we expect ms ∼ e− c

U for small U . However, we
did not attempt to confirm this functional form numerically by
systematic calculations at very small values of U .

To illustrate the charge gap at half-filling, we compute the
onsite occupation 〈ni〉 = ∑

σ 〈ni,σ 〉 as a function of δμ. We
show this in Fig. 9 for a single value of U = 6 and χ = 50.
All other U and χ look qualitatively similar. We see that there
are two branches of VUTS solutions: insulating (〈ni〉 = 1) and
metallic (〈ni〉 > 1) (equivalently differentiated by a zero and
nonzero charge compressibility κ = ∂〈ni〉/∂μ, respectively).
The insulating branch exists for δμ � δμ1, and the metallic
branch for δμ � δμ2: these two values δμ1 and δμ2 (with
δμ2 < δμ1) are spinodal values limiting the metastability of
the insulating and metallic solutions, respectively (see Ap-
pendix C for details). For each value of δμ the ground state
is the branch with the lower energy. The energies of the two
branches cross at a particular value, which we define to be
δμc(χ ). At δμc(χ ), the ground state changes from insulat-
ing for δμ < δμc to metallic for δμ > δμc. The occupation
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FIG. 8. The extrapolated values of the staggered magnetization
ms of the insulating state at half-filling, plotted as a function of
U . Note the logarithmic scale used for ms. The error bars are the
discrepancy in the extrapolation with and without the last data point
(for the points where they are absent, they are smaller than the data
points).
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FIG. 9. (a) The occupation versus δμ for U = 6 and χ = 50 for
the both metallic and insulating branches. The slope of these curves is
the charge compressibility, which is another diagnostic of the phase.
The metallic branch has a finite compressibility. All other values of
U, χ look similar. (b) The energy per site of both branches in (a).
Their crossing point δμc is indicated by a dashed line in both (a) and
(b).
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FIG. 10. The extrapolated values of the jump in density δnc at
the first-order transition occurring at δμc plotted as a function of U .
The error bars, which are the discrepancy in the extrapolation with
and without the last data point, are smaller than the data points.

undergoes a finite jump δn(δμc, χ ) = 〈ni(δμc, χ )〉 − 1, in-
dicating that this is a first-order metal-insulator transition.
We estimate the size of the jump in the real system by the
χ → ∞ extrapolated values, which are shown in Fig. 10.
We can see they remain finite for all U , meaning that this
is a true first-order transition, and not an artifact of finite
bond dimension. Using a derivation based on the Maxwell
construction (detailed in Appendix C), it can be shown that
the total charge gap is given by 
c(χ ) = 2 δμc(χ ). In order
to obtain the charge gap 
c for the real system, we extrapolate

c(χ ) in χ . The result is shown in Fig. 11. We can see
that the extrapolated gap shows an exponential-like behavior
at small U similar to the one-dimensional case, though the
precise behavior is difficult to extract numerically. At large U
the gap crosses over to a more linear dependence on U .

The first-order transition we observe implies that for every
U there is a range of forbidden density. Hence, in the (U, n)
plane the model exhibits phase separation. Our numerical
method works in the grand canonical ensemble (we do not

0 1 2 3 4 5 6
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2.5

U

�c

FIG. 11. The extrapolated values of the charge gap 
c at half-
filling plotted as a function of U . The error bars, which are the
discrepancy in the extrapolation with and without the last data point,
are smaller than the data points.
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FIG. 12. The staggered magnetization ms versus the chemical
potential δμ for U = 6 and χ = 90. The critical point δμc is in-
dicated by a dashed line. We see the drop from ms > 0 to ms = 0,
indicating the first-order transition from the antiferromagnetic insu-
lator to the paramagnetic metal.

fix particle number per unit cell), so we cannot observe this
phase separation directly. However, VUTS, similar to other
variational tensor-network methods like DMRG and VUMPS,
can get “stuck” in local minima. We use this fact to find both
branches of solutions near the transition point, even when they
are metastable (i.e., not the lowest-energy states), by way of
hysteresis in the numerical algorithm (see Appendix C for a
detailed explanation). The resulting branches, shown in Fig. 9,
can be continued to find the spinodal values of the first-order
transition (see Appendix C).

The metallic ground state has no magnetic order for any
value of density: we find that the staggered magnetization
vanishes once δμ crosses δμc. To illustrate the typical magne-
tization behavior we observe, in Fig. 12 we show the staggered
magnetization ms as a function of δμ across δμc for U = 6 at
a large but fixed χ = 90. Once δμ becomes large enough to
drive the system metallic, the staggered magnetization ms im-
mediately drops to a very small value, which is zero within our
error tolerance. All other values of U and χ behave similarly.
As χ increases, the small value of magnetization in the metal
decreases further, although the behavior is not monotonic, as
shown in Appendix C. Also, in Appendix B we describe the
strategy we use to make sure we do not bias the magnetization
of the metallic solution with our Ansätzes.

It is interesting to compare our results on the z = 3 Bethe
lattice to those established for the doping-driven MIT in the
z = ∞ limit where DMFT becomes exact. Only a few studies
[75–77] consider this transition while also taking into account
phases with magnetic long-range order. As in our results, an
antiferromagnetic insulator is found at half-filling for a range
of chemical potentials, as well as a nonmagnetic metallic
solution which can be stabilized for values of the chemical
potential above a spinodal value δμ2. Furthermore, a mag-
netic metallic solution is found to exist in a narrow range
of chemical potentials, which connects the magnetic insulator
and the nonmagnetic metal. This may appear to differ from
our findings, but it should be emphasized that all these studies
consider only nonzero temperatures. As temperature is low-
ered, it is reported in Refs [75,76] that the magnetic metallic
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U � 20
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FIG. 13. Our estimate for the truncation error ερ in the metallic
phase for 〈ni〉 = 1.2 (a) as a function of χ and (b) as a function of U
for the two largest χ . Note that since (a) is a log-log plot, the linear
form indicates an algebraic relationship.

solution appears to exist only in an increasingly narrow in-
terval of chemical potentials, and Ref. [75] suggested that at
low temperature the MIT is a first-order transition between
the magnetic insulator and the nonmagnetic metal, with a
forbidden range of density corresponding to phase separation.
Although, to the best of our knowledge, this has not yet been
fully established directly at T = 0 for z = ∞, this conclu-
sion is consistent with our findings on the finite coordination
number lattice. In contrast, on fully frustrated z = ∞ lattices,
which do not allow for long-range magnetic order (e.g., on the
fully connected lattice with random hopping), it is established
that the doping-driven MIT is second order at T = 0 and
becomes first order only at finite temperature [13,78–80].

To conclude this section, we mention briefly the numer-
ical accuracy of the data presented here. As noted in the
Introduction, the numerical accuracy in tensor networks is
generally measured by the truncation error, denoted by ερ .
We show here the scaling of ερ in the metallic state, which is
the state with the largest entanglement and therefore the most
computationally challenging for tensor networks. In Fig. 13
we plot our estimate of ερ at a fixed density of 〈ni〉 = 1.2 as a
function of χ for various U , and also as a function of U at the
largest values χ = 90, 100. We can see that the decay with χ

is algebraic, as expected for a gapless system. As a function
of U , ερ increases initially and then potentially saturates,
although the large U behavior is undetermined. Notably, we
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can see that ερ < 10−3 for all U and χ = 100, which is a high
level of accuracy. We discuss the behavior of ερ at other points
in the phase diagram in Appendix B.

IV. QUASIPARTICLES

In this section we address the existence of quasiparticles
in the system. We do this by computing the quasiparticle
weight Z from the “momentum” distribution function of the
ground state, which in turn is obtained from real-space cor-
relation functions. One peculiarity of the Bethe lattice is that
correlations between any two degrees of freedom sitting on in-
dividual nodes of the lattice have a maximal finite correlation
length, even at criticality, due to the geometry of the lattice.
However, algebraically decaying correlations reappear after
a change of basis to single-particle states that are weighted
sums of all nodes of a given generation emanating from a
chosen center site. These bases of states unveil the traditional
long-range criticality present in gapless states on the Bethe
lattice. Below, we introduce a subset of these weighted states
called the symmetric states, which we focus on in the rest of
this section. From these symmetric states we define a quantum
number which plays an analogous role on the Bethe lattice to
quasimomentum on the hypercubic lattice, despite the absence
of conventional translation invariance.

A. Single-particle basis of symmetric states

For U = 0, the free-particle Hamiltonian was diagonalized
in Ref. [81], using the symmetric set of single-particle states.
These are given as follows. Choose any site to be labeled as
the origin, with site label 0. Then consider all permutations of
the nodes at each generation l from the center. The symmetric
states are those which are invariant under all such permuta-
tions. Their creation operators are given by

c̃†
0,σ ≡ c†

0,σ (4)

and

c̃†
l,σ ≡ 1√

z(z − 1)l−1

z−1∑
η1=0

∑
η2 �=η1

. . .
∑

ηl �=ηl−1

c†
η1+η2+···+ηl ,σ

(5)

for l > 0. The collection of ηi denotes a unique path from the
origin to the lth generation (this is the usual notation for nodes
on the Bethe lattice). The state c̃†

l,σ |vacuum〉 is the symmetric
combination of all the singly occupied spin-σ states of the
lth generation of the tree. These states form an orthonormal
subset of all the states on the Bethe lattice, but for U = 0
they are the only relevant ones. In the symmetric state basis,
the free-particle Hamiltonian maps onto fermions hopping
on an infinite half-chain, with the first hopping amplitude
equal to

√
z and all the rest equal to

√
z − 1 (remember t

has been set to one). The conjugate variable that replaces
momentum is an angle θ ∈ [0, π ], and the band energy is
given by ε(θ ) = 2

√
z − 1 cos θ . Note that the energy of a reg-

ular one-dimensional band is obtained by replacing θ with a
momentum k and z with 2. The single-particle wave functions

ψl (θ ) that diagonalize the Hamiltonian are given by

ψ0(θ ) =
√

2

π

√
z(z − 1) sin(θ )√

z2 − 4(z − 1) cos2(θ )
,

ψl �=0(θ ) =
√

2

π
sin[lθ + γ (z, θ )], (6)

γ (z, θ ) =

⎧⎪⎨
⎪⎩

arcsin
( z sin(θ )√

z2−4(z−1) cos2(θ )

)
, θ ∈ [

0, π
2

)
π − arcsin

( z sin(θ )√
z2−4(z−1) cos2(θ )

)
, θ ∈ [

π
2 , π

]
.

Once U �= 0, the symmetric states are no longer enough to
describe the system. Indeed, if we simply consider a Mott-type
state with one particle sitting on each of the sites at generation
l = 1 away from the center site, that state cannot be written
using only the single-particle symmetric states associated with
the same center site. In general, an arbitrary multiparticle
Fock state cannot be constructed as a tensor product of the
symmetric single-particle states. Therefore, to construct it one
must employ states from other symmetry sectors. The interact-
ing ground states we find numerically in this work therefore
contain states from various symmetry sectors. However, ex-
citations above the ground state can occur in any of these
sectors, and we do not have to consider all of them. In order to
tractably answer the question of existence of quasiparticles,
we choose to focus on excitations in the symmetric sector.
How quasiparticles in different symmetry sectors are related
to each other is an interesting question for future work [82].

B. θ-distribution function for U = 0

The θ -distribution function is calculated from the equal-
time correlation functions of symmetric single-particle exci-
tations 〈c̃†

0,σ c̃l,σ 〉, where 0 labels a chosen center site and l
labels the generation away from the center site. These can be
computed as

〈c̃†
0,σ c̃l,σ 〉 =

∫ 0

−∞
dωA0l (ω)

=
∫ μ

−2
√

z−1
dε

√
z

2π

ψl
[
arccos

(− ε

2
√

z−1

)]
√

z2 − ε2
, (7)

where A0l (ω) is the probability of inserting an electron with
frequency ω at the center site and observing it at generation l
at the same frequency. The occupation function in θ space is
defined as

nσ (θ, θ ′) ≡ 〈c̃†
θ,σ c̃θ ′,σ 〉, (8)

where

c̃θ,σ = lim
L→∞

√
π

L + 1

L∑
d=0

ψd (θ ) c̃d,σ (9)

are the θ transforms of the symmetric state operators c̃d,σ .
The key difference with the usual calculation in hypercubic
lattices is that 〈c̃†

d,σ
c̃d ′,σ 〉 is not simply a function of |d − d ′|,

due to the fact that the symmetric states are defined relative
to a chosen center site. This is illustrated in Fig. 14, where
we show that 〈c̃†

2,σ c̃4,σ 〉 contains correlations of length 2, 4,
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FIG. 14. Four generations of the z = 3 infinite Bethe lattice ema-
nating from a given center site. The inner shell is at generation d = 2,
and the outer shell is at generation d ′ = 4. Choosing a given site on
the inner shell (colored red), there are three different groups of sites
on the outer shell (colored orange, green, and purple) that contribute
different-length correlations.

and 6. Therefore, nσ (θ, θ ′) is not diagonal in θ . One way
to understand this is to think of the entire symmetric sector
parametrized by θ as the k = 0 space on the hypercubic lat-
tice, i.e., the one that is fully symmetric under translations.
However, within this sector there is no additional symmetry
of the Bethe lattice that requires the total θ to be conserved
in a scattering process, and therefore nσ (θ, θ ′) is not diagonal
[82]. Carefully inserting Eq. (9) into Eq. (8) and rewriting the
result in terms of 〈c̃†

0,σ c̃l,σ 〉 gives

nσ (θ, θ ′) = lim
L→∞

π

L + 1

L∑
d,d ′=0

ψd (θ )ψd ′ (θ ′)
z − 2√
z(z − 1)

× a(z)δmin(d,d ′ ),0

min(d,d ′ )∑
r=0

b(z)δr,0+δr,min(d,d ′ )

× c(z)δd,d ′ δr,0−δd,0δd ′ ,0 〈c̃†
0,σ c̃|d−d ′|+2r,σ 〉, (10)

where

a(z) =
√

z(z − 2)

(z − 1)3/2
, (11)

b(z) = z − 1

z − 2
, (12)

c(z) =
√

z

z − 1
, (13)

and δi j is the Kronecker delta function. Details of the deriva-
tion of Eq. (10) are in Appendix D. We plot the exact nσ (θ, θ ′)
for U = 0 at half-filling in Fig. 15(a).

In this work, we focus exclusively on the diagonal compo-
nent of the occupation function nσ (θ ) ≡ nσ (θ, θ ). This tells us
the occupation of excitations that preserve total θ when scat-
tering with each other. We leave the detailed study of the full
occupation function nσ (θ, θ ′) for future work. We plot the ex-
act nσ (θ ) in Fig. 15(b) for U = 0 and densities 〈ni〉 = 1, 1.2.
We can see the expected behavior of nσ = �(θF − θ ), where
�(x) is the Heaviside step function and θF is the θ analog
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FIG. 15. (a) The occupation function nσ (θ, θ ′) for the half-filled
case at U = 0. Aside from the expected step function along the
diagonal, there is nontrivial off-diagonal structure. (b) The diagonal
component nσ (θ ) for U = 0 and densities 〈ni〉 = 1, 1.2, correspond-
ing to values of θF = π/2 and θF ≈ 1.81, respectively. Calculating
the occupation from Eq. (10) requires a large distance cutoff L, which
is chosen here to be (a) L = 100 and (b) L = 200. This introduces an
artificial correlation length, causing the step function to be (slightly)
smoothed out.

of the “Fermi momentum” [the step function in Fig. 15(b) is
slightly smoothed out due to a finite L in Eq. (10)].

In order to compute the correlation function 〈c̃†
0,σ c̃l,σ 〉 from

the VUTS numerical solution, we use the fact that even in the
interacting ground state, 〈c†

i,σ c j,σ 〉 is still only a function of

the distance |i − j| (and σ ). We can then compute 〈c†
0,σ cl,σ 〉

for an arbitrary branch to write

〈c̃†
0,σ c̃l,σ 〉 =

√
z1−δl,0 (z − 1)l−1+δl,0〈c†

0,σ cl,σ 〉. (14)

Note that the difference here from the previous considerations
of this paragraph is that one of the reference points has been
set to the center site. We plot 〈c̃†

0,σ c̃l,σ 〉 measured with VUTS
in Fig. 16 for U = 0 and densities 〈ni〉 = 1, 1.2, along with
the exact results. The finite-χ results are close to the exact
ones, but, as expected, the correlation function at large enough
distances decays exponentially with a finite correlation length
ξ (χ ). We can measure ξ (χ ) by fitting 〈c̃†

0,σ c̃l,σ 〉 to an expo-
nential at large l . The results are shown in Fig. 16(c), where
the polynomial fit gives ξ (χ ) ∼ χ0.84 for both densities.

When calculating nσ (θ ) from Eq. (10), in practice we must
choose a finite value of L. As long as we take L large enough,
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(a)

(b)

(c)

FIG. 16. The correlation function 〈c̃†
0,↑c̃r,↑〉 (σ =↓ gives the

same) for densities (a) 〈ni〉 = 1 and (b) 〈ni〉 = 1.2 for the non-
interacting case U = 0. We show the χ = 50, 100 results along
with the exact solution of Eq. (7). Also shown are the functions
1
r ψr (θF ) ψ0(θF ) with (a) θF = π/2 and (b) θF ≈ 1.81, which are
excellent fits beyond a short-distance scale, showing Friedel oscil-
lations due to the Fermi-surface singularity. The insets show that
the 1/r decay is fit perfectly over a larger distance by the exact
solution, while the finite-χ solutions display an exponential decay
at large distances. (c) The correlation length extracted from the long-
distance behavior of 〈c̃†

0,σ c̃r,σ 〉, plotted versus 1/χ . The slope for both
densities is ξ (χ ) ∼ χ 0.84.

the correlation length ξ (χ ) will act as the long-distance cutoff
and the value of L will not have any effect. Our results are
obtained using bond dimensions up to χ = 100, for which
the induced correlation length is ξ (χ ) � 40. We find that a
value of L ∼ 400 is large enough for all χ we study. The
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FIG. 17. Plots of nσ (θ ) near θF for U = 0 at density 〈ni〉 = 1.2
and a range of χ . The value of L used here from Eq. (10) is L = 400.

finite ξ (χ ) smoothes out the step function in nσ (θ ), so we
estimate θF from the location of the maximum of |n′

σ (θ )|. In
Fig. 17 we show nσ (θ ) for 〈ni〉 = 1.2 near θF . The finite slope
at θF diverges as a power law in χ , as we show in Fig. 18.
This indicates that ξ (χ ) is the only low-energy scale in the
problem, and the state is truly gapless in the χ → ∞ limit.

In summary, in this section we show how to compute the
diagonal part of the occupation function in the noninteracting
case, using VUTS and a careful extrapolation in the bond di-
mension, and achieve excellent agreement with the analytical
result.

C. Quasiparticles in the interacting system

Now, we turn on interactions. In Fig. 19 we plot nσ (θ ) near
θF for 〈ni〉 = 1.2 and U = 5 at various χ as well as for various
U at χ = 70. The occupation shows a form similar to that of
the free case, albeit with a reduced size of the step at θF . The
value of the slope at θF diverges for all U , as we show in
Fig. 18. The interacting system is therefore also gapless in the
χ → ∞ limit, as expected.

The quasiparticle weight Z of the symmetric state excita-
tions is defined as

Z ≡
(

lim
θ→θ−

F

− lim
θ→θ+

F

)
nσ (θ ). (15)
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FIG. 18. The value of |n′
σ (θF )| vs 1/χ for various U at density

〈ni〉 = 1.2. The straight lines on the log-log plot are fit by |n′
σ (θF )| ∼

χα , with 0.5 < α < 1.
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FIG. 19. Plots of nσ (θ ) near θF at density 〈ni〉 = 1.2, showing the
dependence (a) on χ for fixed U = 5, and (b) on U for fixed χ = 70.
The value of L from Eq. (10) is L = 400.

For a Fermi liquid nσ (θ ) has a step at θF and Z > 0, while for
a Luttinger liquid the occupation function has a higher-order
nonanalyticity that scales as nσ (θ − θF ) ∼ |θ − θF |γ sgn(θ −
θF ) for some γ < 1 and therefore Z = 0. Our goal is to find
the true thermodynamic value of Z to distinguish between
these two scenarios. Of course, for a finite χ , Eq. (15) will
always give zero. However, we can define a quantity Z (χ )
whose limit will give Z in the χ → ∞ limit. We define this as

Z (χ ) ≡ nσ

(
θF − π

2 ξ (χ )

)
− nσ

(
θF + π

2 ξ (χ )

)
, (16)

which satisfies the desired property because ξ (χ ) → ∞ with
increasing χ . We choose a spacing of 
θ = π/ξ (χ ) around
θF because that is roughly the resolution one expects from a
finite correlation length, and therefore the convergence in 1/χ

should be fastest. We plot Z (χ ) vs χ for 〈ni〉 = 1.2 and a range
of U in Fig. 20. The results show that the extrapolated Z is (a)
very close to the expected value of Z = 1 for the free theory
and (b) finite for all U we study. We plot Z as a function of U
in Fig. 21(a), where we can see that it decreases as a function
of U , but seems to saturate to a finite value. The saturation
value is an increasing function of doping 〈ni〉 − 1, as illus-
trated by Fig. 21(b) where we plot the value of Z (U = 20) as
a function of doping.

We also address the question of Luttinger’s theorem for
nσ (θ ). We check that θF is independent of U (the dependence
on χ is negligible) for various densities in the range 〈ni〉 ∈
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FIG. 20. Z (χ ) at density 〈ni〉 = 1.2, shown with linear fits.

(1.1, 1.4). From this we conclude that Luttinger’s theorem
holds for all values of the density and interaction strength.

The decrease of Z with increasing U as well as the sat-
uration at large U to a value which increases with doping
are both qualitatively consistent with results established in
the z = ∞ (DMFT) limit and with slave-boson approaches
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FIG. 21. (a) The extrapolated values of Z at densities 〈ni〉 =
1.2, 1.3, 1.4, plotted as a function of U . The first two blue points are
covered by the orange ones. The error bars, which are the discrepancy
in the extrapolation with and without the last data point, are smaller
than the data points. We can see that the curves are close to saturation
at U = 20. (b) The values of Z at U = 20, which seem close to the
saturated values, as a function of 〈ni〉 − 1.
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(for general lattices) [13,83]. A distinctive aspect of these
theories, however, is that the effective mass of quasiparticles
is related to Z by m∗/m = 1/Z . On the technical level, this
is due to the locality of the self-energy, while physically
this reflects the inability of these approaches to capture the
feedback of short-range order and collective modes into the
physics of quasiparticles. In contrast, in the present case, since
the connectivity is kept finite, we would expect this feedback
to be present. It is therefore an outstanding question for future
work to explore whether the dispersion of quasiparticles is
renormalized in a different manner than Z itself, and in par-
ticular whether it is affected by short-range antiferromagnetic
correlations at low doping level. This is left for future work
since it requires an extension of our algorithm to the study of
excited states.

V. DISCUSSION

In summary, we have introduced a numerical algorithm,
(fermionic) VUTS, to study quantum (fermionic) models on
the Bethe lattice. We apply it to the Hubbard model for coor-
dination number z = 3, allowing for a two-site unit cell, obtain
the T = 0 phase diagram, and study the doping-induced Mott
transition. We find an antiferromagnetic insulating phase at
half-filling and a paramagnetic metallic phase for the doped
system, which are separated by a first-order insulator to metal
phase transition. The model displays phase separation at low
doping, with a range of forbidden densities. These conclu-
sions were reached by allowing for a two-site unit cell. As
discussed in the Introduction, we expect that this size unit
cell is enough to capture all the correct phases and physics
of the model. However, we cannot exclude the possibility that
phases with more complex charge or magnetic ordering exist
when allowing for a larger unit cell, which we leave as an open
question for future work. By studying the diagonal component
of the occupation function for momenta of the symmetric
single-particle sector, we find that the quasiparticle weight
is nonzero, consistent with the existence of a Fermi-liquid
ground state for fermions on the Bethe lattice. We find that
this Fermi-liquid state obeys Luttinger’s theorem.

An interesting direction in which to extend this work would
be to further characterize this Fermi-liquid state. One would
like to know, for example, what happens near θF to the off-
diagonal nσ (θ, θ ′) when interactions are turned on. It is also
interesting to look at some of the other symmetry sectors, say
the ones that leave each of the z subtrees connected to the
center site invariant, and see whether they have quasiparticles
and how the quasiparticle weight depends on the sector. These
questions are the Bethe lattice version of the important phys-
ical question of “momentum dependence” of quasiparticle
properties on the Fermi surface of hypercubic lattices.

In the one-dimensional VUMPS algorithm, it has been
shown that low-lying excitations above the ground state can
be accurately computed [84]. An obvious question is how to
extend these ideas to VUTS (this is another potential advan-
tage of this method over imaginary-time evolution). Extension
of the algorithm to excited states would allow to characterize
the effective mass (dispersion) of the quasiparticles, paving
the road for a study of how short-range (e.g., antiferromag-
netic) correlations affect quasiparticle properties. This is a

very important question for the physics of strongly correlated
electron systems. A breakdown of the m∗/m = 1/Z relation
would signal that this feedback is indeed present, in contrast
to the infinite connectivity limit. Finally, studying the energy
dependence of the quasiparticle lifetime, as well as the in-
teractions between quasiparticles, would be a comprehensive
study of Landau Fermi-liquid theory on the Bethe lattice.

It would also be interesting to look at the entanglement
structure of the Fermi-liquid state, as compared to a Luttinger
liquid. Since the entanglement spectrum is easily obtained on
the one-dimensional and Bethe lattices from the singular value
decomposition of a single bond tensor, this question could in
principle be easily answered.

We also propose that the finite-z Bethe lattice can be used
as a computationally tractable platform for the study of how
quasiparticles can be destroyed and Fermi-liquid behavior
breaks down when considering other fermionic Hamiltonians
on this lattice. One route to explore this, which connects to the
feedback of long-wavelength collective modes or short-range
spatial correlations on quasiparticle properties, is to study
the vicinity of a quantum critical point. Another route is to
study microscopic models that are tailor engineered to have
incoherent excitations, such as the one of Ref. [85], or the
multichannel Kondo lattice.

Studying the interplay between frustration and strong cor-
relations is another promising direction for future research.
Introducing a frustrating next-nearest-neighbor hopping term
has been found with DMFT to yield an interaction-driven
metal-insulator transition on the infinite-z Bethe lattice
[13,86]. An interesting question is whether this transition can
also be found at finite z. The VUTS algorithm could also be
extended to other lattices with a treelike structure, such as the
Husimi cactus. The study of spin models on such lattices has
revealed spin-liquid ground states [74,87] (see also Ref. [88]
for considerations on the spin-ice model), opening the ques-
tion of how these models behave upon doping.

Finally, increasing the temperature to a nonzero value
is another interesting direction. Intuitively, some finite-
temperature properties may be less sensitive to the differences
between tree lattices and two- or three-dimensional hypercu-
bic lattices. This could be done using the purification method
[89–91] which has been formulated on the Bethe lattice in
Ref. [92].
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APPENDIX A: DETAILS OF THE VARIATIONAL
UNIFORM TREE STATES ALGORITHM

1. Summing the Hamiltonian terms

Here we explain how we compute projected Hamiltonians
for subtrees of the Bethe lattice, using infinite summations like
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FIG. 22. (a) Transfer matrix T n,m
i from Eq. (A1). (b) Diagrammatic equations for the right eigenvectors Ri,m of the transfer matrices, which

represent the reduced density matrices for bipartitions of the Bethe lattice [and are also shown in Eq. (A3)]. As a reminder, the bonds labeled
k, m, n have link indices lk, lm, ln, respectively, and we leave of the prime levels for simplicity.

those shown in Fig. 5. To help us with the computation, we
start by defining the transfer matrices, which are operators
that act on the virtual degrees of freedom of the network. We
build the transfer matrices out of the Ai,m tensors, the tensors
of the TTN that are in the orthonormal gauge. They are defined
as

T n,m
i =

∑
si,lk

Āsi,l ′m,l ′n,lk
i,m Asi,lm,ln,lk

i,m , (A1)

where n, m = 0, 1, 2 and n �= m. The diagrammatic version of
Eq. (A1) is shown in Fig. 22(a). Using the transfer matrix we
can rewrite the gauge conditions of Eq. (1) (Fig. 3) as

(1ī,n| T n,m
i = (1i,m|, (A2)

where we use the vectorized notation such that (1i,m| is a
length χ2 vector that is isomorphically equivalent to the
χ × χ matrix 1i,m, and the transfer matrix T n,m

i is treated as
a χ2 × χ2 matrix mapping from the bra and ket links of bond
n to the bra and ket links of bond m. We also use the notation
0̄ = 1, 1̄ = 0 for the unit-cell indices introduced in the main
text. In addition, we make use of the right eigenvectors of
the transfer matrices Ri,m. These are defined by the set of
equations ∑

si,lk ,lm,l ′m

Āsi,l ′m,l ′n,lk
i,m Rl ′m,lm

i,m Asi,lm,ln,lk
i,m = Rl ′n,ln

ī,n
, (A3)

or in vectorized notation in terms of the transfer matrices

T n,m
i |Ri,m) = |Rī,n). (A4)

The matrices Ri,m are the reduced density matrices of a bipar-
tition of the state. The diagrammatic versions of Eqs. (A3) and
(A4) is shown in Fig. 22(b).

Using vectorized notation, the environment matrices Hi,m

are calculated from the geometric series

(Hi| = [(hi| + (hī|Ti]
∞∑

k=0

(TīTi )
k, (A5)

where (Hi| and (hi| are vectors of vectorized matrices

(Hi| = ((Hi,0| (Hi,1| (Hi,2|),
× 0.0pt (hi| = ((hi,0| (hi,1| (hi,2|), (A6)

and Ti is a matrix of transfer matrices

Ti =
⎛
⎝ 0 T 0,1

i T 0,2
i

T 1,0
i 0 T 1,2

i
T 2,0

i T 2,1
i 0

⎞
⎠. (A7)

Here, the (hi,m| are vectorized version of the tensors hi,m,
which are the projections of a local Hamiltonian term hi, j

into the orthonormal basis of Ai,m, and are defined diagram-
matically in Fig. 5(b). We remind readers that the transfer
matrices of the z = 3 Bethe lattice are T m,n

i for m, n = 0, 1, 2
and m �= n. We start by analytically summing Eq. (A5), using
the fact that it is of the form of a geometric series [in other
words, using that

∑∞
k=0 xk = (1 − x)−1, where x = TīTi is the

product of the two matrices of transfer matrices]. However, we
also have to subtract away the infinite number of local energy
contributions (one from each term in the series) which cause
the series to diverge. This results in the following linear set of
equations for (Hi,m|:

(Hi,m| −
∑

m′,m′′
(Hi,m′′ | T m′′,m′

ī
T m′,m

i (1 − |Ri,m)(1i,m|)

=
(

(hi,m| +
∑

m′
(hī,m′ | T m′,m

i

)
(1 − |Ri,m)(1i,m|).

(A8)

The sums of m′ and m′′ run over 0,1,2 (for each direction
in the z = 3 Bethe lattice), but we remind readers that T m,n

i
only exists for m �= n. The terms proportional to (1i,m| on the
left-hand side of Eq. (A8) act to project out the dominant
eigenspace of the transfer matrix that contains the infinite
energy contribution, and lead to a convergent geometric series.
Congruently, the terms proportional to (1i,m| on the right-hand
side of Eq. (A8) zero out the onsite energies of the unit cell.
Equation (A8) is a generalization of the result derived in Ap-
pendix D of Ref. [55] to the z = 3 Bethe lattice with a two-site
unit cell. We now can think of the solution to Eq. (A8) as
defining (Hi,m|, rather than defining it via the geometric series
of Eq. (A5). Applying the vectorized density matrices |Ri,m)
to Eq. (A8), we see that (Hi,m| satisfies (Hi,m|Ri,m) = 0, so the
infinite-energy shift can be seen as shifting the total energy of
the environment to zero. We can see that the only unknowns in
Eq. (A8) are the three environment matrices (Hi,m|. Also note
that Eq. (A8) is in the form of a linear equation (x|A = (b|,
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FIG. 23. (a) Fermionic ordering of the legs of the Ai,m, Ai,C,Cm tensors. (b) An example of a tensor diagram containing fermionic swap
gates. The fermionic swap gates are labeled by orange diamonds, and are present at the crossing of any two legs. Note that after the contraction
of A0,2, Ā0,2, h, and A1,C , we have to put the dangling tensor legs back into the order of A1,C , which requires three more swap gates.

where A and (b| are known and (x| is an unknown vector of
the environment matrices:

((Hi,0| (Hi,1| (Hi,2|)
⎛
⎝A0,0 A0,1 A0,2

A1,0 A1,1 A1,2

A2,0 A2,1 A2,2

⎞
⎠

= ((b0| (b1| (b2|), (A9)

where the elements Am,n and (bn| can be read off from
Eq. (A8). In practice, we solve the set of equations defined
by Eq. (A8) for m = 0, 1, 2 [or the equivalent Eq. (A9)] using
an iterative solver (for this work we use GMRES, but others
may be employed).

2. Fermions

As explained in the main text at the end of Sec. II, for
fermionic models like the Hubbard model, we need to use
a fermionic version of VUTS. We use the method outlined
in Refs. [52,59]. Every tensor is endowed with a fermion
parity Z2 quantum number and is parity preserving. When two
tensor legs cross on a planar projection of a tensor diagram,
a fermionic swap gate is placed at the crossing. In order to
employ this method, we need to use a fixed ordering con-
vention for the legs of the tensors Ai,m, Ai,C,Cm, which must
be kept consistent in all of the diagrams in the calculation.
The convention that we choose is shown in Fig. 23(a). The
legs of the tensors always appear in this order for tensor dia-
grams, regardless of their location in the diagram. An example
of a diagram involving swap gates is shown in Fig. 23(b),
where we draw a single term contributing to the action of the
one-site projected Hamiltonian on the one-site wave function
A1,C (the fermionic version of Fig. 6). Please note that care has
to be taken in how the diagrams are drawn, and also that the
site equivalence of the system is properly obeyed. For more
details on the method, such as additional diagrammatic rules
that must be followed to account for the fermion signs, we
refer the reader to Refs. [52,59].

APPENDIX B: DETAILS OF THE NUMERICAL
CALCULATION

1. Convergence strategies

In this Appendix we outline some of the numerical ingre-
dients used in obtaining the phase diagram. For a generic
value of U and δμ, we start the VUTS algorithm with a

random Ansatz of small bond dimension χ = χi ∼ 4. We then
increase χ up to the desired χ f using a generalization of the
scheme explained in Appendix B of Ref. [55]. In most of the
phase diagram, any update schedule, i.e., any way of getting
from χi to χ f , leads to VUTS converging to the same final
state, within the precision error εprec. We choose εprec � 10−6

for all our calculations. However, near the phase transition
δμc, more care is needed in selecting the update schedule.
Generically, we find that increasing χ in small increments
and running several iterations after each small increase favors
the insulating state, while using larger increments and a small
number of iterations to get from χi to χ f favors the metallic
state. In this way, both branches near δμc can be obtained.
Unfortunately, a given update schedule is never guaranteed to
converge to a specific state, or to converge at all. Therefore,
once the insulating/metallic state is found at a given δμ0,
we can use that state as an Ansatz for the state at δμ ≈ δμ0,
in order to favor the phase of the δμ0 state. In this way,
both branches can be reliably obtained for all δμ ≈ δμc (see
Appendix C for a discussion about continuing both branches
into the regions of metastability).

The metallic ground state we find has vanishing magneti-
zation, within our precision. In order to make sure we do not
accidentally disfavor a magnetic metallic state by our choice
of initial state, we do separate computations biased toward a
magnetic metal by turning on a staggered external magnetic
field H → H − Bs(Sz

(0) − Sz
(1) ), where the subscripts label the

location in the unit cell. Then, we use this state as an Ansatz
for the metallic state close to δμc in the case when Bs = 0
(making sure that the density of the Ansatz state is close to
what we expect in the Bs = 0 case). Even with this method,
we do not find any energetically favorable magnetic metal.

2. Truncation error and run time

Here we address the important question of numerical ac-
curacy and run time. In tensor-network states, the accuracy is
measured by the truncation error or discarded weight ερ . In
this work, we use a proxy for ερ , which is shown to be of
the same order and used in Ref. [55], where it is referred to as
‖B2‖2 (we compute ‖B2‖2 using a trick similar to what is used
in Ref. [32], in order for the computation to be manageable).
Here we simply refer to ‖B2‖2 as ερ . In Fig. 24 we show the
dependence of ερ on χ and U in the insulating phase (ερ is
essentially independent of δμ in the insulator). We can see
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FIG. 24. Our estimate for the truncation error ερ in the insulating phase (a) as a function of χ for several U and (b) as a function of U for
the largest χ = 100.

that (a) ερ decays with χ roughly as an exponential for all U
and (b) ερ decays with U also roughly as an exponential.

In the metallic phase, ερ has a non-negligible dependence
on the density, so for the purposes of comparison we look at
densities 〈ni〉 = 1.2 and the smallest density attainable for a
given U and χ , 〈ni(δμc, χ )〉. In Fig. 25 we plot ερ for the
smallest density as a function of χ for various U , and also
as a function of U at the largest χ = 100 (the corresponding
plots for 〈ni〉 = 1.2 are in Fig. 13). We can see that, as
in Fig. 13, the decay with χ is algebraic, as expected for
a gapless system. As a function of U , ερ increases initially
and then seems to saturate, although the large U behavior is
undetermined.

To conclude, we note that for the largest bond dimension
we present, χ = 100, ερ < 10−3 for every point in parameter
space we study. In order to improve the run time, we use
multithreading over the block sparse tensors, which speeds
up the calculation significantly. The largest bond dimension
we present in this work is χ = 100. We thread over 12, 24,
and 48 cores, for which the run times for a single VUTS
iteration at χ = 100 are 24.2, 18.5, and 15 min, respectively.
The number of iterations required to achieve a precision error
of εprec � 10−6 depends significantly on the proximity of the
Ansatz wave function to the true ground state, and could be as
low as tens of iterations and as large as more than 1000 itera-
tions. Therefore, it is very important to have good convergence
strategies, as described in the previous section.

APPENDIX C: SUPPORTING PLOTS FOR PHASE
DIAGRAM AND DISCUSSION OF FIRST-ORDER

TRANSITION

Here we provide more supporting plots of finite-χ results
from Sec. III, and also discuss in more detail the first-order
metal-insulator phase transition, including the calculation of
the charge gap. We start by illustrating the behavior of the
density as a function of δμ. We show this in Fig. 26 for
U = 2, 5 and a range of χ . All other values of U and χ

behave qualitatively similar. Now, in Fig. 27 we show several
finite-χ plots, the extrapolations of which are in the main
text. In Figs. 27(a)–27(c) we plot the charge gap, staggered
magnetization at half-filling, and the jump in occupation at the
phase transition, respectively, as a function of χ for a range of
U . We fit the data with a linear fit, ignoring the first few points,
after which the plots’ data look linear. The extrapolated values
are shown in Figs. 11, 8, and 10, respectively. In Fig. 27(d)
we plot the finite-χ values of the staggered magnetization
on the metallic side of the phase transition for some values
of U (other values of U behave similarly). We can see the
(nonmonotonic) trend of ms(χ ) decreasing to arbitrarily small
values as χ increases. For completeness we also provide the
scaling of the correlation length ξ (χ ) with χ for a range of U
at density 〈ni〉 = 1.2, shown in Fig. 28.

Now we turn to the question of the first-order metal-
insulator transition. Near the transition point δμc, both the
insulating and metallic branches exist and can be stabilized
for a range of δμ, as can be seen in Fig. 9. The metastable
parts of the branches are obtained by way of “hysteresis” in
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FIG. 25. Our estimate of the truncation error ερ in the metallic phase at density 〈ni(δμc, χ )〉.
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FIG. 26. Fermion occupation 〈ni〉 as a function of δμ for (a) U = 2 and (b) U = 5, and a range of χ .

the numerical algorithm. We start, e.g., with the insulating
ground state at a given δμx < δμc and use that as an Ansatz for
δμy > δμc, then use the insulating solution thus found at δμy

as an Ansatz for δμz > δμy and so on. The metallic branch is
obtained in reverse. This approach is appealing because of its
similarity to the way actual hysteresis curves in a laboratory
are obtained [another approach that can be parallelized is to
use bond dimension growth schedules that favor one branch
or the other (cf. Appendix B 1)]. However, this method of ob-
taining the spinodals δμ1, δμ2 (see Sec. III for definition) will
very likely overshoot δμ2 and undershoot δμ1. In other words,
we are not at all guaranteed to obtain both branches for the
true width of the hysteresis window. Nonetheless, in Fig. 29
we show how our computed δμ1, δμ2 behave as a function
of χ for some values of U , as well as the corresponding

spinodal values of density n1 = n(δμ1), n2 = n(δμ2). We
can see that, although there is a general trend, δμi and ni are
not always smooth as functions of χ . Even though we cannot
find the true spinodal values, the mere existence of a hysteresis
of this type is another indication of the first-order nature of
the transition [94]. Furthermore, Fig. 29 suggests that in the
χ → ∞ limit the left spinodal value n2 might vanish for small
values of U (although, as we stated, since the behavior is not
monotonic we are not doing any extrapolation). If there is a
way to stabilize this branch (perhaps with finite temperature
or some other parameter), this would imply that the transition
could become continuous below a certain value of U , which
would be very interesting.

Before ending the discussion of the metastable states, we
mention another point. As can be seen from Fig. 26, the
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FIG. 27. (a) The charge gap 
c(χ ) as a function of increasing χ , with a linear fit. (b) The staggered magnetization ms(χ ) of the insulating
state at half-filling as a function of increasing χ , with a linear fit. (c) The jump in occupation at the transition point δn(δμc, χ ) as a function of
increasing χ , with a linear fit. (d) The staggered magnetization ms of the metallic state at the critical point versus the inverse bond dimension
for U = 3, 6. The horizontal dashed lines indicate the magnetization of the insulating state across the phase transition, computed at χ = 100.
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FIG. 28. The correlation length scaling with χ for a range of U
and 〈ni〉 = 1.2. The fits shown are of the form ξ ∼ χα with 0.7 <

α < 1.

behavior of the density is quite linear, particularly near δμc.
If we extrapolate this linear behavior, we can define a value
δμ∗ at which the extrapolation intersects the δμ axis. δμ∗ is
the lowest possible value of δμ2. Interestingly, as a function
of U the value of δμ∗ changes from zero to nonzero around
a certain value U ∗. The extrapolation in χ is difficult to do,
due to nonmonotonicity, but we can estimate that 3 < U ∗ < 4.
This is reminiscent of the behavior found from DMFT in
the z = ∞ limit, where the metallic spinodal terminates at
δμ2 = 0 for U < Uc2 and at a finite value of δμ2 for U > Uc2

(Uc2 being a finite critical value) [13].
Finally, we turn to the question of computing the charge

gap. The usual formula is 
c = E0(N + 1) + E0(N − 1) −
2E0(N ), where E0(N ) is the canonical ground-state energy
with N particles, and E0(N ± 1) are the canonical energies of
the metallic ground states with N ± 1 particles, respectively.
In this case, it is not immediately clear what is the energy
E0(N ± 1) since there is no metallic state with density arbi-
trarily close to one in the grand canonical ensemble (in which
our calculation is performed). However, in the canonical en-
semble, we can take advantage of phase separation, and insert
or remove a particle by creating a mixture of the two phases in
the system. Indeed, working at finite volume V , at the critical
point δμc we have an insulator with density nI = 1 and a metal
with density nM = 1 ± δn (the ± for adding and removing a

particle). The fraction of the system in the insulating phase
is given by α = 1 − 1

δnV (the same for adding or removing
a particle because of particle-hole symmetry). Computing
the charge gap then gives 
c = 2(εM−εI )

δn , where εM, εI are
the canonical energy densities of the metallic and insulating
states, respectively. The transition point δμc is defined such
that the grand canonical energy densities of the two states are
equal, which gives εM − δμc(nI + δn) = εI − δμc nI . This
gives 
c = 2δμc, which is the naive expectation.

APPENDIX D: OCCUPATION IN θ SPACE

Here we derive Eq. (10). From Eqs. (8) and (9) we have

n(θ, θ ′) = lim
L→∞

π

L + 1

L∑
d,d ′=0

ψd (θ )ψd ′ (θ ′) 〈c̃†
d ′ c̃d〉. (D1)

We need to remember that the operator c̃d implies a reference
to a center site, which we always keep the same. Now we ex-
pand 〈c̃†

d ′ c̃d〉 in operators ci, where i labels a site on the
original Bethe lattice. We show an example in Fig. 14. We
use the fact that 〈c†

i c j〉 = 〈c†
j ci〉 is a function of |i − j|, which

is the length of the path connecting sites i, j. We first consider
the case when d, d ′ > 0, d �= d ′. Since d, d ′ label generations
emanating from the same center site, the correlation function
〈c̃†

d ′ c̃d〉 becomes

〈c̃†
d ′ c̃d〉 = z(z − 1)min(d,d ′ )−1

z
√

(z − 1)d+d ′−2

min(d,d ′ )∑
r=0

Ar 〈c†
0c|d−d ′ |+2r〉. (D2)

The denominator outside of the sum comes from the normal-
ization factor of the symmetric states. The numerator outside
of the sum is the number of sites of the inner shell. The
coefficients Ar are the number of sites on the outer shell that
are connected to a given site on the inner shell by a distance
|d − d ′| + 2r. To find Ar we start with r = 0. The number
of these is A0 = (z − 1)|d−d ′|. Now we increase r by one,
which means we go from the given site on the inner shell up
one generation towards the center site, and then back down
a different branch. Going back down gives us a factor of
z − 2 to get back to the inner shell, and then another factor
of (z − 1)|d−d ′|. For r = 2, we need to go up two genera-
tions towards the center. Coming back down now gives us
(z − 2) (z − 1) (z − 1)|d−d ′|. For a general 0 < r < min(d, d ′)
this gives Ar = (z − 2) (z − 1)r−1 (z − 1)|d−d ′|. The last term
in the series is special since moving up one generation bring
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us to the center site, so the factor z − 2 becomes z − 1 and Amin(d,d ′ ) = (z − 1)min(d,d ′ ) (z − 1)|d−d ′ |. We can rewrite Eq. (D2) as

〈c̃†
d ′ c̃d〉 =

√
(z − 1)|d−d ′|

min(d,d ′ )∑
r=0

(
z − 1

z − 2

)δr,0+δr,min(d,d ′ )

(z − 2)(z − 1)r−1 〈c†
0c|d−d ′|+2r〉

= z − 2√
z(z − 1)

min(d,d ′ )∑
r=0

(
z − 1

z − 2

)δr,0+δr,min(d,d ′ )

〈c̃†
0c̃|d−d ′|+2r〉. (D3)

Now we look at the special cases. If d = d ′ �= 0, everything goes through the same except the conversion from 〈c†
0c|d−d ′|+2r〉 to

〈c̃†
0c̃|d−d ′|+2r〉, which gives

〈c̃†
d c̃d〉 = z − 2√

z(z − 1)

d∑
r=0

(
z − 1

z − 2

)δr,0+δr,d ( z

z − 1

) δr,0
2 〈c̃†

0c̃2r〉.

If d ′ = 0, d � 0 (equivalent to d ′ � 0, d = 0), the relation should just trivially give back 〈c̃†
0c̃d〉. Incorporating these two special

cases, Eq. (D3) can be written as

〈c̃†
d ′ c̃d〉 = z − 2√

z(z − 1)

(√
z(z − 2)

(z − 1)3/2

)δmin(d,d ′ ),0 min(d,d ′ )∑
r=0

(
z − 1

z − 2

)δr,0+δr,min(d,d ′ )
√

z

z − 1

δd,d ′ δr,0−δd,0δd ′ ,0
〈c̃†

0c̃|d−d ′|+2r〉. (D4)

Important to note, this is not a function of |d − d ′| only. Therefore, we cannot simplify this further by doing the summation over
d + d ′. The final expression is given by inserting Eq. (D4) into Eq. (D1) and shown in Eq. (10)
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