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Quantum time dilation in atomic spectra
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Quantum time dilation occurs when a clock moves in a superposition of relativistic momentum wave packets.
The lifetime of an excited hydrogenlike atom can be used as a clock, which we use to demonstrate how quantum
time dilation manifests in a spontaneous emission process. The resulting emission rate differs when compared
with the emission rate of an atom prepared in a mixture of momentum wave packets at order v2/c2. This effect
is accompanied by a quantum correction to the Doppler shift due to the coherence between momentum wave
packets. This quantum Doppler shift affects the spectral line shape at order v/c. However, its effect on the
decay rate is suppressed when compared with the effect of quantum time dilation. We argue that spectroscopic
experiments offer a technologically feasible platform to explore the effects of quantum time dilation.
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I. INTRODUCTION

The quintessential feature of quantum mechanics is the
superposition principle. When combined with relativistic ef-
fects, this principle gives rise to a number of exciting and
novel phenomena [1–28]. In particular, it is natural to ask
whether there is a quantum contribution to the time dilation
observed by a clock moving in a superposition of relativistic
speeds. This question has been examined in several contexts:
a modified twin paradox in which one twin is placed in a su-
perposition of motions [29]; an analog twin-paradox scenario
in superconducting circuits [30]; interferometry experiments
in which a clock experiences a superposition of proper times
[31–34]; and sequential boosts of quantum clocks lead to
nonclassical effects [35].

Recently, a probabilistic formulation of relativistic time
dilation observed by quantum clocks was developed [36]. It
was shown that a clock moving in a localized momentum
wave packet observes on average classical time dilation in
accordance with special relativity. However, the time dilation
observed by a clock moving in a coherent superposition of
two momentum wave packets experiences quantum correction
compared with a classical clock moving in a probabilistic
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mixture of the same two wave packets. This quantum time
dilation effect was established for an idealized model of a
clock, and it thus remains open as to whether quantum time
dilation is universal, analogous to the way in which classical
time dilation affects all clocks in the same way.

The purpose of this paper is to provide evidence in support
of the conjecture that quantum time dilation is universal. We
consider the lifetime of an excited hydrogenlike atom as a
clock [37] and demonstrate that when such an atom moves in
a coherent superposition of momenta, its lifetime experiences
the same quantum time dilation as the clocks considered in
Ref. [36]. This yields a spectroscopic signature of a clock
experiencing a superposition of proper times, an alternative to
past interferometry proposals that aim to observe a decrease
in interference visibility [31–34].

Spectroscopic signatures of classical time dilation have
been observed for atoms moving at speeds as low as 10 m/s
[38]. Nonclassical effects in emission spectroscopy due to
the coherent spreading of the atomic center-of-mass wave
function were first studied in the early 1990s [39–42], and
the effect of center-of-mass superposition was recently inves-
tigated in a scalar field model [43]. In this paper, we show that
the exact quantum time dilation effect described in Ref. [36] is
observed in the spontaneous decay rate of an atom moving in a
coherent superposition of relativistic momenta. This observa-
tion motivates a new class of spectroscopic measurements that
are sensitive to relativistic effects due to quantum coherence.

In addition, a novel correction to the classical Doppler shift
is shown to modify the shape of the atomic emission spectrum.
This correction is present for light emitted in the direction
of the atom’s motion. On the other hand, if the spectrum
is measured through photons emitted perpendicular to the
atom’s motion, effects that are first order in momentum vanish
and give way to second-order, relativistic corrections. This is
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clearly seen from the angular distributions of radiation coming
from moving atoms which we present. These distributions
show the directions of emission that are the most affected by
motion and suggest the optimal way to measure the quantum
time dilation.

Furthermore, we analyze potential experimental scenarios
in which both the quantum Doppler and the quantum time
dilation effects can be measured. As of now, spectroscopic
experiments have been able to observe classical time dilation
in atoms moving as slowly as 10 m/s [38]. Based on this
and the subsequent advances, we argue that state-of-the-art
techniques involving atomic ion clocks and large momentum
transfer setups can reach necessary parameter regimes.

II. QUANTUM TIME DILATION

As a model of a quantum clock, consider a relativistic
particle with an internal degree of freedom, described by the
Hamiltonian

Ĥ =
√

p̂2c2 + M̂2c4, (1)

where p̂ is the particle’s momentum and M̂ ≡ m + Ĥclock/c2

is the so-called mass operator, which is a combination of
the particle’s rest mass m and the dynamical mass Ĥclock/c2

stemming from the energy of the internal degree of freedom
governed by the Hamiltonian Ĥclock. This internal degree of
freedom can serve as a clock that tracks the particle’s proper
time as measured by a time observable Tclock that transforms
covariantly with respect to the group generated by Ĥclock [44];
such covariant observables are common in parameter estima-
tion tasks and in this case give the best estimate of the proper
time experienced by the particle.

Consider the particle to be prepared in a superposition of
momentum wave packets, which up to normalization is taken
to be

|ψ〉 ∼ cos θ
∣∣ϕp̄1

〉 + eiφ sin θ
∣∣ϕp̄2

〉
, (2)

where θ ∈ [0, π
2 ), φ ∈ [0, π ), and 〈p|ϕp̄i

〉 =
e−(p−p̄i )

2/2�2
/π1/4

√
� with � being the spread of the wave

packet in momentum space. Let the clock be characterized
by the Hilbert space L2(R), with the Hamiltonian equal to
the momentum operator, Ĥclock = cP̂clock, and the covariant
time observable satisfies [T̂clock, Ĥclock] = ih̄. The average
time read by the clock 〈T̂clock〉 when the clock of an observer
relative to which the Hamiltonian in Eq. (1) generates an
evolution reads the time t can be shown to be equal to [36]

〈T̂clock〉 = (
γ −1

C + γ −1
Q

)
t, (3)

where to leading relativistic order

γ −1
C ≡ 1 − p̄2

1 cos2 θ + p̄2
2 sin2 θ − �2/2

2m2c2
(4)

is associated with the classical time dilation of a clock moving
in a statistical mixture of momenta p̄1 and p̄1 with probabili-
ties cos2 θ and sin2 θ and

γ −1
Q ≡ cos φ sin 2θ

[
( p̄2 − p̄1)2 − 2

(
p̄2

2 − p̄2
1

)
cos 2θ

]
8m2c2

[
cos φ sin 2θ + e

( p̄2− p̄1 )2

4�2
] , (5)

quantifies corrections to classical time dilation resulting from
coherence across the momentum wave packets carrying the
internal clock. Equation (3) can be thought of as the gener-
alization of the classical time dilation formula that takes into
account the possibility of the clock moving in nonclassical
states of motion, and nonzero γ −1

Q leads to quantum time
dilation effects.

The above considerations were based on an ideal clock
model in which the proper time of the clock was associ-
ated with an operator that was canonically conjugate to the
clock Hamiltonian. It is thus not clear whether quantum time
dilation is universal, affecting all clocks in the same way
analogous to its classical counterpart, and the answer must
ultimately come from experiment.

In what follows we present evidence that supports the con-
jecture that quantum time dilation between clocks moving in
superpositions of inertial trajectories is universal. We consider
an entirely different clock model based on the lifetime of
an excited atom and demonstrate that such a clock observes
quantum time dilation in accordance with Eq. (5). This brings
quantum time dilation effects closer to experiment by demon-
strating that they manifest in a realistic clock model based on
spontaneous emission, the mechanism by which atomic clocks
operate.

III. SPECTROSCOPY OF MOVING ATOMS

Consider a two-level atom of mass m and suppose that
its ground state |g〉 and excited state |e〉 are separated by an
energy difference h̄	 in the atom’s rest frame. The dynamics
of the atom and electromagnetic fields, Ê and B̂, are described
by the Hamiltonian

Ĥ = Ĥatom + Ĥfield + Ĥaf , (6)

where the free Hamiltonian of the atom to leading relativistic
order in the atom’s center-of-mass momentum p̂/mc (e.g.,
Ref. [48]) is

Ĥatom = p̂2

2m
− 1

8

p̂4

m3c2
+ h̄	

(
1 − 1

2

p̂2

m2c2

)
|e〉〈e| (7)

and the electromagnetic field Hamiltonian is Ĥfield =∑
k,ξ h̄ωkâ†

k,ξ
âk,ξ , which is a mode sum over the wave vector

k and polarization index ξ with the corresponding eigenfre-
quencies ωk = kc and annihilation operators âk,ξ . The atom
is coupled to the electromagnetic field through the interaction
Hamiltonian [49–53]

Ĥaf = −d̂ · Ê
⊥ − 1

2m
[ p̂ · (B̂ × d̂ ) + (B̂ × d̂ ) · p̂], (8)

where the first term is the usual dipole interaction, d̂ =
d(|g〉〈e| + |e〉〈g|), the dipole operator in the laboratory frame,
and the second term is the so-called Röntgen term that ac-
counts for the Lorentz-transformed electromagnetic field felt
by the moving atom [54]. It is important to note that all the
operators entering the Hamiltonian (6) are expressed in the
laboratory frame [55]. The electromagnetic fields appearing
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in (8) are given by

Ê
⊥

(r) = −i
∑
k,ξ

√
h̄ωk

2ε0V
εk,ξ âk,ξ eik·r̂ + H.c., (9)

B̂(r) = i
∑
k,ξ

√
h̄

2ε0V ωk
(k × εk,ξ )âk,ξ eik·r̂ + H.c., (10)

where ε0 is the vacuum permittivity and V is the quantization
volume, while εk,ξ is the polarization vector perpendicular to
the wave vector k. By invoking the rotating wave approxima-
tion [50,52], the interaction Hamiltonian Eq. (8) assumes the
form

Ĥaf = −ih̄
∑
k,ξ

√
h̄ωk

2ε0V
ĝk,ξ eik·r̂|e〉〈g|âk,ξ + H.c., (11)

where the coupling “constant” depends on the atom’s momen-
tum

ĝk,ξ = εk,ξ · d + 1

mωk

(
p̂ − h̄k

2

)
· [(k × εk,ξ ) × d] (12)

and is an operator itself with eigenvalues gk,ξ . Note that Ĥaf

has an explicit dependence on the center-of-mass position op-
erator r̂, which is treated as a quantum degree of freedom. This
Hamiltonian couples the internal energy levels of the atom to
the center-of-mass degree of freedom and as a consequence
causes a recoil of the decaying atom. The second term of
Eq. (12) is a direct result of the Röntgen term in Eq. (8).

Let us take a moment to consider the energy scales char-
acterizing the situation just described, namely, the energy of
the atom’s internal degree of freedom h̄	, rest energy mc2,
and kinetic energy 〈p̂2/2m〉. In what follows we will con-
sider regimes in which the internal energy of the atom is
much smaller than both its rest energy and kinetic energy,
which ensures that a first-order expansion in both h̄	/mc2 and
h̄	/〈p̂2/2m〉 is valid. Suppose an atom begins in its excited
state with center-of-mass wave function ψ (p) and the electro-
magnetic field in the vacuum, |(0)〉 = ∫

d pψ (p)|e, p, 0〉. At
a later time t , the composite system evolves to the state

|(t )〉 =
∫

d pα(p, t )|e, p, 0〉

+
∑
k,ξ

∫
d pβk,ξ (p, t )|g, p − h̄k, 1k,ξ 〉, (13)

which has been expanded in the energy eigenstates |e, p, 0〉
and |g, p − h̄k, 1k,ξ 〉, associated respectively with the energies

h̄ωe(p) = p2

2m
− p4

8m3c2
+ h̄	

(
1 − 1

2

p2

m2c2

)
, (14)

h̄ωg(p, k) = (p − h̄k)2

2m
− (p − h̄k)4

8m3c2
+ h̄ωk . (15)

The time-dependent coefficients in |(t )〉 can be obtained by
solving the associated Schrödinger equation via a Laplace
transform as commonly utilized in Wigner-Weisskopf theory

[64]. Using a single-pole approximation [40], one finds

α(p, t ) = e−iωe(p)t e− �(p)
2 tψ (p), (16)

βk,ξ (p, t ) =
√

h̄ωk

2ε0V
gk,ξ (p)ψ (p)

× e−iωe(p)t e− �(p)
2 t − e−iωg(p,k)t

i[ωe(p) − ωg(p, k)] + �(p)
2

, (17)

where �(p) is the total transition rate of the spontaneous decay
of the atom moving with momentum p:

�(p) =
∑
k,ξ

ωk

8π2h̄ε0c3
g2

k,ξ (p)δ[ωe(p) − ωg(p, k)]. (18)

Then, the total transition rate in the long-time limit is

�= lim
t→∞

d

dt

∑
k,ξ

∫
d p|βk,ξ (p, t )|2 =

∫
d p|ψ (p)|2�(p),

(19)
where the results of Refs. [58,59] are recovered when ψ (p)
is a momentum eigenstate. As detailed in Appendix B, the
angular distribution of the emitted radiation is obtained by
omitting the angular integration in Eq. (19), yielding

�(�,�)

�0
= �0(�,�)

(
1 − 3

2

h̄	

mc2

)

+ 1

mc
�1(�,�)

∫
d p p|ψ (p)|2

+ 1

2m2c2
�2(�,�)

∫
d p p2|ψ (p)|2, (20)

where � and � are the azimuthal and polar angles of the
k vector relative to p, respectively, �0 = 	3d ′2

3πε0 h̄c3 is the total
decay rate of a standing atom ignoring recoil effects (i.e.,
h̄	 � mc2), and we have assumed that the atom moves only
along the z axis, perpendicular to the dipole moment vector
d. As such, ψ (p) has to be understood as a marginal dis-
tribution of a full center-of-mass wave function, |ψ (p)|2 =∫

d pxd py|ψ (p)|2, where momentum distributions in the x and
y directions are well localized around the z axis. �0(�,�) is
the standard angular distribution of dipole radiation

�0(�,�) = 3

8π
(1 − sin2 � cos2 �), (21)

while

�1(�,�) = 3

4π
cos �(1 − 2 sin2 � cos2 �), (22)

�2(�,�) = 3

16π
[6 cos 2� + 5 cos2 �(cos 4� − cos 2�)]

(23)

are first- and second-order corrections in p/mc to the dipole
distribution appearing due to the motion of the atom [50].
These motional corrections to the angular distribution of ra-
diation are universal as they manifest unless the atom is at
rest, and their shape is independent of the momentum wave
function ψ (p) (see Fig. 1).
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FIG. 1. (a) Angular dipole distribution of emitted photons from a decaying atom at rest with respect to the center-of-mass momentum p and
dipole momentum d. Motional corrections to this angular distribution, (b) linear and (c) quadratic, in the atom’s center-of-mass momentum.
Magnitudes are represented by the distance to the origin and color (red, positive; blue, negative).

Integration over � and � recovers the familiar formula
[50,52,58,59]

� = �0

(
1 − 3h̄	

2mc2
− 1

2m2c2

∫
d p p2|ψ (p)|2

)
. (24)

If the atom were to move along a classical trajectory
with momentum p̄, corresponding to |ψ (p)|2 = δ(p − p̄),
the transition rate � is related to the transition rate in
the atom’s rest frame �0(1 − 3h̄	

2mc2 ) via a Lorentz factor,

� = �0(1 − 3h̄	
2mc2 )

√
1 − v2/c2 ≈ �0(1 − 3h̄	

2mc2 − p2

2m2c2 ), which
agrees with Eq. (24) and ensures consistency with special
relativity.

Additionally, from Eqs. (16) and (17) one can extract the
shape of an emission line, which can be straightforwardly
transformed to the absorption spectrum through the Einstein
coefficients. The probability that an atom emits a photon with
momentum h̄k is

P (k) = lim
t→∞

∑
ξ

∫
d p|βk,ξ (p, t )|2. (25)

Again, assuming that the atom has a large mass m and moves
along the z axis and dipole moment points perpendicularly to
motion, we arrive at the following characteristic of a transition
line for photons emitted along the direction of motion (see
Appendix B):

P‖(ω) = 3

8π

∫
d p|ψ (p)|2

×
(
1 + 3 p

mc

)
�0/2π[

ω − 	
(
1 + p

mc

)]2 + �2
0

4

(
1 + 2 p

mc

) . (26)

Perpendicular to both the dipole moment and the direction of
motion, we arrive at the following characteristic:

P⊥(ω) = 3

8π

∫
d p|ψ (p)|2

×
(
1 − 3

2
p2

m2c2

)
�0/2π[

ω − 	
(
1 − 1

2
p2

m2c2

)]2 + �2
0

4

(
1 − p2

m2c2

) . (27)

Note that both P‖(ω) and P⊥(ω) have been expanded up to the
leading relativistic order and are proportional to the center-
of-mass momentum distribution |ψ (p)|2 integrated against
a Lorentz distribution. When observed in the direction of
motion, the transition line is Doppler shifted, as the Lorentz
distribution is shifted linearly in momentum by an amount
	 → 	(1 + p/mc). On the other hand, light emitted or ab-
sorbed perpendicular to the motion is not affected by this
Doppler shift, and relativistic corrections are dominant, shift-
ing the center of the Lorentz distribution by an amount 	 →
	(1 − p2/2m2c2), which is a quadratic shift in momentum.

Each of the quantities of interest—the angular distribution
of radiation, the total decay rate, and the shape of the emission
line—are routinely measured in various experiments [65]. As
we have shown how these observables depend on the center-
of-mass momentum distribution, we are now equipped to
show how nonclassical center-of-mass motion in such experi-
mental scenarios can be utilized as a direct probe of quantum
time dilation.

IV. SPECTROSCOPIC SIGNATURES OF QUANTUM
TIME DILATION

First, we will compare the transition rate � between atoms
in coherent superpositions and incoherent classical mixtures
of localized momentum wave packets. Analogously to the
quantum clock model described in Sec. II, an atom is con-
sidered to be either in a superposition (2) with a momentum
distribution given by

ψsup(p) = N (cos θ〈p|ϕp̄1
〉 + eiφ sin θ〈p|ϕp̄2

〉), (28)

where

N = [√
π�

(
1 + cos φ sin 2θ e− ( p̄1− p̄2 )2

4�2
)]−1/2

, (29)

or in a classical mixture such that

Pcl(p) = cos2 θ
∣∣〈p∣∣ϕp̄1

〉∣∣2 + sin2 θ
∣∣〈p∣∣ϕp̄2

〉∣∣2
(30)

of momentum wave packets. For simplicity, we consider p̄1
and p̄2 to be collinear. By evaluating (19) we arrive at the
following relative difference of total emission rates between
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FIG. 2. The difference in total emission rate between a superposition and a classical mixture of two momentum wave packets of an atom
as a function of the wave packets’ momentum difference and their relative phase and weight: (a) equally weighted superposition of momentum
wave packets, θ = π/4, (b) relative phase fixed at φ = 0, and (c) relative phase fixed at φ = π . The red line marks the maximum value of
the effect for a given relative phase or a relative weight, while the red circles signify maximum and minimum values across the whole plot.
A nonzero value for a finite momentum difference signifies the phenomenon of quantum time dilation. In each of the panels, the momentum
spread of each of the wave packets is � = 0.01mc, and the sum of their average momenta is p̄1 + p̄2 = 0.05mc.

these two cases:

�sup− �cl

�0
= 1

2m2c2

∫
d p p2[|ψsup(p)|2 − Pcl(p)]

= γ −1
Q , (31)

which is equal to the quantum correction to the classical time
dilation contribution given in Eq. (5) and derived in Ref. [36].
This is a surprising result because the clock model considered
here, based on the spontaneous decay of an atom, observes
the same quantum time dilation effect as the quantum clock
considered in Ref. [36] and described in Sec. II. This ob-
servation supports the conjecture that quantum time dilation
for superimposed inertial trajectories is universal, affecting all
clocks in the same manner.

The difference γ −1
Q in transition rate between a coherent su-

perposition and classical mixture of momentum wave packets
can be of positive or negative sign, depending on the relative
phase between two wave packets φ and their relative weight
θ (see Fig. 2). For instance, for an equally weighted superpo-
sition it is seen that Eq. (31) does not depend on the sum of
the wave packets’ momenta; it is positive for a relative phase
smaller than φ = π/2 and becomes negative for a larger value.
In this case, the structure of the quantum contribution exhibits
a distinctive peak for a given relative phase φ. If φ = 0, this
peak occurs at a finite momentum difference, p̄2 − p̄1 ≈ 2�;
however, if the relative phase is φ = π , the position of the
peak shifts towards p̄2 − p̄1 ≈ 0.

This behavior can be understood by analyzing the structure
of the wave packets in momentum space—when the wave
packets almost fully overlap, their relative phase plays a cru-
cial role. If the separation in momentum space between the
wave packets vanishes, then there is no distinction between
the coherent superposition and incoherent classical mixture,
as the two wave packets are identical. As the phase approaches
π , the real part of the center-of-mass wave function goes to
0, resulting in a pronounced imaginary part which is an anti-

symmetric function. This is in stark contrast to the classical
mixture, for which the density stays single peaked.

Surprisingly, an equally weighted superposition is not op-
timal for maximizing the effect of quantum time dilation,
as it saturates at −�2/2m2c2 for a relative phase φ = π .
The global maximum is also achieved for φ = π , however,
for a slightly unbalanced superposition, θ ≈ π/4 ± ( p̄2 −
p̄1)/2

√
2�. If one considers wave packets with average mo-

menta much larger than their spreads, ( p̄1 + p̄2)/� � 1, then
this maximum becomes proportional to the sum of the mo-
menta, ±√

2�| p̄1 + p̄2|/4m2c2. This indicates that the effect
of quantum coherence on the emission rate increases as the
average momenta of the wave packets increase.

Note that the quantum correction γ −1
Q to the time dilation

observed by the atom’s decay rate is second order in the
atom’s average momentum [see Eqs. (5) and (31)], analogous
to the classical time dilation contribution governed by γ −1

C .
However, linear effects, such as a Doppler shift, can also
be affected by momentum coherence. Such effects can be
characterized by the difference in the first moments of the mo-
mentum distributions associated with a coherent superposition
and incoherent classical mixture:

δQ ≡ 1

mc

∫
d p p[|ψsup(p)|2 − Pcl(p)]

= cos φ sin 4θ ( p̄2 − p̄1)

4mc
[

cos φ sin 2θ + e
( p̄2− p̄1 )2

4�2
] . (32)

The behavior of δQ is qualitatively different from γ −1
Q . Most

notably, δQ vanishes if the superposition of symmetric wave
packets is equally weighted. On the other hand, as it is linear
in momentum, it is easier to measure as the absolute magni-
tude of this effect is necessarily larger than the second-order
quantum time dilation effect characterized by γ −1

Q . A detailed
analysis of δQ is provided in Appendix A.

If one considers an angular distribution of emitted photons
from the decaying atom [Eq. (20)], the difference between
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coherent and incoherent cases is given by

�sup(�,�)− �cl(�,�)

�0
= �1(�,�)δQ + �2(�,�)γ −1

Q .

(33)

Note that the angular distribution of the radiation can be
affected linearly in momentum and analysis of Fig. 1(b)
shows that the contribution stemming from the momentum
coherence is the most pronounced for photons emitted in the
direction of the atom’s motion. However, as this quantum
correction is proportional to δQ, it will vanish if the atom’s
center of mass is prepared in an equally weighted superpo-
sition of momentum wave packets. On the other hand, the
number of photons emitted perpendicular to both the dipole
moment and the direction of motion is not affected linearly
in the atom’s momentum. Additionally, as shown in Fig. 1(c),
the second-order contribution is the largest in this direction,
suggesting that photon detection in this direction is optimal
for measuring quantum time dilation.

Similar to the total emission rate and the angular dis-
tribution, the shape of a transition line is also affected by
the nonclassicality of the center-of-mass state as shown in
Eqs. (26) and (27). That is, the emission spectrum of an atom
in a coherent momentum superposition is distinct from that
of an incoherent classical mixture. As suggested by anal-
ysis of the angular distribution of radiation, we will focus
on two cases: photons emitted parallel and perpendicular to
the atom’s motion. Experimentally, both scenarios can be
realized by emission and absorption spectroscopy, with the
latter producing an absorption line shape that can be derived
from the emission shape via the Einstein coefficients. To keep
the discussion simpler, we will discuss only the emission
line.

First, photons emitted in the direction of motion are af-
fected by the classical Doppler effect, shifting the center of
the transition line linearly in p/mc, contrary to relativistic
effects, which cause shifts that are quadratic in p/mc. Analo-
gously to quantum time dilation, the correction coming from
momentum coherence to the Doppler shift can be dubbed a
quantum Doppler shift. It is important to note that this effect
only modifies the shape of the emission spectrum, not the total
emission rate, which is affected by quantum time dilation. The
quantum Doppler effect smooths the contrast between two
transition rate peaks associated with two different Doppler-
shifted emission lines; see Figs. 3(a) and 3(b). The difference
between the quantum and classical Doppler shift is most pro-
nounced in between the emission peaks, which may suggest
that the postselection of the final momentum of the atom may
further enhance the effect. A quantitative analysis describing
how the quantum Doppler effect modifies emission line shape
is provided in Appendixes A and B.

In the case of an emission perpendicular to the direction
of motion, the classical Doppler shift is not present; that is,
corrections linear in p/mc are not present. The center of the
transition line is shifted quadratically in p/mc, heralding the
onset of relativistic effects. Relativistic corrections of this
magnitude can be measured in state-of-the-art experiments
[38] and are affected by a momentum coherence analogously
to the quantum Doppler shift; see Figs. 3(c) and 3(d).

(a)

(b)

(c)

(d)

×10

×10

×102

×102

FIG. 3. Emission line shape P (ω) of the spontaneous decay of
an atom that is initially prepared in a coherent superposition (Psup)
and in a classical mixture (Pcl) of two momentum wave packets
sharply peaked at different momenta, p̄1 = 2 × 10−8mc and p̄2 =
4 × 10−8mc (velocities achievable for ion clocks [66] or momentum
cat states [67]). The emission line is measured parallel, P‖(ω), or
perpendicular, P⊥(ω), to the motion of the wave packets and is
normalized to the maximum probability for a single stationary wave
packet in a given case, Pmax. In the former case, the dominant shift
of the transition peak comes from the Doppler shift, while for the
latter case it comes from the time dilation. Note that transverse emis-
sion in suppressed compared with parallel emission. (a) and (b) are
calculated for a broad transition, 	/�0 ≈ 1.5 × 109 (e.g., hydrogen
2P-1S transition), while (c) and (d) are associated with the extremely
narrow transition 	/�0 ≈ 1.5 × 1017 (e.g., aluminium 1S0-3P0 tran-
sition). This showcases the fact that quantum-relativistic effects can
be probed even for broad transitions, if the Doppler shift is affected.
If the spread of the momentum wave packets is much smaller than
their separation, � � | p̄2 − p̄1|, coherent and incoherent cases are
almost indistinguishable, with two sharp, shifted peaks clearly vis-
ible [(a) and (c)]. Note the broadening of structures due to a finite
spread of momentum (i.e., a homogeneous Doppler effect). If the
momentum spread becomes larger and the overlap of the two wave
packets increases [(b) and (d)], interference effects become visible,
manifesting direct confirmation of quantum-relativistic effects in the
atomic spectrum.
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V. EXPERIMENTAL CONSIDERATIONS

Since the initial prediction of wave-particle duality by
de Broglie, atomic interferometry has witnessed tremendous
conceptual and technological progress [68]. With the advent
of large momentum beamsplitters [69–72], superpositions of
atomic beams traveling along distinct trajectories have been
realized, leading to quantum-based alternatives to classical
gravimeters, gradiometers, and accelerometers [34,73–77]. In
these settings, the usual strategy is to suppress radiation losses
as they disrupt phase relations between arms of an interferom-
eter [72].

In contrast, our proposal is to test the nonclassicality of
center-of-mass motion through spectroscopic measurements.
As shown above, a coherent superposition of relativistic mo-
menta affects the spontaneous emission rate beyond classical
time dilation effects, thus offering a spectroscopic signature of
quantum time dilation. Moreover, spectroscopic methods offer
a plethora of schemes that might witness similar quantum-
relativistic effects—among others, stimulated absorption and
emission spectroscopy, and techniques involving the Möss-
bauer effect and Rydberg states [68]. In particular, atomic
clocks provide a natural test bed for a relativistic theory due to
their unparalleled accuracy [66,78,79]. Such clocks have been
used to observe classical time dilation at velocities as low as
several meters per second [38].

To go beyond and measure quantum time dilation, one has
to deal with experimental challenges that involve an interplay
between different time scales. The lifetime of the excited
atom has to be long enough to allow for the creation of
sufficient momentum separation and to precisely excite the
atomic beam. However, the lifetime cannot be longer than
the coherence time of the center-of-mass superposition. For-
tunately, due to advanced methods of phase imprinting in
atomic systems [80,81], initial states maximizing the quantum
contribution might be engineered.

Specifically, there are promising experimental setups
offering access to the accuracy needed to observe quantum-
relativistic effects. Among others, quantum clocks based
on aluminium ions have recently achieved precision going
beyond leading relativistic corrections [38,66,79]. In such
setups, an aluminium ion is confined to a quadrupole trap
acting with an effective harmonic potential and is prepared
close to zero-point motion energy by advanced cooling tech-
niques. The ion is perturbed triggering oscillatory motion
in a coherent-state-like fashion. Spectroscopic measurement
allows for resolving the resulting frequency shift due to the
ion’s motion below 10−18 	, which is far below the leading
relativistic correction of 10−15 	 [66].

To observe quantum time dilation, a coherent momentum
superposition of such an ion must be prepared, a momentum
Schrödinger cat state. This on its own is a state-of-the-art task;
however, recent advances have reported tremendous progress
in this direction [5,67,73,82]. For example, ytterbium ions
have been prepared in mesoscopic superpositions of motional
states [67].

Creation of such an ion that exhibits a narrow transition
line is required for observation of the quantum time dilation
effect in order to resolve the associated frequency shift which
is second order in the average momenta of the wave packets.

The mean velocity of a trapped ion easily resolvable for an
ion clock in a laboratory, 5 m/s, corresponds to a coherent
state |α〉 with |α| ≈ 12. State-of-the-art separation between
coherent states can go up to |α| ≈ 24 [67], showing that a
coherent superposition of momenta can be achieved within
spectroscopic resolution.

Generally speaking, in atomic clock experiments a transi-
tion line is measured. The difference in transition line shape
exhibited by a coherent superposition and incoherent classical
mixture of momentum wave packets, as shown in Figs. 3(c)
and 3(d), would be confirmation of quantum time dilation.
The difference between these two cases is most pronounced
for a frequency that corresponds to the average of mean
momenta of the superimposed wave packets. The upshift of
the transition probability due to momentum coherence at this
specific point could be as much as 40% if the parameters of
the superposition are optimized, while also not being far away
from resonance as depicted in Fig. 3(d). Changes of this mag-
nitude are routinely measured in state-of-the-art experiments
involving ion clocks [38,66].

In such an experimental setup the balance between the
ability to create a superposition of momentum wave packets
and the precision of a given ion clock is crucial in order to
observe a signature of quantum time dilation. Other obstacles
exist, such as excess motion, secular motion, the quadratic
Zeeman effect, deviations from harmonic trapping, etc. [79],
which are usually well resolved in atomic clock experiments.
Nonetheless, additional work needs to be done to characterize
these effects in the presence of relativistic momentum coher-
ence to deduce the optimal experimental scenario.

On the other hand, experiments involving large momentum
transfer between light and atomic beams might also provide a
viable alternative for a measurement of quantum time dilation
[70,72,83–85], where limitations due to excited-state decay
would work as an advantage. As they are not yet realized
for narrow transitions at the level of atomic clocks, such an
upgrade is widely sought as a key ingredient for gravitational
wave [84] and dark matter detectors [86]. Advances in this
direction could make possible a measurement of quantum
time dilation in such a setup, as narrower transitions would
enhance the spectroscopic precision.

The momentum separation currently achieved in these ex-
periments is around 140 h̄k for the strontium transition 1S0-3P1,
where k is the magnitude of the wave vector of the incident
light [72]. Such a momentum separation corresponds to a 1
m/s velocity difference between two clouds of atoms. Larger
momentum transfer is expected in the future, with experi-
mental proposals promising up to 1000 h̄k [72]. The widths
of these momentum wave packets are relatively small for the
detection of quantum time dilation, with a rms Doppler width
of 25 kHz, corresponding to a velocity width of 0.02 m/s
[72]. As the maximal value of quantum time dilation scales
as �

mc
p2−p1

mc �0, it is still too far away to be measured in these
experiments. However, as the interest in large momentum
transfer grows with a potential use in low-energy studies of
quantum gravitational effects, the engineering of a quantum
time dilation experiment might be possible in the near future.
Such an experiment could be achieved by either a larger mo-
mentum spread of a single wave packet or a larger momentum
separation between momentum wave packets.
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Similar to the superposition of momentum wave pack-
ets considered above, quantum effects manifest for atoms
in spatial superpositions [40–43,87]. From an experimental
point of view, such studies have been helpful in analyz-
ing phase coherence in Bose-Einstein condensates interacting
with light [87]. These systems provide an extremely clean
environment to study atomic systems with the possibility of
fine-tuning interactions and spatial geometry. As such, they
might accommodate experiments with coherent superposition
of momentum wave packets (e.g., nonequilibrium dynamics in
a double-well trap [88]). Moreover, in contrast to ion clocks,
experiments involving large momentum transfer or trapped
ultracold gases have still not achieved the necessary velocities
to be sensitive to relativistic motion of particles. However,
such experiments have the advantage that they utilize large
ensembles of atoms, which results in a stronger signal that
should scale proportionally to the particle number.

VI. CONCLUSIONS AND OUTLOOK

We have proposed a spectroscopic signature of quantum
time dilation that manifests in the spontaneous emission rate
(lifetime) of an excited atom moving in a superposition of
relativistic momentum wave packets. We have shown that the
total transition rate is strongly affected by momentum coher-
ence in the center-of-mass state of the atom. Furthermore,
the quantum contribution to the time dilation observed by an
excited atom can be either positive or negative, depending on
the relative phase between the superposed momentum states,
and is within reach of the existing experimental setups [38,69–
72]. We observed that the quantum contribution to the time
dilation of the atomic lifetime in Eq. (31) was equal to the
quantum time dilation observed on average by the ideal clock
considered in Refs. [36,89]. These two clocks are built on very
different mechanisms (spontaneous decay and a particle on
a line), so this result indicates that quantum time dilation is
universal, affecting all clocks in the same way.

The effects of quantum time dilation on atomic spectra
complement the growing literature on relativistic clock in-
terferometry, which also probes the effects of suppositions
of clocks experiencing different proper times due to both
special or general relativistic effects [16,18,31–34,77]. In con-
trast, we propose a spectroscopic signature of proper time
superpositions that can probe quantum theory and relativity in
the regime in which coherence across relativistic momentum
wave packets plays a role.

We have also characterized a quantum Doppler effect that
occurs when the center of mass of an atom is in a super-
position of momentum wave packets. The effect is present
in the shape of the emission spectrum, affecting its structure
by smoothing the contrast between distinctive Doppler-shifted
peaks.

Note added. Recently, related work on delocalized center-
of-mass atomic wave functions and the light-matter interac-
tion has appeared [63].
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APPENDIX A: MOMENTUM WAVE PACKETS AND
SIGNATURES OF COHERENCE

In this Appendix, explicit forms of momentum wave pack-
ets from the main text are presented. It is assumed that the
atom in consideration moves along the z direction with its
momentum distribution in perpendicular directions well lo-
calized around px = py = 0. Moreover, we consider the atom
to be either in a coherent superposition of two Gaussian wave
packets,

ψsup(p) = N
[

cos θe− (p− p̄1 )2

2�2 + eiφ sin θe− (p− p̄2 )2

2�2
]
, (A1)

where N = [
√

π�(1 + cos φ sin 2θe−( p̄1−p̄2 )2/4�2
)]−1/2, or in

an incoherent mixture described by the momentum distribu-
tion

Pcl = 1√
π�

[
cos2 θe− (p− p̄1 )2

�2 + sin2 θe− (p− p̄2 )2

�2
]
. (A2)

The difference between coherent superpositions and classical
mixtures of momentum wave packets can be characterized
by the difference in moments associated with their respective
momentum distributions:

Kj ≡ 1

j!m jc j

∫
d p pj[|ψsup(p)|2 − Pcl(p)]. (A3)

In the case of Gaussian wave packets considered above, K1

and K2 take the explicit form

K1 = cos φ sin 4θ ( p̄2 − p̄1)

4mc
[

cos φ sin 2θ + e
( p̄2− p̄1 )2

4�2
] = δQ,

K2 = cos φ sin 2θ
[
( p̄2 − p̄1)2 − 2

(
p̄2

2 − p̄2
1

)
cos 2θ

]
8m2c2

[
cos φ sin 2θ + e

( p̄2− p̄1 )2

4�2
] = γ −1

Q .

(A4)

Analysis of K2 is presented in Fig. 4, and analysis of K1 is
presented in Fig. 5.

Note that K1 vanishes for an equally weighted superpo-
sition θ = π/4. Let us show that this feature is a common
feature of all symmetric wave packets. Let ϕ(p) be a normal-
ized wave packet symmetric with respect to p = 0. Then, we
can write an equally weighted, coherent superposition of two
momentum wave packets as

ϕsup(p) = N√
2

[ϕ(p − p1) + eiφϕ(p − p2)], (A5)

with N 2 = [1 + cos φ
∫

d pϕ(p − p1)ϕ(p − p2)]−1. For the
corresponding classical mixture, the momentum distribution
takes the form

Pcl = 1
2 [ϕ2(p − p1) + ϕ2(p − p2)]. (A6)
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FIG. 4. Same as Fig. 2 from the main text; shown in Appendix A for the purpose of comparison with Fig. 5. The difference in total
emission rates between a superposition and a classical mixture of two momentum wave packets of an atom as a function of the wave packets’
momentum difference and their relative phase and weight. The red line marks the maximum value of the effect for a given relative phase or
relative weight, while the red circles signify maximum and minimum values across the given subplot. (a) Equally weighted superposition of
momentum wave packets, θ = π/4. (b) Relative phase fixed at φ = 0. The red line is not continuous at the point θ = π/4, and it sharply
ends at ( p̄2 − p̄1)/� = 2

√
1 + W0(1/e) ≈ 2.261, where W0 is the principal branch of the Lambert W function. (c) Relative phase fixed at

φ = π . It can be seen that two extrema exist for small values of ( p̄1 − p̄2)/� and θ ≈ π/4. One can show that these extrema are placed at
θ = π

4 − 1
4

p̄2− p̄1
p̄2+ p̄1

(1 ± √
1 + 2( p̄2 + p̄1)2/�2) and their corresponding values are ±�2(

√
1 + 2( p̄1 + p̄2)2/�2 − 1)/4m2c2. A nonzero value

for a finite momentum difference signifies the phenomenon of quantum time dilation. In each of the panels, the momentum spread of each of
wave packets is � = 0.01mc, and the sum of their average momenta is p̄1 + p̄2 = 0.05mc.

Then, by an explicit evaluation, one finds that

2mc

N 2
K1 = 2

N 2

∫
d p p[|ϕsup(p)|2 − Pcl(p)]

= − cos φ

[(∫
d pϕ(p − p1)ϕ(p − p2)

)

×
(∫

d p p[ϕ2(p − p1) + ϕ2(p − p2)]

)

− 2
∫

d p pϕ(p − p1)ϕ(p − p2)

]
. (A7)

The term in the third row of Eq. (A7) equals p1 + p2, because
ϕ(p − p1,2) are normalized and well localized around p1,2. By
substituting p → p − (p1 + p2)/2 and utilizing the fact that
expression ϕ(p − p′)ϕ(p + p′) is an even function of p, one
finds that

2
∫

d p pϕ(p − p1)ϕ(p − p2)

= (p1 + p2)
∫

d pϕ(p − p1)ϕ(p − p2). (A8)

FIG. 5. The difference in first moments K1 = δQ of the momentum distributions associated with a superposition and a classical mixture of
two momentum wave packets as a function of the wave packets’ momentum difference and their relative phase and weight, which quantifies
the difference in magnitude of angular distribution of emission: (a) unequally weighted superposition of momentum wave packets, θ = π/8,
(b) relative phase fixed at φ = 0, and (c) relative phase fixed at φ = π . The red line marks the maximum value of the effect for a given relative
phase or relative weight, while the red circles signify maximum and minimum values across the whole plot. A nonzero value for a finite
momentum difference signifies the phenomenon of quantum time dilation. In each of the panels, the momentum spread of each of the wave
packets is � = 0.01mc, and the sum of their average momenta is p̄1 + p̄2 = 0.05mc.
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Substituting these two results into Eq. (A7), it is seen that
K1 = 0. The only necessary condition is for ϕ(p) to be an even
function with respect to p = 0.

APPENDIX B: DERIVATION OF THE EMISSION
RATE AND SPECTRUM SHAPE

Let us focus on the angular distribution of the emitted ra-
diation. The angular distribution can be obtained by omitting
angular integration in Eq. (19). Note that such an approach
does not explicitly utilize the photon distribution that comes
from an integration over the probabilities |βk,ξ |2. However, as
shown in Ref. [50] this approach is consistent with the special
relativity, reproducing the dipole pattern of radiation in the
comoving frame. Writing explicitly, Eq. (19) gives {see Eqs.
(9)–(11) in Ref. [52] for a derivation}

� = lim
t→∞

d

dt

∑
k,ξ

∫
d p|βk,ξ (p, t )|2

= 2π

∫
d p|ψ (p)|2

∑
k,ξ

ωk

2h̄ε0(2πc)3
g2

k,ξ (p)

× δ

(
	 − ωk + 1

m
k · (p − h̄k/2)

)
. (B1)

By taking a continuous limit of the summation over k,∑
k

→
∫

dκ

∫
dω ω2 sin θ, (B2)

where κ = kc
ω

= (sin � cos �, sin � sin �, cos �) and∫
dκ = ∫ π

0 d�
∫ 2π

0 d�, we can omit the integral over
direction κ to get the angular distribution

�(�,�) = π

h̄ε0(2πc)3

∫
d p|ψ (p)|2

∑
ξ

∫ ∞

0
dω ω3 sin �

× g2
k,ξ (p) δ

(
	 − ω + 1

m
k · (p − h̄k/2)

)
. (B3)

Note we are now working in the continuous limit and so the
sum over ωk has been replaced with an integral over ω.

Under the assumption that the atom is heavy the coupling
constant g2

k,ξ (p) can be expanded to first order in h̄	/mc2 and
to second order in p2/m2c2:

g2
k,ξ (p) ≈ (d · εk,ξ )2

+ 2

mc
(d · εk,ξ )

(
p − h̄ωkκ

2c

)
· [(κ × εk,ξ ) × d]

+ 1

m2c2
(p · [(κ × εk,ξ ) × d])2. (B4)

Making use of the vector equalities

∑
ξ

(d · εk,ξ )2 = d2 − (d · κ)2, (B5)

∑
ξ

(d · εk,ξ )A · [(κ × εk,ξ ) × d] = (d · κ)(A · d ) − d2(A · κ), (B6)

∑
ξ

{ A · [(κ × εk,ξ ) × d]}2 = d2(A · κ)2 + A2(d · κ)2 − 2(A · κ)(d · κ)(A · d ), (B7)

with A = 2
mc p − h̄

mc k, it follows that

∑
ξ

g2
k,ξ (p) ≈ d2

[
κ2

⊥

(
1+ h̄ωk

mc2

)
− 2

mc
p · κ⊥+ 1

m2c2
(p · κ)2

− 2

m2c2
(p · κ)κ‖ p‖ + 1

m2c2
p2κ2

‖

]
, (B8)

where ⊥ and ‖ indicate projections perpendicular and parallel
to the vector d.

We now go back to the angular distribution, in which we
have to compute the following integral:

∑
ξ

∫ ∞

0
dω ω3 sin � g2

k,ξ (p) δ

(
	 − ω + 1

m
k · (p − h̄k/2)

)
.

(B9)
Again, suppose that the atom moves in the z direction with its
momentum distribution in the perpendicular directions given
by delta functions centered at px = py = 0. Thus we can
consider p = (0, 0, p). We will also suppose that d = (d, 0, 0)

points in a direction perpendicular to p. Then, Eq. (B9) sim-
plifies to

d2
∫ ∞

0
dω η(ω)δ[λ(ω)] = d2 η(ω0)

|λ′(ω0)| , (B10)

where

η(ω) ≡ ω3 sin �

[
(1 − sin2 � cos2 �)

(
1 + h̄ω

mc2

)

− 2p

mc
cos � + p2

m2c2
(cos2 � sin2 � + cos2 �)

]
,

λ(ω) ≡ 	 − ω + ω
p

mc
cos � − ω2h̄

2mc2
,

ω0 ≡ 	

(
1 + p

mc
cos � + p2

2m2c2
cos 2� − h̄	

2mc2

)
.

(B11)
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The denominator can be expanded up to first order in h̄	/mc2

and up to the second order in p2/m2c2 yielding

1

|λ′(ω0)| ≈ 1 + p

mc
cos � + p2

m2c2
cos2 � − h̄	

mc2
(B12)

and finally

η(ω0)

|λ′(ω0)| ≈ 8π

3
sin �

[
�0(�,�)

(
1 − 3

2

h̄	

2mc2

)

+�1(�,�)
p

mc
+ �2(�,�)

p2

2m2c2

]
, (B13)

where

�0(�,�) ≡ 3

8π
(1 − sin2 � cos2 �), (B14)

�1(�,�) ≡ 3

4π
cos �(1 − 2 sin2 � cos2 �), (B15)

�2(�,�) ≡ 3

16π
[6 cos 2� + 5 cos2 �(cos 4� − cos 2�)].

(B16)

Substituting this expression into Eq. (B3) yields the angular
distribution

�(�,�)

�0
= �0(�,�)

(
1 − 3

2

h̄	

mc2

)

+ 1

mc
�1(�,�)

∫
d p p|ψ (p)|2

+ 1

2m2c2
�2(�,�)

∫
d p p2|ψ (p)|2. (B17)

The difference between coherent and incoherent cases is then
given by

�sup(�,�) − �cl(�,�)

�0
= �1(�,�)δQ + �2(�,�)γ −1

Q .

(B18)

Integrating �(�,�) over � and � yields the total transi-
tion rate

� = �0

(
1 − 3h̄	

2mc2
− 1

2m2c2

∫
d p p2|ψ (p)|2

)
. (B19)

If ψ (p) is a wave packet well localized at p0, then

� = �0

(
1 − 3h̄	

2mc2
− p2

0

2m2c2

)
. (B20)

One can also immediately see that the quantum time dilation
manifests in the total transition rate:

�sup − �cl

�0
= γ −1

Q . (B21)

The first term in Eq. (B17) corresponds to the distribution of
dipole radiation for an atom at rest, which when integrated
over � and � gives the transition rate �0. The second term is
a correction linear in p that is associated with a Doppler shift.
This term vanishes when integrated over � and �, ensuring
consistency with special relativity as the total transition rate is
� = �0/γ (p), which when expanded in p is seen to have zero
contribution linear in momentum.

However, terms linear in momentum modify the angular
distribution of radiation, manifesting as a pattern distinctively
different from that of the dipole radiation distribution. The
magnitude of this quantum correction depends on K1 (i.e., δQ),
which is an explicit function of the parameters characterizing
the atomic wave functions and, surprisingly, vanishes if the
atom moves in an equally weighted superposition.

FIG. 6. A comparison between shapes of the emission spectrum P‖(ω) associated with a coherent superposition (Psup) and an incoherent
classical mixture (Pcl) of momentum wave packets. (a) The transition line for an atom initially prepared in a superposition of two momentum
wave packets as a function of the emitted photon’s frequency and the difference between the wave packets’ momenta. The two-peak structure
stemming from two distinct Doppler shifts is clearly visible. (b) Absolute difference of emission probabilities between a superposition and a
classical mixture of momentum wave packets as a function of the frequency of the emitted photon and the difference between the wave packets’
momenta. The difference is most pronounced in regimes where wave packets overlap. (c) Relative difference of emission probabilities between
a superposition and a classical mixture of momentum wave packets as a function of the frequency of the emitted photon and the difference
between the wave packets’ momenta. It can be seen that the quantum contribution is largest in between the two transition peaks. This suggests
that a postselection of final measured states of center-of-mass motion may increase the general visibility of the quantum Doppler effect.
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Also of interest is how momentum coherence affects the
shape of the atomic emission line, which can be probed
through spectroscopic methods. For a plane wave character-
ized by a wave vector k, the probability of emission is given
by

P (k) = lim
t→∞

∑
ξ

∫
d p|βk,ξ (p, t )|2, (B22)

which utilizing Eq. (B11) can be cast into the form

P (k) = 3�0

16π2

∫
d p|ψ (p)|2

∑
ξ

g2
k,ξ (p)/d2

λ2(ω) + �2(p)/4
. (B23)

By expanding λ(ω), g2
k,ξ (p)/d2, and �2(p) up to second order

in momentum, under the assumption that the emission line
is measured perpendicular to the direction of motion, one

finds

P⊥(ω) = 3

8π

∫
d p|ψ (p)|2

×
(
1 − 3

2
p2

m2c2

)
�0/2π[

ω − 	
(
1 − 1

2
p2

m2c2

)]2 + �2
0

4

(
1 − p2

m2c2

) . (B24)

On the other hand, in the case of photons measured parallel to
the direction of motion, one obtains

P‖(ω) = 3

8π

∫
d p|ψ (p)|2

×
(
1 + 3 p

mc

)
�0/2π[

ω − 	
(
1 + p

mc

)]2 + �2
0

4

(
1 + 2 p

mc

) . (B25)

In Fig. 6 we compare the parallel emission spectrum P‖(ω)
for coherent superposition and incoherent classical mixtures
of momentum wave packets.
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quantum clocks through gravity, Proc. Natl. Acad. Sci. USA
114, E2303 (2017).

[8] M. P. E. Lock and I. Fuentes, Relativistic quantum clocks, in
Time in Physics, edited by R. Renner and S. Stupar, Tuto-
rials, Schools, and Workshops in the Mathematical Sciences
(Springer International, Cham, 2017), pp. 51–68.

[9] A. Bassi, A. Großardt, and H. Ulbricht, Gravitational decoher-
ence, Classical Quantum Gravity 34, 193002 (2017).

[10] S. Bose, A. Mazumdar, G. W. Morley, H. Ulbricht, M. Toroš,
M. Paternostro, A. A. Geraci, P. F. Barker, M. S. Kim, and
G. Milburn, Spin Entanglement Witness for Quantum Gravity,
Phys. Rev. Lett. 119, 240401 (2017).

[11] C. Marletto and V. Vedral, Gravitationally Induced Entangle-
ment between Two Massive Particles is Sufficient Evidence
of Quantum Effects in Gravity, Phys. Rev. Lett. 119, 240402
(2017).
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isfy the covariance condition Ê (t + t ′) = e−it ′Ĥclock Ê (t )eit ′Ĥclock
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