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Photon number resolving detectors play a central role in quantum optics. A key challenge in resolving the
number of absorbed photons in the microwave frequency range is finding a suitable material that provides not
only an appropriate band structure for absorbing low-energy photons but also a means of detecting a discrete
photoelectron excitation. To this end, we propose to measure the temperature gain after absorbing a photon using
superconducting cadmium arsenide (Cd3As2) with a topological semimetallic surface state as the detector. The
surface electrons absorb the incoming photons and then transfer the excess energy via heat to the superconducting
bulk’s phonon modes. The temperature gain can be determined by measuring the change in the zero-bias bulk
resistivity, which does not significantly affect the lattice dynamics. Moreover, the obtained temperature gain
scales discretely with the number of absorbed photons, enabling a photon-number resolving function. Here, we
will calculate the temperature increase as a function of the number and frequency of photons absorbed. We will
also derive the timescale for the heat transfer process from the surface electrons to the bulk phonons. We will
specifically show that the transfer processes are fast enough to ignore heat dissipation loss.
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I. INTRODUCTION

Photon number resolving detectors have been explored sig-
nificantly over the past decades [1–3] due to the dire need for
resolving the number of photons in applications such as the
security of quantum communications [4,5] and the sensitivity
of quantum sensing [6]. As photon-based quantum computing
advances, precise resolution of photon number detection is
increasingly important. Microwave photons are the backbone
of prolific transmon quantum computation, and therefore, de-
tection of the microwave photons is tremendously important
in the current quantum computing paradigm [7]. Several non-
number-resolving techniques to detect microwave photons
have been developed, including the circuit QED technique [8],
dressed-state superconducting quantum circuit [9], current-
biased Josephson junction [10], and the dark-state detector
[11]. It is well known that building a parallel detection system,
first splitting the light path using beam splitters and then
using non-number-resolving detectors in each parallel path,
may provide a probabilistic photon number resolving detec-
tion, which is further limited due to the loss associated with
parallelization. In contrast, a single photon-number resolving
detector with a deterministic photon number resolution would
provide an immense advantage particularly in photonic quan-
tum computers by reducing the error-correcting overhead. To
the best of our knowledge, a single-device photon-number
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resolving detector that can simultaneously detect multiple in-
coming photons at microwave frequency has not been reported
so far.

Here, we propose a photon-number resolving detector op-
erating at microwave frequencies, based on the topological
surface states of cadmium arsenide (Cd3As2). Semimetals
such as graphene provide an ideal detecting material for
microwave photons due to their zero band gap. Recently,
Dirac and Weyl semimetals with Dirac cone dispersion have
gained prominence due to high mobility [12], along with
the fact that they can be synthesized through conventional
techniques [13–15]. Particularly, Cd3As2 displays proximity-
induced bulk superconductivity at low temperatures, and the
electronic structures of the bulk and the topological surface
states are decoupled. Maintaining the Cd3As2 semimetal ma-
terial at a very low temperature is necessary for an efficient
photon-induced electron excitation to a conduction band just
above the Fermi level due to the low photon energy. The
bulk state enters a superconducting state at a sufficiently
low temperature, opening a band gap beyond the microwave
photon energy. Fortunately, the topological surface state of
Cd3As2 is not affected by the temperature, continuing to pro-
vide a gapless Dirac cone. We use this topological surface
state as a photon absorber. Once the photon is absorbed, a
rapid rethermalization in band population occurs with a new
elevated temperature corresponding to the absorbed photon
energy. We then utilize the fact that the redistributed electron
population transfers its energy to the bulk’s phonon modes
via a surface electron-bulk phonon coupling, thus increasing
the bulk’s temperature. The elevated bulk temperature then
reduces the conductance of the superconducting bulk electron
state, which is measured and used to eventually indicate the
number of photons absorbed.
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FIG. 1. Basic layout for the Cd3As2 photon number resolving
device. At low temperatures, the bulk becomes superconducting due
to the material’s proximity to superconducting aluminum, while the
(112) surface retains a graphene-like dispersion. A photon (depicted
by the arrow) is absorbed by the surface electrons. The change in
bulk resistivity (measured by the electrodes at zero bias) is used
to determine the temperature increase. Note that the Al bars are
positioned in the out-of-plane direction with respect to the Cd3As2

material.

The paper is organized as follows. In Sec. II, we briefly re-
view the photon absorption in the topological surface state of
Cd3As2. In Sec. III, we connect the event of photon absorption
in the topological surface state electrons to the bulk tempera-
ture increase via a two-step process, namely, the energy gain
for surface electron modes and, then, the transfer of electron
energy to the bulk phonon modes. Section IV resolves the im-
portant issue of the timescale of the temperature increase and
shows that the absorbed photon energy indeed is most likely
transferred to the increase of the bulk temperature, rather
than being lost to radiative decay of the excited electrons.
Section V presents the construction of a photon-number re-
solving detector based on the results of the previous sections.
Numerical examples with realistic parameters build credible
real use cases of the proposed scheme. In the final section, we
summarize our results and suggest the path toward building a
photon-number resolving detector with near-unity efficiency
on a chip.

II. PHOTON ABSORPTION IN TOPOLOGICAL
SURFACE STATE

The setup for the device is depicted in Fig. 1. The sys-
tem is based on a Cd3As2 crystal inside a low-temperature
refrigerator with a baseline temperature below the bulk super-
conducting critical temperature. Recent experimental findings
have demonstrated that Cd3As2 features a topological surface
state on the (112) surface with a linear band crossing around
the Dirac points [16,17]. This graphene-like surface state band
structure at low energy can be attributed to the fact that sites
consisting of stacked As and Cd atoms approximately form
a honeycomb superlattice on the (112) surface [13]. As with
graphene, the dispersion relationship can be expressed as the
following linear function of the wave vector k when the Fermi
level is at the Dirac point:

Ec,v (k) = ±h̄vF |k|, (1)

where h̄ is the Planck constant, c and v represent the conduc-
tion and valence bands, respectively, and vF denotes the Fermi

FIG. 2. Band structures for the superconducting bulk (purple
curves) and the topological surface state (blue straight lines). Note
that a gap of frequency fgap is opened in the bulk, while the surface
state remains gapless, thus restricting the absorption of photons at
microwave frequency fp to the surface state.

velocity, which is approximately 106m/s [16,18]. At low tem-
peratures, if the material is in proximity to superconducting
aluminum (Al), the surface state electrons are decoupled from
the bulk state, and the bulk becomes superconducting below
0.7 K while the surface retains its semimetallic property [19].
We measure the superconducting gap frequency fgap near zero
temperature (T = 21 mK) and at T = 0.39 K from Figs. 2(a)
and 1(d) of Yu et al. [19]. For the case of near-zero temper-
ature, the gap is measured as 0.113 meV (corresponding to
a frequency of 27 GHz), while at 0.39 K, the gap amounts
to 0.088 meV (corresponding to 21 GHz). The resulting band
structures for the superconducting bulk and the topological
surface state are compared in Fig. 2. Note that this proximity-
induced superconducting gap is smaller than the gap predicted
from BCS theory [20], which would equal about 50 GHz for
a critical temperature around 0.7 K. Nonetheless, even for
temperatures as high as 0.35–0.45 K, photons of microwave
frequency below approximately 20 GHz will be absorbed
solely by the surface state. Since we are primarily interested
in microwave photons of frequency 5–10 GHz, this satisfies
our goal of using the surface as the absorber and the bulk as
the thermometer.

In order to derive the absorption probability, we consider
the physical manifestation of the Dirac cone on the nature
of the Bloch states. As in graphene, each electronic state
in the vicinity of a Dirac point can be conceptualized as a
massless Dirac fermion with a well-defined momentum h̄k,
where k represents the wave vector of the electronic state in
the reciprocal space for which the Dirac point is the origin.
Therefore, the absorption coefficient for Cd3As2 will equal
the corresponding value for graphene [21]:

A(ω) = e2

4h̄ε0c

[
f

(
− h̄ω

2
, T

)
− f

(
h̄ω

2
, T

)]

= e2

4h̄ε0c
tanh

(
h̄ω

4kBT

)
, (2)
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where e is the charge of an electron, ε0 is the vacuum
permittivity, c the speed of light, and f (E , T ) denotes the
Fermi-Dirac electron occupation probability at energy E for
temperature T . Note that the absorption coefficient (as a func-
tion of photon frequency) is invariant with respect to the Fermi
velocity. This is because the interband dipole matrix ele-
ment (corresponding to the absorption probability for a single
electronic state) increases with the Fermi velocity, while the
density of states decreases with it, eventually canceling each
other’s effect. At high frequencies (h̄ω � kBT ), the absorp-
tion coefficient (i.e., the quantum efficiency for a single pass
through a single Cd3As2 crystal) is approximately invariant
with frequency, equaling a constant value of e2/(4h̄ε0c) =
2.3%. On the other hand, at low frequencies on the scale h̄ω �
kBT , the coefficient becomes attenuated, reaching a minimum
value of zero as the Dirac cone is approached. We will use
an upper-bound baseline temperature of 0.45 K, which will
set the minimum quantum efficiency for photons of a given
frequency interacting with a single crystal. For microwave
frequencies ranging from 5–10 GHz, Eq. (2) implies a single-
crystal quantum efficiency ranging from 0.3%–0.6%.

III. TEMPERATURE INCREASE VERSUS ABSORBED
PHOTON NUMBER

Having determined the probability that the topological
surface state absorbs a photon from an incoming field, our
next step is to determine how the absorption of a single
photon increases the temperature of the 3D bulk sample.
When a photon excites an electron to the conduction band, a
rapid rethermalization of the Fermi-Dirac distribution through
electron-electron interaction ensues, leading to an electron
temperature above the lattice temperature. For undoped mono-
layer graphene, which features a band structure approximately
identical to that for the Cd3As2 surface state, this process
occurs in tens of picoseconds for cryogenic baseline tem-
peratures [22]. The carrier rethermalization is followed by
heat transfer from the collection of electrons to the lat-
tice via electron–acoustic phonon interaction, until a thermal
equilibrium is reached between the electron temperature and
the lattice temperature. Generally, the interaction between
electrons and acoustic phonons is much slower than the
electron-electron interaction [23–25]. Afterward, the Fermi-
Dirac distribution for the electron bands and the Bose-Einstein
distribution for the phonon branches will comply with the
same temperature.

We now determine the temperature increase due to the ab-
sorption of a photon of frequency ω by calculating the portion
of the imparted energy that is eventually converted to bulk
lattice vibrations (i.e., the phonon modes) and to the surface
electron modes, and by deriving the heat capacity of the two
systems. We will make two important assumptions here: first,
that the electron-electron interaction rate dominates over the
radiative loss rate of the electrons (which we will demonstrate
in a later section), and second, that the very low values for
the initial and final temperatures ensure that virtually all of
the phonons are located in the low-energy linear parts of
the acoustic branches, thus allowing for use of the Debye
approximation [26] in determining the heat capacity.

A. Energy gain for surface electron modes

We start by writing out an expression corresponding to
energy conservation in the system given the absorption of a
photon of frequency ω:

h̄ω = �Uel + �Uph, (3)

where �Uel and �Uph represent the total energy gained by
the topological surface electron modes and the bulk phonon
modes, respectively, at equilibrium. We focus first on the
energy gain for the electron modes as a function of electron
temperature, as this will be necessary for calculating the initial
electron temperature gain after photon absorption but prior
to heat transfer to the lattice. The total electron energy with
respect to the Fermi sea is calculated by taking a sum of the
conduction and valence band energies weighted by the Fermi-
Dirac occupation probabilities (multiplied by 2 to account for
the fact that each spatial state contains 2 spin states):

Uel (T ) = 2
∑

k

{Ec,k f (Ec,k, T ) − Ev,k[1 − f (Ev,k, T )]}.
(4)

The first term corresponds to the energy gained in creating a
conduction band electron, while the second term corresponds
to the energy gained in creating a valence band hole. Since the
deviation from the Fermi sea at low temperatures is concen-
trated in the vicinity of the Dirac cone, we can assume that the
linear isotropic dispersion relationship in Eq. (1) holds for the
entire relevant wave vector range. Therefore, the summation
over wave vectors can be replaced by an integral over the
density of spatial states (ρc and ρv for the conduction and
valence bands, respectively):

Uel (T ) = 2
∫ −∞

0
dEvρv (Ev )(−Ev )

(
1 − 1

e
Ev

kBT + 1

)

+ 2
∫ ∞

0
dEcρc(Ec)Ec

1

e
Ec

kBT + 1
. (5)

Since the conduction and valence band energies are opposite
at each wave vector, we can express Uel as a single integral
over the energy absolute value E , where Ec = E and Ev =
−E . Due to the equivalent magnitudes of the dispersion slope
for the conduction and valence bands at each wave vector, we
can further define a general density of states ρ(E ) = ρv (E ) =
ρc(E ):

Uel (T ) = 2
∫ ∞

0
dEρ(E )E

(
1 − 1

e− E
kBT + 1

)

+ 2
∫ ∞

0
dEρ(E )E

1

e
E

kBT + 1

= 2
∫ ∞

0
dEρ(E )E

e− E
kBT + 1

cosh
(

E
kBT

) + 1
. (6)

The density of states at band energy E can be solved by
applying the dispersion relationship as follows:

ρ(E ) = dN

dAk

dAk

dk

dk

dE
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= A

(2π )2

(
2π

E

h̄vF

)
1

h̄vF

= A

2π h̄2v2
F

E , (7)

where A is the surface state area, Ak is the area in the reciprocal
space associated with the value k = |k|, and N is the number
of states. As expected for the graphene-like band structure,
the density of states is linear in the energy. We are thus in a
position to solve for the electron energy Uel (T ) as a function
of temperature T :

Uel (T ) = A

π h̄2v2
F

∫ ∞

0
dEE2 e− E

kBT + 1

cosh
(

E
kBT

) + 1

= A

π h̄2v2
F

3(kBT )3ζ (3), (8)

where ζ represents the Riemann zeta function, with ζ (3) ≈
1.2. This implies that the electron temperature varies with the
total electron energy as U 1/3

el , and the relationship between the
gain in electron energy and the temperature change from Ti to
Tf takes the following form:

�Uel = 3.6Ak3
B

π h̄2v2
F

(
T 3

f − T 3
i

)
. (9)

For detecting a moderate number of microwave photons,
we are primarily interested in the limit �T (≡ Tf − Ti ) � Ti

where Ti > 0.1 K. In that limit, the cooling power Q for the
electron modes is related to the rate of change of the temper-
ature by taking the derivative of �Uel with respect to time,
yielding the following function of the temperature T ≈ Ti:

Q = − d

dt

(
3.6Ak3

B

π h̄2v2
F

T 3

)
= −10.8Ak3

B

π h̄2v2
F

T 2 dT

dt
. (10)

B. Energy gain for bulk phonon modes

Next, we look to determine how the energy gained by the
lattice vibrations relates to the lattice temperature. In general,
the total phonon energy is determined as a function of temper-
ature by summing over the modes corresponding to various
phonon branches μ and phonon wave vectors q, weighted by
the occupation number 〈nμ,q〉 for each phonon mode:

Uph(T ) =
∑

μ

∑
q

〈nμ,q(T )〉h̄ωμ,q, (11)

where ωμ,q is the frequency of the phonon mode of branch μ

and wave vector q, and the occupation number at a given tem-
perature T is calculated from the Bose-Einstein distribution:

〈nμ,q(T )〉 = 1

e
h̄ωμ,q
kBT − 1

. (12)

As previously mentioned, the fact that the sample is in the
low-temperature regime (below 0.5 K) indicates that the
Debye model, with its assumption of a linear phonon dis-
persion, is approximately valid for the phonon modes with
non-negligible occupation numbers. Therefore, we can restrict
the summation over branches to just the 3 acoustic branches

(corresponding to the 3 polarizations). In general, the slope
of each of these branches is slightly anisotropic in reciprocal
space due to the varying angle between the polarization and
propagation directions. However, per the treatment in Kit-
tel [27], we can approximate the composite effect of the 3
branches on the summation in Eq. (11) as equivalent to a
summation over 3 isotropic branches, each featuring a slope
of vs (i.e., the speed of sound in the material), such that

Uph(T ) = 3
∑

q

h̄ωq

e
h̄ωq
kBT − 1

, (13)

where ωq = vsq, and the speed of sound vs for Cd3As2 is
estimated as 2.3 × 103 m/s [25].

We now replace the summation over wave vectors with an
integral over the density of states for each branch in terms of
frequency, D(ω). For a 3-dimensional lattice with a speed of
sound vs, this density is determined as follows:

D(ω) = dN

dVq

dVq

dq

dq

dω

= V

(2π )3

[
4π

(
ω

vs

)2
]

1

vs

= V ω2

2π2v3
s

, (14)

where V is the bulk volume of the lattice and Vq is the volume
in the reciprocal space associated with q = |q|. We therefore
solve for the total phonon energy as a function of temperature
through the following integral:

Uph(T ) = 3
∫ ∞

0
dωD(ω)

h̄ω

e
h̄ω

kBT − 1

= 3V h̄

2π2v3
s

∫ ∞

0
dω

ω3

e
h̄ω

kBT − 1
. (15)

Note that the expression differs from that in Kittel in that we
use ∞ instead of a specific Debye cutoff for the upper bound
of the frequency range. As in the case of the integral over
energy for the electronic modes in the previous section, this
is justified by the rapid convergence of the integrand to 0 at
very low temperatures [28], corresponding to the fact that only
the linear regime of the acoustic branches are non-negligibly
occupied. Then, we find the following result:

Uph(T ) = 3V k4
BT 4

2π2v3
s h̄3

∫ ∞

0
d

(
h̄ω

kBT

) (
h̄ω

kBT

)3

e
h̄ω

kBT − 1

=
(

3V k4
BT 4

2π2v3
s h̄3

)(
π4

15

)
. (16)

Unlike the total surface electron energy, which scales as T 3,
the total bulk phonon energy scales as T 4. This difference can
be attributed to the fact that the surface is 2D whereas the
bulk is 3D, having more degrees of freedom, thus implying
that all else being equal, a given change in energy would
have a weaker effect on bulk temperature than on surface
temperature.
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The change in the total phonon energy can therefore be re-
lated to the initial and final temperatures Ti and Tf as follows:

�Uph = π2V k4
B

10h̄3v3
s

(
T 4

f − T 4
i

)
. (17)

Note that, for a prism-shaped sample (such as a thin film) for
which the surface state forms one of the two bases for the
prism, the bulk volume is proportional to the surface area as
V = Ad , where d represents the sample thickness.

C. Comparison of specific heat

Having derived the energy gain for the surface electron and
the bulk phonon modes for given initial and final tempera-
tures, we now seek to compare the specific heat values for the
two mode types in order to glean an understanding of how
the excess thermal energy is distributed between the modes.
From the result in Eq. (9), the specific heat for the collection
of surface electrons is determined as follows:

Cel (T ) = dUel

dT
= 10.8Ak3

B

π h̄2v2
F

T 2. (18)

The specific heat for the bulk lattice is calculated in an analo-
gous manner from the result in Eq. (17):

Cph(T ) = dUph

dT
= 2π2V k4

B

5h̄3v3
s

T 3. (19)

Using the relationship V = Ad , where d denotes the bulk
depth of the lattice, we divide Eq. (19) by (18) in order to
determine the ratio of the specific heat values for a given
temperature:

Cph(T )

Cel (T )
= π3kBv2

F

27h̄v3
s

T d

= (1.24 × 1013 K−1 m−1)T d. (20)

Since the baseline refrigerator temperature is at least 0.25 K,
this sets the minimum value for T . The lattice depth d must be
at least multiple times longer than the lattice constant, which
is 3–5 Å for Cd3As2 [29]. Therefore, the phonon specific
heat is far higher than the electron specific heat (by at least 3
orders of magnitude), indicating that nearly all of the thermal
energy gained from the photon absorption is eventually stored
in the lattice vibrational modes. As such, if N photons of
frequency ω are absorbed, then the relationship between the
final equilibrium temperature Tf and the initial temperature Ti

can be determined from Eq. (17):

Tf =
(

T 4
i + 10h̄3v3

s

π2V k4
B

Nh̄ω

)1/4

=
[

T 4
i + (4.13 × 10−35 m3 K4 s)

Nω

V

]1/4

. (21)

As this expression shows, the determinitive factor in the tem-
perature increase is the total photon energy absorbed per unit
volume of the lattice, which is proportional to Nω/V . We plot
the temperature gain as a function of photoelectron density
N/V for 3 different baseline temperatures 0.35 K, 0.40 K,

FIG. 3. Plots of temperature gain (in nanokelvins) versus density
of absorbed photons (per 10−15 m3) for baseline temperatures Ti =
0.35, 0.40, and 0.45 K given a photon frequency f = 5 GHz.

and 0.45 K, for an input photon frequency of 5 GHz (cor-
responding to ω = π × 1010 s−1) in Fig. 3. Note that for low
photon densities such that the temperature gain is small com-
pared to the baseline temperature, the relationship between
temperature gain and photon density is approximately linear,
as expected.

The imbalance between the electron and lattice specific
heat values also has significant implications for the heat
transfer between the electron and phonon distributions that
ultimately yields the equilibrium state. In particular, when
comparing the quasiequilibrium electron and lattice temper-
atures to the final equilibrium temperature for the whole
system, the equilibrium temperature will be much closer to
the quasiequilibrium lattice temperature than to the electron
temperature. We consider the timescale for the electron-lattice
heat transfer as a function of temperature in the next section.

IV. ELECTRON-PHONON INTERACTION TIMESCALE

Having derived the equilibrium temperature for the bulk
lattice upon photon absorption, we now aim to estimate the
timescale over which that equilibrium is reached. As pre-
viously mentioned, this energy transfer takes place in two
steps: a rapid electron-electron rethermalization, followed by
heat transfer from the electrons to the acoustic vibrations of
the lattice (which is much slower than the electron-electron
interaction [23–25]). Here, we will focus on the latter pro-
cess, since it serves as the limiting factor in setting the
minimum timescale for reaching equilibrium. The heat trans-
fer timescale between bulk electrons and lattice phonons in
Cd3As2 has been the subject of recent analysis [25,30], and
here we will build on that analysis to solve for the heat trans-
fer timescale between surface electrons and lattice phonons.
We will characterize the available phase space area for bulk
phonon emission by the surface electrons, derive the matrix
element for the electron-phonon interaction, and finally cal-
culate the rate for the electron-phonon heat transfer.

A. Phase space

We start by examining the available phase space for the
interaction between 2D surface state electrons and the bulk
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FIG. 4. Depiction of the phase space area of final electronic
states for a given initial state k = (k, 0, 0), including the 2D cross
section of the phase space along the px py plane (a) and the phase
space along the pz axis (b). The phase space forms a double cone,
with a base of radius k on the px py plane, and tapering off in the +pz

and −pz directions with a length of vF k/vs along each. Note that the
base versus height ratio for the double cone in (b) is not to scale.

phonon modes. Unlike the spherical equal-energy manifolds
for the 3D Dirac cone carrier modes, the 2D Dirac cone
electron modes take cylindrical equal-energy manifolds, with
a degree of freedom in the kz direction (corresponding to the
axis perpendicular to the surface). We therefore use cylindri-
cal coordinates, expanding the final electron wave vector p as
(p cos θp, p sin θp, pz ) and the initial wave vector k as (k, 0, 0).
In this coordinate system the emitted phonon wave vector q
can be expanded as follows:

q = k − p = (p cos θp − k, p sin θp, pz ). (22)

Note that the bulk phonon’s equal-energy manifolds retain a
3D spherical shape defined by ω = vsq. We map this onto the
electron’s manifolds using energy conservation:

vF k − vF p = vs

√
(p cos θp − k)2 + p2 sin2 θp + p2

z . (23)

Squaring both sides and solving for p, we find that p varies
with both θp and pz:

p = k

[
1 + �(θp) −

√
[1 + �(θp)]2 − 1 +

(
v2

s

v2
F − v2

s

)
p2

z

k2

]
,

(24)

where �(θp) is defined as follows:

�(θp) = v2
F − v2

s cos θp

v2
F − v2

s

− 1. (25)

For our material, vs � vF , thus yielding �(θp) � 1 for all θp.
Therefore, p can be approximately expressed as solely a linear
function of pz:

p ≈ k − vs

vF
|pz|. (26)

Geometrically, the available phase space can be envisioned
as a pair of cones aligned along the pz axis, with the bases
overlapping at pz = 0, as depicted in Fig. 4. The radius attains
a maximal value of k at pz = 0 and tapers off as the magnitude
of pz increases. The vertices are reached at the following
values of pz:

|pz|max ≈ vF

vs
k. (27)

Finally, we determine the phonon wave vector q from the
calculated value of p as a function of k. As shown in Eq. (22),
the amplitudes of pz and qz will equal each other, since the
electron and phonon dispersion centers lie on the same xy
plane. We label qxy as the component of q perpendicular to
the qz axis. For a given pz and θp pair, the amplitudes qxy, k,
and p form the 3 legs of a triangle for which θp represents the
angle between the sides of lengths k and p. Therefore, qxy can
be calculated as follows:

qxy ≈
√

k2 + K2 − 2kK cos θk, (28)

and since qz = −pz, the frequency ωq of the emitted phonon
is straightforwardly calculated from the speed of sound:

ωq = vs

√
q2

xy + q2
z

≈ vs

√
p2 + k2 − 2pk cos θp + p2

z . (29)

Since vF � vs (by a factor of 400), the length of each cone is
far longer than the diameter, implying that the approximation
q ≈ |qz| = |pz| ≈ p will be valid for nearly all of the available
phase space.

B. Heat transfer rate

Having determined the phase space for the electron-
phonon interaction, we are now in a position to calculate the
heat transfer rate between the two modes from the composite
interaction. Labeling the electron energy for a generic wave
vector k′ as Ek′ , the matrix element corresponding to the
electronic transition from k to p through the emission of a
phonon in branch μ and wave vector q as Mμ,q

k,p , the Bose-
Einstein phonon occupation number for the mode frequency
ω at temperature T as nT (ω), and the Fermi-Dirac distribution
value at T as f (T ), the rate Q is determined through the
following summation over initial carrier wave vectors k, final
carrier wave vectors p, and phonon branches and wave vectors
(μ, q) [31,32]:

Q = 2π

h̄

∑
k

∑
p

∑
μ,q

(Ek − Ep)
∣∣Mμ,q

k,p

∣∣2

× [ f (Ek) − f (Ep)][nTL (ωμ,q) − nTe (ωμ,q)]δk,p+q

× δ(Ek − Ep − h̄ωμ,q). (30)

As previously discussed, the low temperature restricts the oc-
cupied phonon modes to the long-wavelength acoustic regime.
The interaction between electrons and long-wavelength
acoustic phonons is dominated by the deformation poten-
tial [33,34], as recently applied to the interaction between
bulk electrons and phonons in Cd3As2 [25,35]. As discussed
in Appendix A, the equivalent matrix elements apply for
the interaction between surface electrons and bulk phonons.
Therefore, the matrix element amplitude squared reduces to a
function varying solely with and linear in the phonon ampli-
tude q: ∑

μ

∣∣Mμ,q
k,p

∣∣2 = C

V
q, (31)

where V represents the lattice volume and C is a constant
that varies with the square of the deformation potential.
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Substituting this, along with the electron and phonon disper-
sion relationships into the expression for Q, we find that it
takes the following form:

Q = 2π

h̄

∑
k,p,q

h̄vF (k − pxy)
C

V
q[ f (h̄vF k) − f (h̄vF pxy)]

× [nTL (vsq) − nTe (vsq)]

× δk,p+qδ(h̄vF k − h̄vF pxy − h̄vsq). (32)

The summation is simplified in Appendix B in the limit
�T � T , where T ≈ Te ≈ TL and �T is defined as Te − TL.
We find that the Dirac and Kronecker delta functions com-
bine to reduce the integral over the phase space volume
to the double-cone phase space area derived previously, as
expected. This yields the following expression for the carrier-
phonon heat transfer rate due to intraband (valence-valence or
conduction-conduction) transitions:

Q ≈ AC

2π2h̄

vs

vF

(
h̄vs

kBT

)
�T

T

(
kBT

h̄vF

)3(kBT

h̄vs

)4

×
∫ ∞

0
dxx

∫ x

0
dy(x − y)y3

× ey

(ey − 1)2

(
1

ex + 1
− 1

ex−y + 1

)
. (33)

Solving the integral numerically, we obtain a value of −32.
Therefore, Q is further reduced to the following:

Q ≈ − 16ACk6
B

π2h̄7v4
F v2

s

T 5�T . (34)

Next, we solve for the heat transfer rate due to interband
transitions. Based again on Appendix B, we use the following
expression:

Qinter ≈ AC

2π2h̄

vs

vF

(
h̄vs

kBT

)
�T

T

(
kBT

h̄vF

)3(kBT

h̄vs

)4

×
∫ ∞

0
dxx

∫ ∞

x
dy(y − x)y3

× ey

(ey − 1)2

(
1

ex + 1
− 1

ex−y + 1

)
. (35)

Note that the constants in front of the integral are identical to
that for the intraband case. Solving this integral numerically
yields a value of −100. The total heat transfer rate Qtotal from
the surface carriers to the lattice vibrations is determined by
multiplying the intraband rate Q by 2 (to account for both
bands) and then summing with the interband rate Qinter:

Qtotal = 2Q + Qinter

≈ − 82ACk6
B

π2h̄7v4
F v2

s

T 5�T . (36)

In order to determine the heat transfer timescale, we substitute
the previously derived relationship between the electron cool-
ing rate and the rate of change of electron temperature from

Eq. (10) into the left-hand side of the above expression:

−10.8Ak3
B

π h̄2v2
F

T 2 d (�T )

dt
≈ − 82ACk6

B

π2h̄7v4
F v2

s

T 5�T,

d (�T )

dt
≈ −7.6Ck3

BT 3

π h̄5v2
F v2

s

�T . (37)

As the result shows, the electron temperature decays expo-
nentially toward the lattice temperature, with the rate varying
as T 3.

The remaining task is to determine the value of the constant
C, which derives from the electron-phonon matrix element.
One method for doing so is by using the deformation po-
tential of 20 eV measured by Jay-Gerin et al. [36]. This
yields the following value for C, using a material density
ρ = 7 × 103kg/m3 [25]:

C = h̄D2

4ρvs
= 1.7 × 10−77 J2 m4. (38)

This leads to the following heat transfer time constant γ :

γ ≈ 7.6Ck3
BT 3

π h̄5v2
F v2

s

≈ (1.6 × 106 K−3 s−1)T 3. (39)

An alternative method for finding the deformation potential
is by merging the experimental results from Weber et al.
[37] with the theory provided by Lundgren and Fiete [25].
Specifically, Weber et al. used a bulk Cd3As2 sample intrin-
sically doped to a baseline electron density of 6 × 1023 m−3,
which corresponds to a Fermi energy of 170 meV and a Fermi
temperature of 1130 K. Under these conditions, they observed
a timescale of 3.1 ps for electron cooling by low-energy
acoustic phonon emission at lattice temperatures of 80 K and
300 K. This scenario is addressed by Lundgren and Fiete’s Eq.
(8), which models the heat transfer rate for kBT � E f (where
E f is the Fermi energy):

γ = D2E4
f

3kBh̄4v5
F ρT

. (40)

We now substitute a temperature and rate data point from
Weber et al. into this expression to calculate the deformation
potential D. Since the limit kBT � E f is much more valid for
T = 80 K than for 300 K, we use the former as the tempera-
ture corresponding to the rate γ = (3.1 ps)−1 for the purposes
of application to Eq. (40). This yields the following value for
D:

D =
(

3kBh̄4v5
F ρ

E4
f

T γ

) 1
2

= 250 eV. (41)

This leads to the following value for the coefficient C:

C = h̄D2

4ρvs
= 2.7 × 10−75 J2 m4, (42)

which yields the following heat transfer time for our model:

γ ≈ 7.6Ck3
BT 3

π h̄5v2
F v2

s

≈ (2.5 × 108 K−3 s−1)T 3. (43)

As will be discussed in the next section, the lower bound for
the baseline temperature T (which will also set the minimum
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value for the heat transfer rate) will be about 0.35 K. For this
temperature, the above two methods yield a lattice heating
timescale approximately ranging from 93 ns to 15 μs.

It is worth comparing this timescale with the corre-
sponding timescale for heat transfer between lattice phonons
and bulk electrons (when the bulk is in the normal, non-
superconducting phase). Based on Eq. (6) of Lundgren and
Fiete [25], this timescale would be on the order of 7000
seconds, well over 8 orders of magnitude longer than even the
upper-bound value for the transfer time from surface electrons
to the lattice phonons. This difference can be attributed to
the vastly greater available phase space area for the surface
electron interaction. Consequently, any heat transfer from the
phonons to the bulk electrons is insignificant compared to that
from the surface electrons to the phonons.

V. PHOTON-NUMBER RESOLVING DETECTION

We now describe the photon-number resolving detector
scheme based on our theoretical findings. First, we address
the question of whether the timescale for lattice temperature
equilibration is much faster than the dissipation time through
thermal conduction or radiative decay. Regarding the thermal
conduction heat loss, we note that the contacts used for cool-
ing the sample can be removed after the material reaches the
refrigerator temperature. As a result, the heat dissipation time
through thermal conduction will range on the order of several
hours and can thus be ignored. Instead, we will focus on the
radiative loss. Based on the results calculated for graphene,
the electron-hole interband dipole moment for a 2D Dirac
cone band structure is given as a function of photon radial
frequency ω as follows [38]:

dc,v = evF

ω
. (44)

Substituting this into the well-known radiative decay rate ex-
pression based on the Einstein coefficients [39], we find that
the radiative rate varies linearly with ω:

�rad(ω) = ω3

3πε0 h̄c3
|dc,v (ω)|2

= e2v2
F

3πε0 h̄c3
ω

= (1.1 × 10−7)ω. (45)

For frequencies up to 10 GHz, the radiative decay time
is therefore 150 μs or greater. This is significantly longer
than the electron-phonon heat transfer time calculated above,
which is 15 μs or less, which in turn is much longer than the
previously discussed electron-electron rethermalization time
of tens of picoseconds [22]. Therefore, a rapid rethermaliza-
tion of the electron population in the bands occurs before any
radiative loss of the photoelectrons occurs.

Next, we address the question of heat transfer from the
surface electronic modes directly to the bulk electronic modes.
This would constitute a loss process, since it reduces the
heat absorbed by the bulk phonon modes. We note that the
aforementioned spatial separation between bulk and surface
electronic states renders this process unlikely. It is also worth
comparing the heat capacity of the bulk electron modes to

that of the phonon modes. To this end, in the temperature
range 0.35–0.45 K (just over 0.5Tc), the superconducting state
features approximately the same heat capacity as the normal
state extrapolated to that temperature range. As such, we use
the collective electron energy expression shown in Eq. (6),
this time using the 3D rather than 2D Dirac cone dispersion
to derive the density of states ρ(E ):

ρ(E ) = dN

dVk

dVk

dk

dk

dE

= V

(2π )3

[
4π

(
E

h̄vF

)2
]

1

h̄vF

= V

2π2h̄3v3
F

E2, (46)

where V denotes the bulk volume. Substituting into Eq. (6),
we find the following bulk thermal energy as a function of
temperature:

Uel,bulk (T ) = V

π2h̄3v3
F

∫ ∞

0
dEE3 e− E

kBT + 1

cosh
(

E
kBT

) + 1

= V

π2h̄3v3
F

(kBT )4 7π4

60

= 7π2V k4
B

60h̄3v3
F

T 4. (47)

The bulk heat capacity is calculated by taking the derivative
with respect to the temperature T :

Cel,bulk (T ) = dUel,bulk

dT
= 7π2V k4

B

15h̄3v3
F

T 3. (48)

Comparing this to the phonon heat capacity [see Eq. (19)],
we find that the phonon heat capacity is greater by a factor of
approximately (vF /vs)3, i.e., more than 7 orders of magnitude.
This massive disparity can be explained by the fact that near
the Fermi level, the electron group velocity vastly exceeds the
phonon group velocity, resulting in a far greater density of
states for the phonon modes than for the electron modes. We
thus conclude that the energy of the absorbed photons is safely
transferred to, first, the rethermalization of the carrier band
populations, and then, to the bulk phonon modes to elevate
the bulk temperature.

We now discuss how the bulk temperature is measured.
Since the elevated bulk temperature will increase the bulk re-
sistance of the superconducting bulk states as shown in Fig. 5,
we measure the zero-bias resistivity across the bulk (using a
lock-in amplifier) as a proxy for the temperature. This is ad-
vantageous relative to infrared-based bolometry since it does
not perturb the electronic structure of the bulk, as well as due
to the fact that electrical signals can be measured in ultrafast
picosecond-range intervals [40]. We manufactured a Cd3As2

device to measure the superconducting bulk resistivity as a
function of sample temperature. To this end, it is important
to note the lower bounds for the dimensions of each Cd3As2

crystal. The goal of the device is to measure photons in the
transmon frequency range, i.e., 5–7 GHz [41,42]. For a Dirac
cone dispersion with Fermi velocity vF , a photon of frequency
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FIG. 5. Resistivity (in megaohm-meters) versus temperature (in
kelvins) for bulk Cd3As2.

f is resonant with the band gap at the following band wave
vector:

k = π f

vF
. (49)

Therefore, in order for resonance to exist at photon frequen-
cies as low as 5 GHz, the maximum length of each Bloch
state in reciprocal space must be �k ≈ 1.6 × 104 m−1, thus
implying that the minimum length of the Cd3As2 surface
along each dimension is 2π/�k = 0.4 mm. We also assume
that the depth of the lattice is limited by design constraints to a
minimum value of 20 nm, since this is the minimum thickness
that has been achieved with an MBE technique [14]. For a
photon frequency of 5 GHz and crystal dimensions of 0.4 mm
× 0.4 mm × 20 nm, the single-photon temperature gain is cal-
culated by substituting the values N = 1, ω = π × 1010 s−1,
and V = 3.2 × 10−15 m3 into Eq. (21) and linearizing:

�T = 1

4T 3
(4.13 × 10−35 m3 K4 s)

Nω

V

= 1.0 × 10−10 K4

T 3
. (50)

For temperatures above our minimum refrigerator temperature
of 0.25 K, the temperature gain due to the absorption of a
single photon is below 6.5 nK, which confirms our previous
assumption that �T � T .

Finally, we use the single-photon temperature gain to deter-
mine the corresponding increase in bulk resistance. Figure 5
depicts the experimental values for zero-bias resistivity as a
function of temperature in bulk Cd3As2 in the superconduct-
ing regime. For temperatures above 0.35 K, the resistivity
steadily increases with temperature. We will therefore use
0.35 K to 0.45 K as the range of baseline temperatures for
which we will determine the single-photon bulk resistance
gain. For a square lattice surface, the bulk resistance scales lin-
early with resistivity as 1/d , where d denotes the lattice depth.
Therefore, the single-photon resistance gain relates to the
slope of the resistivity with respect to temperature (dρ/dT )
and the single-photon temperature gain (�T ) as follows:

�R = 1

d

dρ

dT
�T . (51)

FIG. 6. Plots of bulk resistance gain (in micro-ohms) due to
absorption of a single photon versus baseline temperature for pho-
ton frequencies f = 5, 10 GHz given sample dimensions 0.4 mm ×
0.4 mm × 20 nm.

For the aforementioned sample dimensions, d = 20 nm. Sub-
stituting the expression for �T from Eq. (50), we find that the
single-photon resistance gain �R solely becomes a function
of the baseline temperature T :

�R = 5.0 × 10−3 m−1 K4

T 3

dρ

dT
. (52)

Figure 6 depicts the resistance gain due to the absorption of a
single photon for baseline temperatures ranging from 0.35 K
to 0.45 K for the selected photon frequencies of 5 GHz and
10 GHz. For temperatures of 0.39 K and above, the single-
photon resistance gain will be greater than 1 μ� for photon
frequencies as low as 5 GHz, an increase which is certainly
measurable using a commercially available micro-ohm meter
(such as the Keysight 34420A NanoVolt/Micro-Ohm Meter
by Keysight Technologies) or with a Corbino geometry sam-
ple which can even measure sub-micro-ohm resistance [43].
This property can therefore be exploited in order to precisely
determine the number of absorbed photons for a known fre-
quency.

It is worth discussing the effect of impurities on the prop-
erties of the detector. Normally, the presence of charged
impurities would lead to a shift of the Fermi level away from
the Dirac point, which in turn would degrade the performance
of the detector by hindering photon absorption in the mi-
crowave frequency range. However, recent experiments have
demonstrated that Cd3As2 is easily doped, either chemically
[44] or electrostatically [45]. Therefore, the Fermi level of the
surface state can be tuned so as to coincide with the Dirac
point, as desired. Since the electronic structure of the surface
is decoupled from that of the bulk, it is feasible to specifically
dope the former while leaving the latter unaltered.

Finally, we address the issue of dark count. Due to the
cryogenic (sub-Kelvin) refrigerator temperature, the dark
count should be negligible, as previously demonstrated for
transition-edge sensors under similar temperature conditions
[46]. Nonetheless, precise experimental determination of the
dark count for the Cd3As2 detector would serve as an impor-
tant topic for future research.
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VI. DISCUSSION AND CONCLUSION

We demonstrated a microwave photon-number resolving
detector based on the topological surface states of Cd3As2

material. The number of photons absorbed is produced after
measuring the increased resistivity of the superconducting
bulk. For this, we derived in detail how much bulk temperature
would elevate as a function of the absorbed number of photons
and the photon frequency. We showed that the energy of the
absorbed photon is rapidly transferred first to the rethermal-
ized distribution of the surface state electron band population.
Then, the electron band energy is quickly transferred to the
bulk phonon modes through the deformation potential cou-
pling. The bulk temperature is thus elevated, and finally, the
superconducting bulk increases resistance, which is measured
to resolve the absorbed number of photons. To address how
quickly the energy is transferred from the surface electron to
the bulk phonon modes, we derived the deformation potential
electron-phonon coupling rate by calculating the transition
matrix element and the phase space volume. As a result,
we concluded that the coupling time constant ranged from
nanoseconds to microseconds. Therefore, it is expected that
the number of absorbed photons would be measured within
several milliseconds after the absorption happens.

Our proposed scheme accomplishes rapid photon detec-
tion based on quick (or even continuous) and accurate bulk
resistance measurement. Direct measurement of the elevated
temperature in bulk does not provide a feasible path due to
the slow detection speed and the measurement noise in the
extremely small differential temperature. It is essential to
understand why the use of Cd3As2 bulk’s semimetal feature
for absorbing microwave photons is avoided. Recall that, if
the baseline temperature is set above the critical temperature,
the bulk’s electronic bands do not open a gap, which allows
the bulk electrons to be excited by the microwave photons.
However, detecting the excited electron is extremely diffi-
cult for two main reasons. First, the bulk photoelectron may
easily join the resistance-measuring current and be lost in
the measurement process. Second, the photoelectron’s energy
transfer to the bulk temperature is extremely inefficient due to
the reduced phase space of 3D electrons, risking the loss of
photoelectrons via radiative decay rather than energy transfer
to the bulk phonon modes. In contrast, the photon absorption
from the surface state electrons almost surely transfers the
energy to the bulk phonon modes.

Equally important is understanding the difference between
our proposed scheme and an alternative device structure of
a Dirac 2D material such as graphene on the surface of a
bulk superconductor. A pure graphene layer indeed does not
possess a superconductor state [47], and thus can be used as
a Dirac cone photon absorber of microwave photons even at
a very low temperature. However, it is more difficult to fabri-
cate this device than Cd3As2 which simultaneously has both
bulk superconductor and surface states. In addition, the hybrid
structure suffers from inefficient electronic energy transfer to
the bulk phonons due to the mismatch of lattice constants.
Instead, as previous research on graphene single-photon de-
tectors has shown, the inefficient electronic energy transfer to
phonons is used for efficient capture of the photoelectron in
the electrodes [48]. However, in this case, the photon-number

resolving feature is lost. In comparison, our scheme utilizes
the surface state electrons of Cd3As2 as a microwave photon
absorber and the bulk superconductor of the same material
for detecting the number of photons absorbed. The distinct
advantage of our method is to provide a deterministic photon-
number resolving capability in microwave photon detection.

It is also worth understanding the advantage that our
scheme offers over traditional transition-edge-sensor (TES)
based detectors. Due to the need for a significant voltage bias
in measuring the resistance of the TES bulk [49], a large
source-drain current is generated, causing undesired side ef-
fects such as flicker noise. A Cd3As2-based detector avoids
this issue by enabling zero-bias resistance measurement.

We now discuss the design strategy of maximizing the pho-
ton absorption probability of the device. Note that each crystal
surface features an absorption rate of 0.3%–0.6%. Therefore,
it is possible to have a near-unity quantum efficiency if about
2000 bulk crystal layers are vertically stacked in a heterostruc-
ture (such that they are in series from the point of view of the
incoming photon), while measuring the bulk zero-bias resis-
tivity for each of the crystals separately. With the advent of
more advanced manufacturing techniques, such heterostruc-
ture is increasingly becoming possible [50]. Another means of
achieving the same goal is by placing a single-layer detector in
an optical cavity bounded by high-reflectivity mirrors. Since
Bragg mirrors can feature transmittance rates as low as 1 ppm
[51], the total probability that a photon is lost through one of
the mirrors will be negligible even after thousands of round
trips through the cavity, thus ensuring a near-unity detector
efficiency.
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APPENDIX A: MATRIX ELEMENTS FOR INTERACTION
BETWEEN SURFACE ELECTRONS AND BULK PHONONS

In this section, we estimate the matrix elements corre-
sponding to interaction between the surface electron modes
and bulk phonon modes by building from the analogous ele-
ments for the bulk electron-phonon interaction. Labeling the
direction perpendicular to the surface as ẑ, we represent the
surface state wave function as a product of the xy-plane wave
function and a pulselike function of z:

(x, y, z) = φ(x, y)ψ (z), (A1)

where ψ (z) is expressed such that its amplitude squared be-
comes a broadened Dirac-delta function with a width of a:

ψ (z) =
{ 1√

a
, 0 < z < a,

0, otherwise.
(A2)

Here, a denotes the approximate width of the surface state.
Next, we seek to express a surface mode as a superposition

of bulk modes by decomposing ψ (z) into a superposition of
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modes with well-defined z wave vector kz:

|ψ〉 = c(kz ) |kz〉 , (A3)

where |kz〉 denotes the plane-wave state with wave vector kz,
taking the following form with respect to the lattice depth d
when projected onto the position space:

〈z|kz〉 = 1√
d

eikzz. (A4)

From the Heisenberg uncertainty principle, we intuitively
know that the range of z-direction momentum is approximated
as �pz ≈ h/a, leading to a wave vector range of �kz ≈ 2π/a.
We quantitatively determine the superposition coefficients

c(kz ) as follows:

c(kz ) = 〈kz|ψ〉 =
∫

dz 〈kz|z〉 〈z|ψ〉

= 1√
ad

∫ a

0
dz e−ikzz = i√

ad

e−ikza − 1

kz
. (A5)

For low values of kza (i.e., kza � 1), the coefficient can be
estimated as

√
a/d . Since the span of each plane-wave state in

reciprocal space is 2π/d , this accords with the intuition that
the overall reciprocal space in the z direction spans a length
of 2π/a, subdivided into a/d wave vectors with a roughly
uniform superposition coefficient for each.

The intraband matrix element corresponding to the emis-
sion of a phonon of wave vector q in branch μ by a surface
electron can thus be expressed in terms of the analogous
matrix elements for bulk electrons:

Hemit (kxy, q) = 〈kxy − qxy, ψ, nμ,q + 1|h̄gμ,k,qc†
k−qckb†

μ,q|kxy, ψ, nμ,q〉
=

∑
kz

〈ψ |kz − qz〉 〈k − q, nμ,q + 1|h̄gμ,k,qc†
k−qckb†

μ,q|k, nμ,q〉 〈kz|ψ〉

≈ a

d

π
a∑

kz=− π
a

〈k − q, nμ,q + 1|h̄gμ,k,qc†
k−qckb†

μ,q|k, nμ,q〉 . (A6)

Note that this approximation is valid specifically if the maximum amplitude of the emitted phonon wave vector is much smaller
than the maximum amplitude of kz, i.e., if qmax � π/a, which holds true for long-wavelength acoustic phonons in the linear
dispersion regime.

As a final step in the generic matrix element calculation, we can show that the carrier-phonon matrix element is exactly
invariant in the initial carrier wave vector kz, since each kz corresponds to a plane-wave state with well-defined z momentum h̄kz.
Specifically, the matrix element of a spatial function f (r) connecting an initial carrier state |k〉 to a final state |k − q〉 (where the
wave vectors are three-dimensional) is simplified as follows:

〈k − q| f (r)|k〉 = 〈kxy − qxy, kz − qz| f (r)|kxy, kz〉

=
∫

d3rφ∗
kxy−qxy

(x, y)
1√
d

e−i(kz−qz )z f (r)φkxy (x, y)
1√
d

eikz

= 1

d

∫
d3reiqzzφ∗

kxy−qxy
(x, y) f (r)φkxy (x, y). (A7)

As a result, the terms in the summation in Eq. (A6) are equivalent. Since the total number of valid plane-wave wave vectors
in the summation is d/a (as previously discussed), the matrix element Hemit becomes invariant in the lattice depth d , as
desired:

Hemit (kxy, q) ≈ a

d

d

a
〈k − q, nμ,q + 1|h̄gμ,k,qc†

k−qckb†
μ,q|k, nμ,q〉

≈ 〈k − q, nμ,q + 1|h̄gμ,k,qc†
k−qckb†

μ,q|k, nμ,q〉 . (A8)

Therefore, the electron-phonon matrix element Mμ,q
kxy,pxy

corresponding to the transition from an initial electronic wave vector kxy

to a final wave vector pxy via the emission of a phonon of wave vector q in branch μ is equivalent to the bulk matrix element
Mμ,q

k,p , where kz = 0 and pz = −qz.

APPENDIX B: CALCULATING THE SURFACE ELECTRON COOLING RATE

We start by representing the cooling rate of the surface electrons as the following summation over initial electron wave vectors
k, final electron wave vectors p, and phonon wave vectors q, with the direction of k defined as the x axis and the projection of p
on the xy plane labeled as pxy:

Q = 2π

h̄

∑
k,p,q

h̄vF (k − pxy)
C

V
q[ f (h̄vF k) − f (h̄vF pxy)][nTL (vsq) − nTe (vsq)]δk,p+qδ(h̄vF k − h̄vF pxy − h̄vsq). (B1)
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Given an overall lattice volume V and surface state area A, the discrete summation over k and p can be converted to integrals as
follows: ∑

k

→ A

(2π )2

∫
d2k,

∑
p

→ V

(2π )3

∫
d3 p = V

(2π )3

∫
d pxy pxy

∫
dθp

∫
d pz. (B2)

Also, the Dirac delta can be rewritten as a function of pxy:

δ(h̄vF k − h̄vF pxy − h̄vsq) = 1

h̄vF
δ

(
pxy − k + vs

vF
q

)
. (B3)

Therefore, the Dirac delta collapses the integral over pxy to pxy = k − vsq/vF . The rate Q reduces to the following form:

Q = 2π

h̄

A

(2π )2

V

(2π )3

×
∑

q

∫
d2k

∫
dθp

∫
d pz

(
k − vs

vF
q

)
vs

vF
q

C

V
q[ f (h̄vF k) − f (h̄vF k − h̄vsq)][nTL (vsq) − nTe (vsq)]δk,p+q. (B4)

Next, we apply the Kronecker delta, which restricts the summation over phonon wave vectors to q = k − p. Also, as discussed in
the main text, we can apply the approximation p ≈ pz � k for nearly all of the phase space. This argument is further strengthened
by the fact that the integrand approaches zero for low values of q for which this approximation is the weakest. Therefore, we set
q = pz. Since all terms in the integrand are now functions solely of k or pz, we have collapsed the integral over p to an integral
over pz multiplied by the circumference of the circle generated by making a plane cut (along the px py plane) through the cone.
Also, the fact that the radius of the cone at a generic value of pz equals k − (vs/vF )pz implies that the circumference of the
aforementioned circle is 2π [k − (vs/vF )qz] and the upper bound of qz (corresponding to the cone vertex) is (vF /vs)k. Therefore,
Q simplifies to the following:

Q ≈ 2
2π

h̄

A

(2π )2

V

(2π )3

C

V

vs

vF

∫ ∞

0
dk2πk

∫ vF
vs

k

0
d pz2π

(
k − vs

vF
pz

)
p2

z [ f (h̄vF k) − f (h̄vF k − h̄vs pz )][nTL (vs pz ) − nTe (vs pz )].

(B5)

Note that the factor of 2 in front derives from the fact that the available phase space is actually a double cone, extending in both
the + and − directions along the pz axis.

We now examine the parenthetical term corresponding to the net phonon number. In the limit �T � Te, TL, where �T =
Te − TL, we solve for a generic value of T ≈ Te ≈ TL to first order in �T :

nTL (vs pz ) − nTe (vs pz ) = (
e

h̄vs pz
kBTL − 1

)−1 − (
e

h̄vs pz
kBTe − 1

)−1

≈ e
h̄vs pz
kBT(

e
h̄vs pz
kBTL − 1

)2

h̄vs pz�T

kBT 2
. (B6)

The exponential term will set an approximate upper bound for the emitted phonon energy. For low temperatures (e.g., T =
0.45 K), this ensures that the emitted phonons fall within the long-wavelength acoustic mode limit.

Next, we write out the expression for the electron occupation number difference between the initial and final states:

f (h̄vF k) − f (h̄vF k − h̄vsqz ) = 1

e
h̄vF k
kBT + 1

− 1

e
h̄vF k−h̄vs pz

kBT + 1
. (B7)

We are now in a position to simplify the double integral by defining the variables x = h̄vF k/(kBT ) and y = h̄vs pz/(kBT ), yielding
the following expression for Q:

Q ≈ 4πC

h̄

A

(2π )5

vs

vF

h̄vs�T

kBT 2
4π2

∫ ∞

0
dkk

∫ vF
vs

k

0
d pz

(
k − vs

vF
pz

)
p3

z

e
h̄vs pz
kBT(

e
h̄vs pz
kBTL − 1

)2

(
1

e
h̄vF k
kBT + 1

− 1

e
h̄vF k−h̄vs pz

kBT + 1

)

= AC

2π2h̄

vs

vF

(
h̄vs

kBT

)
�T

T

(
kBT

h̄vF

)3(kBT

h̄vs

)4

+
∫ ∞

0
dxx

∫ x

0
dy(x − y)y3 ey

(ey − 1)2

(
1

ex + 1
− 1

ex−y + 1

)
. (B8)

Note that our analysis so far has been restricted to the case of intraband carrier transitions through carrier-phonon interaction.
Unlike the case of bulk carriers, where the band structure prohibits interband carrier-phonon scattering, the carrier dispersion
for the surface state allows such scattering. The phase space area for this interaction can be constructed by merging the conical
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phase space for the electron-phonon interaction with the corresponding cone for the hole-phonon interaction, with the pair of
cones meeting at pz = vF k/vs. Just like we restricted the range of values for pz for the intraband scattering to pz < vF k/vs, we
will restrict the range for interband scattering to pz > vF k/vs. Recall that the amplitude squared of the carrier-phonon matrix
element for Cd3As2 is identical for interband and intraband interaction except for the following proportionality [25]:∑

μ

∣∣Mμ,q
k,p

∣∣2 ∝ 1 + s cos θ, (B9)

where θ represents the angle between k and p, and s = 1,−1 for intraband and interband interactions, respectively. As mentioned
previously, pz � k for nearly all of the phase space area for the intraband interactions, and since the interband interactions involve
even higher values for pz, this is clearly true for such processes as well. Therefore, for both intraband and interband interactions,
we can make the approximation cos θ ≈ 0, causing the interband and intraband matrix element amplitude-squared values to
scale linearly with the phonon wave vector in the same manner. In order to construct the equivalent of Eq. (B8) for interband
carrier-phonon scattering, the only changes we make are thus the range of pz, as previously mentioned, as well as the term in the
integrand corresponding to the cone radius, which flips as k − vs pz/vF → vs pz/vF − k:

Qinter ≈ 4πC

h̄

A

(2π )5

vs

vF

h̄vs�T

kBT 2
4π2

∫ ∞

0
dkk

∫ ∞

vF
vs

k
d pz

(
vs

vF
pz − k

)
p3

z

e
h̄vs pz
kBT(

e
h̄vs pz
kBTL − 1

)2

(
1

e
h̄vF k
kBT + 1

− 1

e
h̄vF k−h̄vs pz

kBT + 1

)

= AC

2π2h̄

vs

vF

(
h̄vs

kBT

)
�T

T

(
kBT

h̄vF

)3(kBT

h̄vs

)4 ∫ ∞

0
dxx

∫ ∞

x
dy(y − x)y3 ey

(ey − 1)2

(
1

ex + 1
− 1

ex−y + 1

)
. (B10)
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