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Ideal quantum teleportation transfers an unknown quantum state intact from one party Alice to the other
Bob via the use of a maximally entangled state and the communication of classical information. If Alice
and Bob do not share entanglement, the maximal average fidelity between the state to be teleported and the
state received, according to a classical measure-and-prepare scheme, is upper bounded by a function fc that is
inversely proportional to the Hilbert space dimension. In fact, even if they share entanglement, the so-called
teleportation fidelity may still be less than the classical threshold fc. For two-qubit entangled states, conditioned
on a successful local filtering, the teleportation fidelity can always be activated, i.e., boosted beyond fc. Here, for
all dimensions larger than two, we show that the teleportation power hidden in a subset of entangled two-qudit
Werner states can also be activated. In addition, we show that an entire family of two-qudit rank-deficient states
violates the reduction criterion of separability, and thus their teleportation power is either above the classical
threshold or can be activated. Using hybrid entanglement prepared in photon pairs, we also provide the first
proof-of-principle experimental demonstration of the activation of teleportation power hidden in this latter
family of qubit states. The connection between the possibility of activating hidden teleportation power with
the closely-related problem of entanglement distillation is discussed.
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I. INTRODUCTION

In quantum information science, entanglement [1] serves
as a resource within the paradigm of local operations as-
sisted by classical communications (LOCC). In fact, sharing
entanglement is essential for exhibiting a quantum advan-
tage over classical resources in computation [2,3], secret key
distribution [4], superdense coding [5], and metrology [6],
etc. Among the possibilities that entanglement empowers,
quantum teleportation [7], i.e., the transfer of quantum states
using shared entanglement and classical communication, is
especially worth noting (see, e.g., Refs. [8,9] for some recent
advances).

Indeed, teleportation serves as a primitive in various
quantum protocols such as remote state preparation [10,11],
entanglement swapping [12], and quantum repeaters [13]. In
universal quantum computing with linear optics, it enables
near-deterministic two-qubit gates [14] and makes assembling
cluster states more efficient [15,16]. Theoretically, it has been
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used as a tool for exploring closed timelike curves [17] and
black hole evaporation [18]. Recently, it was used to experi-
mentally demonstrate the scrambling of quantum information
[19]. In this work, we compare entangled states to classical
resources for the task of teleportation.

In the original protocol [7], two remote parties (called Al-
ice and Bob) share an entangled pair of qubits. By performing
a joint measurement on her half of the entangled qubit and an
unknown qubit |ψ〉 given to her, Alice teleports |ψ〉 to Bob
by transmitting only the classical measurement outcome to
Bob. The quality of this state transfer is quantified [20] by
the teleportation fidelity [21,22], which measures the average
overlap between |ψ〉 and the state Bob receives.

To teleport a quantum state perfectly, sharing a maximally
entangled state is imperative. However, due to decoherence,
this ideal resource is often not readily shared between re-
mote parties, thus resulting in a nonideal teleportation fidelity.
When the entanglement is too weak, the teleportation fidelity
can even be simulated by adopting a measure-and-prepare
scheme [20], without sharing any entanglement. Thus, when-
ever an entangled state yields a teleportation fidelity larger
than the classical threshold of fc = 2

d+1 [23], it is convention-
ally said to be useful for teleportation, but otherwise useless
(see Refs. [24,25] for some other notions of nonclassicality).
Here, d is the local state space dimension.

Importantly, teleportation power, as with some other de-
sirable features of an entangled state, may be activated by
utilizing experimentally feasible [26–28] local filtering [29]
operations (see, also, Refs. [30–34]). Accordingly, we say
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that ρ has hidden teleportation power (HTP) if it is useless
for teleportation but becomes useful, i.e., activated after a
successful local filtering. Two-qubit entangled states are either
useful or can be activated [35–37]. Bound entangled [38]
states are useless for teleportation and cannot be activated
[23] while all entangled isotropic states [39] are useful. Are
there higher-dimensional entangled states whose teleportation
power can be activated? Here, we show that for all dimensions
d � 3, entangled Werner states [40] exhibiting HTP can be
found. Moreover, a family of rank-deficient states is provably
useful or can have its teleportation power activated. We further
provide the first proof-of-principle experimental demonstra-
tion of this activation process using entangled photon pairs,
pushing the frontier of photonics teleportation experiments
(see, e.g., Refs. [41–50]) in another direction.

For any two-qudit state ρ, determining its teleportation
fidelity fd (ρ) and hence its usefulness is a priori not trivial
as this requires an integration over all pure states |ψ〉 chosen
uniformly from Cd . However, fd (ρ) is known [23] to relate
monotonically to the fully entangled fraction (FEF) of ρ,
denoted by Fd (ρ) as

fd (ρ) = Fd (ρ)d + 1

d + 1
, Fd (ρ) = max

|�d 〉
〈�d |ρ|�d〉, (1)

where

|�d〉 = (Id ⊗ Ud )|�+
d 〉 (2)

is an arbitrary d-dimensional maximally entangled state, Id is
the d × d identity matrix, Ud is a d × d unitary matrix, and
|�+

d 〉 = 1√
d

∑d−1
i=0 |i〉|i〉. The classical measure-and-prepare

threshold fc = 2
d+1 corresponds to an FEF of Fc = 1

d . Hence,
a quantum state ρ is useful for teleportation if and only if (iff)
Fd (ρ) > Fc.

II. BOOSTING TELEPORTATION POWER

We are interested in activating the usefulness for teleporta-
tion by local filtering (i.e., stochastic LOCC [51]). Formally,
local filtering on a bipartite system ρ gives τ = (A ⊗ B)ρ(A ⊗
B)†, where the filters A and B are d × d matrices having
bounded singular values. Through renormalization, we may
set ||A||∞ = ||B||∞ = 1, i.e., their largest singular value being
unity. Conditioned on successful filtering, which happens with
probability p = tr(τ ), the resulting filtered state is ρ f = τ

p .
Generally, a trade-off between the maximization of Fd [ρ f ] and
the corresponding success probability is expected.

Physically relevant filtering should give p �= 0. Then, the
process of boosting teleportation power can be made de-
terministic [36] by preparing a separable state, say, ρsep =
|φ〉|ϕ〉〈φ|〈ϕ| whenever the filtering operation fails. Explicitly,
this average state ρave = pρ f + (1 − p)ρsep can be obtained
as the output of the completely-positive trace-preserving map

ρave = M1ρM†
1 +

∑
i, j,k

Mi jkρM†
i jk, (3)

where the Kraus operator Mi jk = |φ〉|ϕ〉〈i|〈 j|Gk (i, j =
0, 1, ..., d − 1), M1 = A ⊗ B, with G1 =√
Id − A†A ⊗

√
Id − B†B, G2 = A ⊗

√
Id − B†B, and

G3 =
√
Id − A†A ⊗ B.

A. Deterministic teleportation protocol with filtering

Consequently, the teleportation protocol can also be made
deterministic by incorporating the various outcomes of the
local filtering process. For simplicity, the following discussion
assumes that Alice (the sender) and Bob (the receiver) share a
two-qubit entangled state ρAB and where the unknown state
to be teleported |ψ〉T is also a qubit. The protocol can be
straightforwardly generalized to the case involving higher-
dimensional quantum states.

(1) First, Bob applies his local filter on qubit B. He then
sends a bit b to Alice to inform her whether the filtering
succeeded (b = 1) or failed (b = 0).

(2) (a) If b = 1, Alice performs a local filtering op-
eration on qubit A. And If her filtering succeeds, Alice
performs a Bell-state measurement (BSM) on the qubit pair
(T, A) and sends the two-bit measurement outcome (i j) ∈
{00, 01, 10, 11} to Bob.

(b) If b = 0 or if her filtering operation fails, Alice
measures qubit T in the computational basis and sends her
measurement outcome a = 0, 1 (corresponding to |0〉 and
|1〉) to Bob.
(3) Depending on the number of bits he receives, Bob

knows if Alice’s local filtering succeeded. He then acts ac-
cordingly to complete the teleportation protocol.

(a) If Bob receives one bit a, he locally prepares the
computational basis state |a〉.

(b) If Bob receives two bits (i j), he applies the unitary
(Pauli) correction ZiX j on his qubit B.
The output of the protocol is Bob’s final qubit. If any local

filtering fails, it would be a qubit prepared in some computa-
tional basis state |a〉, which always contributes 1

d to the fully
entangled fraction. Otherwise, it will be the unitarily corrected
qubit from Bob’s share of ρAB.

B. Figures of merit

There are thus two natural figures of merit relevant to
boosting the teleportation power of ρ. The first of these
concerns

max
A,B

Fd [ρ f (A, B)] = max
A,B

〈�+
d |ρ f (A, B)|�+

d 〉,

such that ||A||∞ = 1, ||B||∞ = 1,
(4)

where the equality in the objective function follows by absorb-
ing the Ud defining Fd [Eq. (2)] into the definition of Bob’s
filter B. Consequently, in maximizing the alternative figure of
merit K (ρ) ≡ Fd (ρave), called the cost function in Ref. [36],
one may set ρsep = |0〉|0〉〈0|〈0|, thus giving

K (ρ) = pFd (ρ f ) + 1 − p

d
, (5)

which exceeds 1
d iff Fd (ρ f ) > 1

d . Note that the deterministic
teleportation protocol described in Sec. II A ensures that the
cost function of Eq. (5) is attained.

Hence, although the optimal filter(s) and the final FEF
may depend on the choice among these figures of merit, the
possibility of activating ρ does not. That is, ρ displays HTP
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iff it satisfies two conditions:

Condition (a) : Fd (ρ) � 1

d
, and

Condition (b) : Fd (ρ f ) or Fd (ρave) >
1

d
.

Condition (a) induces [52,53] a convex set and qualifies the
uselessness [23,30] of ρ for teleportation but the set of ρ

complying with (b) is concave.
Two facts about the reduction criterion of separability (RC)

[39] should now be noted:
(I) the nonviolation of RC by ρ guarantees condition (a),
(II) the violation of RC by ρ implies (b) even with single-

side filtering.
However, there seems to be no single figure of merit fully

characterizing both conditions simultaneously.

C. Werner states

Consider the Werner state [40]:

W (v) = 2v

d (d + 1)
P+ + 2(1 − v)

d (d − 1)
P−, v ∈ [0, 1], (6)

where P∓ = (Id2 ∓ V )/2 is the projector onto the
(anti)symmetric subspace of Cd ⊗ Cd and V =∑d−1

i, j=0 |i〉| j〉〈 j|〈i| is the swap operator. W (v) is entangled iff

0 � v < 1
2 . For d > 2, all W (v) satisfy [39] RC and thus,

by fact (I), are useless for teleportation. However, as shown
below, the teleportation power of some entangled W (v) can
be activated.

Specifically, we perform optimizations of Eq. (4) using the
MATLAB function fminunc with more than 3 × 104 random
initial parameters for both d = 3, 4, in addition to several
optimizations for larger values of d . Let Wf (v) be the state
filtered from W (v). The largest value of Fd [Wf (v)] we found
happens to be attainable with the qubit filters

AW = σz ⊕ 0d−2, BW = σx ⊕ 0d−2, (7)

where σx, σz are Pauli matrices, and ⊕ 0D means a direct sum
with a zero matrix of size D. The filtering succeeds with
probability pW(v) = 2N

d (d2−1) where N = (d + 1)(1 − v) +
3v(d − 1). Interestingly, even if we take into account pW(v)
and maximize the cost function K[W (v)], the best filters found
remain unchanged.

For activation, locally filtering W (v) onto the same qubit
subspace suffices. However, with the Pauli rotations, Wf (v)
takes the simple form

Wf (v) = 1

N
[(d + 1)(1 − v)|�+

2 〉〈�+
2 |

+ v(d − 1)(I − |�+
2 〉〈�+

2 |] ⊕ 0d2−4. (8)

Its FEF Fd [Wf (v)] = 2(d+1)(1−v)
dN beats the classical limit Fc =

1
d whenever v < vcr = d+1

4d−2 . Therefore, for d > 2, W (v)
exhibits HTP for 0 � v < vcr, as shown in Fig. 1. For com-
pleteness, we illustrate in Appendix A how the increase in
FEF, i.e., Fd [Wf (v)] − Fd [W (v)] varies with the success prob-
ability pW(v) of filtering.

Evidently, qubit filters introduce asymmetries by favor-
ing a two-dimensional subspace of Cd while giving a poor

FIG. 1. The Werner state W (v), v ∈ [0, 1] is entangled iff 0 �
v < 1

2 . We show in this work that for d > 2, W (v) has HTP in the
region 0 � v < d+1

4d−2 (blue and red segment). As d increases from
2 towards ∞, the threshold vcr = d+1

4d−2 moves from 1
2 towards 1

4 ,
as symbolized by the (shrinking) red segment. The blue segment
indicates the region where W (v) always has HTP whenever d > 2.
For d = 2, all entangled W (v) are useful for teleportation.

fidelity when teleporting any |ψ〉 lying in the complementary
subspace. However, since the set of |ψ〉 ∈ Cd ′

with d ′ < d
constitute a set of measure zero in Cd , these asymmetric
fidelities do not contribute to the computation of the telepor-
tation fidelity fd (ρ), which averages over all |ψ〉 ∈ Cd . Still,
it seems intriguing that such filters optimize Eq. (4), as our
numerical results suggest.

D. Rank-deficient states

Next, consider a family of two-qudit, rank-two entangled
states [23,36]:

ρ(q) = q|�+
d 〉〈�+

d | + (1 − q)|0〉〈0| ⊗ |1〉〈1|, q ∈ (0, 1],
(9)

where q ∈ (0, 1]. Throughout, we shall only state our findings
while leaving all technical details to the Appendices. Firstly,
ρ(q) is provably (see Appendix B 1) useful for teleportation
for all d � 4, but for d � 3, only when q > 1

d .
By identifying an eigenvector with negative eigenvalue, we

further show in Appendix B 2 that ρ(q) violates the RC:

trB[ρ(q)] ⊗ Id − ρ(q)  0, (10)

where trB(·) denotes the partial trace over B and  0 means
matrix positivity.

Thus, by fact (II), filtering on one side (Alice) guarantees
that the FEF of ρ(q) can be boosted beyond Fc. In this case,
the filter maximizing K[ρ(q)], as we show in Appendix B 3,
is

AK = κ|0〉〈0| +
d−1∑
j=1

| j〉〈 j|, (11)

where κ = (d−1)q
d (1−q) . This reduces to the optimal filter found

[36] in the d = 2 case. Our numerical results obtained by
maximizing K[ρ(q)] suggest that AK may even be optimal
when two-side filtering is allowed.1

Let us define the subnormalized state |χ〉 := 1√
d

(κ|0〉|0〉 +∑d−1
i=1 |i〉|i〉). Then, conditional upon a successful filtering,

which occurs with probability

pκ (q) = κ2
( q

d
+ 1 − q

)
+ q

d
(d − 1), (12)

1Note that filters giving Fd [ρ f (q)] → 1 but with vanishing success
probability are known [23]. See also Appendix B 4.
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FIG. 2. Theoretical (dashed lines) and experimental (markers)
results illustrating the teleportation power before and after filtering
for qubit ρ(q). (a) FEF F2 [evaluated using Eq. (1)] (b) teleportation
fidelity f . In each plot, the bottom (red) results correspond to the
unfiltered states, i.e., ρ(q) (theory) and ρ1′2 (experiment) in Fig. 3(a).
The middle (blue) results are for the filtered state ρ f ,κ (q) (theory)
and ρ1′′2,κ (experiment) in Fig. 3(a) while the top (turquoise) results
are for the filtered state ρ f ,κ ′ (q) (theory) and ρ1′′2,κ ′ (experiment) in
Fig. 3(a). HTP is shown if a red marker is below the solid line but
the corresponding blue or turquoise marker is above the same line,
which happens only when q ∈ (0, 1

2 ].

one obtains the filtered state

ρ f ,κ (q) = 1

pκ (q)
(q|χ〉〈χ | + (1 − q)κ2|0〉〈0| ⊗ |1〉〈1|), (13)

which has an FEF of

Fd [ρ f ,κ (q)] = q
d2 pκ (q) (κ + d − 1)2, q ∈ (

0, d
2d−1

)
. (14)

That this shows the HTP of certain ρ(q) is illustrated for the
qubit case in Fig. 2 (and in Appendix B 4 for the qutrit case).

More generally, for all d � 2, one finds an increase in FEF,
i.e., Fd [ρ f ,κ (q)] > Fd [ρ(q)] for q ∈ (0, d

2d−1 ).
For comparison, we also compute Eq. (4) by filtering only

on Alice’s side. In this case, our numerical results suggest
that the best local filter takes the same form as AK but with
κ replaced by κ ′ = q

q+d (1−q) . The success probability pκ ′ (q)
and the FEF of the filtered state Fd [ρ f ,κ ′ (q)] are analogously
obtained by replacing κ with κ ′ in Eq. (14).

III. EXPERIMENTAL DEMONSTRATION

Experimentally, we prepare two-qubit ρ(q) for q =
1

15 , 2
15 , . . . , 10

15 and demonstrate how one-side local filtering
can be applied to boost its teleportation power. Fig. 3(a)
summarizes our protocol and Fig. 3(b) shows the experi-
mental setup (with no measurement at stage 1, 1′, nor 1′′).
Polarization-entangled photon pairs are first generated via
a periodically-poled potassium titanyl phosphate (PPKTP)
crystal in a Sagnac interferometer [54], which is bidirec-
tionally pumped by a 405-nm ultraviolet diode laser. From
quantum state tomography (QST), we estimate that the gen-
erated entangled state ρ12 has a fidelity of 0.954 ± 0.003
with |�+

2 〉12 = 1√
2
(|H〉|V 〉 + |V 〉|H〉), where the H (horizon-

tal) and V (vertical) polarization encode, respectively, |0〉 and
|1〉. QST requires both photons to be measured in different
bases, which we achieve by passing them through wave plates
with the appropriate setting and a polarizing beam splitter
(PBS) before detection.

To generate ρ(q), we let the photon pass through
a noisy channel E (θ1), see Fig. 3(a), such that
ρ1′2(θ1) = E (θ1) ⊗ I2(|�+

2 〉〈�+
2 |) = q(θ1)|�+

2 〉〈�+
2 | + [1 −

q(θ1)]|H〉|V 〉〈H |〈V |. The parameter q(θ1) = 2 sin2(2θ1 )
1+2 sin2(2θ1 )

is
varied by rotating the angle θ1 of the half-wave plate (HWP)
between the two beam displacers (BDs). To determine the

FIG. 3. (a) Experimental scheme used in demonstrating the HTP of ρ(q). QST may be performed at stage 1, 1′, and 1′′ to estimate the
density matrix corresponding, respectively, to the initial entangled state ρ12, the experimentally prepared state ρ1′2 [for ρ(q)], and the locally
filtered state ρ1′′2,κ or ρ1′′2,κ ′ [for ρ f ,κ (q) and ρ f ,κ ′ (q)]. (b) Experimental setup. The generated entangled photons are each coupled into a
single-mode fiber and sent to Alice and Bob via optical fibers. The fiber-induced polarization drift is corrected by a polarization controller
(PC), which is a half-wave plate (HWP) sandwiched by two quarter-wave plates (QWPs). The noisy channel generates ρ(q) according to θ1,
which is then filtered to boost its teleportation power. In our setup, the classical communication was carried out after the experiment, i.e., Bob
applies the unitary correction on photon 2′ in a postselected manner to recover the teleported state. See text and Appendix C for details. DM:
dichroic mirror. NBF: narrow-band filter. BS: beam splitter.
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FEF before filtering, we estimate ρ1′2 from QST and compute
Eq. (1). The results are shown as red dots in Fig. 2(a). For
q(θ ) � 7

15 , we observe that F2(ρ1′2) < Fc = 1
2 , thus certifying

their uselessness for teleportation.
To boost their teleportation power, we apply filter AK =

diag[κ, 1] on photon 1′ by implementing an amplitude damp-
ing channel [55] and keeping only the photons exiting from
one specific output port [56]. The parameter κ is related to
the angle θ2 of the HWP at the lower arm by κ = sin 2θ2.
By setting sin 2θ2 = q(θ1 )

2[1−q(θ1 )] , we realize the filters AK with
parameter κ and obtain ρ1′′2,κ with a success probability of
pκ (q). Similarly, by tuning θ2, we can implement the filter Aκ ′

and obtain ρ1′′2,κ ′ . F2(ρ1′′2,κ ′ ) is then similarly estimated.
From Fig. 2(a), we see that except for q = 1

15 , both
F2(ρ1′′2,κ ) and F2(ρ1′′2,κ ′ ) exceed Fc = 1

2 after local filtering,
confirming that the filtered states ρ1′′2,κ and ρ1′′2,κ ′ possess
teleportation power that outperforms the classical measure-
and-prepare strategy. To better understand how the filtered
states fare in an actual teleportation experiment, we skip the
QST for photon 1 [see Fig. 3(b)] for some of the runs and
follow the two-photon teleportation scheme of Ref. [42] (see
also Refs. [47,48]) to provide a proof-of-principle demonstra-
tion of activation. In particular, we introduce a third qubit by
involving also the path degree of freedom of photon 1′′ at the
state-preparation stage in Fig. 3(b).

To verify the teleportation power of the filtered states,
we choose for our teleportation experiments the known
input states: |ψ〉 ∈ {|0〉, |1〉, |+〉 = 1√

2
(|0〉 + |1〉, |R〉 =

1√
2
(|0〉 + i|1〉)}. Using quantum process tomography (QPT)

[55], we then reconstruct the process matrix χexp of our
teleportation channel (see Appendix C 6 for details). By
definition, the resulting teleportation fidelity f2(ρ) equals the
average identity-gate fidelity F̄ (ρ), which relates [57,58] (see
also Ref. [23]) to the process fidelity Fp = tr(χidχexp) by
F̄ (ρ) = [2Fp(ρ) + 1]/3. Here, χid is the process matrix of
the ideal teleportation channel. Our results plotted at Fig. 2
show that f2(ρ) shares the same trend as F2(ρ) when we
vary q(θ1), thus confirming the linear dependence of f2(ρ) on
F2(ρ) as required by Eq. (1). Deviations from the theoretical
predictions are mainly due to higher-order photon-pair
production events and misalignment in optimal elements.
Further experimental details and theoretical predictions
that fit better with the experimental data can be found in
Appendix C.

IV. DISCUSSION

Incidentally, the interval of v at which W (v) exhibits HTP
coincides with that where W (v) is known to be 1-distillable
[59–61]. The n-distillability problem concerns the conversion
of n � 1 copies of a given state ρ to a finite number of Bell
pairs using LOCC. Since all two-qubit entangled states are
distillable [35], ρ is distillable if there exist qubit projections
mapping it to a two-qubit entangled state. With the qubit pro-
jection first considered by Popescu [30], it is known [59–61]
that W (v) can be locally filtered to a two-qubit entangled state
for v ∈ [0, vcr ).

The aforementioned coincidence can thus be appreciated
by noting the following observations:

(i) the filtered two-qubit entangled state is locally equiva-
lent to Wf (v), i.e., an isotropic state [39] and hence satisfies
F2[Wf (v)] > 1

2 ,
(ii) any two-qubit state ρ ′

f is easily seen to satisfy

F2[ρ ′
f ] > 1

2 iff Fd [ρ ′
f ] > 1

d .
Nonetheless, let us remind the reader that the problem of

distillation and teleportation-power activation are defined dif-
ferently. For the 1-distillability of ρ by qubit projection2, one
seeks for qubit filters A and B such that ρ f = A⊗B ρ (A⊗B)†

tr[A⊗B ρ (A⊗B)†] is
entangled. However, for the problem of activation, one aims to
find filters such that Fd (ρ f ) > 1

d . In particular, optimal filters
for the latter problem are generally not a qubit projection [cf.
our example for ρ(q)].

Despite this difference, if ρ is 1-distillable by qubit projec-
tion, concatenating this projection with the filters provided in
Ref. [36] does give a filtered state ρ ′

f satisfying F2[ρ ′
f ] > 1

2 ,

and hence Fd [ρ ′
f ] > 1

d by observation (ii) above. Conversely,

whenever Fd (ρ f ) > 1
d , we have consistently found (numer-

ically) qubit filter(s) giving a (different) two-qubit filtered
state ρ̃ f satisfying F2(ρ̃ f ) > 1

2 . A proof of the implication
Fd (ρ f ) > 1

d ⇒ F2(ρ̃ f ) > 1
2 is, to our knowledge, lacking. If

true, then the problem of boosting FEF beyond Fc becomes
equivalent to the problem of 1-distillability by qubit pro-
jection, potentially simplifying the analysis of entanglement
distillability. Intriguingly, while qubit filters appear restrictive
and introduce asymmetries in teleportation fidelities, they may
still guarantee, by observation (ii) above, the general useful-
ness of the filtered state for teleporting a qudit state. A better
understanding of when and why a qubit filter optimizes Eq. (4)
is thus clearly desirable.

On the experimental side, note that a third party Charlie
may carry out the state preparation by inserting any combina-
tion of wave plates and having them shielded from Alice. This
slight modification from our setup allows Alice to teleport
[42] any pure state |ψ〉 unknown to her. This and the need
to perform a Bell-state measurement distinguish our exper-
iment from that for remote state preparation [10,62], which
only prepares certain known states remotely. Nonetheless,
if we want to use the filtered state to teleport, e.g., a part
of an entangled state (cf. entanglement swapping [12,43])
then we would have to swap an external qubit state with
our photon polarization state at stage 1′. Albeit interesting
and relevant, solving this problem is outside the scope of
the present proof-of-principle demonstration. An analogous
demonstration for higher-dimensional quantum states, given
recent progress [49,50], would also be timely.

Meanwhile, although Ref. [26] experimentally demon-
strated hidden nonlocality [30], it did not show teleportation
activation as the initial state (introduced in Ref. [29]) is al-
ready useful for teleportation before filtering. Generally, a
better understanding of the connection between hidden non-
locality and HTP (see also Refs. [63,64]) is surely welcome.
And what if we allow local filtering on multiple copies of
the same state? For Bell-nonlocality [65], this is known [31]

2General distillation protocols may also involve twirling and other
LOCC that cannot be described by local filtering alone.
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to be useful but its effectiveness for the teleportation-power-
activation problem remains to be clarified (see, however,
Ref. [32]). To conclude, the possibility of boosting telepor-
tation power beyond the classical threshold is a manifestation
of the usefulness of the shared entanglement, not only for the
task of teleportation but presumably also for other tasks that
rely on teleportation as a primitive.
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APPENDIX A: DETAILED RESULTS FOR WERNER
STATES

For ease of reference, we reproduce here the FEF of Werner
state W (v) derived in Ref. [66]:

Fd [W (v)] =

⎧⎪⎪⎨
⎪⎪⎩

2v
d (d+1) ,

d+1
2d � v � 1,

2(1−v)
d (d−1) , 0 � v � d+1

2d , d even,

2d (1−v)+2
d2(d+1) , 0 � v � d+1

2d , d odd.

(A1)

For the optimizing qubit filter that we have found, it can be
shown that the success probability of filtering is

pW(v) = 2[(d + 1)(1 − v) + 3v(d − 1)]

d (d2 − 1)
, (A2)

while the corresponding increase in FEF for 0 � v � d+1
4d−2 is

Fd [Wf (v)] − Fd [W (v)]

=
{

(d pW(v)−2)(d2 pW(v)+d pW(v)−6)
2(d−2)d2 pW(v) (for even d)

12−2(d2+4d−4)pW(v)+(d−1)d2 pW(v)2

2(d−2)d2 pW (v) (for odd d).
(A3)

For v ∈ [ d+1
4d−2 , 1

2 ], our filter could not result in an entangled
Wf (v) that beats the classical threshold Fc (they do not seem
to exhibit teleportation power).

In Fig. 4, we show, for d = 3 and d = 4, the FEF of Werner
states before and after filtering, as well as the corresponding
cost function. In the same figure, we also show the difference
in FEF, i.e., Fd [Wf (v)] − Fd [W (v)] vs v [and hence pW(v),
which depends linearly on v]. Clearly, when the success
probability pW(v) increases, the amount of FEF that can be
increased by local filtering decreases, thus exhibiting some
kind of trade-off between these two quantities. The respective
plots for larger values of d look similar and are thus omitted.

APPENDIX B: DETAILED RESULTS FOR
RANK-DEFICIENT STATES

1. Fully-entangled fraction of ρ(q)

Here we show that the family of rank-deficient states in
Eq. (9) is already useful for teleportation whenever (1) d � 4,
or (2) d � 3 and q ∈ ( 1

d , 1).
Proof. Determining Fd [ρ(q)] requires the maximization of

〈�d |ρ(q)|�d〉 = q|〈�d |�+
d 〉|2 + (1 − q)|〈�d |01〉|2 (B1)

over unitary matrix U such that |�d〉 = (I ⊗ U )|�+
d 〉. From

Eq. (B1) and the form of |�d〉, any U that maps |0〉, |1〉
outside S01 = span{|0〉, |1〉} would be suboptimal, since it
decreases—when compared with one that acts only nontriv-
ially in S01—the overlap |〈�d |�+

d 〉|2 and |〈�d |01〉|2.
Consequently, let us consider only U of the form

U =
(

a −b̄
b ā

)
⊕ Id−2, (B2)

where a, b ∈ C, ā (b̄) denotes complex conjugation of a (b),
and the unitary requirement implies that |a|2 + |b|2 = 1. Eval-
uating the overlap gives

d〈�d |ρ(q)|�d〉 = q

d
[4|a|2 + 4(d − 2)Re[a] + (d − 2)2]

+ (1 − q)|b|2. (B3)

Since d � 2, in maximizing this overlap, we may without loss
of generality consider real-valued a and real-valued b. For
convenience, let us define

f (d, q, a) := q

d2
[2a + (d − 2)]2 + (1 − q)(1 − a2)

d
. (B4)

Then, we have Fd [ρ(q)] = maxa f (d, q, a).
Using standard variational technique, we find that the local

extremum of f (d, q, a) occurs at a∗ = 2(d−2)q
d (1−q)−4q . Note that

|a∗| � 1 iff q lies in the interval Q := (0, 1
3 ] ∪ [q0, 1] where

q0 = d
8−d . Evaluating f (d, q, a) for a = a∗ and the boundary

points a = 0, 1 gives

f (d, q, a∗) = (1 − q)[(d − 5)q + 1]

d (1 − q) − 4q
, q ∈ Q, (B5a)

f (d, q, 0) = d2q − 5dq + d + 4q

d2
, (B5b)

f (d, q, 1) = q. (B5c)

Taking their difference gives

f (d, q, 1) − f (d, q, 0) = q(5d − 4) − d

d2
, (B6a)

f (d, q, a∗) − f (d, q, 0) = 4(d − 2)2q2

d2[d (1 − q) − 4q]
, (B6b)

f (d, q, a∗) − f (d, q, 1) = (1 − 3q)2

d (1 − q) − 4q
, (B6c)

where we note that the last two equations are only meaningful
for q ∈ Q.

For d = 2, Eq. (B6b) vanishes and Eq. (B6a) is nonpositive
iff q ∈ (0, 1

3 ]. For d = 3, Eq. (B6b) is positive for q ∈ (0, 1
3 ]

while Eq. (B5c) dominates for other values of q ∈ (0, 1].
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FIG. 4. (Top) FEF of the Werner state before filtering (blue markers) and after filtering (red solid line for the cost function and blue
dash-dotted line for the filtered state). (Bottom) Change in FEF as a function of v, which depends linearly on the probability of success in
filtering pW(v).

For d � 4, Q = (0, 1
3 ] since |q0| � 1. Then, for q ∈ Q,

one has d (1 − q) − 4q > 0 and thus f (d, q, a∗) dominates
over the other expressions in Eq. (B5). For the complementary
interval q ∈ ( 1

3 , 1], Eq. (B6a) is positive and f (d, q, 1) domi-
nates in this interval. Putting everything together, we thus have

Fd [ρ(q)] =
{ (1−q)[(d−5)q+1]

d (1−q)−4q , 0 � q � 1
3 ,

q, q > 1
3 .

(B7)

To determine the dimension d for which ρ(q) is always
useful for teleportation, it is expedient to consider the function

G(d, q) = dFd [ρ(q)] − 1 = q[d (d − 5)(1 − q) + 4]

d (1 − q) − 4q
, (B8)

where the last equality holds for 0 � q � 1
3 . For the comple-

mentary interval of q > 1
3 , it is straightforward to determine

when Fd [ρ(q)] > 1
d and hence useful for teleportation. Com-

ing back to q ∈ [0, 1
3 ], we see that Fd [ρ(q)] > 1

d iff G(d, q) >

0. When d � 5, G(d, q) > 0 since both numerator and de-
nominator are positive for 0 < q � 1

d . Similarly, for d = 4,

G(d, q) simplifies to q2

1−2q , which is strictly positive for 0 <

q � 1
d = 1

4 < 1
2 . Hence, as claimed, Fd [ρ(q)] > 1

d for d � 4
and q ∈ (0, 1], i.e., these states are all useful for teleportation
even before filtering.

For the case of d = 3, we have G(d, q) = 2q(1−3q)
7q−3 , which

is easily verified to be non-positive for q ∈ (0, 1
d ). Together

with Eq. (B7), we thus see that ρ(q) for d = 3 is useless
for teleportation iff q ∈ (0, 1

3 ]. Finally, G(2, q) = −q < 0 and
thus ρ(q) for d = 2 is useless for teleportation iff q ∈ (0, 1

2 ].
�

2. Violating the reduction criterion

A bipartite state ρAB acting on Cd ⊗ Cd satisfies the reduc-
tion criterion of separability (RC) if

ρA ⊗ Id − ρAB  0 and Id ⊗ ρB − ρAB  0, (B9)

where ρA and ρB are, respectively, the reduced density matrix
on Alice’s and Bob’s side while  0 means matrix positivity.
Here we show that for all q ∈ (0, 1], the rank-deficient states
violate the first condition.

With ρAB = ρ(q) then ρA = q Id
d + (1 − q)|0〉〈0|. Let

R = ρA ⊗ Id − ρAB

= q

d
(Id ⊗ Id − d|�d〉〈�d |) + (1 − q)

∑
j �=1

|0 j〉〈0 j|.

(B10)
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Note we can decompose R as the sum of two Hermitian
matrices, i.e., R = Rs + Rd where

Rs = q

d
(Id ⊗ Id − d|�d〉〈�d |) + (1 − q)|00〉〈00|, (B11)

and Rd = (1 − q)
∑

j �=0,1 |0 j〉〈0 j|. We next show that one can
find an eigenvector of R in the subspace S = span{| j j〉 : j =
0, 1, .., d − 1} with negative eigenvalue. Note that RdS = 0,
so it suffices to restrict our attention to Rs in the following
discussion.

In the subspace S , Rs can be represented in the basis | j j〉
as a sum of a diagonal matrix D and constant matrix C:

D =̂ diag
(

1 − q + q

d
,

q

d
, ...,

q

d

)
, C=̂ − q

d
J, (B12)

where J is a d × d all-ones matrix. That is, in the subspace
S , the matrix Rs has zeros on the diagonal except the |00〉〈00|
component, and (− q

d ) on all off-diagonal terms.
Consider the (un-normalized) vector

|ψ〉 = t |00〉 +
∑

j

| j j〉 =̂ (t, 1, . . . , 1)T . (B13)

Let β = − q
d . From the eigenvalue equation Rs|ψ〉 = λ|ψ〉, we

have

(1 − q)t + β(d − 1) = λt, βt + β(d − 2) = λ. (B14)

Eliminating t , we obtain

[λ − (1 − q)][λ − β(d − 2)] − β2(d − 1) = 0. (B15)

This is a quadratic equation λ2 + bλ + c = 0 with

b = −[(1 − q) + β(d − 2)],

c = (1 − q)β(d − 2) − β2(d − 1). (B16)

We have that (1 − q) � 0 and β < 0 for q ∈ (0, 1]. It can be
checked that the discriminant � = b2 − 4c is

� = (1 − q)2 + 4β(1 − q) − 2dβ(1 − q) + dβ2 > 0,

(B17)

when q ∈ (0, 1] so we have two distinct real roots.
For d � 2 and q ∈ (0, 1] we see that c < 0. But this is the

product of the two roots so they must have opposite sign. Thus
Rs, and hence R has an eigenvector |ψ〉 ∈ S with negative
eigenvalue λ. In other words, for ρ(q), the left-hand side of
the first inequality is violated, i.e., it violates RC.

3. Optimal one-side filter for maximizing the cost-function

Here we prove that if we restrict to one-side local filtering,
then Eq. (11) is optimal for maximizing the cost function of
ρ(q) with local dimension d . Let the unnormalized filtered
state and the probability of success in filtering be

τ (q) = (A ⊗ Id )ρ(q)(A ⊗ Id )†, p(q) = tr[τ (q)]. (B18)

Recall that the cost-function may be written as

Kd (q) := K[ρ(q)] = 〈�+
d |τ (q)|�+

d 〉 + 1 − p(q)

d
. (B19)

Our goal is to find the one-side filter A that maximizes Kd (q)
under the constraint that ‖A‖∞ = 1 (i.e., the maximum singu-
lar value of A is 1).

Let M = A†A and mi be the nonzero eigenvalues of M.
Suppose for now that M is upper triangular, then

mi = Mii =
∑

j

(A†)i jA ji =
∑

j

A∗
jiA ji =

∑
j

|Aji|2. (B20)

Note that the nonzero singular values of A are given by the
positive square roots of the nonzero eigenvalues of A†A. Thus,
the constraint ‖A‖∞ = 1 amounts to requiring

max
j

m j = 1 ⇒
∑

i

|Ai j |2 � 1 ∀ j. (B21)

If M is not upper triangular, then from Schur decomposi-
tion, one can always find some unitary Q such that

M̃ = QMQ† (B22)

is upper triangular. Note M and M̃ have the same eigenvalues
since they are unitarily related. Also we have that

M̃ = Q(A†A)Q† = (QA†Q†)(QAQ†) = Ã†Ã (B23)

so the same unitary Q relates A and Ã. Hence, the implication
of Eq. (B21) holds for a general filter A.

In terms of the filter matrix elements Ai j ∈ C,

Kd (q) = 1

d
+ q

d2

∣∣∣∣∣
∑

i

Aii

∣∣∣∣∣
2

− q

d2

∑
i j

|Ai j |2

− (1 − q)

d

∑
j

|Aj1|2 + (1 − q)

d
|A21|2. (B24)

Note that the contribution of each off-diagonal term is always
negative. Moreover, the constraint of Eq. (B21) puts a limit on
the sum |Ai j |2 for matrix elements in the same column j, i.e.,
one can only increase the magnitude of the diagonal entries
|Aj j | by reducing the magnitude of off-diagonal elements
|Ai j |, i �= j in the same column.

Hence, the optimal one-side local filter must be diagonal.
This allows us to simplify the cost function, via Eq. (B24) to

K̃d (q) = Kd (q) with all Ai j = 0 for i �= j

= 1

d
+ q

d2

∣∣∣∣∣
∑

i

Aii

∣∣∣∣∣
2

− q

d2

∑
i

|Aii|2 − (1 − q)

d
|A11|2.

(B25)

Let Aii = xi + i yi, where xi, yi ∈ R for i = 1, 2, . . . , d . Then
we have

K̃d (q) = 1

d
+ q

d2

∑
i �= j

xix j − (1 − q)

d
x2

1

+ q

d2

∑
i �= j

yiy j − (1 − q)

d
y2

1. (B26)

Clearly, K̃d (q) is linear in both xi and yi for all i > 1.
Moreover, the constraint ‖A‖∞ = 1 for a diagonal A means
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FIG. 5. (Left) Comparison between the FEF of the filtered state ρ f obtained by employing different filtering schemes on ρ(q) for d = 2
and d = 3. Included in the plots are the two-side filtering schemes introduced in Ref. [23] for n = 2, 3, 5, and 10 (see Appendix B 4) as well
as the single-side filtering schemes discussed in Appendix B 3. (Center) Comparison of the corresponding success probabilities as a function
of the parameter q. (Right) Comparison of the corresponding change in FEF as a function of the parameter q.

that we must have x2
i + y2

i � 1 for all i. Then, from the form
of K̃d (q) and the fact that 0 � xi, yi � 1, it is clear that the
maximization of K̃d (q) can be attained by setting xi = 1 and
y1 = yi = 0 for all i > 2, thereby giving

K̃d (q) = 1

d
+ q

d2
[(d − 1)2 + 2x1(d − 1)] − (1 − q)

d
x2

1 .

(B27)

Then, standard variational arguments imply that a one-side
filter maximizing Kd (q) is diagonal, taking the form of

A = diag[
(d − 1)q

d (1 − q)
, 1, · · · , 1] for q ∈

(
0,

d

2d − 1

)
,

(B28)

whereas the optimal filter is the identity operator for q ∈
[ d

2d−1 , 1].

4. Two-side filtering (quasidistillation)

In [23], the family of local filters An = diag[1/n, 1, ..., 1],
Bn = diag[1, 1/n, ..., 1/n] were proposed to quasidistill ρ(q)
into |�+

d 〉. From some simple calculation, one finds that these

filters yield the unnormalized state3

τn = 1

n2

[
q|�+

d 〉〈�+
d | +

(
1 − q

n2

)
|0〉〈0| ⊗ |1〉〈1|

]
(B29)

with a success probability of pn = q(n2−1)+1
n4 . For n � 1, the

FEF is attained by taking the overlap with |�+
d 〉, then

Fd

(
τn

pn

)
= q

n2 pn
= 1 − 1 − q

q(n2 − 1) + 1
. (B30)

Thus, when n → ∞, Fd ( τn
pn

) → 1 but the success probability
limn→∞ pn = 0.

For the performance of these filters against the one-side
filters discussed in Appendix B 3, see Fig. 5.

APPENDIX C: EXPERIMENTAL DETAILS

In this Appendix, we provide further details about our
experimental setup. A schematic, simplified version of this
setup that emphasizes its connection with the teleportation
protocol can be found in Fig. 2(a) whereas an overview of the

3Note that it was claimed in Eq. (40) in Ref. [23] that the filtered
state takes the form of 1

n [q|�+
d 〉〈�+

d | + ( 1−q
n )|0〉〈0| ⊗ |1〉〈1|], which is

incorrect.
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FIG. 6. Zoom-in view of the (top) “Photon source” part and the
(bottom) “Noisy channel” part of Fig. 2(b). The top setup aims
to generate photon pairs maximally entangled in the polarization
degree of freedom (DOF) whereas the bottom setup aims to generate,
starting from photon pairs produced using the first setup, two-qubit
mixed quantum states ρ(q) [see Eq. 9] encoded in the polarization
DOF.

full experimental setup is given in Fig. 2(b). In the following
subsections, we explain how each of the boxed section in
Fig. 2(b) functions. To this end, it would be useful to bear
in mind the following:

(i) A half-wave plate (HWP) @ θ performs the
unitary transformation UHWP = cos 2θ (|H〉〈H | − |V 〉〈V |) +
sin 2θ (|H〉〈V | + |V 〉〈H |) on a polarization state, where θ is
the angle between the fast axis of the HWP and the vertical
direction.

(ii) A BD transmits a vertically polarized photon but devi-
ates a horizontally polarized one.

(iii) A PBS transmits a horizontally polarized photon but
reflects a vertically polarized one.

(iv) A quarter-wave plate (QWP) @ θ performs the unitary
transformation UQWP = 1√

2
[I2 + i cos 2θ (|H〉〈H | − |V 〉〈V |) +

FIG. 7. Experimental setup [zoom-in view of the “Filter” part of
Fig. 2(b)] that performs the filtering operation of Eq. (11) for the
d = 2 case.

FIG. 8. Experimental setup [zoom-in view of the “state prepa-
ration” part of Fig. 2(b)] that prepares the four pure states to be
teleported |ψ〉 = α|H1′′ 〉 + β|V1′′ 〉. We set HWP, respectively, at 0◦,
45◦ and 22.5◦ to prepare |H1′′ 〉, |V1′′ 〉 and |+1′′ 〉, and QWP at 45◦ to
prepare |R1′′ 〉.

i sin 2θ (|H〉〈V | + |V 〉〈H |)], on a polarization state where I2 =
|H〉〈H | + |V 〉〈V | and θ is the angle between fast axis of the
QWP and the vertical direction.

1. Entangled photon source

We start by describing how polarization-entangled photon
pairs are produced in our setup by bidirectionally pumping a
PPKTP crystal (placed in a Sagnac interferometer [54]) with
an ultraviolet (UV) diode laser at 405 nm. Specifically, as
shown in Fig. 6, the power of the pump light is first adjusted
through a HWP and a PBS. Then, at the second HWP set at
22.5◦, the horizontal polarization |Hp〉 is rotated to |+p〉 =

1√
2
(|Hp〉 + |Vp〉). Via two lenses L1 (with focal length 75 mm

and 125 mm), the pump beam is subsequently focused into a
beam waist of 74 μm and arrives at a dual-wavelength PBS
after passing through a dichroic mirror.

The pump beam is then split on the PBS and coherently
pumped through the PPKTP in the clockwise and counter-
clockwise direction. The PPKTP crystal, with dimensions
10 mm (length) ×2 mm (width) ×1 mm (thickness) and a pol-
ing period of � = 10.025 μm, is housed in a copper oven and
temperature controlled by a homemade temperature controller
set at 29 ◦C to realize the optimum type-II phase matching
at 810 nm. The clockwise and counterclockwise photons are
then recombined on the dual-wavelength PBS to generate
entangled photons with an ideal form of |�+

12〉 = 1√
2
(|H1V2〉 +

|V1H2〉).

FIG. 9. Experimental setup [zoom-in view of the “BSM” part of
Fig. 2(b)] to implement Bell-state measurement between the path and
the polarization DOF of photon 1′′.
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After that, photon 1 and 2 are filtered by a narrow band
filter (NBF) with a full width at half maximum of 3 nm,
and coupled into single-mode fiber by lenses of focal length
200 mm ( L2 and L3) and objective lenses (not shown in
Fig. 6). During our experiment, the pump power is set at
5 mW, and we observe a twofold coincidence count rate of
7.3 × 104/s.

2. Noisy channel E (θ1)

In this part of the experimental setup, which does not
involve photon 2 (as can be seen in Fig. 6), photon 1 goes
through a noisy channel E (θ1) that eventually results in a
two-photon polarization state given by ρ(q) (in the ideal
scenario). To this end, photon 1 is first guided to an unbal-
anced Mach-Zehnder interferometer (MZI) after passing a PC.
Then, BS1 transforms an ideal maximally entangled two-qubit
state |�+

2 〉 = 1√
2
(|H1V2〉 + |V1H2〉) to 1

2 (|H1V2〉 + |V1H2〉) ⊗

(|s1〉 + |l1〉) with |s1〉 and |l1〉 denote, respectively, the short
and long arm of the unbalanced MZI.

On the long arm, the PBS only transmits |H1〉 and filters
away the |V1〉 component. On the short arm, the two BDs
and a HWP (at angle θ1) work together as an attenuator
so that |s1〉 → sin2 2θ1|s1〉. Indeed, from the property of a
BD and the calculation shown in Eq. (C1), we see that a
photonic state that goes through the short arm is attenuated
by a factor of sin2 2θ1. Since photons that travel through
the long arm and those that travel through the short arm
are distinguishable, the two spatial modes |s1〉 and |l1〉 are
incoherently recombined at BS2. In the experiment, we keep
only photons exiting from the output port 1’, thus obtaining
the state ρ1′2 = q(θ1)|�+

2 〉〈�+
2 | + (1 − q(θ1))|HV 〉〈HV | with

q(θ1) = 2 sin2 2θ1

1+2 sin2 2θ1
. With this setup, q(θ1) can be tuned in the

range from 0 to 2
3 . A step-by-step calculation detailing the

evolution of the two-photon state through this setup is given
in Eq. (C1):

|�+
2 〉 = 1√

2
(|H1V2〉 + |V1H2〉)

BS1−−→ 1

2
(|H1V2〉 + |V1H2〉) ⊗ (|s1〉 + |l1〉)

PBS−−−−−→
at long arm

1√
3

(|H1〉|V2〉|l1〉 + |H1〉|V2〉|s1〉 + |V1〉|H2〉|s1〉)

BD1−−−−−→
at short arm

1√
3

(|H1〉|V2〉|l1〉 + |H1〉|V2〉|h1〉 + |V1〉|H2〉|v1〉)

HWP @ θ1−−−−−→
at short arm

1√
3

[|H1〉|V2〉|l1〉 + (cos 2θ1|H1〉 + sin 2θ1|V1〉)|V2〉|h1〉 + (sin 2θ1|H1〉 − cos 2θ1|V1〉)|H2〉|v1〉]

BD2−−−−−−−−−−−−−−−→
+post-select path s at short arm

1√
1 + 2 sin2 2θ1

(|H1〉|V2〉|l1〉 + sin 2θ1|H1〉|H2〉|s1〉 + sin 2θ1|V1〉|V2〉|s1〉)

BS2−−−−−−−−−−−→
incoherently combined

2 sin2 2θ1

1 + 2 sin2 2θ1
|�+

2 〉1′2〈�+
2 | + 1

1 + 2 sin2 2θ1
|H1′V2〉〈H1′V2|.

(C1)

3. Local filtering

Our setup for implementing the local filter Aκ = diag[κ, 1] is shown in Fig. 7. As with the attenuator discussed in Ap-
pendix C 2, this part of the setup consists also of two BDs in addition to three HWPs. For photons encoded in the polarization
degree of freedom (DOF), filter A attenuates the horizontal component |H〉 by a factor of κ while keeping the vertical component
|V 〉 unchanged. To illustrate the effect of this setup, we provide in Eq. (C2) a step-by-step calculation showing how a general
input polarization pure state α|H1′ 〉 + β|V1′ 〉 transforms. Note that κ is related to the angle of HWP @ θ2 by κ = sin 2θ2. Thus,
by tuning θ2, we may implement any of the filters (for d = 2) given in Eq. (11). With some thought, it is easy to see that the
same effect applies to every term in the convex decomposition of an input mixed density matrix:

α|H1′ 〉 + β|V1′ 〉 BD1−−→ α|H1′ 〉|h1′ 〉 + β|V1′ 〉|v1′ 〉
HWP @ θ2−−−−−→
on path h

α cos 2θ2|H1′ 〉|h1′ 〉 + α sin 2θ2|V1′ 〉|h1′ 〉 + β|V1′ 〉|v1′ 〉
HWP @ 45◦−−−−−−→

on path v
α cos 2θ2|H1′ 〉|h1′ 〉 + α sin 2θ2|V1′ 〉|h1′ 〉 + β|H1′ 〉|v1′ 〉

BD2−−−−−−−−−−→
+post-select path 1′′

α sin 2θ2|V1′′ 〉 + β|H1′′ 〉√
|α|2 sin2 2θ2 + |β|2

HWP @ 45◦−−−−−−→
on path 1′′

α sin 2θ2|H1′′ 〉 + β|V1′′ 〉√
|α|2 sin2 2θ2 + |β|2

. (C2)
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4. Preparation of the input state for teleportation

Our teleportation experiment is realized on a two-photon hybrid system. In the following, we show how this scheme works
for an ideal two-photon polarization entangled state |�+〉1′′2 = 1√

2
(|H1′′H2〉 + |V1′′V2〉) shared between Alice and Bob. Firstly,

as shown in Fig. 8(a) and Eq. (C3), the polarization-polarization entangled state |�+
2 〉1′′2 is mapped to a two-photon path-

polarization-polarization entangled Greenberger-Horne-Zeilinger state using a BD. Then, a HWP @ 45◦ placed at the spatial
mode v disentangles the polarization DOF of photon 1′′ from this two-photon hybrid system. Finally, the state to be teleported
is encoded in the polarization DOF of photon 1′′ by having a HWP or a QWP set at the appropriate angle and placed across both
path v and h. The process is described as

|�+〉1′′2 = 1√
2

(|H1′′H2〉 + |V1′′V2〉)
BD−→ 1√

2
(|H1′′ 〉|H2〉|h1′′ 〉 + |V1′′ 〉|V2〉|v1′′ 〉)

HWP @ 45◦−−−−−−→
on path v

1√
2

(|H1′′ 〉|H2〉|h1′′ 〉 + |H1′′ 〉|V2〉|v1′′ 〉) = |H1′′ 〉 ⊗ 1√
2

(|H2〉|h1′′ 〉 + |V2〉|v1′′ 〉)

HWP or QWP−−−−−−−−→
across both paths

(α|H1′′ 〉 + β|V1′′ 〉) ⊗ 1√
2

(|H2〉|h1′′ 〉 + |V2〉|v1′′ 〉). (C3)

Experimentally, we choose |H1′′ 〉, |V1′′ 〉, |+1′′ 〉 = 1√
2
(|H1′′ 〉 + |V1′′ 〉) and |R1′′ 〉 = 1√

2
(|H1′′ 〉 + i|V1′′ 〉) as the four states to be

teleported. The corresponding wave-plate settings are shown in Fig. 8.

5. Bell-state measurement (BSM)

A crucial step of the teleportation protocol is to apply a BSM on the state to be teleported together with one half of the shared
entangled resource. In our case, this amounts to applying a BSM between the polarization and path DOF of photon 1′′. In contrast
with the BSM on two photons, since this measurement is to act on two different DOFs of a single photon, all four Bell states
can, in principle, be distinguished deterministically in a single shot. Our experimental setup for implementing this measurement
is shown in Fig. 9, while the associated theoretical calculations are shown in Eq. (C4).

1√
2

(|H2〉|h1′′ 〉 + |V2〉|v1′′ 〉) ⊗ (α|H1′′ 〉 + β|V1′′ 〉)

HWP @ 45◦−−−−−−→
on path h

1√
2

(α|H2〉|h1′′ 〉|V1′′ 〉 + β|H2〉|h1′′ 〉|H1′′ 〉 + α|V2〉|v1′′ 〉|H1′′ 〉 + β|V2〉|v1′′ 〉|V1′′ 〉)

BD1−−→ 1√
2

(α|H2〉|m1′′ 〉|V1′′ 〉 + β|H2〉|r1′′ 〉|H1′′ 〉 + α|V2〉|m1′′ 〉|H1′′ 〉 + β|V2〉|l1′′ 〉|V1′′ 〉)

HWP @ 45◦on path l,r−−−−−−−−−−−→
HWP @ 0◦on path m

1√
2

(−α|H2〉|m1′′ 〉|V1′′ 〉 + β|H2〉|r1′′ 〉|V1′′ 〉 + α|V2〉|m1′′ 〉|H1′′ 〉 + β|V2〉|l1′′ 〉|H1′′ 〉)

BD2−−→ 1√
2

(−α|H2〉|m1′′ 〉|V1′′ 〉 + β|H2〉|r1′′ 〉|V1′′ 〉 + α|V2〉|r1′′ 〉|H1′′ 〉 + β|V2〉|m1′′ 〉|H1′′ 〉)

HWP @ 22.5◦−−−−−−−→
on both paths

1

2
[(α|H2〉 + β|V2〉)|m1′′ 〉|V1′′ 〉 + (β|H2〉 + α|V2〉)|r1′′ 〉|H1′′ 〉

+ (−α|H2〉 + β|V2〉)|m1′′ 〉|H1′′ 〉 + (−β|H2〉 + α|V2〉)|r1′′ 〉|V1′′ 〉]. (C4)

Essentially, the first four steps of the above calcu-
lation can be seen as implementing the controlled-NOT
operation between the path and the polarization DOF
of photon 1. The last step then amounts to implement-
ing the Hadamard gate. As such, to complete the BSM,
it suffices to measure photon 1′′ in the complete ba-
sis {|m1′′ 〉|V1′′ 〉, |r1′′ 〉|H1′′ 〉, |m1′′ 〉|H1′′ 〉, |R1′′ 〉|V1′′ 〉}, which we
achieve by putting a PBS that intersects path m and r after
BD2. In our experiment, since we are limited by the number
of detectors available, we only collect the transmitted pho-
ton after PBS. This means that we only implement a partial
BSM that allows us to identify |m1′′ 〉|H1′′ 〉 and |r1′′ 〉|H1′′ 〉 while
being ignorant of which among the two cases |m1′′ 〉|V1′′ 〉 and
|r1′′ 〉|V1′′ 〉 actually takes place. To compensate for this, we set

for only about half of the experimental runs the final HWP @
22.5◦ and the remaining runs the final HWP @ 67.5◦. Then, in
these other cases, we could identify |m1′′ 〉|V1′′ 〉 and |r1′′ 〉|V1′′ 〉
while being ignorant of which among the two cases |m1′′ 〉|H1′′ 〉
and |r1′′ 〉|H1′′ 〉 actually takes place. This then allows us to
cover all four possible outcomes of the BSM.

Notice that in our setup, the classical communication from
Alice to Bob was only carried out after the experiment, rather
than during the experiment to facilitate an active unitary cor-
rection depending on the BSM outcome. In other words, the
correction unitary was realized in a postselected manner, i.e.,
we applied the unitary independent of the BSM outcome and
kept only those instances where our choice of unitary matched
with the desired correcting unitary.
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FIG. 10. The real parts of χexp based on the shared states ρ1′2 and ρ1′′2,κ ′ . The imaginary parts are omitted here as their experimentally
determined values are tiny. The wire grids represent the theoretical values of the elements.

6. Quantum process tomography (QPT) of the
teleportation channel

The experimental process teleporting a quantum state ρ

from Alice to Bob can be described by a completely-positive
trace-preserving (CPTP) map E (ρ). To this end, note that
we may choose {Am}m := {I, X,Y, Z} (where I = I2 and

TABLE I. The twofold coincidence count rates of ρ1′2, ρ1′′2,κ and
ρ1′′2,κ ′ . For comparison, note that the twofold coincidence count rate
just before the photons enter the fibers are 7.3 × 104/s.

q(θ1) ρ1′2 ρ1′′2,κ ρ1′′2,κ ′

1/15 7475/s 205/s 225/s
2/15 8077/s 531/s 510/s
3/15 8624/s 914/s 939/s
4/15 9649/s 1523/s 1414/s
5/15 10160/s 2256/s 2026/s
6/15 11454/s 3316/s 2955/s
7/15 13141/s 4922/s 3927/s
8/15 14683/s 7420/s 5606/s
9/15 17183/s 12340/s 7498/s
10/15 20514/s 20427/s 10699/s

X = σx,Y = σy, Z = σz are Pauli observables) as a basis set
for linear operators acting on qubit states. The CPTP map can

FIG. 11. Experimentally determined success probability of filter-
ing pκ (q) and pκ ′ (q) for, respectively, filter Aκ and Aκ ′ .
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TABLE II. The number of twofold coincidences recorded for the calculation of F2(ρ ) and f (ρ ) with ρ1′2, ρ1′′2,κ and ρ1′′2,κ ′ . The data
acquisition time for each measurement setting is noted in parentheses next to each entry.

q(θ1) F2(ρ1′2) F2(ρ1′′2,κ ) F2(ρ1′′2,κ ′ ) f (ρ1′2) f (ρ1′′2,κ ) f (ρ1′′2,κ ′ )

1/15 33094 (1s) 840 (1s) 841 (1s) 289024 (5s) 71807(50s) 72975 (50s)
2/15 35974 (1s) 2239 (1s) 1914 (1s) 298344 (5s) 19504 (5s) 18861 (5s)
3/15 38894 (1s) 3499 (1s) 3833 (1s) 344394 (5s) 31936 (5s) 32956 (5s)
4/15 42279 (1s) 6001 (1s) 6230 (1s) 369119 (5s) 55900 (5s) 52041 (5s)
5/15 45898 (1s) 8196 (1s) 9290 (1s) 406941 (5s) 83883 (5s) 75763 (5s)
6/15 51210 (1s) 13657 (1s) 13041 (1s) 456755 (5s) 169583 (5s) 160960 (5s)
7/15 56780 (1s) 19645 (1s) 17575 (1s) 521988 (5s) 172885 (5s) 164164 (5s)
8/15 65647 (1s) 30881 (1s) 23194 (1s) 615689 (5s) 295860 (5s) 232231 (5s)
9/15 77203 (1s) 47427 (1s) 32828 (1s) 718538 (5s) 443754 (5s) 314547 (5s)
10/15 91057 (1s) 88122 (1s) 42918 (1s) 886182 (5s) 836689 (5s) 456112 (5s)

TABLE III. Summary of the quality of our teleportation channels based on sharing, respectively, ρ1′2, ρ1′′2,κ , and ρ1′′2,κ ′ . Note that ρ1′2 is
the shared entangled state that was locally filtered, whereas ρ1′′2,κ and ρ1′′2,κ ′ are the states obtained by, respectively, applying the local filter
Aκ and Aκ ′ . Included in the table are, for each value of q(θ1), the fidelity of the teleported state with respect to their input state {|H〉, |V 〉, |+〉,
and |R〉}, as well as the corresponding process fidelity Fp.

State fidelity State fidelity State fidelity
after teleportation after teleportation after teleportation

q(θ1) Input state with ρ1′2 Fp(ρ1′2) with ρ1′′2,κ Fp(ρ1′′2,κ ) with ρ1′′2,κ ′ Fp(ρ1′′2,κ ′ )

1/15

|H〉 0.921 ± 0.002

0.470 ± 0.003

0.912 ± 0.003

0.489 ± 0.007

0.925 ± 0.003

0.486 ± 0.006
|V 〉 0.924 ± 0.001 0.871 ± 0.003 0.866 ± 0.004
|+〉 0.503 ± 0.005 0.529 ± 0.010 0.541 ± 0.010
|R〉 0.525 ± 0.005 0.533 ± 0.010 0.550 ± 0.010

2/15

|H〉 0.882 ± 0.002

0.446 ± 0.003

0.893 ± 0.007

0.534 ± 0.012

0.919 ± 0.006

0.539 ± 0.014
|V 〉 0.886 ± 0.002 0.903 ± 0.006 0.898 ± 0.006
|+〉 0.554 ± 0.005 0.509 ± 0.018 0.554 ± 0.019
|R〉 0.444 ± 0.004 0.553 ± 0.019 0.554 ± 0.020

3/15

|H〉 0.807 ± 0.002

0.404 ± 0.003

0.840 ± 0.006

0.528 ± 0.010

0.879 ± 0.005

0.529 ± 0.010
|V 〉 0.777 ± 0.002 0.913 ± 0.004 0.932 ± 0.004
|+〉 0.431 ± 0.004 0.583 ± 0.015 0.580 ± 0.015
|R〉 0.578 ± 0.005 0.572 ± 0.015 0.574 ± 0.015

4/15

|H〉 0.752 ± 0.002

0.380 ± 0.003

0.817 ± 0.005

0.546 ± 0.011

0.821 ± 0.005

0.569 ± 0.007
|V 〉 0.733 ± 0.002 0.858 ± 0.004 0.914 ± 0.003
|+〉 0.565 ± 0.004 0.619 ± 0.012 0.601 ± 0.013
|R〉 0.451 ± 0.004 0.637 ± 0.013 0.612 ± 0.012

5/15

|H〉 0.311 ± 0.002

0.315 ± 0.001

0.780 ± 0.004

0.577 ± 0.010

0.803 ± 0.004

0.597 ± 0.005
|V 〉 0.340 ± 0.002 0.838 ± 0.004 0.887 ± 0.003
|+〉 0.625 ± 0.004 0.673 ± 0.010 0.649 ± 0.011
|R〉 0.621 ± 0.004 0.683 ± 0.011 0.633 ± 0.011

6/15

|H〉 0.381 ± 0.002

0.376 ± 0.001

0.847 ± 0.002

0.607 ± 0.005

0.883 ± 0.002

0.616 ± 0.004
|V 〉 0.384 ± 0.002 0.786 ± 0.003 0.869 ± 0.003
|+〉 0.666 ± 0.004 0.712 ± 0.008 0.680 ± 0.008
|R〉 0.654 ± 0.004 0.687 ± 0.008 0.637 ± 0.007

7/15

|H〉 0.446 ± 0.002

0.441 ± 0.002

0.661 ± 0.003

0.608 ± 0.007

0.791 ± 0.003

0.624 ± 0.005
|V 〉 0.450 ± 0.002 0.789 ± 0.003 0.80 ± 0.002
|+〉 0.695 ± 0.005 0.730 ± 0.008 0.714 ± 0.008
|R〉 0.688 ± 0.004 0.724 ± 0.008 0.685 ± 0.008

8/15

|H〉 0.518 ± 0.002

0.503 ± 0.003

0.666 ± 0.003

0.611 ± 0.006

0.794 ± 0.002

0.653 ± 0.004
|V 〉 0.519 ± 0.002 0.711 ± 0.002 0.872 ± 0.002
|+〉 0.721 ± 0.004 0.757 ± 0.006 0.734 ± 0.007
|R〉 0.714 ± 0.004 0.756 ± 0.006 0.710 ± 0.006

9/15

|H〉 0.590 ± 0.002

0.575 ± 0.003

0.671 ± 0.002

0.650 ± 0.004

0.805 ± 0.002

0.672 ± 0.003
|V 〉 0.600 ± 0.002 0.703 ± 0.002 0.843 ± 0.002
|+〉 0.754 ± 0.004 0.799 ± 0.005 0.784 ± 0.006
|R〉 0.758 ± 0.004 0.794 ± 0.005 0.759 ± 0.006

10/15

|H〉 0.658 ± 0.001

0.622 ± 0.003

0.679 ± 0.001

0.654 ± 0.003

0.816 ± 0.002

0.703 ± 0.003
|V 〉 0.663 ± 0.001 0.699 ± 0.001 0.834 ± 0.002
|+〉 0.797 ± 0.004 0.789 ± 0.004 0.795 ± 0.005
|R〉 0.780 ± 0.004 0.799 ± 0.004 0.781 ± 0.005
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FIG. 12. The theoretical predictions of (a), the FEF F2 and (b), the teleportation fidelity f2 assuming an SPDC source described by �(α).
Dashed lines represent the results of �(α = 1) while solid lines represent that of �(α = 0.954).

then be expressed as [55]

E (ρ) =
4∑

m,n=1

χmnAnρA†
m, (C5)

where the expansion coefficient χmn defines the (m, n) ele-
ment of the so-called process matrix χ (see, e.g., Ref. [67]).

For an ideal teleportation process χid, E (ρ) = ρ, thus ex-
cept χII = 1, all other elements of χid are 0. Experimentally,
we set q(θ1) in the range of 1

15 to 10
15 in steps of 1

15 . For each
q(θ1), we perform a teleportation experiment and reconstruct
the corresponding process matrix χexp for the shared state
ρ1′2, ρ1′′2,κ and ρ1′′2,κ ′ , respectively. These experimentally de-
termined χexp’s then give, via Eq. (C5), a full description of
the corresponding teleportation channel based on the various
shared entangled resource.

From the point of view of a process matrix, the goal of
local filtering is to make the value of χII greater, which there-
fore results in a better teleportation fidelity. In Fig. 10, we
show the real parts of χexp based on the shared states ρ1′2
and ρ1′′2,κ ′ , which clearly illustrates that the experimentally
determined χII becomes more dominant after local filtering.
Notice also that χexp for ρ1′′2,κ looks similar to that of ρ1′′2,κ ′

but with ρ1′′2,κ ′ giving a more pronounced increase in χII . The
corresponding plots of χexp for ρ1′′2,κ are therefore omitted.

7. Counts and other experimental results

For completeness, we provide in Table I the twofold coin-
cidence count rates of ρ1′2, ρ1′′2,κ and ρ1′′2,κ ′ and in Fig. 11 the
experimentally determined success probability of filtering.

For the quantum state tomography of ρ1′2, ρ1′′2,κ and
ρ1′′2,κ ′ , we projected the two-photon polarization state
onto the 4 × 4 = 16 tomographically complete basis states
{|H〉, |V 〉, |+〉, |R〉} ⊗ {|H〉, |V 〉, |+〉, |R〉}. In particular, since
we have only one detector on Alice’s side and one on Bob’s
side, these 16 projections individually defines one measure-
ment setting. For each of them, we accumulated twofold
coincidences for 1 s. Evidently, given the form of the state
prepared, the counts accumulated may drastically vary from
one measurement setting to another. The total number of co-
incidences collected for the reconstruction of ρ1′2, ρ1′′2,κ and
ρ1′′2,κ ′ , and hence the calculation of F2(ρ) for the various ρ,
are shown in Table II.

To perform quantum process tomography, we prepared
separately the input states |H〉, |V 〉, |+〉 and |R〉 for the
teleportation channels based on the entangled states shared

FIG. 13. Differences between theoretical predictions and experimental results assuming an SPDC source described by (a), �(α = 1) and
(b) �(α = 0.954).
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TABLE IV. The theoretical predictions based on �(α = 1) and �(α = 0.954) as well as the experimental results for the FEF F2 and the
teleportation fidelity f2 at q(θ ) = 1

15 , 2
15 , · · · , 10

15 .

q(θ ) 1/15 2/15 3/15 4/15 5/15 6/15 7/15 8/15 9/15 10/15

F2(ρ1′2) 0.467 0.433 0.400 0.367 0.333 0.400 0.467 0.533 0.600 0.667
α = 1 F2(ρ1′′2,κ ) 0.517 0.536 0.555 0.575 0.595 0.615 0.634 0.651 0.662 0.667

F2(ρ1′′2,κ ′ ) 0.517 0.536 0.556 0.577 0.600 0.625 0.652 0.682 0.714 0.750

F2(ρ1′2) 0.453 0.422 0.391 0.360 0.328 0.391 0.453 0.516 0.579 0.641
α = 0.954 F2(ρ1′′2,κ ) 0.501 0.518 0.536 0.555 0.574 0.593 0.611 0.626 0.637 0.641

F2(ρ1′′2,κ ′ ) 0.501 0.518 0.537 0.557 0.579 0.602 0.628 0.655 0.686 0.719

F2(ρ1′2) 0.469(6) 0.447(5) 0.415(6) 0.393(3) 0.345(4) 0.367(4) 0.441(4) 0.509(4) 0.576(4) 0.625(4)
Exp. F2(ρ1′′2,κ ) 0.49(8) 0.51(5) 0.53(4) 0.54(2) 0.56(2) 0.59(1) 0.595(7) 0.624(7) 0.623(3) 0.624(4)

F2(ρ1′′2,κ ′ ) 0.47(6) 0.51(4) 0.55(4) 0.54(2) 0.58(2) 0.61(1) 0.63(1) 0.652(8) 0.677(6) 0.719(6)

f2(ρ1′2) 0.644 0.622 0.600 0.578 0.556 0.600 0.644 0.689 0.733 0.778
α = 1 f2(ρ1′′2,κ ) 0.678 0.690 0.703 0.717 0.730 0.744 0.756 0.767 0.775 0.778

f2(ρ1′′2,κ ′ ) 0.678 0.690 0.704 0.718 0.733 0.750 0.768 0.788 0.810 0.833
f2(ρ1′2) 0.635 0.615 0.594 0.573 0.552 0.594 0.636 0.677 0.719 0.761

α = 0.954 f2(ρ1′′2,κ ) 0.667 0.679 0.691 0.703 0.716 0.729 0.740 0.751 0.758 0.761
f2(ρ1′′2,κ ′ ) 0.667 0.679 0.691 0.705 0.719 0.735 0.752 0.770 0.791 0.813

f2(ρ1′2) 0.647(3) 0.631(3) 0.603(3) 0.587(3) 0.543(1) 0.584(1) 0.627(2) 0.669(3) 0.717(3) 0.748(3)
Exp. f2(ρ1′′2,κ ) 0.659(7) 0.69(1) 0.69(1) 0.70(1) 0.718(9) 0.738(5) 0.738(7) 0.740(6) 0.766(4) 0.770(3)

f2(ρ1′′2,κ ′ ) 0.659(7) 0.69(1) 0.686(9) 0.712(7) 0.731(5) 0.744(4) 0.749(5) 0.769(4) 0.781(3) 0.802(3)

between Alice and Bob. After teleportation, we performed
quantum state tomography on the recovered photon (photon 2
in our experiment) by projecting it onto |H〉, |V 〉, |+〉 and |R〉,
respectively. In each experimental setting, we accumulated
twofold coincidences for 5 s except for the case of ρ1′′2,κ and
ρ1′′2,κ ′ with q(θ ) = 1/15, in which we accumulated twofold
coincidence for 50 s. The total number of coincidences col-
lected for the reconstruction of these quantum processes are
shown in Table II. In Table III, we show the results of state
fidelity between the input state to the teleportation channel
and the recovered state, as well as the corresponding results
of process fidelity Fp.

8. Data fitting

Imperfections in our experiments are mainly due to
higher-order emissions in the process of spontaneous

parametric down-conversion (SPDC) and slight misalignment
of optical elements during the data collection. We model these
imperfections by considering a noisy entangled state at stage
“1” [see Fig. 2(a) of the main text] in the form of �(α) =
α|�+

2 〉〈�+
2 | + (1 − α) I4−|�+

2 〉〈�+
2 |

4 . In particular, �(α = 1)
corresponds to an ideal Bell pair |�+

2 〉. In our experiment, we
observe a �+

2 -fidelity of 0.954 ± 0.003, which corresponds
to �(α = 0.954). The theoretical calculations of F2 and
f2 with �(α = 0.954) are shown as solid lines in Fig. 12.
Compared with the results obtained by assuming an ideal
source (dashed lines), the calculated curves for �(α = 0.954)
show a better fit with the experimental data. This can be seen
by the difference between the theoretical predictions and
the experimental results at q(θ ) = 1

15 , 2
15 , · · · , 10

15 shown in
Fig. 13. The corresponding values of F2 and f2 are listed in
Table IV.
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