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In this paper and its upcoming sequel, we study nonequilibrium dynamics in driven (1 + 1)-dimensional
conformal field theories (CFTs) with periodic, quasiperiodic, and random driving. We study a soluble family
of drives in which the Hamiltonian only involves the energy-momentum density spatially modulated at a single
wavelength. The resulting time evolution is then captured by a Möbius coordinate transformation. In this paper,
we establish the general framework and focus on the first two classes. In periodically driven CFTs, we generalize
earlier work and study the generic features of entanglement and energy evolution in different phases, i.e., the
heating and nonheating phases and the phase transition between them. In quasiperiodically driven CFTs, we
mainly focus on the case of driving with a Fibonacci sequence. We find that (i) the nonheating phases form a
Cantor set of measure zero; (ii) in the heating phase, the Lyapunov exponents (which characterize the growth
rate of the entanglement entropy and energy) exhibit self-similarity, and can be arbitrarily small; (iii) the heating
phase exhibits periodicity in the location of spatial structures at the Fibonacci times; (iv) one can find exactly
the nonheating fixed point, where the entanglement entropy and energy oscillate at the Fibonacci numbers,
but grow logarithmically and polynomially at the non-Fibonacci numbers; (v) for certain choices of driving
Hamiltonians, the nonheating phases of the Fibonacci driving CFT can be mapped to the energy spectrum
of electrons propagating in a Fibonacci quasicrystal. In addition, another quasiperiodically driven CFT with
an Aubry-André–type sequence is also studied. We compare the CFT results to lattice calculations and find
remarkable agreement.
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I. INTRODUCTION

Nonequilibrium dynamics in time-dependent driven quan-
tum many-body systems has received extensive recent at-
tention. A time-dependent drive, such as a periodic drive,
creates a new stage in the search for novel systems that
may not have an equilibrium analog, e.g., Floquet topolog-
ical phases [1–14] and time crystals [15–23]. It is also one
of the basic protocols to study nonequilibrium phenomena,
such as localization-thermalization transitions, prethermal-
ization, dynamical localization, dynamical Casimir effect,
etc. [24–36].

Despite the rich phenomena and applications in the time-
dependent driving physics, exactly solvable setups are, in
general, very rare. Usually, we have to resort to numeri-
cal methods limited to small system size. In this work, we
are interested in a quantum (1 + 1)-dimensional [(1 + 1)D]
conformal field theory (CFT), which may be viewed as the
low-energy effective field theory of a many-body system at
the critical point. The property of conformal invariance at
the critical point can be exploited to constrain the operator
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content of the critical theory [37,38]. In particular, for (1 +
1)D CFTs, the conformal symmetry is enlarged to the full
Virasoro symmetry, which makes tractable the study of
nonequilibrium dynamics, such as the quantum quench prob-
lems [39,40]. For a time-dependent driven CFT, however,
relatively little is known.

Most recently, an analytically solvable setup on the pe-
riodically driven CFT was proposed in Ref. [41]. The
authors implement the periodic driving with two noncom-
muting Hamiltonians H0 and H1 for time durations T0 and
T1, respectively, where H0 = ∫ L

0 h(x) dx is the uniform CFT
Hamiltonian on a line of length L, and H1 is obtained from
H0 by deforming the Hamiltonian density h(x) as H1(x) =∫ L

0 2 sin2 πx
L h(x)dx, which is also called sine-square defor-

mation (SSD) in literature [42–55]. Interestingly, it was found
that different phases can emerge during the driving, depending
on duration of the two time evolutions. As depicted in Fig. 1,
there exits a heating phase with the entanglement entropy
growing linearly in time, and a nonheating phase with the
entanglement entropy simply oscillating in time. At the phase
transition, the entanglement entropy grows logarithmically
in time. Later in Ref. [56], these emergent phases and the
phase diagram were further confirmed by studying how the
system absorbs energy. More explicitly, the total energy of the
system grows exponentially in time in the heating phase, oscil-
lates in the nonheating phase, and grows polynomially at the
phase transition. Furthermore, the system develops interesting
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FIG. 1. Typical features of the time evolution of entanglement
entropy in different phases of a periodically driven CFT. The entan-
glement entropy grows linearly in time in the heating phase, grows
logarithmically at the phase transition, and simply oscillates in the
nonheating phase.

spatial structures in the heating phase. The energy density
forms an array of peaks1 with simple patterns of entanglement
as shown in Fig. 2.

In this work and its upcoming sequel, we introduce and
study a general class of soluble models of driven CFTs with
a variety of driving protocols. We determine their dynami-
cal phase diagrams of heating versus nonheating behavior,
particularly when the periodicity of the drive is absent. We ex-
tend the previous study on periodic driving to quasiperiodic2

and random drivings, and make a connection to the familiar
concepts of crystal, quasicrystal, and disordered systems. The
connection is based on the coincidence of the group structures
underlying the two problems:

(1) The driving protocol we considered for the CFTs
involves SL2 deformed Hamiltonians. These are general-
izations of the SSD Hamiltonian protocols, where the de-
formed Hamiltonians Hq are chosen as Hq = ∫ L

0 [ fq(x) h(x) +
gq(x) p(x)]dx. Here h(x) and p(x) are the energy and momen-
tum densities, and fq(x) [gq(x)] are real functions of the form
a + b cos 2πqx

L + c sin 2πqx
L , with q ∈ Z. The remarkable as-

pect of these protocols, which is the key to their solubility,
is that the time evolution of many physical quantities af-
ter a prescribed time is captured simply by a 2 × 2 matrix
transformation, i.e., a SL2 or Möbius transformation. This
simplification occurs despite the fact that we are discussing a
spatially extended system. In this case, the operator evolution
can be recast into a sequence of Möbius transformations on a
suitable Riemann surface (see Fig. 3)

zn = (M1M2 . . . Mn) z, Mj ∈ SU(1, 1). (1)

(2) The hopping problem in tight-binding model can be
solved using transfer matrix method, namely, reformulating
the discrete Schrödinger equation Eψ j = [Hψ] j = ψ j+1 +
ψ j−1 + Vjψ j by product of the transfer matrices

�n = (Tn . . . T2T1)�0, Tj =
(

E − Vj −1
1 0

)
∈ SL(2,R),

(2)

1See also Ref. [57] for a related study on the emergent spatial
structure of the energy-momentum density.

2See also Refs. [58–60] for studies on quasiperiodically driven
quantum systems.

where �n = (ψn+1, ψn)T represents the corresponding wave
function.

Both problems are now solved by analyzing products of
SU(1, 1) � SL(2,R) matrices, creating intriguing analogies.
In fact, the main part of the paper is to dive into the analo-
gies and examine whether the rich phenomena in solids can
reassemble in the time domain.

Outline and main results of this paper

(i) In Sec. II we explain the details of the general setup of
our study, which is a time-dependent driven (1 + 1) CFT with
arbitrary SL2 deformations. As mentioned in the Introduction,
the physical consequence of such driving is encoded in the
product

�n = M1M2 . . . Mn, where Mj ∈ SU(1, 1) (3)

of a sequence of SU(1, 1) matrices that correspond to the
driving steps.

(ii) In Sec. III, we introduce the main diagnostics of our
driven CFT: the Lyapunov exponent and group walking. The
former is a useful characterization to quantify the growth of
�n with respect to the number of driving step n, i.e.,

λL := lim
n→∞

log ‖M1M2 . . . Mn‖
n

, (4)

where ‖ · ‖ is a matrix norm. Applying to our driven system,
the Lyapunov exponent has the meaning of the heating rate
and serves as a good “order parameter” in carving the phase
diagram. For example, λL > 0 represents a heating phase, and
we show that total energy of the system grows exponentially
as E (n) ∝ e2λL ·n and the entanglement entropy of the subsys-
tem that includes the energy-momentum density peaks grows
linearly in time as S(n) ∝ λLn. One interesting universal phe-
nomenon here is that the total energy and the entanglement
are not distributed evenly in the system, instead the driven
state will develop an array of peaks of energy-momentum
density in the real space. This phenomenon has been reported
in Ref. [56] for special setups; now we verify the universality
in a larger class.

For λL = 0, the system is either in the nonheating phase
where total energy and the entanglement entropy oscillate or
at the phase transition where the total energy grows polyno-
mially and the entanglement grows logarithmically.

The second diagnostic we introduce is the notion of group
walking, which is particularly useful in analyzing and visual-
izing the details of the spatial structures. This tool is necessary
in the cases such as quasiperiodic and random driving when
we need to resort to the numerics to identify the universal
features.

(iii) In Sec. IV, we study the properties of the periodic
driving, providing criteria of the heating phase, nonheating
phase, and the phase transition. We discuss the generic fea-
tures in each phase. This section generalizes the minimal
setup in Refs. [41,56], and also provides the necessary tools
for the discussions in quasiperiodic driving where technically
we approach the quasiperiodic limit via a family of periodic
driving.
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FIG. 2. A cartoon of the entanglement pattern and the energy-momentum density distribution in real space in the heating phase of a
periodically driven CFT, where we drive the system with H0(x) = ∫ L

0 h(x)dx and H1(x) = ∫ L
0 2 sin2 qπx

L h(x) dx with q = 4 here. Red and blue
colors stand for two different chiralities. Each peak is entangled with its nearest neighbor with the same chirality and color. Periodic boundary
conditions are assumed here.

(iv) In Sec. V, we consider the quasiperiodic driving using
two examples: Fibonacci type and Aubry-André type. The
Fibonacci driving is the main focus.

In the Fibonacci driving, we use the Fibonacci bit string
or word (see Appendix B) Xj=1,2,3... = 10110101 . . . and two
distinct unitary operators UA = e−iHATA , UB = e−iHBTB to gen-
erate a quasiperiodic driving sequence Uj = XjUA + (1 −
Xj )UB. The simplest way to generate the Fibonacci bit string
is through the following substitution rule: Begin with a sin-
gle bit 1, and apply the substitution rule 1 → 10, 0 → 1 at
each step, then we will generate the following sequence 1 →
10 → 101 → 10110 → 10110101 → . . ., which approaches
the Fibonacci bit string in the infinite step limit. Denoting
the nth Fibonacci number as Fn, namely, Fn = Fn−1 + Fn−2

with F0 = F1 = 1, the Fibonacci bit string or word satisfies
Xj+Fn = Xj , where n � 2 and 1 � j < Fn. In the Fibonacci
driving, we find the following features:

(1) In the heating phase, the distribution of Lyapunov expo-
nents (heating rates) exhibits self-similarity in the parameter
space (see Fig. 19). This also implies there exist heating
phases with arbitrarily small positive Lyapunov exponents.
At these points, the growth of entanglement entropy and en-
ergy can be arbitrarily slow. In addition, there are very rich
patterns in the time evolution of entanglement and energy in
the heating phase. In particular, the locations of the energy-
momentum density peaks exhibit even and odd effects at those
driving steps that correspond to the Fibonacci numbers.

(2) Exact nonheating fixed points. We find that there always
exist exact nonheating fixed points in the phase diagram, as
long as both of the two driving Hamiltonians are elliptic [see
the definition in Eq. (17)]. At the nonheating fixed point,
the time evolution of the entanglement entropy and the total
energy can be analytically obtained at the Fibonacci num-
bers Fn. They exhibit an oscillating feature of period 6, i.e.,
SA(Fn) = SA(Fn+6) and E (Fn) = E (Fn+6). At the driving steps
that are not Fibonacci numbers, the envelope of the entan-
glement entropy grows logarithmically in time, and the total
energy grows in a power law.

(3) We find an exact mapping between the phase diagram
of a Fibonacci driving CFT and the energy spectrum of a Fi-
bonacci quasicrystal. More precisely, the nonheating phase in
the parameter space of a Fibonacci driving CFT corresponds
to the energy spectrum of a Fibonacci quasicrystal. Both form
a Cantor set of measure zero.

As a complement, we also investigate the quasiperi-
odic driving with an Aubry-André–type sequence, where
the phase diagram has a nested structure that resembles
the famous Hofstadter butterfly found in the Landau level
problem [61]. We also examine the measure of the non-

heating phase and show it vanishes similar to the Fibonacci
driving.

(v) In Sec. VI we conclude with discussions. We also
provide several appendices with details of calculations and
examples.

II. TIME-DEPENDENT DRIVEN CFT WITH SL2

DEFORMATIONS

In this section, we introduce the general setup and basic
properties of a time-dependent driven CFT with SL2 defor-
mations. The formalism in this section is general, i.e., suitable
for arbitrary driving sequence. In the end of this section, we
will explain the three classes of driving that we will focus on
in this paper and its upcoming sequel [62]: the periodically,
quasiperiodically, and randomly driven CFTs as advertised
in the Introduction. More technical details can be found in
Appendix A (see also Refs. [41,48,56]).

We are mainly interested in the time-dependent driven CFT
with discrete time steps. That is, we drive the CFT with H1 for
a time interval T1, then with H2 for a time interval T2, and so
on, where H1,2,... are SL2 deformed CFT Hamiltonians that we
will explain momentarily. Starting from an initial state |�0〉,
the wave function after n steps of driving has the form

|�n〉 = Un . . .U2U1|�0〉, with Uj = e−iHj Tj . (5)

The initial state here is not limited to a ground state. For
instance, it can be chosen as a highly excited pure state or
a thermal ensemble at finite temperature, as will be studied
in detail in Ref. [63]. It is found that the emergent phase
diagram of the time-dependent driven CFT is independent
of the choices of the initial state, and only depends on the
concrete protocols of driving, namely, the driving sequences
{Uj} here. For simplicity, throughout this work we will choose
the initial state |�0〉 as the ground state of a “uniform CFT,”

FIG. 3. A local view of the operator evolution on a Riemann
surface. By choosing suitable coordinates, each step of the driving
can be characterized by a Möbius transformation that is determined
by the SL2 deformed Hamiltonian.
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i.e., with uniform Hamiltonian density

H0 = 1

2π

∫ L

0
[T (x) + T (x)]dx, (6)

where T (x) [T (x)] are the chiral (antichrial) energy-
momentum tensor with translation symmetry, L is the total
length of the system.

Now let us specify the choices of the Hamiltonians {Hj}
in Eq. (5), we require them to be generated by a deformation
{( f j, g j )} as follows:

Hj = 1

2π

∫ L

0
[ f j (x) T (x) + g j (x)T (x)]dx, (7)

where f j (x) and g j (x) are two independent real functions with
periodic boundary conditions.3 That is to say, in general we
can deform the chiral and antichiral modes independently in a
system with periodic boundary conditions.

An alternative way to view the deformation in (7) is to
rewrite (7) using energy density T00(x) = 1

2π
[T (x) + T (x)]

and the momentum density T01(x) = 1
2π

[T (x) − T (x)] as fol-
lows:

Hj =
∫ L

0

[
f j (x) + g j (x)

2
T00(x) + f j (x) − g j (x)

2
T01(x)

]
dx.

(8)
Although the formulas and results we obtain in the this work
hold for the general case, in many places of this paper we
will choose f j (x) = g j (x) such that the deformed Hamiltonian
takes the simple form

Hj =
∫ L

0
f j (x) T00(x)dx . (9)

The study of the energy spectrum of such Hamiltonian can be
found in [49]. In particular, the so-called sine-square defor-
mation (SSD) with f j (x) = sin2( πx

L ) in Eq. (9) has received
extensive study in both condensed matter physics and string
theory recently [42–55]. In fact, the initial study of the Floquet
CFT in Refs. [41,56] is also based on SSD.

A. SL2 deformation

A convenient parametrization of the deformed Hamiltonian
Hj in Eq. (7) is to use the Fourier components of T (x) and
T (x) denoted as Ln and Ln:

Ln := c

24
δn,0 + L

2π

∫ L

0

dx

2π
ei 2πn

L x T (x) ,

Ln := c

24
δn,0 + L

2π

∫ L

0

dx

2π
e−i 2πn

L x T (x) , n ∈ Z . (10)

3One can of course choose open boundary conditions at the two
ends. Then, f j (x) and gj (x) should satisfy the constraint f j (x)T (x) =
gj (x)T (x) at x = 0, L, which implies that there is no momentum flow
across the boundary. Since we already have T (x) = T (x) at x = 0, L
in the uniform case, this indicates f j (x) = gj (x) at x = 0, L in the
case of open boundary conditions.

The operators Ln (Ln) form a Virasoro algebra

[Lm, Ln] = (m − n)Lm+n + c

12
(m3 − m)δm+n,0, n, m ∈ Z

(11)
with c being the central charge of the underlying CFT. For
example, the uniform Hamiltonian H0 defined in (6) can be
expressed as

H0 = 2π

L
(L0 + L0) − πc

6L
, (12)

and what we will call a “SL2 deformed” Hamiltonian corre-
sponds to the following enveloping function:

f j (x) = σ 0
j + σ+

j cos
2πqx

L
+ σ−

j sin
2πqx

L
,

σ 0
j , σ

+
j , σ−

j ∈ R, q ∈ Z (13)

and similarly for gj (x). In this case, the corresponding Hj is a
linear superposition of {L0, L±q} and {L0, L±q}, which are the
generators of the SL(q)(2,R) subgroup.4 To be concrete, we
have Hj = Hj,chiral + Hj,antichrial, with

Hj,chiral = 2π

L

(
σ 0

j L0 + σ+
j Lq,+ + σ−

j Lq,−
) − πc

12L
, (14)

where we have defined Lq,+ := 1
2 (Lq + L−q) and Lq,− :=

1
2i (Lq − L−q). Note the SSD deformation mentioned above
corresponds to the special case when

q = 1, σ 0 = 1
2 , σ+ = − 1

2 , σ− = 0 (SSD). (15)

Therefore, the SL2 deformation can be thought as a general-
ization of the SSD deformation, while retaining the analytic
tractability.5

In general, by defining the quadratic Casimir

c(2) := −(σ 0)2 + (σ+)2 + (σ−)2, (16)

the (chiral and antichiral) SL2 deformed Hamiltonians can be
classified into three types as follows [45,46,65,66]:

c(2) < 0 : elliptic Hamiltonian,

c(2) = 0 : parabolic Hamiltonian,

c(2) > 0 : hyperbolic Hamiltonian.

(17)

Different types of Hamiltonians will determine the operator
evolution in different ways (see Appendix A 1).

With the SL2 deformation, many physical properties of
the driven system including the phase diagram, the time
dependence of the entanglement entropy [41,48], and the
energy-momentum density [56,57] have been obtained in a
periodically driven CFT system. Here we generalize the driv-
ing to an arbitrary sequence {Uj} as shown in Eq. (5). In
the following, we will derive general formulas based on the
SL2 deformation sequence, and later apply to the periodically,
quasiperiodically, and randomly driven CFTs.

4More precisely, SL(q)(2,R) is isomorphic to a q-fold cover of
SL(2,R) (see, e.g., Ref. [64]).

5Solving the nonequilibrium dynamics with the most general defor-
mations that correspond to the infinite-dimensional Virasoro algebra
is more challenging and will not be discussed in this paper.
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FIG. 4. Conformal map z = e
2πqw

L from the w cylinder (where
w = τ + ix, and x = L and 0 are identified) to the q-sheet Riemann
surface z.

B. Operator evolution

For SL2 driven quantum states, it is convenient to compute
observables via Heisenberg picture, namely, the correla-
tion functions are given by 〈�0|O1(x1, t1) . . .On(xn, tn)|�0〉,
where the Heisenberg operators O(x, t ) are defined by dis-
crete time evolution

O(x, t ) := U †(t )O(x)U (t ), with U (t ) = Um . . .U2U1.

(18)
For each step, Uj = e−iHj Tj is generated by the SL2 deformed
Hamiltonian and t = ∑m

j=1 Tj is only defined for a discrete set
of times in our setting.

The virtue of the driving Hamiltonian in (7) is that the
operator evolution can be represented by a conformal mapping
(z, z) → (z′, z′), under which the primary operator O(z, z)
transforms as

U †
j O(z, z)Uj =

(
∂z′

∂z

)h(
∂z′

∂z

)h

O(z′, z′), (19)

where h (h) are conformal dimensions of O. Then, the full
unitary U (t ) is a composition of a sequence of conformal
mappings. For the special type of enveloping function (13),
a convenient coordinate is given as follows (see Fig. 4 for an
illustration):

z = exp
2πqw

L
, w = τ + ix, (20)

under which the evolution generated by Uj can be expressed
as a Möbius transformation:6

z′ = a jz + b j

c jz + d j
, where

(
a j b j

c j d j

)
︸ ︷︷ ︸
denoted as Mj

∈ SL(2,C). (21)

The explicit form of Mj is determined by the Hamiltonian Hj

and the time interval Tj . An important observation is that the
driving protocol (13) we use in fact generates Mj matrix in the
specific form

Mj =
(

a j b j

b∗
j a∗

j

)
where a j, b j ∈ C, |a j |2 − |b j |2 = 1,

(22)

6More details can be found in Appendix A. See also
Refs. [41,48,56].

which is a SU(1, 1) matrix. Note SU(1, 1) ∼= SL(2,R); both
are subgroups of SL(2,C). The isomorphism is expected
since we start from a SL(2,R) action on the states.

Thus, the net effect of the full evolution U = Un . . .U2U1

is given by the product of n SU(1, 1) matrices

�n = M1 . . . Mn−1Mn =
(

a1 b1

c1 d1

)
. . .(

an−1 bn−1

cn−1 dn−1

)(
an bn

cn dn

)
. (23)

Note that the later matrix acts on the right since we are using
the Heisenberg picture of evolution. To summarize, the opera-
tor evolution under a sequence of driving {Uj} is given by the
formula

U †
1 U †

2 . . .U †
n O(z, z)Un . . .U2U1

=
(

∂zn

∂z

)h(
∂zn

∂z

)h

O(zn, zn), (24)

where zn is related to z through the Möbius transformation in
(21) with the matrix �n ∈ SU(1, 1):

�n =
(

αn βn

β∗
n α∗

n

)
where αn, βn ∈ C, |αn|2 − |βn|2 = 1.

(25)

C. Time evolution of entanglement
and energy-momentum density

To characterize the possible emergent phases, we study the
time evolution of the entanglement entropy and the energy-
momentum density of the system. In terms of correlation
functions, the former is determined by the two-point func-
tion of twist operator, while the latter is determined by the
one-point function of energy-momentum tensor. One can also
consider two-point functions of general operators, which are
discussed in Appendix A 2.

For example, the mth Renyi entropy of the subsystem A =
[x1, x2] can be obtained by the formula

S(m)
A (n) = 1

1 − m
log 〈�n|Tm(x1)T m(x2)|�n〉, (26)

where |�n〉 is the time-dependent wave function in Eq. (5),
and Tm (T m) are twist (antitwist) operators that are primary,
with conformal dimensions h = h = c

24 (m − 1
m ). For initial

state |�0〉 being the ground state of H0 with periodic boundary
conditions, the time evolution of the entanglement entropy for
the subsystem A = [(k − 1/2)l, (k + 1/2)l] where k ∈ Z and
l = L/q is given as7

SA(n) − SA(0) = c

3
(log |αn − βn| + log |α′

n − β ′
n|). (27)

7For a general choice of single-interval subsystem A = [x1, x2], the
exact expression of the entanglement entropy under a time-dependent
driving will be quite involved. See, e.g., the Appendix of Ref. [41].
However, if the CFT is in a heating phase, one can obtain an ap-
proximated expression of the entanglement entropy of A = [x1, x2]
by keeping the leading order [56].
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Here αn and βn are the matrix elements appearing in the
operator evolution in Eq. (25). α′

n and β ′
n are the corresponding

matrix elements for the antichiral part.
One can also study the time evolution of energy-

momentum tensors based on the operator evolution as
discussed in the previous subsection. However, since T (x) is
not a primary field, the operator evolution in Eq. (19) should
be modified as

U †
j T (z)Uj =

(
∂z′

∂z

)2

T (z′) + c

12
Sch(z′, z), (28)

where the last term represents the Schwarzian derivative. The
expectation value of the chiral energy-momentum tensor den-
sity is [56]8

1

2π
〈T (x, n)〉 = −q2πc

12L2
+ πc

12L2
(q2 − 1)

× 1

|αne
2π ix

l + βn|4
, where l = L/q. (29)

For the antichiral component 1
2π

〈T (x, n)〉, the expression
is the same as above by replacing αn (βn) → α′

n (β ′
n)

and e
2π ix

l → e− 2π ix
l . The total energy and momentum of the

system are E (n) = 1
2π

∫ L
0 〈T (x, n) + T (x, n)〉dx and P(n) =

1
2π

∫ L
0 〈T (x, n) − T (x, n)〉dx, with the expressions

E (n) = −q2πc

6L
+ πc

12L
(q2 − 1)(|αn|2+|βn|2+|α′

n|2+|β ′
n|2),

P(n) = πc

12L
(q2 − 1)(|αn|2 + |βn|2 − |α′

n|2 − |β ′
n|2).

(30)

We would like to make a few remarks here:
(1) For the periodic boundary conditions we considered

here, the time evolution with q = 1 deformations are trivial as
Hj also annihilates the ground state of H0.9 In contrast, if we
consider an open boundary condition, the ground state of H0

will no longer be the eigenstate of the deformed Hamiltonian
Hi. Then one can have a nontrivial time evolution, as studied
in Refs. [41,56].

(2) If there is no driving, i.e., αn = α′
n = 1 and βn = β ′

n =
0, one can find E (n) = −πc

6L , which is the Casimir energy with
periodic boundary conditions.

(3) If we only deform the Hamiltonian density in Eq. (8),
i.e., let f j (x) = g j (x), one can find that αn = α′

n and βn = β ′
n

[41], and therefore P(n) = 0, i.e., the total momentum stays
zero. In this case, both the left movers and right movers
are excited, but they carry opposite momentum and the total
momentum are canceled to be zero.

8Hereafter, for convenience of writing, we write T (x, t = ∑n
j=1 Tj )

as T (x, n).
9This can be seen by considering q = 1 in Eq. (30), but may be not

obvious by looking at the expression of SA(n) in Eq. (27). For q = 1,
the choice of the subsystem A in (27) fails because A = [−L/2, L/2]
corresponds to the total system. In our calculation of SA(n) in
Eq. (27), we have assumed explicitly that the two entanglement cuts
do not coincide, or equivalently A is not the total system.

(4) In later sections, we will compare the CFT calculations
with the lattice calculations. An efficient way to perform nu-
merical calculations on the lattice is to consider q = 1 with an
open boundary condition since for larger q, the length of the
wavelength of deformation l := L/q is effectively suppressed
for a fixed L. In this case, by deforming the Hamiltonian in
Eq. (9), where only the Hamiltonian density is deformed, one
can find the time evolution of the entanglement entropy as
follows [41]:

SA(n) − SA(0) = c

3
log |αn − βn|, where A = [0, L/2].

(31)
The expectation value of the chiral energy-momentum density
is [56]

1

2π
〈T (x, n)〉 = − πc

12L2
+ πc

16L2

1

|αne
2πx

L + βn|4
. (32)

The antichiral part has the same expression as above with the
replacing e

2π ix
L → e

−2π ix
L . Then one can find 1

2π

∫ L
0 〈T (x, n)〉 =

1
2π

∫ L
0 〈T (x, n)〉 = − πc

12L + πc
16L (|αn|2 + |βn|2), based on which

one can obtain the total energy as

E (n) = πc

8L
(|αn|2 + |βn|2) − πc

6L
. (33)

One can find the similarity and difference by comparing with
the case with periodic boundary conditions. For example, in
the ground state with αn = 1, βn = 0 in (33), one can obtain
the Casimir energy E = − πc

24L , which is different from that in
periodic boundary conditions. Nevertheless, the dependence
of the entanglement entropy and energy-momentum density
on the matrix elements αn (βn) in the �n in Eq. (25) are
similar.

There is rich information contained in the formula dis-
cussed above. As will be seen later, if the CFT is in a
heating phase, there will be energy-momentum density peaks
emerging in the real space. The locations of these peaks are
determined by βn/αn. It turns out that both the quantities
SA(n) and E (n) can serve as “order parameters” to distinguish
different emergent phases in the time-dependent driven CFTs.
For example, for the periodically driven CFT as studied in
Ref. [41], it is found there are two different phases with a heat-
ing phase and a nonheating phase, where the time evolution of
entanglement entropy exhibits qualitatively different features
as shown in Fig. 1. Also, it is found n Ref. [56] that the total
energy grows exponentially fast as a function of driving cycles
n in the heating phase and simply oscillates in the nonheating
phase.

As a short summary, once we know the operator evolution
in Eq. (24) or equivalently the matrix form in Eq. (25), one
can study the entanglement and energy-momentum evolution
based on Eqs. (27) and (30) or Eqs. (31) and (33).

D. Periodic, quasiperiodic, and random driving CFTs

In general, the sequence of unitary operators {Uj} in Eq. (5)
can be chosen in an arbitrary form. In this work, we are in-
terested in three classes: periodic, quasiperiodic, and random
drivings.

(1) Periodical driving: the sequence of unitary operators
{Uj} in (5) are chosen with a “period” p (p ∈ Z+) such that
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Uj = Uj+p, ∀ j ∈ Z. Then the time evolution of wave func-
tion in (5) can be written as

|�np〉 = (Up . . .U2 · U1︸ ︷︷ ︸
one driving period

)n|�0〉, with Uj = e−iHj Tj . (34)

To obtain the physical properties of the system under periodic
driving, we only need to analyze the corresponding transfor-
mation matrix M1M2 . . . Mp ∈ SU(1, 1) within a period.

(2) Quasiperiodic driving: {Uj} form a quasiperiodic se-
quence. Quasiperiodicity is the property of a system that
displays irregular periodicity, where the sequence exhibits re-
currence with a component of unpredictability. (For example,
see the review [67] for a more rigorous mathematical defini-
tion of quasiperiodic sequence.) In this paper, we will focus
on the following two protocols of quasiperiodical driving:

(a) Fibonacci type. This is the type of quasiperiodic driv-
ing we will study in detail in Sec. V A. We use the Fibonacci
bit string or word (see Appendix B)

Xj=1,2,3... = 10110101 . . . (35)

and two distinct unitaries UA, UB to generate a quasiperiodic
driving sequence Uj = XjUA + (1 − Xj )UB, i.e., we apply UA

(UB) if the bit is 1 (0).
(b) Aubry-André type. In this case, we generate the

quasiperiodic driving sequence as follows:

.

That is to say, we consider two Hamiltonians H0 and H1 and
fix the driving period T1 for H1 while let the driving period
of H0 increase with driving cycle T0 = nωL where ω is an
irrational number and L is the total length of the system. Note
in terms of the unitary U = exp(−iH0T0), its action on the
operator only depends on T0 mod L.

(3) Random driving: {Uj} form a random sequence. More
concretely, each Uj is drawn independently from the ensemble
{(uk, pk )}k=1...m, where uk = e−iHkTk is the unitary matrix and
pk is the corresponding probability, with the normalization∑

k pk = 1.
In brief, for all the three kinds of time-dependent drivings,

our goal is to describe the behavior of the physical properties
of the CFT in the long-time driving limit n → ∞, where n is
the number of driving cycles.

As a remark, one can find that the types of driving se-
quence are similar to those in the potentials in crystals,
quasicrystals, and disordered systems. One can find inter-
esting relations between different phases of time-dependent
driven CFTs and different types of wave functions in a lattice,
as briefly discussed in the Introduction. Furthermore, both
types of quasiperiodicities we mentioned above have been
discussed in the quasicrystal literature, e.g., see Refs. [68–70].

III. DIAGNOSTICS

The previous section explains how the physical properties
of an SL2 driven CFT state can be extracted from the confor-
mal mapping generated by the driving sequence. The mapping

is further encoded in an SU(1, 1) matrix, denoted as �n in
(25), which itself is a product of n SU(1, 1) matrices.

Mathematically, the long-time asymptotics of the driven
state now can be understood by the n dependence of �n.
In this section, we will introduce two useful diagnostics to
characterize such dependence: (1) Lyapunov exponent; (2)
group walking. The former is a simple scalar quantifying the
growth of �n, while the latter is more refined and uses two
points on the unit disk to track the trajectory of �n. Although
not independent, both of them will be useful and used in the
later sections.

A. Lyapunov exponent and heating phase

For all the three classes of drivings we introduced in the
previous subsection, the problem is reduced to the study of
the product �n [defined in (23)] of a sequence of SU(1,1)
matrices that encode the conformal mappings. One useful
and simple characterization for the growth rate of this matrix
product is the so-called Lyapunov exponent (for a review of
the subject see, e.g., [71]). Generally, we can consider a prod-
uct of n matrices �n = M1M2 . . . Mn, where Mj ∈ SL(d,R).
Then, the (upper) Lyapunov exponent is defined as

λL := lim
n→∞

1

n
log ‖M1M2 . . . Mn‖, (36)

where ‖ . . . ‖ is a matrix norm. We would like to make a few
comments about the definition here:

(1) Here, the specific choice of norm ‖ . . . ‖ is not essen-
tial. To be explicit, we will choose the Frobenius norm in this
paper, i.e.,

‖M‖F :=
(∑

j,k

|Mjk|2
) 1

2

. (37)

(2) The definition also applies to SL(d,C), as one can
always embed SL(d,C) in SL(2d,R).

(3) In general, one can define d Lyapunov exponents for
SL(d,R). For example, for SL(2,R), one can define two
extremal Lyapunov exponents

λ+ := lim
n→∞

1

n
log ‖M1M2 . . . Mn‖, (38)

λ− := lim
n→∞

1

n
log ‖(M1M2 . . . Mn)−1‖−1, (39)

with the property λ+ � 0 � λ− since ‖B‖ � 1 � ‖B−1‖−1 for
B ∈ SL(2,R).

Applying to the SU(1, 1) matrix �n,

�n =
(

αn βn

β∗
n α∗

n

)
where αn, βn ∈ C, |αn|2 − |βn|2 = 1,

(40)
a positive Lyapunov exponent λL > 0 implies that the matrix
elements have the following asymptotics:

|αn| ∼ |βn| ∼ 1
2 eλLn at n → ∞. (41)
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Following Eqs. (27) and (30), we find the asymptotics in long-
time limit

SA(n) − SA(0) ∼ c

3
λLn, E (n) ∼ πc

24L
(q2 − 1)e2λLn, (42)

where we have neglected the contribution from the antichiral
mode for the moment.10 From this perspective, we may in-
terpret the Lyapunov exponent λL as the heating rate in the
heating phase. If λL > 0, then the time-dependent driven CFT
must be in a heating phase, with the total energy exponentially
growing in time. We will also explain in detail momentarily
that since the norm of the ratio βn/αn approaches 1 in the
long-time limit when λL > 0, an array of energy-momentum
peaks will emerge in real space whose exact locations will be
determined by the phase of the ratio βn/αn.

On the other hand, if λL = 0, the system is either in a
nonheating phase or at the phase transition. We emphasize
here that the vanishing of Lyapunov exponential allows a
subexponential growth of the matrix norm ||�n|| as a func-
tion of n, e.g., this could happen at the phase transition or
boundary.

To summarize, using the Lyapunov exponent λL, we can
classify the phases as follows:

λL>0 : heating phase (with exponentially growing energy),

λL=0 : nonheating phase or phase transition.

To further identify the detailed properties of entanglement and
energy evolution in the nonheating phase and at the phase
transition, one needs to study the finer structure of the matrix
�n, which we will pursue in the next subsection.

The Lyapunov exponent works for general matrices. When
specialized to SU(1, 1) or SL(2,C), another commonly used
classifier is the trace of the matrix. Namely, | Tr M| > 2,
| Tr M| = 2, and | Tr M| < 2 correspond to the hyperbolic,
parabolic, and elliptic types of matrix, respectively. This cri-
terion was used to identity different phases for the Floquet
driving CFT studied in previous works [41,56].

For periodic driving, it follows from the definition of
matrix norm that this trace classifier is equivalent to the Lya-
punov exponent. We have | Tr M| > 2 if and only if λL > 0,
| Tr M| � 2 if and only if λL = 0. One can also extend it to the
quasiperiodic driving as follows. As will be detailed discussed
later, any quasiperiodic driving corresponding to an irrational
number w can be considered as the limit of a sequence of
periodic driving, which is generated by the continued fractions
of ω. For each element in the sequence, we can apply the
trace classifier to obtain a sequence of phase diagram, with
its limit being the true phase diagram for the quasiperiodic
driving system.

10More precisely, the formula on SA(n) − SA(0) holds when the chi-
ral or antichiral energy-momentum density peaks are in the interior
of A (see Sec. IV C). When the entanglement cuts lie on the centers
of the energy-momentum density peaks, SA(n) could even decrease
in time (see Appendix A 3 b).

For the random driving, the Lyapunov exponent will be-
come a more appropriate definition, which we use exclusively
in the corresponding discussion.

B. Group walking: Fine structures
of the time-dependent driving

The Lyapunov exponent defined in the previous subsection
is a single number. To view the “internal structure” in the
matrix product �n in Eq. (25), it is helpful to study how
the matrix elements evolve in time, which determines the
time evolution of the entanglement entropy and the energy-
momentum density.

A convenient parametrization of the SU(1, 1) matrices
such as Mj and �n in (23) is given as follows:

�(ρ, ζ ) = 1

Nρ

( √
ζ −ρ∗ 1√

ζ

−ρ
√

ζ 1√
ζ

)
where

ρ ∈ D, ζ ∈ ∂D, (43)

and Nρ =
√

1 − |ρ|2 is the normalization factor.11 The unit
disk D := {z ∈ C, |z| < 1}, the boundary(or edge) of the disk
∂D := {z ∈ C, |z| = 1}, and the complex numbers ρ and ζ are
depicted as follows:

. (44)

Thus, the evolution of matrix �n as a function of step n can
be captured by the evolution of a pair of points (ρn, ζn) on
the unit disk. We will call this process “group walking” for
brevity. An equivalent but more convenient parametrization
of the trajectory (ρn, ζn) is to use (ρn, ρnζn). For example, the
total energy (30), locations of the energy-momentum density
peaks (29) and entanglement entropy (27) are expressible
using (ρn, ρnζn):

(1) The energy formula in Eq. (30) only depends on ρn,

E (n) = −q2πc

12L
+ πc

12L
(q2 − 1)

1 + |ρn|2
1 − |ρn|2 + antichiral part ,

(45)
and increases monotonically with respect to |ρn|.

In the heating phase, the exponential growth of E (n) as a
function of n is tied to the phenomenon that |ρn| approaches
exponentially close to the boundary ∂D. On the other hand, if
the total energy simply oscillates in n, e.g., in the nonheating
phase of a periodically driven CFT, then |ρn| should follow

11More precisely, the above parametrization (ρ ∈ D, ζ ∈ ∂D) of
matrix � only covers the SU(1, 1)/Z2, to obtain the full SU(1, 1)
group, one needs to let ζ live on the double cover of the bound-
ary circle. However, our physical quantities are obtained from the
Möbius transformation rather than the SU(1, 1) matrix directly, the
former is indeed isomorphic to the Z2 quotient of the latter, namely,
SU(1, 1)/Z2, and agrees with our parametrization.
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the same oscillation pattern. In-between, as a we approach the
phase transition, the orbit of ρ should be closer and closer

to the boundary. As a summary, the behaviors of ρ described
above can be visualized by the following cartoon:

. (46)

Here we sketch the rough features of the group walking of ρn;
this cartoon is not meant to be exact. As we will see in Sec. V
on the quasiperiodically driven CFT, in general there are many
rich fine structures on the orbit of ρ.

(2) The locations of the energy-momentum density peaks
are determined by (ρnζn) only. Recall that the poles of the
(chiral) energy-momentum density (29)

1

2π
〈T (x, n)〉 = −q2πc

12L2
+ πc

12L2
(q2 − 1)

1

|αne
2π ix

l + βn|4
,

where l = L/q (47)

locate at − βn

αn
= (ρnζn)∗, which determines the locations of

peaks if | βn

αn
| = |ρnζn| = |ρn| → 1, with

e
2π ixpeak

l = −(ρnζn)∗ if |ρn| → 1, (48)

i.e., xpeak = l
2π i log [ − (ρnζn)∗] + kl with k = 0, . . . , q − 1.

For x away from xpeak, the energy-momentum density will be
greatly suppressed. The same conclusion also holds for the
antichiral component 〈T (x, n)〉.

(3) The entanglement entropy in Eq. (27) depends on both
ρn and ρnζn,

SA(n) − SA(0) = c

3
log

|1 + (ρnζn)∗|√
1 − |ρn|2

, (49)

where we have neglected the contribution of the antichiral
mode.

In summary, the group walking of ρn and (ρnζn) on a unit
disk D determine the behaviors of the energy-momentum and
entanglement evolution as follows:

(1) |ρn| determines the growth of total energy.
(2) In the heating phase, (ρnζn) in the long driving limit

(n � 1) determines the location of peaks of the energy-
momentum density.

(3) |ρn| and (ρnζn) together determine the time evolution
of the entanglement entropy SA(n).

IV. PERIODIC DRIVING

This section is a generalization of previous works in
Refs. [41,56] by considering a more general setup of periodic
drivings. Apart from its own interesting features, this general-
ized setup can be used to analyze the quasiperiodically driven
CFTs in Sec. V.

In Refs. [41,56], a minimal setup of a periodic driving with
two driving steps within one driving period was considered.

The two different driving Hamiltonians are chosen as H0

and H1 = HSSD being the sine-square deformed Hamiltonian.
Here we generalize this minimal setup in two aspects: one is to
consider arbitrary SL2 deformed Hamiltonians, and the other
is to consider more general periodic sequences (see Fig. 5). In
general, as the number of driving steps within a driving period
increases, the phase diagram will become quite rich.12

A. General protocol for periodic driving

For a periodical driving with period p ∈ Z+, we have Uj =
Uj+p for all j ∈ Z+. Then the time evolution of wave function
after np driving steps is determined by the unitary operators
(Up . . .U2U1) as follows:

|�np〉 = ( Up . . .U2U1︸ ︷︷ ︸
one driving period

)n|�0〉, with Uj = e−iHj Tj . (50)

In terms of conformal mapping, the operator evolution after
np driving steps only depends on the the matrix product

�p := M1M2 . . . Mp ∈ SU(1, 1). (51)

Let us denote the matrix elements of �p and (�p)n as follows:

�p =
(

αp βp

β∗
p α∗

p

)
, (�p)n =

(
αnp βnp

β∗
np α∗

np

)
:=
(

αp βp

β∗
p α∗

p

)n

.

(52)

Next, we will determine the phase diagrams and relevant
physical quantities based on the operator evolution given by
�p, or equivalently the following Möbius transformation

z′ = �pz =
(

αp βp

β∗
p α∗

p

)
z = αpz + βp

β∗
pz + α∗

p

(53)

and similarly for z.

1. Phase diagram and Lyapunov exponents

The matrix �np = (�p)n has three distinct asymptotics
depending on the trace of �p, for convenience, let us classify
the types of SU(1, 1) matrices in parallel to the classification
of Möbius transformation we used in Ref. [56] (also see Fig. 6
for an illustration).

12See, e.g., Fig. 14 in the next section where we use increasingly
long periodic drivings to approach the quasiperiodic driving.
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FIG. 5. A general protocol for a periodically driven CFT. There
are p steps of driving within each driving period. In the ith step of
driving, we consider the driving with (Hi, Ti ), where Hi is a SL2

deformed Hamiltonian in Eq. (7) and Ti is the corresponding time
interval of driving.

Let M ∈ SU(1, 1) not be the central elements ±I, then we
call the matrix M the following:

(1) Elliptic if | Tr(M )| < 2. M has two distinct eigenvalues
λ1, λ2 with λ2 = λ∗

1 and |λ1| = |λ2| = 1. The corresponding
Möbius transformation has two distinct fixed points, one in-
side the unit circle and the other outside.

(2) Parabolic if | Tr(M )| = 2. M has a single eigenvalue at
+1 or −1. The corresponding fixed points become degenerate
(i.e., only one single point) and stay on the circle.

(3) Hyperbolic if | Tr(M )| > 2. M has two distinct real
eigenvalues λ1, λ2, |λ1| > 1 > |λ2| and λ2 = λ−1

1 . The two
fixed points are distinct and staying on the circle.

As a reminder, the fixed points of the Möbius transforma-
tion are a convenient way to characterize the transformation
when we repeat it multiple times.13 We rewrite the Möbius
transformation into the form

z′ − γ1

z′ − γ2
= η

z − γ1

z − γ2
, (54)

where γ1,2 are the fixed points we mentioned, and η is the
multiplier. For �p parametrized in (52), we have the following
explicit formulas:

γ1,2 = 1

2β∗
p

[(αp − α∗
p ∓

√
(αp + α∗

p)2 − 4)], (55)

η = Tr(�p) + √
[Tr(�p)]2 − 4

Tr(�p) − √
[Tr(�p)]2 − 4

,

where Tr(�p) = αp + α∗
p. (56)

Note the sign of the discriminant depends on the trace of
�p, which can be used to categorize the Möbius transform
(54) (see Fig. 6 for an illustration). For parabolic class when
| Tr(�p)| = 2, we have γ1 = γ2, the transformation (54) be-
comes trivial and we need to invoke

1

z′ − γ
= 1

z − γ
+ β∗

p, where γ = αp − α∗
p

2β∗
p

. (57)

When repeating n times, we only need to modify η → ηn

for | Tr(�p)| �= 2 case and β∗
p → nβ∗

p for | Tr(�p)| = 2. And,
therefore, we have a simple expression for the matrix elements

13Therefore, this is the main tool we used in the previous study [56]
to visualize the effects of periodic driving.

of (�p)n defined in (52):

αnp = η− n
2 γ1 − η

n
2 γ2

γ1 − γ2
, βnp = (η

n
2 − η− n

2 )γ1γ2

γ1 − γ2

when |Tr(�p)| �= 2, (58)

αnp = 1 + nγ β∗
p, βnp = −nγ 2β∗

p when |Tr(�p)| = 2.

(59)

Another advantage of the representation using fixed points
γ1,2 and multiplier η is that the Lyapunov exponent now only
depends on η as follows:

λL = 1

2p
log(max{|η|, |η|−1})

= 1

p
log

∣∣∣∣ |Tr(�p)| + √|Tr(�p)|2 − 4

2

∣∣∣∣. (60)

That is to say, the hyperbolic �p with | Tr(�p)| > 2 implies
a positive Lyapunov exponent and therefore heating phase,
while the elliptic and parabolic classes both have λL = 0. By
analyzing the corresponding group walk in the next subsection
we will confirm that | Tr(�p)| < 2 corresponds to nonheating
phase while | Tr(�p)| = 2 is the phase transition as expected.

B. Group walking

The group walking (ρnp, ρnpζnp) of (�p)n defined in (43)
can be straightforwardly obtained by comparing with (58) for
| Tr(�p)| �= 2,

ρnp = − 1

γ2
+ 1

γ2

γ1 − γ2

γ1 − ηn γ2
,

(ρnpζnp) = 1

γ1
+ 1

γ1

γ2 − γ1

ηn γ1 − γ2
, (61)

or comparing with (59) for | Tr(�p)| = 2,

ρnp = − nβ∗

1 + nγ β∗ , (ρnpζnp) = − nβ∗

1 − nγ β∗ . (62)

Now we are ready to discuss the trajectories of (ρnp, ρnpζnp)
with increasing n:

(1) For | Tr(�p)| < 2, the multiplier η ∈ U(1) is a pure
phase and implies that both ρnp and (ρnpζnp) will form a
closed loop in the unit disk.

(2) For | Tr(�p)| > 2, the multiplier |η| �= 1 and we have
the following limit at n → ∞:

lim
n→∞ ρnp =

{−γ ∗
2 , η > 1

−γ ∗
1 , η < 1

lim
n→∞(ρnpζnp) =

{
γ ∗

1 , η > 1

γ ∗
2 , η < 1.

(63)
Recall that both γ1 and γ2 live on ∂D as shown in Fig. 6.
Therefore, in this case, both ρn and (ρnpζnp) will approach
exponentially close to the boundary of the unit disk ∂D.

(3) For | Tr(�p)| = 2, we have the limit

lim
n→∞ ρnp = −γ ∗, lim

n→∞(ρζ )np = γ ∗, (64)

where γ ∗ ∈ D as shown in Fig. 6. From Eq. (62), we notice
that in this case, both ρnp and (ρnpζnp) will approach ∂D
polynomially (in n) close.
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FIG. 6. Illustration for the locations of fixed points of Möbius transformation in the three phases. In the nonheating phase, the two fixed
points are inside and outside the unit circle, respectively. They will merge at the same point on the unit circle at the phase transition. Then, the
two fixed points will split but still sit on the unit circle in the heating phase.

The above behavior confirms that | Tr(�p)| < 2,
| Tr(�p)| > 2, and | Tr(�p)| = 2 correspond to nonheating,
heating, and phase transition respectively.

C. Entanglement and energy evolution

Given the explicit expressions of the matrix elements of
�np = (�p)n in (58) and (59), we can further obtain the time
evolution of the entanglement entropy SA(N = np) and the
total energy E (N = np) based on formulas (27) and (30),
respectively. For the total energy, it grows exponentially in the
heating phase

E (N ) � πc

24L
(q2 − 1)e2λLN , where N = np, (65)

and the exponent is exactly twice the Lyapunov exponent, the
latter is given in (60). In the nonheating phase and the phase
transition, the total energy oscillates and grows polynomially.
Here we only consider the contribution of the chiral modes,
the antichiral modes follow parallel discussions.

As noted in Ref. [56], the energy-momentum density
has interesting spatial structures. In fact, as mentioned in

Sec. III A, a positive Lyapunov exponent λL indicates there is
an array of peaks in the energy-momentum density 〈T (x, n)〉
in real space. The same spatial structure, namely, the array
of peaks, is also present at the phase transition with λL = 0,
although the growth is polynomial in n, significantly slower
than the heating phase.

Following Eqs. (29), (58), and (59), we find the locations
of the (chiral) energy-momentum peaks are given as follows:

exp

(
2π ixpeak

l

)
= − lim

n→∞
βnp

αnp
= γ2, in the heating phase

exp

(
2π ixpeak

l

)
= − lim

n→∞
βnp

αnp
= γ , at the phase transition

(66)

where we have assumed 0 < η < 1 in the above formula, for
η > 1, we need to replace γ2 by γ1. Here γ2 corresponds to
the unstable fixed point in the Möbius transformation in the
heating phase, and γ is the unique fixed point at the phase
transition. A cartoon plot of the energy-momentum density
distribution in real space is shown as follows:

, (67)

where different colors represent different chiralities. For sim-
plicity, let us keep the antichiral part (red) undeformed, and
only deform the chiral part (blue). Then the entanglement en-
tropy in the heating phase depends on the choice of subsystem
A as follows [56]:

SA(N = np) − SA(0)

�
{O(1), [x1, x2] does not include peaks

c
3λLN, [x1, x2] includes peak(s). (68)

If one also deforms the antichiral part and let it live in heating
phase with Layapunov exponent λ′

L, then we need to add up
two contributions when A also includes any antichiral peaks.
Note in general λL �= λ′

L as they can be deformed indepen-
dently in the CFT with periodic boundary condition. One can
further check the entanglement pattern by looking into the

mutual information as studied in [56], and find each peak is
mainly entangled with the two peaks of its nearest neighbor
with the same chirality, as schematically shown in Fig. 2.

At the phase transition, similar to the energy, the spatial
structure of the entanglement persists, while the growth is
slower

SA(N = np) − SA(0)

�
{O(1), [x1, x2] does not include peaks

c
3 log n, [x1, x2] includes peak(s). (69)

One final remark is that in the above discussions, the
entanglement cuts are chosen to avoid the centers of the
energy-momentum density peaks. In Appendix A 3 b, we also
consider the cases when the entanglement cuts are located at
the center(s) of the energy-momentum density peaks. Then,
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TABLE I. Correspondence of the phase diagram in a periodically driven CFT and other quantities.

Phases Möbius transf. |tr �p| λL EE growth Energy growth

Heating Hyperbolic >2 λL > 0 Linear Exponential
Nonheating Elliptic <2 λL = 0 Logarithmic Power law
Phase transition Parabolic =2 λL = 0 Oscillating Oscillating

some interesting features in the entanglement entropy could
arise. To summarize, we put the phase diagrams and related
quantities in the periodically driven CFT in Table I.

D. A minimal setup

Now we consider a minimal setup of the periodically
driven CFT to demonstrate the main features in the previous
discussions. In this setup, we consider only p = 2 driving
steps within one period

.

(70)

That is, we drive the CFT with (H0, T0) and (H1, T1), where
T0 and T1 are the time intervals. We consider a SL2 deformed
Hamiltonian with q = 1 with open boundary conditions:14

Hθ =
∫ L

0

(
1 − tanh(2θ ) cos

2πqx

L

)
T00(x)dx,

q = 1, θ > 0. (71)

We choose H0 and H1 as Hθ=0 and Hθ �=0, and T0 and T1 as
Tθ=0 and Tθ �=0, respectively. Note that Hθ=0 corresponds to
the uniform Hamiltonian, and Hθ=∞ corresponds to the SSD
Hamlitonian in Eq. (15) up to an overall factor 2. Denoting the
time interval of driving as Tθ , then the corresponding Möbius
transformation M(Hθ , Tθ ) has the form

M(Hθ , Tθ ) =
(

α β

β∗ α∗

)
with

{
α = cos

(
πTθ

Leff

) + i cosh(2θ ) sin
(

πTθ

Leff

)
,

β = −i sinh(2θ ) sin
(

πTθ

Leff

)
.

(72)

Here Leff = L cosh(2θ ) denotes the effective length of the
total system. Physically, it characterizes the effective distance
that the quasiparticle needs to travel to return to its original
location [48].

1. Phase diagram and Lyapunov exponent

The Lyapunov exponent λL is determined by the trace of
the transformation matrix �p as shown in (60). In our setting
p = 2 and

|Tr(�p=2)| = |Tr(M0M1)|
= 2| cosh(2θ ) sin x1 sin x0 − cos x1 cos x0|, (73)

where x0 = πT0
L and x1 = πT1

Leff
, with Leff = L cosh(2θ ). There-

fore, inserting into

λL = 1

p
log

∣∣∣∣ |Tr(�p)| + √|Tr(�p)|2 − 4

2

∣∣∣∣ , (74)

we obtain the result shown in Fig. 7. From the figure, we can
also read out the phase diagram straightforwardly, namely, the
regime with λL > 0 corresponds to the heating phase, while
the dark blue regime with λL = 0 corresponds to nonheating
phase, and the boundary between them is the phase transition.

14We choose open boundary condition here for the purpose of
providing a comparison with the lattice simulation that will be shown
momentarily, where it is natural to take open boundary condition.

We also show in Fig. 8 the group walking pictures for θ = 0.2
with different choices of T1/L.

To gain some analytical understanding of the formula for
Lyapunov exponent, let us consider a simple example when
θ = ∞, namely, H1 = HSSD. Along the line T0 = L/2, (73)
simplifies to |Tr(�p=2)| = 2πT1

L . And, therefore, the Lyapunov
exponent is a function of T1 given as follows:

λL(T1) = 1

2
log

(
πT1 +

√
(πT1)2 − L2

L

)
, where

θ = ∞, T0 = L/2. (75)

In particular, in the limit T1 � L, we have

λL(T1) � 1

2
log

(πT1

L

)
. (76)

That is to say, along the line T0 = L/2, the Lyapunov exponent
grows logarithmically with T1/L in the large T1 limit (T1/L �
1). In fact, for θ = ∞, the result in (76) holds for arbitrary
T0/L �= nπ (n ∈ Z) in the large T1/L limit.

Now we would like to make a few comments on Fig. 7:
(1) The area of regime with larger Lyapunov exponent

grows when we increase the parameter θ in Hamiltonian. The
heuristic argument is that when the “difference” between H0

and Hθ is greater, the driving protocol is easier to heat the
system.

(2) When we push θ → 0, the area of heating phase,
namely the regime with λL > 0, decreases to zero. How-
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FIG. 7. Lyapunov exponent with (from left to right) θ = 0.2, 0.5, 1, and ∞. The regime with λL > 0 corresponds to the heating phase,
while the dark blue regime with λL = 0 corresponds to nonheating phase, and boundary between them is the phase transition.

ever, there is always at least a point (T0/L, T1/Leff ) = ( 1
2 , 1

2 )
staying in the heating phase for arbitrary θ �= 0. This point
corresponds to x0 = x1 = π

2 in Eq. (73) where we find
|Tr(M0M1)| = 2 cosh(2θ ) > 2 for arbitrary θ �= 0.

Now, let us take a closer look at the special point
(T0/L, T1/Leff ) = ( 1

2 , 1
2 ) in the heating phase. In terms of the

transformation matrix M0 and M1 given in (72), we have

M0 =
(

i 0
0 −i

)
, M1 =

(
i cosh(2θ ) −i sinh(2θ )
i sinh(2θ ) −i cosh(2θ )

)
.

(77)

These two matrices are actually special examples of a larger
class of SU(1, 1) matrix defined below.

Reflection. Let M be an SU(1, 1) matrix parametrized as
(43), namely,

M(ρ, ζ ) = 1√
1 − |ρ|2

( √
ζ −ρ∗ 1√

ζ

−ρ
√

ζ 1√
ζ

)
, (78)

we call M a reflection if ζ = −1, i.e.,

M(ρ, ζ = −1) = 1√
1 − |ρ|2

(
i iρ∗

−iρ −i

)
(79)

is a reflection. This condition is equivalent to demanding ma-
trix M is traceless Tr[M(ρ, ζ )] = 0. One important property
of the reflection matrix is that it squares to −1, i.e.,

M(ρ,−1)2 = −1. (80)

Apparently, a reflection matrix is elliptic since its trace is
smaller than 2. But the product of two distinct reflection
matrices is hyperbolic, i.e, | Tr[M(ρ1,−1)M(ρ2,−1)]| > 2.
The reflection matrix will also play an important role in later
discussions on both the quasiperiodically driven and the ran-
domly driven CFTs [62].

Applying to our case where we have two distinct reflec-
tion matrix M0 and M1, we conclude that �2 = M0M1 is
hyperbolic and therefore induces a heating phase for
(T0, T1) = (L/2, Leff(θ )/2).15 Indeed, we can explicitly check
that the Lyapunov exponent has a simple form (assuming

15Here we comment that for two arbitrary elliptic and noncommut-
ing Hamiltonians H0 and H1, the corresponding SU(1, 1) matrices
can be tuned to reflection matrices by choosing appropriate T0 and
T1 (see Appendix A). At this point, the system will always be in a
heating phase.

θ > 0)

λL = θ. (81)

In addition, we have

�np = (�p)n = (M0M1)n

= (−1)n

(
cosh(2nθ ) − sinh(2nθ )

− sinh(2nθ ) cosh(2nθ )

)
, (82)

which further fixes the location of the energy-momentum peak
to be at x = 0 (x = L) for the chiral (antichiral) mode [cf.
Eq. (32) for the open boundary condition discussed here]. In
fact, the chiral and antichiral peaks switch positions after each
driving period.

The total energy and entanglement entropy are also ex-
pressible using θ [cf. (31) and (33)]:

E (N = np) = πc

8L
cosh(4nθ ) − πc

6L
, (83)

SA(N = np) − SA(0) = c

3
2nθ, (84)

where p = 2 and we consider A = [0, L/2] here. We will
compare this CFT result with the numerical calculation on a
lattice model in the next subsection.

2. Numerical simulation on lattice

In Ref. [41], the authors compare the CFT and lattice calcu-
lations on the entanglement entropy evolution in a periodically
driven CFT. It was found that the comparison agrees very well
in the nonheating phases, but deviates in the heating phase.
The heuristic reason is that the two driving Hamiltonians in
[41] are chosen as H0 and Hθ=∞, which result in a large
Layapunov exponent in the heating phase (see Fig. 7). Then,
the system can be easily heated up with only a few driving
steps. It is noted that the higher-energy modes in a lattice
system are no longer well described by the CFT, which results
in a deviation between the lattice and CFT calculations. Now,
by considering the general Hθ , we can tune the system to have
a small heating rate by choosing a small θ .

The lattice model we consider is a free-fermion lattice,
which has finite sites L with open boundary conditions. We
prepare the initial state as the ground state of

H0 = 1

2

L−1∑
j=1

c†
j c j+1 + H.c. (85)
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FIG. 8. Trajectories of (ρnpζnp) on the unit disk D in a periodically driven CFT driven with H0 and H1 = Hθ in Eq. (71). Here we choose
θ = 0.2, T0 = L/2, and T1/[L cosh(2θ )] = 0.3 in the nonheating phase (left), T1/[L cosh(2θ )] = 0.3758 in the nonheating phase near the
phase transition (middle, the phase transition happens at 1

π
arcsin[1/ cosh(2θ )] � 0.3759), and T1/[L cosh(2θ )] = 0.376, 0.4, and 0.45 (in the

counterclockwise order) in the heating phase (right).

with half-filling. The SL2 deformed Hamiltonian has the form

H1 = 1

2

L−1∑
j=1

f ( j)c†
j c j+1 + H.c., (86)

where f ( j) = 1 − tanh(2θ ) cos 2π j
L , c j are fermionic op-

erators satisfying the anticommutation relations {c j, ck} =
{c†

j , c†
k} = 0, and {c j, c†

k} = δ jk . One can refer to the Appendix
in Ref. [41] for the details of calculation of the entanglement
entropy and correlation functions. The comparison of the nu-
merical and CFT calculations on both the entanglement and
energy time evolution can be found in Fig. 9. The agreement
is remarkable.

One can also refer to Appendix A 3 c for the interesting
case that when the entanglement cut lie at the center of both
the chiral and antichiral energy-momentum density peaks, the
entanglement entropy can decrease linearly in time.

V. QUASIPERIODIC DRIVING

In this section, we will study the nonequilibrium dynam-
ics in a quasiperiodically driven CFT with SL2 deformed
Hamiltonians. We would like to understand the following two
questions in this section:

(1) How does the phase diagram change as we shift the
periodic driving protocol to the quasiperiodic driving?

(2) What is the generic feature of the entanglement and
energy evolution in the quasiperiodically driven CFT?

As an initial effort to answer these questions, we will
mainly focus on the case of quasiperiodical driving with a
Fibonacci sequence, which is simpler to handle compared
to a more general quasiperiodic sequence. Our setup is
closely related to the Fibonacci quasicrystal, which was pro-
posed in the early 1980s by Kohmoto, Kadanoff, and Tang
[68], and Ostlund, Pandit, Rand, Schellnhuber, and Siggia
[69]. It was observed and later proved that the spectrum of

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

Lattice
CFT

0 2 4 6 8 10

100

101

Lattice
CFT

FIG. 9. Comparison of the CFT and lattice calculations on the entanglement entropy (left) and the total energy (right) evolution in the
heating phase of a periodically driven CFT. The CFT is periodical driving with H0 and Hθ with time intervals T0 = L/2 and T1 = Leff(θ )/2,
respectively. From bottom to top, we choose θ = 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, and 0.1. The CFT results are plotted according to
Eq. (83).
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FIG. 10. A Fibonacci driving is generated by two unitaries UA = e−iHATA and UB = e−iHBTB following the pattern of the Fibonacci bitstring
10110101 . . . .

Fibonacci Hamiltonian is a Cantor set of zero Lebesgue mea-
sure [68–70]. Since then, the Fibonacci dynamics has been
extensively studied in both physics and mathematics. See,
e.g., Ref. [72] for a recent review. For simplicity, in the fol-
lowing we may call the quasiperiodically driven CFT with a
Fibonacci sequence as a Fibonacci driven CFT.

In the end of this section, we also discuss another kind
of quasiperiodic driving with Aubry-André–type sequence by
focusing on the properties of its phase diagram.

A. Fibonacci driving and relation to quasicrystal

We start with an introduction to the setup and tools we use
to analyze the Fibonacci driving, many of which are borrowed
from the rich literature of Fibonacci quasicrystals.

1. Setup and trace map

A Fibonacci driving in this paper is generated by two
unitaries UA = e−iHATA and UB = e−iHBTB following the pattern
of the Fibonacci bitstring {Xj} defined in Appendix B (see Fig.
10):

Xj=1,2,3... = 10110101 . . . . (87)

The Hamiltonians HA, HB are chosen to be the SL2 deformed
Hamiltonian same as the ones used in the previous sections.
Therefore, each unitary UA(B) corresponds to a conformal map
MA(B) ∈ SU(1, 1) and the final conformal map �n that
determines the operator evolution is given as a
product

�n =
n∏

j=1

Mj, Mj = XjMA + (1 − Xj )MB. (88)

For example, the first few matrices

�n = MAMBMAMAMBMAMBMA . . . . (89)

A useful property of the Fibonacci driving �n is that for n be-
ing a Fibonacci number16 Fk with k � 3 there is a recurrence
relation for its trace

xFk+1 = 2xFk xFk−1 − xFk−2 , where xFk = 1
2 Tr(�Fk )

= 1
2 Tr

(
�−1

Fk

)
. (90)

16Our convention for the Fibonacci number is that Fk = Fk−1 +
Fk−2, F1 = F0 = 1.

This relation was used in quasicrystal literature, e.g., see
Ref. [68]. Also see Appendix B for a derivation following the
substitution rule of the Fibonacci bit string and the property
that det �n = 1.

The initial conditions for this recurrence relation can be
taken as

xF1 = 1
2 Tr(MA), xF2 = 1

2 Tr(MAMB),

xF3 = 1
2 Tr(MAMBMA). (91)

It is sometime convenient to define an auxiliary xF0 =
1
2 Tr(MB) regarded as a different element from xF1 although
F0 = F1 = 1. The auxiliary element xF0 is defined such that
the recurrence relation (90) also holds for k = 2.

For SU(1,1) matrices, we have xFk ∈ R. To visualize
the trace map, let us introduce a three-dimensional vector
(xFk , yFk , zFk ) := (xFk , xFk−1 , xFk−2 ), then the trace map in (90)
can be expressed as the following mapping between points in
three dimensional space:

T : R3→R3, T (xFk , yFk , zFk ) = (2xFk yFk − zFk , xFk , yFk ),

(92)

with the initial condition l = (xF3 , xF2 , xF1 ) given in Eq. (91)
or, alternatively, we can use (xF2 , xF1 , xF0 ) with the auxiliary
element xF0 . Remarkably, the trace map has a constant of
motion [68]

I = −1 + x2
Fk

+ y2
Fk

+ z2
Fk

− 2xFk yFk zFk (93)

(see Appendix B for an explicit check that I is independent
of k).

2. Example with Hθ and fixed point

Let us now take the explicit example of SL2 deformed
driving Hamiltonians. Consider (HA, TA) = (Hθ , T1) and
(HB, TB) = (H0, T0), where H0 is taken as the CFT Hamil-
tonian with a uniform Hamiltonian density, and Hθ is taken as
the SL2 deformed one in Eq. (71):

Hθ =
∫ L

0

(
1 − tanh(2θ ) cos

2πx

L

)
T00(x)dx, θ > 0.

(94)
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FIG. 11. Two-dimensional manifolds M determined by Eq. (93), with I = 0.5, 0, and −0.1, respectively. The manifold with I = 0 is
called the Cayley cubic.

The corresponding conformal transformation MA and MB has
been computed in (72) and copied here:

M(Hθ , Tθ ) =
(

α β

β∗ α∗

)
with

×
{

α = cos
(

πTθ

Leff

) + i cosh(2θ ) sin
(

πTθ

Leff

)
,

β = −i sinh(2θ ) sin
(

πTθ

Leff

)
.

(95)

And Leff = L cosh(2θ ) denotes the effective length of the
system under Hθ . Therefore, the initial condition for the trace
map is given as follows:

xF0 = cos

(
πT0

L

)
, xF1 = cos

(
πT1

Leff

)
,

xF2 = cos

(
πT1

Leff

)
cos

(
πT0

L

)
− cosh(2θ ) sin

(
πT1

Leff

)
sin

(
πT0

L

)
. (96)

The invariant I defined in (93) is

I = [cosh2(2θ ) − 1] sin2
(πT0

L

)
sin2

(
πT1

Leff

)
∈ [0, cosh2(2θ ) − 1]. (97)

Generally speaking, the invariant I constrains the motion of
(xFk , yFk , zFk ) on a two-dimensional manifold M. For I ∈ R,
there are three topologically distinct scenario as shown in
Fig. 11:

(1) I = 0: The manifold M can be decomposed into
five parts. The central part is the curvilinear tetrahedral
(“island”), with the vertices and singularities at A (1, 1, 1),
B (1,−1,−1), C (−1, 1,−1), and D (−1,−1, 1). The tetra-
hedral is parametrized by θ1 and θ2 with x = cos(θ1 + θ2),
y = cos θ1, z = cos θ2. The left four parts are funnels. The
first funnel is parametrized by x = cosh(θ1 + θ2), y = cosh θ1,
and z = cosh θ2, with its vertex at the point A. The other
three funnels are similar defined with the vertices at B, C,
and D. In the Fibonacci driven CFT, this case corresponds
to T0/L ∈ Z or T1/Leff ∈ Z. Physically, this corresponds to a
single quantum quench which is not our focus here.

(2) I > 0: The four vertices A, B, C, and D are replaced
with four necks, which connect the central part (“island”) of

the manifold to the four funnels. The whole manifold is there-
fore noncompact. This case corresponds to all the nontrivial
choices of (T0, T1) in our setting (97). It turns out that for
almost all the initial points on the manifold, they will flow
to infinity under the trace map in (90) [67].

(3) I < 0: The central part (“island”) becomes discon-
nected to the outside funnels and therefore compacted. This
case is absent in our setting for the Fibonacci driving. Nev-
ertheless, this case may be related to some non-Hermitian
Hamiltonian or nonunitary time evolution and deserves a care-
ful study in the future.

For a fixed I > 0, one can tune two of the three parame-
ters (θ, T0, T1) to move the initial point (xF3 , xF2 , xF1 ) on the
surface M, then the orbit under the trace map

T
(
xFk , yFk , zFk

) = (
2xFk yFk − zFk , xFk , yFk

)
(98)

is completely determined. As we will show in the following
sections, most of the orbits will escape to the infinity and
resulting heating phase. However, there still exists returning
orbit, e.g., when we have two zeros in the initial condition
(xF3 , xF2 , xF1 ), we will end up with a period-6 orbits

(0, 0, a) → (−a, 0, 0)→(0,−a, 0)→(0, 0,−a) → (a, 0, 0)

→ (0, a, 0) → (0, 0, a) → · · · (99)

with a = (1 + I )1/2 (see Fig. 12 for an illustration). We will
call such initial points that correspond to the nonheating point
as “fixed point,” in the sense that those points are fixed under
T 6 action.

3. Phase diagram: From periodic to quasiperiodical driving

In this section, we show the shape of the phase diagram
of a Fibonacci driven CFT via numerically approaching the
Fibonacci bit string by its finite truncation. This strategy has
been proven useful in the analysis of the energy spectrum
of a Fibonacci quasicrystal [68]. In the quasicrystal case,
the energy spectrum forms a Cantor set of zero Lebesque
measure. In this section, we will show numerical evidence of
such “fractal” structure, while in the next section we will map
our phase diagram to the energy spectrum of quasicrystal and
establish the claim.

Recall that (in Appendix B) we generate the Fibonacci
driving using the Fibonacci bit string

Xj = χ (( j − 1)ω), j = 1, 2, 3 . . . , (100)
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FIG. 12. Return orbits and initial conditions: here we plot M
with I = 1

4 fixed. The right plot is the same as the left one with a
different angle of view. The six blue solid dots correspond to the
period-6 returning orbit or equivalently speaking the fixed points
of T 6 action. This orbit can be viewed as the limit of a family
of initial conditions: for each fixed θ , the allowed initial condition
forms a line [two parameters T0, T1 with one constraint (97)]. In the
figure, we set θ = 1, 0.4, 0.27, and 0.245 for four loops from big
to small. Then, if we further decrease θ to a critical value θ∗ such
that I = cosh2(2θ∗) − 1, then we have essentially only one possible
initial condition T0 = L/2 and T1 = Leff/2 which will generate the
fixed points.

where χ (t ) = χ (t + 1) is a period-1 characteristic function

χ (t ) =
{

1, −ω3 � t < ω2

0, ω2 � t < 1 − ω3 (101)

and ω =
√

5−1
2 is an irrational number with a simple continued

fraction representation

ω = 1

1 + 1
1+ 1

1+···

. (102)

Now, to approach the Fibonacci bit string from a periodic
string, we can truncate the continued fraction of ω at finite
order n and obtain a rational number (principal convergent)
ωn = Fn−1/Fn, namely, the ratio of two nearby Fibonacci
numbers. The corresponding bit string {Xj} now has periodic-
ity Fn and therefore produces a periodic driving. We can now
use the tools introduced in Sec. IV to obtain a phase diagram
for each ωn.

In Fig. 13, we show the evolution of phase diagrams of pe-
riodically driven CFTs with protocol (HA, TA) = (Hθ=∞, T1)
and (HB, TB) = (H0, T0). The phase diagram is periodic in
T0 direction with period L; we only show the phase diagram
within one unit cell 0 � T0 � L. As we increase n, there are
two notable features:

(1) The number of regions of the nonheating phases in-
creases with n, and tends to infinity as n → ∞.

(2) The measure of the nonheating phases decreases with
n, and tends to zero as n → ∞.

These two features suggest that the nonheating phases in
the quasiperiodical driving limit may form a Cantor set of
measure zero, analogous to the feature of the energy spectrum
in a Fibonacci quasicrystal. In fact, this is indeed the case, as
we will discuss in detail in the next subsection.

We also present the evolution of phase diagrams by the
Hamiltonians H0 and Hθ with finite θ . See Fig. 14 for θ = 0.5,
and Fig. 39 in the Appendix for θ = 0.2. The two features
mentioned above are also observed in these cases. It is noted
that for a finite θ in H1(θ ), the phase diagram is also periodic
in the T1 direction, with the period L cosh(2θ ).

4. Exact mapping from a Fibonacci driven CFT
to a Fibonacci quasicrystal

The features in the phase diagrams in Figs. 13 and 14 sug-
gest that the nonheating phases in the quasiperiodical driving
limit may form a Cantor set of measure zero. In this section,
we verify this by performing an exact mapping between the
phase diagram of a Fibonacci driven CFT and the energy
spectrum of a Fibonacci quasicrystal. The latter has been
proved mathematically that the energy spectrum is indeed a
Cantor set [70] (see also Ref. [67] for a review).

Before introducing the mapping, let us first briefly review
the background of the Fibonacci quasicrystal. We consider the
discrete Schrödinger operators of the form

[Hψ] j = ψ j+1 + ψ j−1 + Vjψ j, j ∈ Z (103)

where ψ j := 〈 j|ψ〉 is the position-space wave function, with
j labeling the jth site, and Vj is the onsite potential. For
eigenvalue problem Hψ = Eψ , it is useful to consider the
transfer matrix

Tj =
(

E − Vj −1
1 0

)
∈ SL(2,R). (104)

Denoting � j = (ψ j+1, ψ j )T , we have17

�n = (Tn . . . T2T1)�0. (105)

In the Fibonacci quasicrystal, the potential Vj can also be
generated by the Fibonacci bit string {Xj} (B1) as follows:

Vj = XjVA + (1 − Xj )VB. (106)

The allowed energy spectrum E is determined by requiring
that

λL := lim
n→∞

1

n
||Tn . . . T1|| = 0. (107)

Defining T̃Fn := TFn TFn−1 . . . T1, and xFn := 1
2 Tr(T̃Fn ), it turns

out the traces {xFn} satisfy the same recurrence relation in
Eq. (90). The only difference between the Fibonacci driving
CFTs and the Fibonacci quasicrystals is the initial conditions,
which we will specify now. By taking VB = −VA = V , one can

17It is helpful to compare this equation with Eqs. (5) and (23) in the
time-dependent driving CFT. In Eq. (23), the SU(1, 1) � SL(2,R)
matrix Mj may be considered as a transfer matrix in time direction.
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FIG. 13. Phase diagrams in a periodically driven CFT with the sequence generated by finitely truncated Fibonacci bit string, i.e., {Xj} with
ωn = Fn−1/Fn. Here we choose n = 2, 4, 5, 6, 10, 20, 100, and 1000 for eight plots, respectively. The two Hamiltonians we use are H0(θ = 0)
and H1(θ = ∞) in (71). The blue (yellow) regions correspond to the heating (nonheating) phases.

FIG. 14. Phase diagrams in a periodically driven CFT with the sequence generated by finitely truncated Fibonacci bit string, i.e., {Xj}
with ωn = Fn−1/Fn. Here we choose n = 2, 4, 5, 6, 10, 20, 100, and 1000 for eight plots, respectively. The two Hamiltonians we use are
H0(θ = 0) and H1(θ = 0.5) in (71). The phase diagram is periodic in the T0 direction with period L and in the T1 direction with period
L cosh(2θ ) � 1.54L. The blue (yellow) regions correspond to the heating (nonheating) phases.
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FIG. 15. Phase diagrams in a periodically driven CFT with the sequence chosen in (101) where ωn = Fn−1/Fn. The parameters are the
same as those in Fig. 13 except that now we change the variables to VCFT and ECFT [see Eq. (112)]. The blue (yellow) regions correspond to the
heating (nonheating) phases.

find the initial conditions for the Fibonacci quasicrystal are18

l(E ;I ) := (xF1 , xF0 , xF−1 )quasicrystal

=
(E + V

2
,

E − V

2
, 1
)
, where E ∈ R. (108)

The invariant I in the constant of motion in Eq. (93) becomes
I = V 2. In a quasicrystal, the potential V is fixed, and there-
fore each E specifies an initial condition, which may flow
to infinity by iterating the trace map (E is in the gap) or is
bounded (E is in the spectrum).

Next, let us compare the initial conditions in the Fibonacci
driven CFT. We consider the phase diagrams in Fig. 13, which
correspond to H0(θ = 0) and H1(θ = ∞). By taking the limit
θ → ∞, the initial conditions in Eq. (96) become19

(
xF2 , xF1 , xF0

)
CFT =

(
cos

πT0

L
− πT1

L
sin

πT0

L
, 1, cos

πT0

L

)
,

(109)

18Here we use the recurrence relation to infer the value of xF0 and
xF−1 from (xF3 , xF2 , xF1 ), the reason we choose to start with xF−1 = 1
for quasicrystal is that we need a convenient base point to map to the
CFT initial point, whose xF1 happens to be 1 as well. It should be
clear later when we construct the mapping.

19Note that by taking the limit θ → ∞, we always consider finite
T0 and T1 such that T0, T1 � L cosh(2θ ) when θ → ∞. In this case,
the initial conditions (xF2 , xF1 , xF0 )CFT form a straight line with y =
1, rather than a closed loop in Fig. 12. See Fig. 16 for the initial
conditions (xF3 , xF2 , xF1 )CFT with θ = ∞.

and the invariant I in Eq. (93) is

I =
(

πT1

L

)2

sin2

(
πT0

L

)
. (110)

To compare with the initial conditions of Fibonacci quasicrys-
tal, here we choose (xF3 , xF2 , xF1 ) instead of (xF2 , xF1 , xF0 ) as
the initial condition. Based on Eq. (90), one can obtain

(
xF3 , xF2 , xF1

)
CFT =

(
cos

πT0

L
− 2

πT1

L
sin

πT0

L
, cos

πT0

L

− πT1

L
sin

πT0

L
, 1

)
. (111)

Now by defining ECFT := 2 cos πT0
L + 3VCFT, VCFT :=

−πT1
L sin πT0

L , then the initial condition line can be written as

l(ECFT;I ) := (
xF3 , xF2 , xF1

)
CFT

=
(ECFT + VCFT

2
,

ECFT − VCFT

2
, 1
)
, (112)

with the invariant I in Eq. (110) expressed as

I = V 2
CFT. (113)

That is, by redefining variables, we can find a map between the
initial conditions in Eqs. (108) and (112). With this map, the
allowed energy E in the spectrum of a Fibonacci quasicrystal
is mapped to the nonheating phase in a Fibonacci driven CFT
specified by ECFT(T0, T1), and vice versa.
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FIG. 16. Initial conditions in Eqs. (108) and (112) on the two-dimensional manifolds M determined by Eq. (93), with I = V 2 = 0.12,
0.52, and 1.52, respectively. The green solid lines correspond to the initial condition line l(E ,I ) in Eq. (108) for a quasicrystal, and the red solid
lines correspond to l(ECFT;I ) of a fixed length 2 in Eq. (112) for a quasiperiodically driven CFT. For smaller I , l(ECFT;I ) overlaps with l(E ,I ) mainly
in the region with |x|, |y| � 1, z = 1. As I increases, l(ECFT;I ) overlaps with l(E ,I ) mainly in the region with |x|, |y| > 1, z = 1. That is, as I
increases, l(ECFT;I ) moves from the middle “island” into the noncompact funnel. This behavior agrees with the feature of the phase diagram in
Fig. 15 where the nonheating phases vanish for larger VCFT.

One should note that, however, on the CFT side, (ECFT −
3VCFT) ∈ [−2, 2] always lives in a window of finite width. On
the quasicrystal side, we have (E − 3V ) ∈ (−∞,+∞). This
means the nonheating phases in a quasiperiodically driven
CFT are only mapped to part of the energy spectrum in
the Fibonacci quasicrystal. This can be intuitively seen by
considering the initial condition lines in Eqs. (108) and (112)
on the two-dimensional manifold M determined by Eq. (93).
As shown in Fig. 16, the overlap of l(ECFT;I ) and l(E ;I ) is
always a straight line of finite length 2. For smaller V or
VCFT, l(ECFT;I ) overlaps with l(E ;I ) mainly in the region with
|x|, |y| � 1, |z| = 1 in the middle island. For the initial condi-
tions in this region, they are much easier to be bounded as we
iterate the trace map [73]. As V or VCFT increases, the overlap
of l(ECFT;I ) and l(E ;I ) moves gradually from the island in the
middle to the funnel outside. Then, it becomes more difficult

for the initial conditions to stay bounded as we iterate the trace
map. This analysis agrees with the fact that in the phase dia-
grams in Fig. 15, there are no nonheating phases observed for
large VCFT.

This “inclusion map” for small VCFT is totally fine for our
goal: Since the energy spectrum of a Fibonacci quasicrystal
forms a Cantor set of measure zero, then part of the energy
spectrum (which is a connected and finite region in the pa-
rameter space) is also a Cantor set of measure zero. Then
with the exact mapping discussed above, we conclude that the
nonheating phases in the quasiperiodically driven CFT form a
Cantor set of measure zero.

Furthermore, in Fig. 17, we also check explicitly the mea-
sure of the nonheating phases in the phase diagrams in Fig. 15
as we approach the quasiperiodic limit. The procedure of
obtaining the measure is as follows: Fixing a VCFT (or equiva-

0 10 20 30 40 50 60
10-2

10-1

100

=
=0.5
=0.2

10-3 10-2 10-1

10-2

10-1

=
=0.5
=0.2

fitting

FIG. 17. Left: measure of the nonheating phases σn(I, θ ) in the phase diagram in Figs. 15 (θ = ∞), 18 (θ = 0.5), and 40 (θ = 0.2) as a
function of n for different I . From top to bottom, we consider I = 0.042, 0.062, 0.12, 0.152, 0.22, 0.252, and 0.32, respectively. One can find
that the measure is σn(I ) ∝ e−λ(I,θ )n, where n corresponds to the subscript in Fn. Right: the escape rate λ(I, θ ) as a function of I . It is found that
λ(I, θ ) with different θ collapse to the same line described by y = a xb, where a � 0.285 and b � 0.552.
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FIG. 18. Phase diagrams in a periodically driven CFT with the sequence generated by finitely truncated Fibonacci bit string, i.e., {Xj} with
ωn = Fn−1/Fn. The parameters are the same as those in Fig. 14 except that now we change the variables to VCFT and ECFT [see Eq. (112)]. The
blue (yellow) regions correspond to the heating (nonheating) phases.

lently the invariant I) in Fig. 15, for each ωn = Fn−1/Fn, there
are many “energy bands” of nonheating phases. Denoting the
bandwidth of the jth band as dj (n), this bandwidth depends
on both I and θ (which is ∞ here). Then the measure of
nonheating phases with ωn = Fn−1/Fn is defined as

σn(I, θ ) =
∑

j d j (n, I, θ )

Emax(n, I, θ ) − Emin(n, I, θ )
, (114)

where Emax(n, I, θ ) − Emin(n, I, θ ) is the total width of the
energy window, which is 4 for θ = ∞. As seen in Fig. 17
(left), it is found that σn(I, θ ) depends on n as

σn(I, θ ) ∝ e−λ(I,θ )n. (115)

That is, the measure of the nonheating phases decreases ex-
ponentially as a function of n, and tends to become 0 in the
limit n → ∞. This agrees with the fact that the nonheating
phases in the quasiperiodical driving limit form a Cantor
set of measure zero. The decaying rate λ(I, θ ) may also be
interpreted as the escape rate since it describes the rate of
initial conditions in Fig. 12 escaping into the infinity. Also,
we remind here that the real driving steps are Fn rather than n.
And Fn ∼ ω−n at n → ∞, the measure of nonheating phases
depends on Fn as σn(I, θ ) ∝ Fλ(I,θ )/ log ω

n for large n. That
is, σn(I, θ ) decays polynomially as a function of the driving
steps Fn. In addition, we check how the decaying rate λ(I, θ )
depends on the invariant I . As shown in Fig. 17 (right), it is
found that λ(I, θ ) depends on I as λ(I, θ = ∞) = aIb, with
a � 0.285 and b � 0.552. This monotonic dependence is rea-
sonable in the sense that a smaller I corresponds to a narrower

neck connecting the island and “funnel” (see Figs. 11 and 16),
which may suppress the escape rate from the island to the
funnel.

5. Cases that cannot be mapped to Fibonacci quasicrystal

The exact mapping studied in the previous subsection ap-
plies for the case of θ → ∞ in H1(θ ). For a finite θ , we do
not have such an exact mapping. Here we hope to study the
common features among the phase diagrams with different θ

(see, e.g., the phase diagrams in Figs. 13 and 14, and 39 in the
Appendix).

As analyzed in the previous subsections, to study the mea-
sure of the nonheating phases or the escape rate of initial
conditions to infinity on the manifold M (see Fig. 12), it
is more appropriate to fix the invariant I in Eq. (93). This
is because the trace map in Eqs. (90) or (92) holds for a
fixed invariant I . In other words, the points (xFn , yFn , zFn ) in
Eq. (92) move on the manifold M with a fixed geometry.
For this reason, we can replot the phase diagram in Fig. 14
by changing variables in the initial conditions in Eq. (96) as
follows:

VCFT := sin

(
πT1

Leff

)
sin

(πT0

L

)
, ECFT = cos

πT0

L
, (116)

where Leff = L cosh(2θ ) with the invariant

I = [cosh2(2θ ) − 1]V 2
CFT. (117)

With the above procedure, now we map the phase diagram
in the region {(T0, T1)|0 � T0/L � 1, 0 � T1/Leff < 1/2} in
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FIG. 19. Self-similarity in the distribution of Lyapunov exponents along ECFT in Figs. 15 and 18. Left: the CFT is driven by H0 and
Hθ=∞. We fix I = V 2

CFT = 0.32, and scan the Lyapunov exponents along ECFT − 3VCFT. Right: the CFT is driven by H0 and Hθ=0.5. We fix
I = [cosh2(2θ ) − 1]V 2

CFT = 0.32 and scan the Lyapunov exponents along ECFT. Each curve in the lower panel is the zoom-in plot of the region
in blue dashes in the upper panel. We choose n = 1000 in ωn = Fn−1/Fn here.

Figs. 14 to 18. The merit of this mapping is that for each VCFT

in Fig. 18, the invariant I is fixed. Then we study the measure
of the nonheating phases as defined in Eq. (114), with the
result shown in Fig. 17. There are two interesting features:

(1) Similar to the case of θ = ∞, the measure of the
nonheating phases depends on n as σn(I, θ ) ∝ e−λ(I,θ )n. That
is, the measure of the nonheating phases decays exponen-
tially (power law) as a function of n (Fn), indicating that the
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FIG. 20. Self-similarity in the distribution of Lyapunov exponents along T1/L in Figs. 13 and 14. The CFT is driven by H0 and Hθ=∞ (left),
and H0 and Hθ=0.5 (right). Fixing T0/L = 1

2 , we scan the Lyapunov exponents along T1/L. Each curve in the lower panel is the zoom-in plot of
the region in blue dashes in the upper panel. We choose n = 1000 in ωn = Fn−1/Fn here.
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FIG. 21. Lyapunov exponents as a function of T0/L and T1/L for different choices of drivings (from left to right): H0 and Hθ=∞, H0 and
Hθ=0.5, H0 and Hθ=0.2. The Lyapunov exponents are obtained by choosing ωn = Fn−1/Fn in Eq. (118), with n = 1000.

measure will become zero in the quasiperiodical driving limit
n = ∞.

(2) Interestingly, the decay rate (or escape rate) λ(I, θ ) for
θ = 0.5 and ∞ collapse to the same curve with λI = aIb,
where b � 0.552 (see the right plot in Fig. 17). This means
λ(I, θ ) is only a function of I , and is independent of θ .

In addition, in Fig. 17, we also present the results for the
measure of nonheating phases for the case of θ = 0.2 (see
Figs. 39 and 40 for the corresponding phase diagrams). The
decaying rates λ(I, θ = 0.2) as a function of I again fall on the
same curves as that of θ = 0.5 and ∞, as seen in Fig. 17 (right
plot). This means the decay rate λ(I, θ ) is only a function of
the invariant I , but is independent of θ which characterizes the
concrete deformation of Hamiltonians.

6. Lyapunov exponents in the quasiperiodical driving limit

The phase diagrams as studied in the previous subsections
simply tell us whether the CFT is in the heating or nonheating
phases. As n → ∞, the measure of the nonheating phases
becomes zero, and one can only “see” the heating phase in
the phase diagram. In this section, we will use Lyapunov
exponents to further characterize the fine structures in the
heating phases in the limit n → ∞.

Let us first consider a periodical driving with ω = ωn =
Fn−1/Fn in Eq. (101), where the period of driving is Fn. The
Lyapunov exponent in the heating phase can be obtained via
Eq. (60) as

λL(ωn) = 1

Fn
log

(∣∣xFn

∣∣ + √∣∣xFn

∣∣2 − 1
)
, (118)

where xFn = 1
2 Tr(�Fn ) can be efficiently computed using the

recurrence relation.
Now, we consider the distribution of Lyapunov exponents

in Fig. 15 in the quasiperiodical driving limit. To be con-
crete, we fix VCFT (or equivalently I) in Fig. 15, and scan
the Lyapunov exponents along ECFT. As shown in Fig. 19, it
is found that the Lyapunov exponents exhibit self-similarity
structures. That is, by zooming in the distribution of Lyapunov
exponents, one can find the same distributions (in different
scales). One can zoom in the distribution all the way and
see the self-similarity structure, as long as a large enough n

is taken. The self-similarity structure of Lyapunov exponents
also indicates that the Lyapunov exponents can be arbitrarily
small. In other words, in the heating phases of a Fibonacci
quasiperiodic driving CFT, there exist some regions with ar-
bitrary small heating rates for the entanglement and energy
growth.

We also study the distribution of Lypunov exponents in the
T0/T1 parameter space in Figs. 13 and 14. As shown in Fig. 20
are the distributions of λL along T1/L with a fixed T0/L. Inter-
estingly, although the constant of motion I in Eq. (93) varies
along T1/L (with T0/L fixed), the self-similarity structures in
λL are still there.

At last, in Fig. 21, we give a color plot of the distribution
of Lyapunov exponents in the parameter space (T0/L, T1/L).
One can find the patterns inherit some features of the period-
ically driven CFTs (see Fig. 7). It is also helpful to compare
these three plots with the phase diagrams in Figs. 13, 14, and
39, respectively. We emphasize that although there are large
areas of regions with almost zero Lyapunov exponents, they
are actually in the heating phase (see Figs. 13, 14, and 39). If
we zoom in these regions, one can observe the self-similarity
structure (see, e.g., Figs. 19 and 20).

B. Fixed point in the nonheating phase: Entanglement
and energy dynamics

From the previous discussions, we conclude that the
measure of the nonheating phases shrinks to zero when
we approach the quasiperiodical driving limit, i.e., without
special guide it is hard to find the exact location of the
nonheating point. Indeed, for the case with SSD deformation,
namely the driving protocol given by H0 and Hθ=∞, we are
not able to locate such points. Fortunately, for finite θ , we can
use the fixed point discussed in Sec. V A 2 to pin down the
nonheating point. More explicit, in this section, we will show
the following:

(1) If both the driving Hamiltonians are chosen as elliptic
types,20 one can always find exact nonheating phases point.

20For example, all the Hamiltonians of the form in Eq. (71) with a
finite θ are elliptic. See Appendix A.
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(2) At these nonheating points, both the entanglement en-
tropy and the energy evolution are of period 6 in Fibonacci
index, i.e., SA(Fn) = SA(Fn+6) and E (Fn) = E (Fn+6). It is
noted that although the entanglement entropy and energy are
periodic functions at the Fibonacci numbers, they are not
periodic at the non-Fibonacci numbers. See the following
statement.

(3) The envelopes of the entanglement entropy and total
energy will grow logarithmically and in a power law as a
function of the driving steps n (not the Fibonacci index),
respectively.

We will first illustrate the above statements with simple
examples in the following discussions, and then prove them
in Sec. V B 4.

1. Entanglement and energy evolution at Fibonacci numbers

In the following, we will study the exact nonheating fixed
point and its properties with the simple choice of HA = Hθ

and HB = Hθ=0, where the form of Hθ is given in Eq. (71).
The initial conditions for the trace map have been given in
Eq. (96). By considering

T0/L = T1/Leff = 1/2, where Leff = L cosh(2θ ), (119)

the initial condition has the form(
xF2 , xF1 , xF0

) = ( − cosh(2θ ), 0, 0), (120)

which will start a fixed point with constant of motion I =
cosh2(2θ ) − 1 under the trace map (92), i.e.,

T : (−a, 0, 0) → (0,−a, 0) → (0, 0,−a) → (a, 0, 0) → (0, a, 0) → (0, 0, a) → (−a, 0, 0) → · · · , (121)

where a := cosh(2θ ). In fact, for this fixed point, not only the traces [recall xFk = 1
2 Tr(�Fk )] have periodicity xFk = xFk+6 , the

corresponding matrices themselves are also returning periodically:

�F6k+1 = i

(
cosh(2θ ) − sinh(2θ )
sinh(2θ ) − cosh(2θ )

)
, �F6k+2 = −

(
cosh(2θ ) sinh(2θ )
sinh(2θ ) cosh(2θ )

)
,

�F6k+3 = i

(− cosh(4θ ) sinh(4θ )
− sinh(4θ ) cosh(4θ )

)
, �F6k+4 = i

(
cosh(2θ ) − sinh(2θ )
sinh(2θ ) − cosh(2θ )

)
,

�F6k+5 =
(

cosh(2θ ) − sinh(2θ )
− sinh(2θ ) cosh(2θ )

)
, �F6k+6 = i

(
1 0
0 −1

)
. (122)

Thus, the time evolution of entanglement entropy of the
half-system A = [0, L/2] and the total energy at the Fibonacci
numbers are

SA(Fj ) − SA(0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2θc
3 , j = 6k + 1

− 2θc
3 , j = 6k + 2

4θc
3 , j = 6k + 3

2θc
3 , j = 6k + 4

2θc
3 , j = 6k + 5

0, j = 6k + 6

E (Fj ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

πc
8L cosh(4θ ) − πc

6L , j = 6k + 1
πc
8L cosh(4θ ) − πc

6L , j = 6k + 2
πc
8L cosh(8θ ) − πc

6L , j = 6k + 3
πc
8L cosh(4θ ) − πc

6L , j = 6k + 4
πc
8L cosh(4θ ) − πc

6L , j = 6k + 5
πc
8L − πc

6L , i = 6k + 6
(123)

where SA(0) denotes the entanglement entropy in the initial
state (which is the ground state of Hθ=0 here), and EF6k =
− πc

24L corresponds to the Casimir energy. Also, see Figs. 22
and 23 for examples with c = 1 and θ = 0.5 and 0.2.

An interesting remark is that the special initial condition
we choose that forms the fixed point are conformal maps that
correspond to the “reflection matrix” [since we require the
initial traces to vanish, see discussions near (77)]. Note, the
product of two distinct reflections is hyperbolic, i.e., if we
drive the system with periodic driving we will end up heating

the system. However, what we present just now is that if we
drive it in a Fibonacci pattern, they happen to return and form
a nonheating point in the quasiperiodic driving phase diagram.

2. Entanglement and energy evolution at non-Fibonacci numbers

As shown in Figs. 22 and 23, between the Fibonacci num-
bers, the numerical simulation shows that entanglement and
energy still increase for initial condition at fixed point. In
the context of Fibonacci quasicrystal, it was found that the
wave-function amplitude in the energy spectrum and some
physical observables (e.g., the resistance) have a power-law
growth as a function of the lattice site n [43,74–76]. In our
setup, at the driving steps that are non-Fibonacci numbers, we
expect the entanglement entropy or total energy also grows in
a certain subexponential way.

Now we provide analytic understanding using the property
of the Fibonacci driving protocol. The idea is that, for any
integer n which can be written as a sum of distinct Fibonacci
numbers,

n =
m∑

j=1

Fkj with k1 > k2 > · · · km (124)

the corresponding conformal transformation matrix �n can be
written as

�n = �Fk1
�Fk2

. . . �Fkm
, (125)

where each �Fk with Fibonacci number has been obtained in
Eq. (122). In particular, we can find some simple sequence:
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FIG. 22. Time evolution of the entanglement entropy of A = [0, L/2] at the nonheating fixed point in Eq. (96) for θ = 0.5 (left) and θ = 0.2
(right). The red solid lines correspond to the entanglement entropy at the Fibonacci numbers n = Fj , with the expression given in Eq. (123),
where we choose c = 1. The points in rectangles, downward triangles, upward triangles, and diamonds correspond to the entanglement entropy
evolution at the non-Fibonacci numbers, with the expressions given in Eqs. (129), (133), (137), and (140), respectively.

(1) Let

n = F6m + F6m−3 + F6m−6 + · · · F6 + F3 (126)

be an integer that increases with m. Correspondingly

�n = �6m�6m−3 . . . �6�3 = (�6�3)m. (127)

Recall from (122), the product �6�3 and �n can be evaluated
explicitly

�6�3 =
(

cosh(4θ ) − sinh(4θ )
− sinh(4θ ) cosh(4θ )

)
,

�n =
(

cosh(4mθ ) − sinh(4mθ )
− sinh(4mθ ) cosh(4mθ )

)
. (128)

The corresponding entropy for the half-system A = [0, L/2]
and the total energy are

SA(n) − SA(0) = c

3
4mθ, E (n) = πc

8L
cosh(8mθ ) − πc

6L
,

(129)

where we have constrained θ > 0. The plot of Eq. (129) can
be found in Figs. 22 and 23. Note that SA(n) and E (n) grow
linearly and exponentially, respectively, as a function of m for
large m. However, m is not the actual driving step number. We
need to convert to the actual step number n ∼ e6m log ϕ , which
grows exponential with m for large m, and ϕ =

√
5+1
2 is the

FIG. 23. Time evolution of the total energy at the nonheating fixed point in Eq. (96) for θ = 0.5 (left) and θ = 0.2 (right). The red solid lines
are the total energy at the Fibonacci numbers n = Fj , with the expression given in Eq. (123), where we choose c = 1 and L = 1. The points
in rectangles, downward triangles, upward triangles, and diamonds correspond to the entanglement entropy evolution at the non-Fibonacci
numbers, with the expressions given in Eqs. (129), (133), (137), and (140), respectively.
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FIG. 24. Comparison of the lattice and CFT calculations at the nonheating fixed point for the entanglement entropy evolution (left) and
the total energy evolution (right). Here we choose c = 1, A = [0, L/2], θ = 0.02, and nmax = F11 = 144. In the lattice calculation we consider
L = 2000. A plot of the entanglement entropy for a larger nmax can be found in Fig. 25.

golden ratio. Therefore,

SA(n) − SA(0) � 2 cθ

9 log φ
log n, E (n) � πc

16L
n

4θ
3 log φ .

(130)

That is to say, at the non-Fibonacci numbers n in Eq. (126),
the entanglement entropy SA(n) grows logarithmically in time,
and the total energy grows in a power law in time. This corre-
sponds to the feature of phase transition (or critical phase) in
the periodically driven CFT (see Table I).

(2) Now we choose a difference sequence to demonstrate
that the growth rate at this fixed point depends on the sequence
we pick when approaching the long-time limit. Let

n = F6m−1 + F6m−7 + · · · + F5 (131)

and, correspondingly,

�n = �6m−1�6m−7 . . . �5 = (�F5 )m

=
(

cosh(2mθ ) − sinh(2mθ )
− sinh(2mθ ) cosh(2mθ )

)
. (132)

The entropy and energy formulas are

SA(n) − SA(0) = c

3
2mθ � cθ

9 log φ
log n, (133)

E (n) = πc

8L
cosh(4mθ ) − πc

6L
� πc

16L
n

2θ
3 log φ . (134)

In the two examples above, the entanglement entropies all
grow with n. One can observe in Fig. 22 that at certain points
the entanglement entropy may decrease. We will investigate
these points using the following examples:

(1) Let

n = F6m−1 + · · · + F11 + F5 + F4. (135)

Note the last element is important. The corresponding matrix
is given as

�n = (�F+5)m�4

= i

(
cosh[(m − 1)2θ ] sinh[(m − 1)2θ ]

− sinh[(m − 1)2θ ] − cosh[(m − 1)2θ ]

)
. (136)

The corresponding entropy and energy formulas are

SA(n) − SA(0) = − c

3
2(m − 1)θ,

E (n) = πc

8L
cosh[4(m − 1)θ ] − πc

6L
, (137)

where θ > 0. The results are similar to Eq. (133), with a
minus sign difference in the entropy formula. In other words,
we have a logarithmic decrease in the entanglement evolution
and a power-law growth in the total energy evolution (see
Figs. 22 and 23).

The entanglement decrease might look bizarre, but this
could happen in a system with infinite entropy to start with,
e.g., in the continuous field theories where a UV regulator is
required in the entropy calculation, which itself is a manifes-
tation of the large entanglement in the vacuum state.

Technically, we may explain the origin of the decreasing
entropy as follows: the form of the conformal transforma-
tion in (136) indicates that the energy-momentum density
[see (32)] locates exactly at x = L/2, which coincides with
the entanglement cut we choose. As discussed in detail in
Appendix A 3 b, in this case, the entanglement entropy will
decrease in time. Physically, it is because the degrees of
freedom that carry the entanglement between two regions are
accumulated at the entanglement cut. We emphasize that the
points with decreasing entanglement entropy are due to the
coincidence of the energy-density peak and the entanglement
cut, and therefore are not generic. In general, at the nonheating
fixed points, the envelopes of the entanglement entropy and
total energy will grow logarithmically and in a power law in
time, respectively.

(2) Another example with decreasing entropy we present
in Figs. 22 and 23 is that

n = F6m + F6m−3 . . . F6 + F3 + F1 (138)

with

�n = (�6�3)m�1 (139)

and the corresponding entropy and energy

SA(n) − SA(0) = − c

3
(4m − 2)θ,

E (n) = πc

8L
cosh[(8m − 4)θ ] − πc

6L
. (140)
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FIG. 25. Comparison of the CFT (top left) and lattice calculations on the entanglement entropy evolution SA(n) at the nonheating fixed
point. Here we choose c = 1, A = [0, L/2], θ = 0.02, and nmax = F15 = 987. In the lattice calculation, we consider L = 500 (top right), 1000
(bottom left), and 2000 (bottom right), respectively.

Using the same procedure above, one can find many other
series of discrete points with different growing (and decreas-
ing) rates in the entanglement and energy evolution in Figs. 22
and 23, these series together form the fan structure in the
figures.

3. Comparison of CFT and lattice calculations

In this section, we compare the CFT and lattice calcu-
lations for the time evolution of entanglement entropy and
energy at the nonheating fixed point as discussed in the previ-
ous subsections. The lattice model we use is the same as that
studied in Sec. IV D 2. The two lattice Hamiltonians under
consideration are

H0 = 1

2

L−1∑
j=1

c†
j c j+1 + H.c., Hθ = 1

2

L−1∑
j=1

f ( j)c†
j c j+1 + H.c.,

(141)
where L is the total length of the lattice and f ( j) = 1 −
tanh(2θ ) cos 2π j

L , with the initial state chosen as the ground
state of H0. The corresponding driving time intervals are T0 =
L/2 and T1(θ ) = Leff/2, where Leff = L cosh(2θ ). Then, we
drive the system with the Fibonacci sequence as introduced in
Sec. V A 1.

Figure 24 presents the comparison of the lattice and CFT
results on the entanglement and energy evolution. We find
that the agreement is remarkable. A comparison on the en-

tanglement entropy evolution with larger driving steps n can
be found in Fig. 25. In general, the agreement will break down
for a large enough n since more higher-energy modes will be
involved as n increases (recall that the envelope of the total
energy growth is power law in time at the nonheating fixed
point). On the lattice model, the high-energy modes are no
longer well described by a CFT, and therefore there must be a
breakdown at certain n.21

21More precisely, let us denote n∗ as the driving step at which
the agreement between CFT and lattice calculations breaks down.
From Fig. 24, one can observe that n∗ is a monotonically increasing
function of L. This dependence can be understood as follows: One
may consider the wave function in the “Fock space” (which is Verma
module here) of a CFT of finite length L. The initial state is the
ground state |0〉. As we drive the system, higher-energy modes |N〉
(N > 1) will be involved. It is noted that N is independent of the
length L of the CFT. Since the energy spacing is proportional to 1/L,
one can find the energy EN (L) corresponding to |N〉 is higher than
EN (L′) if L < L′. For a small L, EN (L) may be in the high-energy
region which is no longer described by a CFT. However, by increas-
ing L to a large enough L′, we can push EN (L′) into the low-energy
region which is well described by a CFT. This is why we have a better
agreement in Fig. 24 for a larger L.
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4. Exact nonheating fixed points in more general cases

With the concrete examples illustrated in the previous
discussions, now we are ready to prove the statements as men-
tioned in the beginning of Sec. V B, which we rewrite here:

(1) If both the driving Hamiltonians are chosen as elliptic
types, one can always find exact fixed points in the nonheating
phases.

(2) At these (nonheating) fixed points, both the entangle-
ment entropy and the energy evolution are of period 6, i.e.,
SA(Fk ) = SA(Fk+6) and E (Fn) = E (Fn+6).

(3) The envelopes of the entanglement entropy and total
energy will grow logarithmically and in a power law as a
function of the driving steps n, respectively.

Proof of claim 1. The nonheating fixed point has initial
condition (xF2 , xF1 , xF0 ) = (a, 0, 0), in terms of traces, we have

Tr(MAMB) = 2a , Tr(MA) = Tr(MB) = 0. (142)

In other words, to prove claim 1, we only need to find suitable
initial conditions TA and TB for two elliptic Hamiltonians
HA and HB such that the SU(1, 1) matrices MA and MB are
traceless, i.e., are reflection matrices [see (79)]. Note the con-
dition Tr(MAMB) = 2a does not have a content as a can be
arbitrary.

Now, we explicitly find such TA and TB. As discussed
in Appendix A 1, for a general elliptic Hamiltonian H (see
Sec. II A) with driving interval T , the corresponding Möbius
transformation is represented as follows:

M =
(

− cos
(CπT

l

) − i σ 0

C sin
(CπT

l

) −i σ++iσ−
C sin

(CπT
l

)
i σ+−iσ−

C sin
(CπT

l

) − cos
(CπT

l

) + i σ 0

C sin
(CπT

l

) )
, (143)

where C =
√

(σ 0)2 − (σ+)2 − (σ−)2 and (σ 0)2 − (σ+)2 −
(σ−)2 > 0 with σ 0, σ+, σ− ∈ R. l = L/q is the wavelength
of deformation [see, e.g., Eq. (13)]. One can obtain the re-
flection matrix by choosing T = 1

2 Leff in Eq. (143), where
Leff := l/C is the effective length. Then Eq. (143) becomes

M =
(

−i σ 0

C −i σ++iσ−
C

i σ+−iσ−
C i σ 0

C

)
, (144)

which is traceless obviously. That is to say, to arrive at the
nonheating fixed point, we need to set TA(B) = l/2CA(B) and
the corresponding reflection matrices MA and MB take the
form of (144) with subscripts A and B. �

Proof of claim 2. Having two reflection matrices MA and
MB, we immediately have the following useful property:

M2
A = M2

B = −1 . (145)

Now let us use this to prove the claim 2.
To verify the periodicity of entanglement entropy SA(Fn)

and energy E (Fn), it is sufficient to show the periodicity of the
conformal transformation matrix �Fn . Let us first examine the
case for n = 0 . . . 6. Following the definition, the first 3 are

�F0 = MB, �F1 = MA, �F2 = MAMB. (146)

Note the �F0 �= �F1 is introduced as a convenient notation
which satisfies the recurrence relation. For n = 3, 4, we can
use the recurrence relation and find

�F3 = �F2�F1 = MAMBMA,

�F4 = �F3�F2 = MAMBMAMAMB = MA, (147)

where in the last equation we have used the property that
M2

A = M2
B = −1. The results for n = 5, 6 are also obtained

analogously

�F5 = �F4�F3 = MAMAMBMA = −MBMA,

�F6 = �F5�F4 = −MBMAMA = MB. (148)

Note we have already verified the periodicity for �F0 =
�F6 , further more �F7 = �F6�F5 = −MBMBMA = MA =

�F1 . And the recurrence relation for �Fn only depends on the
previous two elements, therefore, we conclude

�Fn+6 = �Fn , n ∈ Z�0 . (149)

The claim 2 follows immediately. �
Proof of claim 3. First, Refs. [76,77] generally prove that

the norm of �n is polynomially bounded at λL = 0. Therefore,
we only need to show there is at least a sequence of point that
approaches infinity polynomially similar to what we showed
in last section for a specific example.

Note, for any two distinct reflection matrix MA and MB,
their product is hyperbolic. Then, we can use their product to
generate a sequence of points, e.g., �F6 = MB and �F7 = MA

we can generate

�n = �F6m+1�F6m�F6m−5�F6m−6 . . . �F7�F6 = (MAMB)m

(150)
for

n = F6m+1 + F6m + F6m−5 + F6m−6 + · · · + F7 + F6 . (151)

Since | Tr(MAMB)| > 2, we conclude that | Tr �n| ∼ emλ at
m → ∞ where

λ = log
| Tr(MAMB)| + √| Tr(MAMB)| − 4

2
> 0. (152)

Therefore, the total energy will grow exponentially with re-
spect to m as if in the heating phase. However, remember the
step index n is also exponential in m and therefore in terms of
physical steps n, the energy grows in power law. Similarly, we
have the entanglement entropy grow logarithmically.22 �

C. Entanglement and energy dynamics in the heating phases

In this section, we present the rich features in the heating
phase, including the time evolution of total energy, energy-
momentum density, and entanglement entropy.

22For the subtlety about the sign in entropy growth, one can always
multiply one more matrix or move the entanglement cut to ensure the
entropy is growing instead of decreasing.
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FIG. 26. Group walking of ρ (top) and (ρ ζ ) (bottom) in the heating phase of a Fibonacci driven CFT. We consider a Fibonacci
quasiperiodical driving with H0 and Hθ=0.5. The parameters are T0/L = 1

2 , and (from left to right) T1/Leff = 0.041, 0.04, and 0.0401,
respectively. The total number of driving steps is taken as F20 = 10 946.

1. Group walking and entanglement and energy evolution

As discussed in Sec. III B, the group walking of ρ and
(ρ ζ ) of the SU(1, 1) matrix in (43) reflects the time-evolution
properties of the total energy, energy-momentum density, and
the entanglement entropy. In the following, we will study
the group walking of ρ and ρζ , as well as the energy and
entanglement evolution. The detailed discussion on energy-
momentum density is left to the next subsection.

First, we consider the group walking of ρ in �n:

�n = 1√
1 − |ρ|2

( √
ζ −ρ∗ 1√

ζ

−ρ
√

ζ 1√
ζ

)
, ρ ∈ D, ζ ∈ ∂D.

(153)
Shown in Fig. 26 is a sample plot of the group walking of
ρ and ρζ nearby a certain point [which is T0/L = 1

2 and
T1/Leff = 0.04 here, with Leff = L cosh(2θ )] in the parameter
space. See also Fig. 27 for another sample plot. The two
driving Hamiltonians are H0 and Hθ=0.5, with Hθ given in
Eq. (71). As the driving steps n increase, one can find that
ρ will walk to a certain point ρn=∞ on ∂D. This is quite an
interesting feature since ρ does not move around on ∂D in the
limit n → ∞.23

23It is interesting that this phenomenon also happens in the heating
phases of both the periodic and random driving CFTs, where we can
prove that ρn converge to a fixed ρn=∞ on ∂D [see, e.g., Eq. (63) for
the case of periodical drivings]. We suspect this is generic feature
as long as the Lyapunov exponent is positive, and it is interesting to
prove this observation, e.g., in the Fibonacci driven CFT here.

As we have discussed in Sec. III B, as ρ approaches the
boundary ∂D, both the entanglement entropy and the total
energy of the system will grow accordingly, as seen from
Eqs. (45) and (49). In Figs. 26 and 27, one can find that for
different (T0, T1), ρ approaches the boundary ∂D with differ-
ent rates, which correspond to different Lyapunov exponents
and different growth rates in the entanglement entropy and
total energy. This can be intuitively seen by looking at the
entanglement and energy growth in Figs. 28 and 29, respec-
tively. Also, the patterns in |ρn| in Figs. 26 and 27 result in the
oscillating features in the entanglement and energy growth in
Figs. 28 and 29.24

As a remark, it is noted that for the case of T1/Leff =
0.0401 in Figs. 26 and 28, ρ does not walk to the boundary
∂D, and the total energy seems to simply oscillate in n. This is
because the Lyapunov exponent at this point is too small. One
needs to take a longer time (larger n) to observe the growth
behavior.

Second, let us consider the group walking of (ρζ ). As
shown in Figs. 26 and 27, different from the behavior of ρ,
which walks to a fixed ρ∞ in the n → ∞ limit, (ρζ ) will
walk around on the boundary ∂D even in the n → ∞ limit.
This will result in two interesting features:

24It is noted that the total energy only depends on |ρ|, as seen
from Eq. (45). Therefore, the oscillating structures in E (n) are totally
due to |ρ|. For the entanglement entropy SA(n), however, it depends
on both |ρ| and ρζ , as seen from Eq. (49). Then, the oscillating
structures in SA(n) come from both |ρ| and ρζ .
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FIG. 27. Group walking of ρ (top) and (ρ ζ ) (bottom) in the heating phase of a Fibonacci driven CFT. We consider a Fibonacci
quasiperiodical driving with H0 and Hθ=0.5. The parameters are T0/L = 0.6, and (from left to right) T1/Leff = 0.06, 0.05, and 0.055, respectively.
The total number of driving steps is taken as F20 = 10 946.

(1) The locations of energy-momentum density peaks will
move around during the quasiperiodic driving, as seen from
Eq. (48).

(2) More oscillating structures will be introduced in the
time evolution of the entanglement entropy. As discussed
in Sec. III B, the total energy only depends on |ρ|, but the
entanglement entropy depends on both |ρ| and ρζ , as seen

in Eq. (49). This extra oscillating structure can be found in
Figs. 28 and 29, in particular for the case with large Lypunov
exponents.

In a short summary, there are rich patterns in the group
walking of ρ and (ρζ ) in the heating phase of a Fibonacci
quasiperiodically driven CFT. The velocity of ρ walking to-
wards ∂D determines the value of Lyapunov exponents, and
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FIG. 28. Time evolution of the total energy (top) and the entanglement entropy (bottom) of A = [0, L/2]. The parameters are the same
as those in Fig. 26. Note that the total energy and entanglement entropy (in the left plot) are plotted in a small window to see the detailed
oscillating structure.
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FIG. 29. Time evolution of the total energy (top) and the entanglement entropy (bottom) of A = [0, L/2] of the system. The parameters
are the same as those in Fig. 27. Note that the total energy and entanglement entropy (in the left plot) are plotted in a small window to see the
detailed oscillating structure.

therefore the growth rate of the entanglement entropy and total
energy. The behavior of |ρ| determines the concrete features
of the energy growth E (n) through Eq. (45). In general, one
can observe various oscillating features in the growth of E (n).
Both |ρ| and (ρζ ) determine the features of SA(n) through
Eq. (49), where more patterns of oscillations can be observed
comparing to E (n).

2. Locations of energy-momentum density peaks

There are several features on the distribution of energy-
momentum density we hope to point out in the heating phase
of a Fibonacci driven CFT:

(1) In the heating phase, there are an array of peaks
of energy-momentum density distributed in the real space.
The locations of these peaks are determined by �n through
Eq. (48). In fact, as we have shown in Sec. III A, a positive
Lyapunov exponent λL always indicates an array of peaks in
the energy-momentum density 〈T (x, n)〉 in real space.

(2) Different from the periodically driven CFT, where the
peaks are located at the same positions after each period of
driving [see Eq. (66)], in the quasiperiodical driving, since
there is not a regular driving period, the locations of the
energy-momentum density peaks will in general move around
after each driving step. This can be seen based on the group
walking of (ρζ ), which determines the locations of energy-
momentum density peaks [see Eq. (48)], in Figs. 26, 27,
and 30.

(3) Although the locations of the energy-momentum den-
sity peaks will move around, in the long-time driving limit
(n � 1), we can still find some regular patterns. In particular,
we find there is an even or odd effect in the distribution of
these energy-momentum density peaks when the driving steps
are Fibonacci numbers. More concretely, let us denote xpeak as
the locations of peaks of the energy-momentum density. Then

we observe that

xpeak(Fn) = xpeak(Fn+2), (154)

as shown in Fig. 30.
We find that the even-odd effect as mentioned above is

closely related to the group walking of ρ as discussed in
the previous subsection, i.e., in the long-time driving limit
n → ∞, ρ will flow to a certain point ρ∞ on ∂D. By taking
this as an assumption, i.e., limn→∞ ρn = ρ∞ ∈ ∂D, one can
prove that there are indeed even or odd effects in the locations
of energy-momentum density peaks, as follows.

Let us denote the matrix elements of �Fn−1 and �Fn as
follows:

�Fn−1 = 1√
1 − |ρ|2

( √
ζ −ρ∗ 1√

ζ

−ρ
√

ζ 1√
ζ

)
,

�Fn = 1√
1 − |ρ ′|2

( √
ζ ′ −ρ ′∗ 1√

ζ ′

−ρ ′√ζ ′ 1√
ζ ′

)
. (155)

Then, applying the recurrence relation, we have

�Fn+1 = �Fn�Fn−1

= 1√
(1 − |ρ|2)(1 − |ρ ′|2)

×
(√

ζ
√

ζ ′ + ρ(ρ ′)∗
√

ζ√
ζ ′ −(ρ ′)∗ 1√

ζ ·√ζ ′ − ρ∗
√

ζ ′√
ζ

−ρ ′√ζ
√

ζ ′ − ρ
√

ζ√
ζ ′

1√
ζ ·√ζ ′ + ρ∗ρ ′

√
ζ ′√
ζ

)

:= 1√
1 − |ρ ′′|2

( √
ζ ′′ −ρ ′′∗ 1√

ζ ′′

−ρ ′′√ζ ′′ 1√
ζ ′′

)
. (156)
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FIG. 30. (Top) Group walking of (ρζ ) at all numbers (green dots) and at Fibonacci numbers (purple). The two driving Hamiltonians
are H0 and Hθ=0.5. The parameters (from left to right) are T0/L = 1

2 and T1/Leff = 0.041, T0/L = 1
2 and T1/Leff = 0.04, T0/L = 0.6 and

T1/Leff = 0.06, T0/L = 0.6 and T1/Leff = 0.05, respectively. The first (last) two plots have the same parameters as those in Fig. 26 (Fig. 27).
The total number of driving steps are F25 = 121 393. This means there are in total 25 steps of moving (purple lines) at the Fibonacci numbers.
(Bottom) Arg(ρζ ) ∈ (−π, π ] as a function of n, where n denotes the nth Fibonacci numbers Fn. The parameters are the same as the top panel,
but with a larger driving number F32.

In the heating phase, assuming ρ ≈ ρ ′ → ρ∞ at n → ∞ with
|ρ∞| = 1, we have

ρ ′′ζ ′′ = ρ ′ζ ζ ′ + ρζ

1 + ρ∗ρ ′ζ ′ = ρζ (1 + ζ ′)
1 + ζ ′ = ρζ ,

ρ ′′ = ρ ′ = ρ = ρ∞. (157)

The first formula in Eq. (157) indicates that

(ρζ )Fn = (ρζ )Fn+2 , n ∈ Z>0. (158)

According to Eq. (48), this implies that in the long-time driv-
ing limit there is an even-odd effect in the locations of peaks of
the energy-momentum density at the Fibonacci numbers [see
Eq. (154)].

D. Other quasiperiodic driving: Aubry-André type

The other well-known model for the quasicrystal is the
Aubry-André model [78,79], which describes free-electron
hopping on a one-dimensional lattice with the following
Hamiltonian:

H =
∑

j

(c†
j c j+1 + c†

j+1c j ) + λ
∑

j

cos(2πω j + δ)c†
j c j,

where ω is an irrational number that is incommensurate to
the lattice periodicity and thus characterizes a quasiperiodic
onsite potential. It has been used for the study of localization
[80] and also appears in the two-dimensional integer quantum
Hall effect [61]. Given an irrational ω, this model has a lo-

FIG. 31. Aubry-André quasiperiodic driving. In the nth cycle, H0

is applied for time T0 = nωL and H1 is applied for time T1.

calization transition at λ = 2 and the two phases are related
by a duality transformation. This is rigorously proved in the
mathematics literature [67,80,81] by studying the so-called
almost Mathieu operator, which is equivalent to the Aubry-
André model at the single-particle level.

Motivated by the Aubry-André model, here we intro-
duce another type of quasiperiodic driving, which we call an
Aubry-André (quasiperiodically) driven CFT.

1. Setup

Let us first recall our minimal setup of the periodically
driven CFT in Sec. IV D. Our protocol for the quasiperiodic
driving will be a modification to that. In the minimal setup,
the system takes the open boundary condition with q = 1.
As depicted in Eq. (70), each cycle consists of two steps
(H0, T0) and (H1, T1), with H0 being Hθ=0 and H1 being Hθ �=0.
The SU(1, 1) matrices associated to the unitary evolution
e−iH0T0 and e−iH1T1 are denoted as M0 and M1, respectively.
The formula for M1 is copied below for reader’s convenience.
Plugging in θ = 0 yields M0:

M1 =
(

α β

β∗ α∗

)
,

{
α = cos

(
πTθ

Leff

)+i cosh(2θ ) sin
(

πTθ

Leff

)
,

β = −i sinh(2θ ) sin
(

πTθ

Leff

)
.

Note that T0 and T1 appear in M0 and M1 through cos and sin,
which implies that T0 → T0 + L and T1 → T1 + Leff yield the
same set of SU(1, 1) matrices.25

This observation leads to the following way of introduc-
ing the quasiperiodicity. We keep T1 fixed and let T0 have
a dependence on the number of cycles. In the nth cycle, H0

is applied for time T0 = nωL, where L is the system size.
The whole sequence is depicted in Fig. 31. If ω = p/q is a

25Up to an overall minus sign that does not affect the dynamics
because the actual Möbius transformation acts as SU(1, 1)/Z2.
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FIG. 32. Phase structure and Lyapunov exponents for the sequence of periodically driven CFT determined by ωn = Fn−1/Fn, with n = 3
(top left) and n = 5 (top right). In the top left and top right, the blue (white) regions are the region where the system is nonheating (heating).
In the bottom left where θ = 1

5 , for a given n, the blue lines (blank region) correspond to the nonheating (heating) phase. In the bottom right
(where θ = 1

5 and n = 8) is the distribution of Lyapunov exponents.

rational number, the unitary evolution generated by e−iH0T0

will repeat after every q cycles, and protocol is reduced to a
periodic driving with each period consisting of q cycles. If ω

is irrational, such periodicity disappears which gives rise to a
quasiperiodic driving. One can also fix T0 and vary T1 instead,
which does not change the result qualitatively and thus will
not be discussed.

2. Phase structure for a single irrational number

It is subtle to directly access the dynamics with an irrational
ω, especially when there is no analytical tool. For example,
to extract the Lyapunov exponent by numerically computing
the matrix product can be unstable due to numerical errors.
Therefore, we will track a sequence of rational numbers to
approach the physics at the irrational numbers. Each rational
number corresponds to a periodic driving system and we can
apply the trace classifier to identify the phase structure. This
is exactly the same as our discussion for the Fibonacci driven
CFT in Sec.V A 3.

To illustrate the general features, let us consider ω =
(
√

5 − 1)/2 being the inverse golden ratio as a concrete ex-
ample, which can be approximated by the sequence ωn =
Fn−1/Fn, n = 1, 2, 3 . . . . For a given n, the driving repeats
after every Fn cycles. We can compute the matrix that cor-
responds to the evolution for one period and determine the
dynamics from the trace.

The phase structures for different values of n and θ are
shown in Fig. 32, which shares a lot of similarity with the
Fibonacci case but also has some differences. Given n, the
region for the nonheating phase gradually decreases as θ

increases. Given θ , the nonheating region splits into many

“bands.” Notice that T1 = 0 and Leff are actually identified,
the number of bands is exactly equal to Fn when Fn is even
and Fn − 1 when Fn is odd. If one computes the Lyapunov
exponent for a fixed n, it shows peaks with equal spacing,
as shown in Fig. 32(d). It implies that as ω → (

√
5 − 1)/2,

the self-similarity structure will not appear as in the Fibonacci
case. The reason why the peaks have equal spacing will be
explained later.

We can also check explicitly the measure of the nonheating
phase as approaching the quasiperiodic limit. Following the
same prescription as (114), we call σn(θ ) the measure of
the nonheating phase, which is a function of n and θ . The
result is shown in Fig. 33(a). For a given θ , the measure is
exponentially decaying at large n, similar to what we have
found for the Fibonacci case. We introduce the decaying rate
λ(θ ) as σn(θ ) ∝ e−λ(θ )n, and find that it does not have a strong
dependence on θ .

These two features also hold for generic rational and ir-
rational numbers and can be summarized by the following
statements.

(1) If ω = p/q is a rational number with p, q being co-
prime, then the region for the nonheating phase splits into
multiple bands. The number of bands depends on q as

number of bands =
{

q, q ∈ 2Z
q − 1, q ∈ 2Z + 1.

(159)

Note the periodic boundary condition in T1 when we count
the number of bands, namely, the first band and last band (in
vertical order) are considered to be the same band.

(2) When ω = an/bn approaches an irrational number as
n → ∞, the measure for the nonheating phase decreases ex-
ponentially with n.
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FIG. 33. (Left) The measure of the nonheating phase σn(θ ). (Right) The decay rate λ(θ ) as a function of θ . For the curve with θ = 0.1,
only the data for n � 8 are used for the fitting.

The second statement is only empirical and based on the
numerical observation. The first statement can be understood
by a perturbative argument as follows.

Perturbative proof of the statement 1. Let us assume ω =
p/q and analyze the matrix of the unitary evolution for one
period, which consists of q cycles. Notice that L and Leff are
merely the units for T0 and T1, we can set both of them to be 1
without changing the physics.

We first consider the limit θ = 0, so that M0 and M1 are
both diagonal matrices of pure phases. For the kth cycle of the
period, T0 = k p

q and we have

M (0)
(k) = M0(T0)M1(T1; θ = 0)=

(
eiπ (kp/q+T1 )

e−iπ (kp/q+T1 )

)
.

(160)

The lower index denotes the cycle and the upper index means
it is the zeroth-order term in the small-θ expansion. The
matrix for the whole period �(0)

q = M (0)
(1) M

(0)
(2) . . . M (0)

(q) and its
trace can be easily computed, and we have

∣∣Tr �(0)
q

∣∣ =
{

2| sin qπT1| q ∈ 2Z,

2| cos qπT1| q ∈ 2Z + 1,
(161)

where we have used the condition that p and q are coprime. A
typical curve for | Tr �(0)

q | is shown in Fig. 34(a). Therefore,
even without adding θ , the trace can touch the critical value

| Tr �q| = 2 at the following positions:

q ∈ 2Z : T1 = 1

q

(
r + 1

2

)
, r = 0, 1, . . . , q − 1 ;

q ∈ 2Z + 1 : T1 = r

q
, r = 0, 1, . . . , q − 1 . (162)

Note that T1 has a period 1, which fixes the range of r.
Then, we turn on a tiny θ and consider its contribution to

Tr �q perturbatively. In particular, if | Tr �q| exceeds 2 for
a certain range of T1, a heating phase appears there and will
continue to exist for larger θ . At small θ , such thing is more
likely to happen at those special positions where | Tr �(0)

q |
already touches 2. A numerical calculation for all small values
of q confirms that such thing does always happen. One typical
example is shown in Fig. 34(b). For large q, we consider the
following perturbative calculation. Each M(k) can be expanded
to the second order in θ :

M(k) = M (0)
(k) + θM (1)

(k) + θ2M (2)
(k) + O(θ3),

M (1)
(k) = 2i sin πT1

( −eiπkp/q

e−iπkp/q

)
,

M (2)
(k) = 2i sin πT1

(
eiπkp/q

−e−iπkp/q

)
. (163)

The first nonvanishing contribution comes from the second
order of θ , which has two terms. One is the cross term of M (1)

(k) ,

the other only contains M (2)
(k) . In the limit of large q, the second

FIG. 34. The absolute value of the trace of the matrix for one period with θ = 0 (left) and θ = 0.1 (right). We choose p = 2, q = 5 for
both plots. In (b), the blue dots are the approximated result in Eq. (164). It matches the exact value quite well.
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FIG. 35. The phase diagram for the Aubry-André quasiperiodic driving CFT. The plot uses θ = 0.2 and includes all the rational number
whose denominators are equal or less than 20. The usage of different colors is only for the purpose of presentation and has no physical meaning.
We shift the origin of T1/Leff by 1

2 when presenting the data.

term dominates and we have

Tr �q ≈ 2 cos

(
πqT1 + π

p(q + 1)

2

)
− 4qθ2 sin πT1 sin

×
(

π (q − 1)T1 + π
p(q + 1)

2

)
. (164)

Notably, this is a good approximation even for small q, the
q = 5 case is shown in Fig. 34(b) as an illustration. If q is
an odd number, one can check that at those special positions
T1 = r/q, we have

Tr �q|T1=r/q=(−1)r+p(q+1)/2

[
2+4θ2q

(
sin

πr

q

)2]
, (165)

from which we can see that the value of | Tr �q| indeed
exceeds 2 except at r = 0 (T1 = 0). The proof for q being
even is similar and one can find that | Tr �q| exceeds 2 for
all T1 = (r + 1

2 )/q.
So far, we have perturbatively shown that | Tr �q| will

exceed 2 at some equally spaced special positions. Therefore,
the heating phase will appear there as long as one turns on
θ , which accordingly opens “gaps”’ in the phase structure.
This gives rise to the multiple bands of the nonheating phase
and also explains the equally spaced peaks observed for the
Lyapunov exponent. Furthermore, when q is even, gaps will
appear at all those special positions which leads to q dis-
connected bands. When q is odd, the gap cannot appear at
T1 = 0 which yields q − 1 bands (after identifying T1/Leff =
0 with T1/Leff = 1). This completes the proof of our first
statement. �

3. Phase diagram and nested structure

We can also study the phase diagram for generic ω in-
cluding both rational and irrational numbers. The result is
shown in Fig. 35, with the colored region being the nonheating
phase and blank region being the heating phase. Here are some
comments on the features of the phase diagram:

(1) The whole diagram is symmetric with respect to ω =
1
2 , which is a direct consequence of our analysis above.
Namely, for a rational number ω = p/q, the gap opening is
independent of the numerator, which implies that the phase
diagram should be invariant under p/q → 1 − p/q. Our fol-
lowing discussion will focus on the part ω � 1

2 .

(2) The diagram has (infinitely) many empty regions,
whose center is at simple rational numbers ω = 1/n, n � 2.
Some representatives are drawn explicitly by the gray lines
in Fig. 35. The reason why they all sit in the relative empty
region is that one has to use a rational number with large
denominator to approach one of them, the nonheating bands
of which are too fragmented to read by eyes.

(3) In-between every two neighboring simple rationals,
the structure of the subregion resembles the original phase
diagram. This implies that the phase diagram has a nested
structure, which is similar to the famous Hofstadter butterfly
[61] and can be understood in the following way.

As reviewed in Appendix B, every rational and irrational
number ω ∈ [0, 1] can be uniquely represented by a continued
fraction. Here we adopt the idea and consider a generalization

ω = 1

N1 ± 1
N2±···

, Ni = 2, 3, . . . . (166)

We will see that it provides a useful guidance to resolve the
diagram layer by layer. Those with only N1 being nonzero are
dubbed as the principal series, those with nonzero N1, N2 as
the first descendants and so on.

The nested structure of the phase diagram exactly follows
such an organization:

(1) First, the principal series {1/N1}, N1 = 2, 3, . . . form
the skeleton of the phase diagram, which is shown in
Fig. 36(a). They also sit in the relatively empty region in the
full phase diagram.

(2) The first descendants { 1
N1± 1

N2

} fill in the blank region

between the principal series and serves as the skeleton for
the next descendants. For example, 1

2+1/N2
and 1

3−1/N2
fill the

region between 1
3 and 1

2 , as shown in Fig. 36(b).
(3) Notice that all the descendants of 1

2 that are smaller
than 1

2 are 1
2+p/q , 1 < p < q. Similarly all the descendants of

1
3 that are larger than 1

3 are 1
3−p/q , 1 < p < q, which can also

be written as 1
2+(1−p/q) . These two series, filling the subregion

between ω = 1
3 and 1

2 , can be considered as the “mirror reflec-
tion” to each other with ω = 2

5 being the reflection center. This
is similar to what is observed for the full diagram, with the
difference that each pair { 1

2+p/q , 1
2+(1−p/q) } does not have the
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FIG. 36. The nested structure of the phase diagram for the Aubry-André quasiperiodic driving CFT, with the principal series (left) and the
first descendant (right).

same number of bands. This explains the similarity and also
difference between Figs. 35(a) and 35(b). The nested structure
follows from continuing such kind of game.

4. Features of the group walking

So far, the results resemble what have been found for the
well-known Aubry-André model or almost Mathieu operator.
The unique advantage of our CFT setup is that it brings phys-
ical meaning to the group walking. As discussed in Sec. III B,
the group walking of ρ and ρζ are related to the energy,
energy-momentum density, and the entanglement. We will
give a corresponding discussion in this section.

To illustrate the general feature, let us choose the inverse
golden ratio ω =

√
5−1
2 as a concrete example. The results are

shown in Fig. 37. The behavior of ρ has the same qualitative
feature as reported in the Fibonacci driving case. Namely, for
a generic choice of T1/Leff, ρ will flow exponentially close
to a certain point on ∂D in the long-time limit n → ∞. It
follows from Eqs. (49) and (45) that the entanglement en-
tropy and total energy have a linear and exponential growth,
respectively, which is consistent with our general claim for the
heating phase.

The behavior of ρζ is quite different. In the short time,
ρζ seems to have a random distribution in the disk. In the late
time, it flows onto ∂D, which implies the formation of energy-

momentum peaks. Although (ρζ )n and (ρζ )n+1 do not show
a strong correlation, as shown by the background scattered
dots in Fig. 37(b), the subsequence {(ρζ )k+Fn}, n � 1, for any
fixed k does have a definite limit as n → ∞ and the detailed
value of the limit depends on k. Physically, it means that the
peaks observed at the time k + Fn with fixed k will appear at
the same position.

Such behavior of ρζ is generic as long as the irrational
number is ω = (

√
r2 + 4 − r)/2, r = 1, 2, . . . . For example,

one will observe the same feature if choosing ω = √
2 −

1, (
√

13 − 4)/2, and so on. An intuitive reason is that the nth
principal convergent for this type of irrational numbers can
be written as bn−1/bn. (For the inverse golden ratio, bn is the
nth Fibonacci number.) Such a sequence bn provides us with a
natural choice of the observation time. For a generic irrational
number, its nth principal convergent is pn/qn with {pn}, {qn}
being two different sequences and a “natural choice” of the
observation time becomes less clear.

VI. DISCUSSION

In this paper, we propose a general framework to study
the nonequilibrium dynamics of (1 + 1)D CFTs with SL2

deformation. We examine the details of the dynamical phases
that emerge in the periodic and quasiperiodic driving using the

0 10 20 30
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0.5

1

FIG. 37. The group walking of ρ (left) and ρζ (right). We choose ω being (
√

5 − 1)/2 and θ = 0.1. The choice for T1/Leff is not special,
and one can choose any other generic values. In the numerics, we choose ω = F29/F30 as an approximation to plots (a) and (b). In (b), the
scattered dots in the circle represent (ρζ )n for n � 500. The inset of (b) is Arg(ρζ )/π as a function n, with n denoting the nth Fibonacci
number Fn.
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tools we propose. In the upcoming sequel of this paper [62],
we will apply the framework to the random driving sequence,
where the use of the Lyapunov exponent and group walking
becomes a necessity rather than a convenient option.

Here we highlight some of the unexpected features that we
have found:

(1) For the driving protocol that uses the SL2 deformed
Hamiltonian, when the total energy and entanglement start
to grow, they always grow in a pattern where energy is
concentrated in discrete points and forms peaks, while the
entanglement is shared within nearest neighbors. This phe-
nomenon was first observed in Ref. [56] and is found to persist
in the more general setting here.

(2) Introducing irregularity in the driving protocol usually
enlarges the heating phase, which is what we have observed in
the quasiperiodic driving where the nonheating regime shrinks
to a set with measure zero.26 However, for the Fibonacci
driving, the phase diagram is found to have a special nonheat-
ing fixed point, where the total energy and entanglement will
return in a pattern following the Fibonacci sequence.

More explicitly, if we observe the system only at the steps
coinciding with the Fibonacci numbers, what we see is a state
returning to itself with period 6.

It is worth to mention that if we pick out the two unitaries
UA and UB that underlie the aforementioned Fibonacci driving,
and apply them in a periodic fashion UAUBUAUBUAUB . . ., the
system will end up with a heating state. This is a surprise since
it implies that at this special point, the “irregularity” actually
converts the heating protocol to a nonheating one. The reason
is that the pattern in the Fibonacci driving sequence manages
to conspire with the special unitaries in a way that they happen
to cancel each other and result in a return, which is explained
in Sec. V B 4.

(3) Aside from the last point, the “order” of the quasiperi-
odic driving manifests itself in another way. In the heating
phase of the quasiperiodic driving, ordinary stroboscopic ob-
servation of the energy peaks is featureless. However, if we
consider the Fibonacci driving and observe the state at the
steps coinciding with the Fibonacci numbers, the energy peaks
oscillate between two fixed positions rather than randomly
distribute (which is what we expect for a general irregular
driving). Similar feature is also observed in the Aubry-André
driving, where the energy peaks return to the same positions.

In the rest of this Discussion, we would like to comment
on the special setting we use and some future directions.
SL2 deformation27 is kind of a “shortcut” in analyzing the
driven systems because its effect in a single driving period
can be characterized by a conformal transformation without
introducing external sources to the system. The simplicity of
the single driving allows us to pursue the “complexity” in the
pattern of the driving sequence as we do in this paper. For
future directions, note the following:

(1) Within the SL2 deformation framework: So far we
have been only probing the driven state by simple observables

26For Fibonacci driving with SSD Hamiltonian, we prove it is a
Cantor set by mapping to the quasicrystal.

27Or, more generally “Virasoro deformation” which involves mod-
ulation with multiple wavelengths.

such as one-point function of energy-momentum tensor for
energy distribution or two-point function of twist operator for
the entanglement entropy, both of which only depend on the
central charge. To explore more CFT data such as the operator
content and the OPE coefficients, we need to consider more
complicated observables. For example, we may consider mea-
suring multipoint functions during the driving and ask how
could a carefully designed driving protocol help us extract
more CFT data.

(2) Beyond the SL2 deformation framework: The defor-
mation of driving Hamiltonians considered in this work is
generated by SL2 algebra. Most recently, the periodically
driven CFTs are generalized to the cases where the driving
Hamiltonians are deformed by arbitrary smooth functions
[82,83]. The underlying algebra is the infinite-dimensional
Virasoro algebra. It is found that both the heating and nonheat-
ing phases can still be observed in general. In particular, the
phase diagrams are determined by whether there are emergent
spatial fixed points in the operator evolution. If there exist
spatial fixed points, then the driven system is in the heating
phase; otherwise, the system is in the nonheating phase.

However, it is not obvious what will happen when we
perturb the driving Hamiltonian by introducing operators
other than energy momentum in the driving Hamiltonian. In
general, if the driving Hamiltonians break the conformal sym-
metry, we expect that the system will finally be thermalized.

Another related question is that if we treat the CFT we have
as a low-energy effective theory, then in the heating phase we
will finally drive the system to an energy scale where we need
to consider its UV completion, i.e., we need to include some
irrelevant operators in the driving Hamiltonian. We could ask
what will happen at that point? For example, how does the
energy peak and entanglement pattern get modified? These
questions are relevant in explaining the data from lattice sim-
ulation beyond the conformal regime.

(3) It is also desirable to consider the possible experimen-
tal realization of our setup. Since our driving Hamiltonians are
inhomogeneous in space, we expect it is natural to study the
physics here in the cold-atom experiments, where the interac-
tions among cold atoms can be optically controlled [84,85]. In
experiments, the dissipation effects caused by environments
need to be considered [86]. It is expected that the physics
studied in this work can be observed if the timescale is shorter
than the decoherence time.

Note added. Recently, we learned that the Fibonacci
quasiperiodically driven CFT is also studied in [87]. We thank
the authors for sending us their manuscript before posting.
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APPENDIX A: MORE ON TIME-DEPENDENT
DRIVEN CFTs

In this Appendix, we give more details on some formulas
and results as used in the main text.

1. Operator evolution with arbitrary SL2 deformations

In this Appendix, we introduce the procedures of obtaining the concrete form of Möbius transformation in Eq. (21) in the
main text. Some related details can be found in Refs. [41,48,56,65,66]. Let us illustrate the calculation with a simple example,
and then give results for an arbitrary SL2 deformation.

The illustrative example we consider has the following deformed Hamiltonian:

Hdeform =
∫ L

0
f (x) T00(x)dx, with f (x) = 1 − tanh(2θ ) cos

2πqx

L
, θ > 0, q ∈ Z, (A1)

where T00(x) is the Hamiltonian density with T00(x) = 1
2π

[T (x) + T (x)]. For q = 1 with open boundary conditions, this
corresponds to the example we considered in Secs. IV D, V A, and V D. To study the Möbius transformation in Eq. (21), our
derivations below apply to both periodic and open boundary conditions. First, it is noted that Hdeform can be written in terms of
the Virasoro generators in Eq. (10) as

Hdeform = 2π

L

[
L0 − tanh(2θ )

Lq + L−q

2
− c

24

]
+ antichiral parts. (A2)

As a remark, for θ = 0, Hdeform corresponds to a uniform one without any deformation; for θ = ∞, Hdeform corresponds to a SSD
Hamiltonian, whose energy spectrum has been recently studied in detail in Refs. [45–47,49].

To evaluate the correlation function, such as the simplest one 〈�(t )|O(x)|�(t )〉, where |�(t )〉 = e−iHdeformt |�0〉, one can study
the operator evolution O(x, t ) = eiHdeformtO(x)e−iHdeformt , as follows.

The correlation function 〈�(t )|O(x)|�(t )〉 can be considered as the path integral on a w cylinder with the operator O inserted,
as depicted in Fig. 4, where w = τ + ix. This cylinder can be mapped to a q-sheet Riemann surface with a conformal map
z = e

2πqw

L (see Fig. 4). The energy-momentum tensor transforms as Tcyl(w) = ( dw
dz )

−2
[T (z) − c

12 {w, z}], with {w, z} = d3w/dz3

dw/dz −
3
2 ( d2w/dz2

dw/dz )
2
. Then, one can find that Tcyl(w) = ( 2πz

l )
2
[T (z) − c

24
1
z2 ], where we have defined l := L/q. Then, the Hamiltonian in

Eq. (A1) can be written as H = H (z) + H (z), where

H (z) = 2π

l cosh(2θ )

∮
1

2π i

[
cosh(2θ )z − sinh(2θ )

2
(z2 + 1)

]
T (z)dz − πc

12l
. (A3)

A further Möbius transformation z̃ = − cosh(θ )z+sinh(θ )
sinh(θ )z−cosh(θ ) will transform H (z) to the following simple form:

H (̃z) = 2π

leff

∮
1

2π i
z̃ T (̃z) dz̃ − πc

12l
, leff = l cosh(2θ ), (A4)

and similarly for the antiholomorphic part. On this z̃ Riemann surface, the operator evolution becomes a dilatation:

eH (̃z)τO (̃z, z̃)e−H (̃z)τ = λhλhO(λ̃z, λ̃z), where λ = e
2πτ
leff . Then by mapping back to the z surface, one can find the operator

evolves as

eH (z)τO(z, z)e−H (z)τ =
(

∂z′

∂z

)h(
∂z′

∂z

)h

O(z′, z′), where z′ = az + b

cz + d
. (A5)

By imposing the normalization condition ad − bc = 1, and doing an analytical continuation τ = it , one has

z′ = αz + β

β∗z + α∗ , (A6)

where α = cos ( πt
leff

) + i cosh(2θ ) sin ( πt
leff

) and β = −i sinh(2θ ) sin ( πt
leff

). When q = 1 such that l = L, we get the result as
presented in Eq. (72) in the main text.

It is straightforward to generalize the above approach to the cases with arbitrary SL2 deformations. A general result was
recently calculated in Refs. [65,66]. Let us cite and briefly summarize the results here. First, for arbitrary SL2 deformations in
Eq. (13), the deformed Hamiltonian can be written as Hdeform = H chiral

deform + H antichiral
deform , with H chiral

deform given in Eq. (14), which we
rewrite here:

H chiral
deform = 2π

L
(σ 0L0 + σ+Lq,+ + σ−Lq,−) − πc

12L
, (A7)

and similarly for the antichiral part. Here we have defined Lq,+ = 1
2 (Lq + L−q ), and Lq,− = 1

2i (Lq − L−q ). One can further define
the quadratic Casimir element: c(2) := −(σ 0)2 + (σ+)2 + (σ−)2 [45,46,65,66], based on which one can classify the deformed
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Hamiltonians in Eq. (A7) into three types:

c(2) < 0 : elliptic Hamiltonian,

c(2) = 0 : parabolic Hamiltonian,

c(2) > 0 : hyperbolic Hamiltonian.

(A8)

Second, we consider the operator evolution eiHdeformTO(z, z)e−iHdeformT with the Hamiltonian in Eq. (A7) for a time interval T . Then,
one can obtain the general form of operator evolution in Eqs. (A5) and (A6). The corresponding SU(1, 1) matrix M = ( α β

β∗ α∗)
depends on the types of Hamiltonian in Eq. (A8) as follows [65,66]:

Elliptic: α = − cos

(CπT

l

)
− i

σ 0

C sin

(CπT

l

)
, β = −i

σ+ + iσ−

C sin

(CπT

l

)
,

Parabolic: α = −1 − i
σ 0πT

l
, β = −i

(σ+ + iσ−)πT

l
,

Hyperbolic: α = − cosh

(CπT

l

)
− i

σ 0

C sinh

(CπT

l

)
, β = −i

σ+ + iσ−

C sin

(CπT

l

)
,

(A9)

where C =
√

| − (σ 0)2 + (σ+)2 + (σ−)2| and l = L/q. One can check explicitly that for elliptic, parabolic, and hyperbolic
Hamiltonians in Eqs. (A7) and (A8), the corresponding SU(1, 1) matrices in Eq. (A9) have the properties |Tr(M )| < 2, |Tr(M )| =
2, and |Tr(M )| > 2, respectively, as expected.

As a remark, the specific example in Eqs. (A1) and (A2) is always elliptic for finite θ , and parabolic for θ → ∞.

For the elliptic case in Eq. (A9), by choosing T = l
2C , one has M = ( −i σ0

C −i σ++iσ−
C

i σ+−iσ−
C i σ0

C
). This is a reflection matrix of

the form in Eq. (79), with the property Tr(M ) = 0 and M2 = (M−1)2 = −I. Given two arbitrary reflection matrices MA and
MB (MB �= ±MA), as discussed in Ref. [88], there exists a SU(1, 1) matrix V such that V MAV −1 = (−i 0

0 i ), and V MBV −1 =
( α β

β∗ α∗), where |α|2 − |β|2 = 1 and α, β ∈ C. Since MB is a reflection matrix and MB �= ±MA, then we have Tr(V MBV −1) =
Tr(MB) = 0, which indicates that V MBV −1 = ( ia β

β∗ −ia), where a ∈ R, a2 − |β|2 = 1, and β �= 0. Then one can check

Tr(MAMB) = Tr(V MAV −1V MBV −1) = 2a. Since a2 = 1 + |β|2 > 1, we always have |Tr(MAMB)| > 2, i.e., MAMB is a hyper-
bolic matrix. These properties will be useful in the study of the nonheating fixed point in a Fibonacci driven CFT in Sec. V B 4.

2. Time evolution of two-point correlation functions

In this Appendix, we study the time evolution of equal-time two-point correlation functions. Aside from the time evolution
of entanglement entropy and energy, this quantity can also be used to detect different phases of the dynamics.

We consider the two-point correlation function 〈�n|O(x1)O(x2)|�n〉, where |�n〉 is the wave function after n steps of driving
and O(x) is a general primary field with conformal dimension (h, h). One can further obtain the correlation functions for
descendants of O. Here, O(xi ) is defined on the space-time cylinder. We do the computation in the imaginary time and thus
use the coordinate w = τ + ix. Let us consider a conformal mapping z = e

2πqw

L = e
2πw

l to map the w cylinder to the q-sheet
z-Riemann surface (see Fig. 4), on which the operator evolution of O(z1) and O(z2) is determined by Eqs. (24), (A6), and (A9).
Next, we map the q-sheet z-Riemann surface to the complex ζ plane via a conformal mapping ζ = z1/q, and one can obtain

〈�n|O(w1,w1)O(w2,w2)|�n〉 =
∏

i=1,2

(
∂ζi

∂wi

)h ∏
i=1,2

(
∂ζ i

∂wi

)h

〈O(ζ1, ζ 1)O(ζ2, ζ 2)〉ζ , (A10)

where w j = 0 + ix j , and (h, h) are the conformal dimensions of the operator O. More explicitly, the contribution of the
holomorphic part in Eq. (A10) can be expressed in terms of the SU(1, 1) matrix elements in Eq. (25) as follows:(

2π

L

)2h zh
1

(β∗
n z1 + α∗

n )2h

zh
2

(β∗
n z2 + α∗

n )2h

(
αnz1 + βn

β∗
n z1 + α∗

n

)( 1
q −1)h(

αnz2 + βn

β∗
n z2 + α∗

n

)( 1
q −1)h

[(
αnz1 + β

β∗
n z1 + α∗

n

) 1
q

−
(

αnz2 + β

β∗
n z2 + α∗

n

) 1
q

]−2h

,

(A11)

where zi = e
2πwi

l . The contribution of the antiholomorphic part can be obtained by replacing αn → α′
n, βn → β ′

n, and zi → zi

in the above equation. Noting that z lives on a q-sheet Riemann surface (see Fig. 4), one should be careful when evaluating
Eq. (A11), by tracking if zi cross the branch cuts and move from one layer to another. This is subtle but important especially when
the system is in a heating phase. The relative distance between z1 and z2 will depend on whether there are energy-momentum
density peaks between them [56].
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As an illustration, we study the two-point correlation functions in the heating and nonheating phases of a periodically driven
CFT, respectively. For simplicity, we only drive the holomorphic part, and keep the antiholomorphic parts untouched. In the
nonheating phase, as discussed in Sec. IV, αN and βN are periodic functions of n [see Eq. (50)], and so are the correlation
functions. In the heating phase, the Lyapunov exponent is positive, i.e., λL > 0. In this case, peaks of energy density will form in
the real space. In particular, when there are energy density peaks between x1 and x2 (and x1 and x2 are not located at the centers
of the energy density peaks), one can find that in the long-time limit λLN � 1 (recall that the total number of driving steps is
N = np, where p is the period of driving steps),

〈�n|O(x1)O(x2)|�n〉
〈�0|O(x1)O(x2)|�0〉 � e−2λLhN

(
L

π
sin

π (x1 − x2)

L

)−2h

. (A12)

That is, the correlation function decays exponentially as a function of the driving time. Recently, this result is generalized in the
heating phase of more general cases where the driving Hamiltonians are deformed by an arbitrary smooth function. See Ref. [82]
for more details.

3. Entanglement entropy evolution

In this Appendix, we give some details on the time evolution of the entanglement entropy in a time-dependent driven CFT.

a. General formula

We give a derivation of Eq. (27) in the main text. The mth Renyi entropy of A = [x1, x2] can be obtained by studying the
correlation function of twist operators:

S(m)
A (n) = 1

1 − m
log 〈�n|Tm(x1)T m(x2)|�n〉, (A13)

where |�n〉 denotes the wave function after n steps of drivings, and Tm (T m) are primary operators with conformal dimensions
h = h = c

24 (m − 1
m ). The evaluation of Eq. (A13) follows the previous Appendix A 2 directly and we have

〈�n|Tm(w1,w1)T m(w2,w2)|�n〉 =
∏

i=1,2

(
∂ζi

∂wi

)h ∏
i=1,2

(
∂ζ i

∂wi

)h

〈Tm(ζ1, ζ 1)T m(ζ2, ζ 2)〉ζ , (A14)

where wi = 0 + ixi are the coordinates in the imaginary time and zi = e2πqw/l , ζ j = z1/q
j . We choose the subsystem within one

deformation wavelength as A = [(k − 1/2)l, (k + j − 1/2)l] or A = [kl, (k + j)l] where k, j ∈ Z, j < q, and l = L/q. In this
case, z1 (z1) and z2 (z2) always live on different layers labeled by j. Let us take A = [(k − 1/2)l, (k + j − 1/2)l] for example.
Based on Eqs. (A11) and (A14), one can check explicitly that

〈�n|Tm(w1,w1)T m(w2,w2)|�n〉 =
(

2π

L

)4h 1

|αn − βn|4h

1

|α′
n − β ′

n|4h

1(
2 sin π j

q

)4h
. (A15)

Using h = h = c
24 (m − 1

m ) and Eq. (A13), we can obtain

S(m)
A (n) − S(m)

A (0) = c

6

1 + m

m
(log |αn − βn| + log |α′

n − β ′
n|), (A16)

which reduces to Eq. (27) for m → 1.
With the same procedure, if one chooses the subsystem as A = [kl, (k + j)l] where k, j ∈ Z and j < q, then one can

obtain S(m)
A (n) − S(m)

A (0) = c
6

1+m
m ( log |αn + βn| + log |α′

n + β ′
n|). The difference between this result and Eq. (A16) reflects the

nonuniform property of the driven CFT.

b. Linear decrease of the entanglement entropy

In this Appendix, we show that if the subsystem is chosen in such a way that the two entanglement cuts lie on the centers of
two chiral (antichiral) energy-momentum density peaks, and at the same time we keep the antichiral (chiral) part undriven, then
the entanglement entropy may decrease in time. The choice of subsystem A can be understood as follows:

.

(A17)

Let us consider the setup of periodically driven CFT in Sec. IV, such that the locations of peaks are fixed in the long-time
driving limit. Without loss of generality, we drive the chiral modes in time, but keep the antichiral modes undriven. As seen
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from Eq. (66), the distance between two chiral energy-momentum density peaks is xpeak,2 − xpeak,1 = jl , where j ∈ Z, j < q,
and l = L/q. In addition, since the locations of peaks correspond to the fixed point γ2 (i.e., zpeak = γ2, where we have assumed
0 < η < 1) in Eq. (54), this means xpeak,1 and xpeak,2 will not move around in the stroboscopic sense. Then, based on Eqs. (A14)
and (A11), one can find that

〈�n|T (w1,w1)T (w2,w2)|�n〉 =
(

2π

L

)4h 1

(αnpγ2 + βn)2h(β∗
npγ2 + α∗

n )2h

1(
2 sin π j

q

)4h

1

(γ ∗
2 )2h

. (A18)

Now, by considering the expressions of αnp and βnp in Eq. (58), one can find that

αnpγ2 + βn = η
n
2 γ2, β∗

npγ2 + α∗
n = η

n
2 (A19)

and, therefore, 〈�n|Tm(w1,w1)T m(w2,w2)|�n〉 = ( 2π
L )

4h 1
η2nh

1

(2 sin π j
q )

4h , based on which one can find that

S(m)
A (n) − S(m)

A (0) = − c

12

1 + m

m
n log

1

η
,

SA(n) − SA(0) = − c

6
n log

1

η
, (A20)

where 0 < η < 1. Recalling that the total driving step number is N = np, we can write the entanglement entropy evolution in
terms of the Lyapunov exponent in Eq. (60) as follows:

SA(n) − SA(0) = − c

3
λLN. (A21)

It is interesting to compare this formula with the result in Eq. (68). Here the linearly decreasing entanglement entropy is due
to the coincidence of the entanglement cuts with the centers of the chiral energy-momentum density peaks (while keeping the
antichiral modes undriven). During the driving, the degrees of freedom that entangle A and A will flow and accumulate at the
energy-momentum density peaks, which are located at the entanglement cut. Intuitively, the Bell pairs that are nonlocal in space
now become local, which results in a decrease in the entanglement entropy evolution.

It is emphasized that although the entanglement entropy decreases in time, which is due to the choice of entanglement cuts,
the total energy of the system still grows in time (in the heating phase) in a periodically driven CFT.

c. Comparison of CFT and lattice calculations

To confirm the linearly decreasing feature of the entanglement entropy evolution in the previous subsections, we compare the
CFT and lattice calculations in this Appendix. The results here are also related to the entanglement evolution at the nonheating
fixed point in a Fibonacci driven CFT in Sec. V B 2 (see Fig. 22).

As an example, let us consider the minimal setup of periodically driven CFTs in Sec. IV D. We drive the CFT periodically
with Hθ=0 and Hθ in Eq. (71), with open boundary conditions. Now we consider two driving protocols:

Protocol I: Driving with H0 first, and then H1 = Hθ ,

Protocol II: Driving with H1 = Hθ first, and then H0.
(A22)

The driving time intervals are chosen as T0 = L/2 for H0, and T1 = Leff/2 for H1, respectively. The resulting Möbius transfor-
mations in one driving period correspond to the following SU(1, 1) matrices:

Protocol I: M = M0Mθ =
(− cosh(2θ ) sinh(2θ )

sinh(2θ ) − cosh(2θ )

)
,

Protocol II: M ′ = MθM0 =
(− cosh(2θ ) − sinh(2θ )

− sinh(2θ ) − cosh(2θ )

)
.

(A23)

One can find |Tr(M )| = |Tr(M ′)| = |2 cosh(2θ )| > 2, i.e., both M and M ′ are hyperbolic. Therefore, in both protocols, the CFT
is in a heating phase. The difference is that, the chiral and antichiral energy-momentum density peaks are located separately at
x = 0 and L in protocol I, but are located at the same position x = L/2 in protocol II, as pictorially shown as follows:

. (A24)

By choosing the subsystem A = [0, x1] with x1 = L/2, the entanglement cut will not cut any peaks in protocol I, but will cut
both the chiral and antichiral peaks in protocol II. Intuitively, one can unfold the CFT with open boundary conditions to a single
copy of chiral CFT with a periodic boundary condition. After the unfolding, the entanglement cut in protocol II lies on the
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FIG. 38. Comparison of the CFT and lattice calculations on the entanglement entropy (left) and the total energy (right) evolution in the
heating phase of a periodically driven CFT. The numerical data in ◦ (×) correspond to protocol I (II) in Eq. (A22). The CFT is periodically
driven with H0 and Hθ with time intervals T0 = L/2 and T1 = Leff/2, respectively. From bottom to top (in the right plot), we choose θ = 0.03,
0.04, 0.05, 0.06, 0.07, 0.08, 0.09, and 0.1. The CFT results are plotted according to Eqs. (A25) and (A26).

centers of two chiral energy-momentum density peaks. Based on our study in the previous subsection, the entanglement entropy
will decrease linearly in this case. Next, we show this is indeed the case rigorously.

Based on Eqs. (31) and (33), one can obtain the entanglement entropy and total energy evolution as follows:

SA(n) =
{

2nc
3 θ, protocol I

− 2nc
3 θ, protocol II

(A25)

where A = [0, L/2]. One can find that the entanglement entropy grows (decreases) linearly as a function of n in protocol I (II).
On the other hand, the total energy of the system grows in both protocols:

E (n) − E (0) + πc

8L
= πc

8L
cosh(4nθ ), for both protocols I and II. (A26)

Now we compare the CFT and lattice calculations on the entanglement entropy and total energy evolution. The lat-
tice model we consider is the same as that in Sec. IV D 2. That is, the two lattice Hamiltonians under consideration are
H0 = 1

2

∑L−1
i=1 c†

i ci+1 + H.c., and Hθ = 1
2

∑L−1
i=1 f (i)c†

i ci+1 + H.c. where L is the total length of the lattice and f (i) = 1 −
tanh(2θ ) cos 2π i

L , with the initial state chosen as the ground state of H0. The comparison is shown in Fig. 38. The agreement
between CFT and lattice calculations is remarkable.

4. Phase diagrams from periodic to quasiperiodical driving

In this section, we present one more group of results on the evolution of phase diagrams as we use a periodical driving to
approach the Fibonacci quasiperiodical driving limit, as shown in Figs. 39 and 40.

In Fig. 39, we consider a periodic driving with the sequence generated by finitely truncated Fibonacci bit string, i.e., {Xj}
with ωn = Fn−1/Fn. The two driving Hamiltonians are Hθ=0 and Hθ=0.2 (see Sec.V A 2 for more details).

In Fig. 40, we replot the phase diagrams in Fig. 39 with the new variables as defined in Eq. (116). Based on Fig. 40, we obtain
the measure of nonheating phases in Fig. 17.

APPENDIX B: FIBONACCI BIT STRING AND WORD AND
RECURRENCE RELATION

In this Appendix, we review some basics of the Fibonacci
bit string or word (in this paper, we will call it Fibonacci bit
string instead of Fibonacci word)28 for the readers’ conve-

28The term “Fibonacci word” was used in combinatorics, whose
definition is off by an overall bit flipping 0 ↔ 1 comparing to the one
commonly used in the Fibonacci quasicrystal literature. We adopt
the latter convention, and rename it as Fibonacci bit string to avoid
confusion.

nience. In particular, we explain the equivalence of two ways
to generate the Fibonacci bit string: (1) the quasiperiodic po-
tential and (2) the substitution rule. Based on the substitution
rule, we explain the recurrence relation of the traces and the
constant of motion that are used in the main text.

1. Substitution rule for Fibonacci bit string

In the main text, we generate the Fibonacci quasiperiodic
driving using the following bit string (“Fibonacci bit string”):

Xj = χ (( j − 1)ω) , j = 1, 2, 3 . . . (B1)
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FIG. 39. Phase diagrams in a periodically driven CFT with the sequence generated by finitely truncated Fibonacci bit string, i.e., {Xj}
with ωn = Fn−1/Fn. Here we choose n = 2, 4, 5, 6, 10, 20, 100, and 1000, respectively. The two Hamiltonians we use are H0(θ = 0) and
H1(θ = 0.2) in (71). The phase diagram is periodic in T0 direction with period L and in T1 direction with period L cosh(2θ ) � 1.08L. The blue
(yellow) regions correspond to the heating (nonheating) phases.

FIG. 40. Phase diagrams in a periodically driven CFT with the sequence generated by finitely truncated Fibonacci bit string, i.e., {Xj}
with ωn = Fn−1/Fn. Here we choose n = 2, 4, 5, 6, 10, 20, 100, and 1000, respectively. The two Hamiltonians we use are H0(θ = 0) and
H1(θ = 0.2) in (71). The phase diagram is periodic in T0 direction with period L and in T1 direction with period L cosh(2θ ) � 1.08L. The blue
(yellow) regions correspond to the heating (nonheating) phases.
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FIG. 41. An illustration for the characteristic function χ (t ) for the Fibonacci sequence. The blue regime stands for value 1 and the yellow
for 0.

where χ (t ) = χ (t + 1) is a period-1 characteristic function

χ (t ) =
{

1, −ω3 � t < ω2

0, ω2 � t < 1 − ω3 (B2)

and ω =
√

5−1
2 is the inverse of golden ratio [see Fig. 41 for an

illustration of function χ (t )]. For instance, the first few bits

of {Xj} are given as follows:

Xj=1,2,3... = 10110101 . . . . (B3)

This definition is straightforward but not useful in our appli-
cation. Instead, we will follow the presentation in Ref. [89]
to show that the above bit string can be generated by a sub-
stitution rule. The equivalence is based on the following two
properties of {Xj}:

(1) Let us use the notation “�x� := max{m ∈ Z|m � x}” for the floor function, and we have

Xj = �( j + 1)ω� − � jω�. (B4)

To prove this statement, let us first use the relation ω2 + ω − 1 = 0 to rewrite ω2 = 1 − ω and −ω3 = 1 − 2ω. Then, according
to the rule (B2) we have

Xj = 1 ⇔ ∃m ∈ Z : m − 2ω � ( j − 1)ω < m − ω ⇔ ∃m ∈ Z : jω < m � ( j + 1)ω. (B5)

(2) Let us use Fn to denote the nth Fibonacci number, namely, Fn = Fn−1 + Fn−2 with F0 = F1 = 1, then we have

Xj+Fn = Xj , for n � 2 , 1 � j < Fn. (B6)

To prove this statement, it is sufficient to show that for n � 2, the difference of two parts in Xj = �( j + 1)ω� − � jω� is
unchanged while shifting the argument of the floor function �·� by Fnω for 1 � j < Fn: we can write Fnω = m + r where m
is the integer that is closest to Fnω and |r| = dist(Fnω,Z) denotes the distance (with sign) between Fnω and the nearest integer
m. Obviously, shifting by an integer will not affect the difference, so we only need to check the effect of shifting by r. From
the fact that the convergent29Fn−1/Fn is a best Diophantine approximation30 of the irrational number ω, we have the following
inequality:

|r| = dist(Fnω,Z) < dist( jω,Z) for 1 � j < Fn, (B7)

in other words, for jω with 1 � j < Fn, adding r will not be able to fill the gap between jω and a nearby integer. This statement
further holds for j = Fn since ω is irrational, Fnω + r can not be an integer. To summarize, neither �( j + 1)ω� nor � jω� will
change its value after a shift of r for 1 � j < Fn and therefore we have proved (B6).

The second property (B6) provides an efficient algorithm to generator the 0,1 bit string for {Xj}. For instance, let us denote
the first Fn bits as string AnBn where An stands for the first Fn−1 bits and Bn stands for the next Fn−2, and they together have
length Fn = Fn−1 + Fn−2 as required, here are examples for first few n:

F3 = 3 : 10︸︷︷︸
A3

1︸︷︷︸
B3

, F4 = 5 : 101︸︷︷︸
A4

10︸︷︷︸
B4

, F5 = 8 : 10110︸ ︷︷ ︸
A5

101︸︷︷︸
B5

. (B8)

29For irrational real number x, we always have an infinite continued fraction representation

x = a0 + 1

a1 + 1
a2+... 1

an+...

, a0 ∈ Z , aj�1 ∈ Z>0.

The nth principal convergent is the rational number pn/qn obtained by a truncation at an. The irrational number ω =
√

5−1
2 has a particularly

simple continued fraction representation a0 = 0, a1 = a2 = · · · = 1, and its finite truncation is the ratio of two nearby Fibonacci numbers
Fn−1/Fn as one can easily check.

30For a real number x, a rational number p/q is a best approximation (of second kind) if

|qx − p| < |q′x − p′|, ∀ q > q′ > 0 .

For the proof that the best approximations are given by the convergent, see, e.g.. Ref. [90].
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Then, we group the string AnBn, rename it as An+1 = AnBn,
and according to (B6), the Bn+1 is obtained by copying the
first Fn−1 bits of An+1 which is exactly An, i.e., we have the
following recurrence relation:

An+1 = AnBn, Bn+1 = An. (B9)

One may be concerned that (B6) actually produces a longer bit
string than the above recurrence relation since it also generates
an additional segment Bn after An+1Bn+1 which will overlap
the first Fn−2 bits of Bn+2. One can check that the overlapping
part is consistent with the rule here because the first Fn−2 bits
of Bn+2 are indeed An−1 = Bn.

A final comment is that the above recurrence relation can
be recast into a “local” substitution rule that is closer to the
rabbit populations problem Fibonacci originally considered.
Let us start with a single bit 1, and apply the following substi-
tution rule:

1 → 10 , 0 → 1 (B10)

at each step, then we will generate the sequence

1 → 10 → 101 → 10110 → 10110101 → · · · (B11)

which approaches to the Fibonacci bit string after infinite
steps.

2. Recurrence relation and constant of motion

In the main text, we are interested in the product �n of n
SU(1, 1) matrices

�n = M1M2 . . . Mn, (B12)

where matrix Mj depends on Xj in the Fibonacci bit string.
The substitution rule (B9) directly leads to the following re-
currence relation for �n:

�Fk = �Fk−1�Fk−2 , , ∀ k � 3. (B13)

The relation can be extended to k = 2 by defining an auxiliary
�F0 = M2 that is distinct from �F1 = M1, although strictly
speaking F0 = F1 = 1. A key observation made in Ref. [68] is
that their traces obey the following recurrence relation:

xFk+1 = 2xFk xFk−1 − xFk−2 , where xFk = 1
2 Tr(�Fk ) = 1

2 Tr
(
�−1

Fk

)
. (B14)

To derive this relation, we start with (B13) and find

�Fk+1 + �−1
Fk−2

= �Fk �Fk−1 + �−1
Fk

�Fk−1 . (B15)

Then, we insert identity �Fk + �−1
Fk

= Tr(�Fk )I for the unideterminant 2 × 2 matrix �Fk , and obtain

�Fk+1 + �−1
Fk−2

= Tr(�Fk )�Fk−1 , (B16)

whose trace gives (B14).
Using the trace relation, Ref. [68] further notes a constant of motion

I = −1 + x2
Fk

+ x2
Fk−1

+ x2
Fk−2

− 2xFk xFk−1 xFk−2 . (B17)

Indeed, one can check that the change of the right-hand side (r.h.s.) under the shifting k → k + 1 is zero:

�r.h.s. = x2
Fk+1

− x2
Fk−2

− 2
(
xFk+1 − xFk−2

)
xFk xFk−1

= (
xFk+1 − xFk−2

)(
xFk+1 + xFk−2 − 2xFk xFk−1

) = 0.
(B18)
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