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Dark-soliton-like magnetic domain walls in a two-dimensional ferromagnetic superfluid
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We report a stable magnetic domain wall in a uniform ferromagnetic spin-1 condensate, characterized by
the magnetization having a dark soliton profile with nonvanishing superfluid density. We find exact stationary
solutions for a particular ratio of interaction parameters with and without magnetic fields, and develop an
accurate analytic solution applicable to the whole ferromagnetic phase. In the absence of magnetic fields, this
domain wall relates various distinct solitary excitations in binary condensates through SO(3) spin rotations,
which otherwise are unconnected. Remarkably, studying the dynamics of a quasi-two-dimensional (quasi-2D)
system we show that standing wave excitations of the domain wall oscillate without decay, being stable against
the snake instability. The domain wall is dynamically unstable to modes that cause the magnetization to grow
perpendicularly while leaving the domain wall unchanged. Real-time dynamics in the presence of white noise
reveals that this “spin twist” instability does not destroy the topological structure of the magnetic domain wall.

DOLI: 10.1103/PhysRevResearch.3.023043

I. INTRODUCTION

A domain wall is a nonlinear excitation that interpolates
between two different ground states, playing an important role
in both equilibrium and out-of-equilibrium phase transitions
with discrete symmetry breaking [1-3]. It appears in broad
fields of physics, ranging from statistical mechanics [1] and
quantum field theories [2,3] to cosmology [4].

Bose-Einstein condensates (BECs) provide a platform to
study various topological excitations including vortices, do-
main walls, and solitons. Unlike vortices, a wide class of
domain walls and solitons are unstable to the so-called
snake instability in two-dimensional (2D) systems, when
the size of the system is larger than the width of domain
walls/solitons. Examples include dark solitons [5-8], phase
domain walls [9-11], magnetic solitons [12-14], and nematic
domain wall-vortex composites [15], in scalar, coherently
coupled, binary, and antiferromagnetic spin-1 BECs, respec-
tively. An outstanding challenge is thus to obtain stable 2D
domain walls/solitons, which would open the door to study-
ing their rich dynamical properties.

Thanks to the U(1) gauge symmetry and the rotational
SO(3) symmetry, a spin-1 ferromagnetic BEC exhibits both
superfluid and magnetic order quantified by the superfluid
density and the magnetization [16-20], respectively. It offers
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an opportunity to explore magnetic domain walls (interfaces
separating oppositely magnetized regions) absent in scalar,
binary, and antiferromagnetic BECs. Most work in ferromag-
netic spin-1 BECs has focused on spin textures and their
nonequilibrium dynamics (e.g., [21-29]). The domain wall
physics remains largely unexplored and very little is known
about their structures, stability in high dimensions, and poten-
tial connections to vector solitons [30-32].

In this paper, we present an analytic solution of a stable
magnetic domain wall in a quasi-2D spin-1 ferromagnetic
BEC, characterized by magnetization F having the typical
profile of a dark soliton [Fig. 1(a)]: a w-phase (direction of
F) jump crossing the domain wall and F = 0 at the cen-
ter, breaking the Z, symmetry. In contrast to most domain
walls/solitons in BECs, the magnetic domain wall is stable
against the snake instability in two dimensions. This is verified
by studying transverse standing waves on these domain walls,
finding they oscillate without decay. Instead, the system has
a linear dynamic instability driven by modes localized near
the domain-wall core that cause a growth of the perpendicular
components of the magnetization. The resulting spin texture
corresponds to a chain of spin vortex-antivortex pairs along
the domain wall. Real-time dynamics in the presence of white
noise shows that the magnetic domain wall survives. Exact
solutions are obtained for a large spin-dependent interaction
strength g, with and without magnetic fields. These exact
solutions are distinct from two well-known solvable cases:
the Manakov regime [33] (g; = 0 in spin-1 BECs) and the
magnetic soliton regime (constant number density) [12]. In
the absence of magnetic fields, SO(3) spin rotations relate a
family of degenerate solutions, and we show that for partic-
ular rotations the underlying component wave function can
map onto a range of solitons and domain walls proposed for
binary condensates. Thus, a distinct set of unrelated nonlinear

Published by the American Physical Society


https://orcid.org/0000-0002-7009-5813
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.023043&domain=pdf&date_stamp=2021-04-14
https://doi.org/10.1103/PhysRevResearch.3.023043
https://creativecommons.org/licenses/by/4.0/

XIAOQUAN YU AND P. B. BLAKIE

PHYSICAL REVIEW RESEARCH 3, 023043 (2021)

(@

n/ny,
O NI

n(z)/my

3
I/grz

FIG. 1. (a) Schematic of a transverse magnetic domain wall
(along y axis) in a system of background density n,. The arrows
represent the transverse magnetization vector (£, Fy), and the back-
ground color shows the superfluid density. A comparison between
analytical predictions (lines) and numerical results (symbols) for the
(b) density and (c) F, spin density for various values of g;/g, and g.
The inset shows two complete profiles of F, at the exactly solvable
point with ¢ = 0 and g # 0, respectively. Here, &, = h//Mg,n, is
the density healing length.

excitations are found to be contained within our solution,
unified by its symmetries.

II. FORMALISM FOR A SPIN-1 BEC

The Hamiltonian density of a quasi-2D spin-1 BEC [34]
reads

_ PvyP

H 2M

+ Lty Sisul +qusiy. )

where the three-component wave function ¢ =
(W41, Yo, w_1)T describes the condensate amplitude in
the m = 41,0, —1 sublevels, respectively. Here, M is the
atomic mass, g, > 0 is the density interaction strength, g
is the spin-dependent interaction strength, S = (S, S,,S;)
with S,_, , . being the spin-1 matrices [35], and ¢ denotes
the quadratic Zeeman energy. The spin-dependent interaction
term allows for spin-mixing collisions in which two m =0
atoms collide and convert into m = +1 and —1 atoms, and
the reverse process.

The dynamics of the field ¢ is given by the Gross-
Pitaevskii equations (GPEs) ifidv /ot = 8H /8y = Lop ¥,

which in component form is

a
ih lg;tl = [HO + gs(n - 2n$1) —+ Q]w:l:l + gsl/fgll’;p (23)
a
iﬁ% = [Hy + gs(n41 + n_1)]o + 28s¢5¢+11ﬁ_1, (2b)

where Hy = —*V?/2M + g,n, with n =", n,, and n,, =
|,.|*> being the total and component densities, respectively.
Spin-1 BECs exhibit magnetic order, e.g., the magnetiza-
tion F = ¢/ 'Sy [36] is the order parameter of ferromagnetic
phases |[F| > 0 for g, <0 (¥’Rb or "Li). In contrast, anti-
ferromagnetic phases with g; > 0 (¥*Na) have F = 0. In the
absence of magnetic fields, i.e., ¢ = 0, H is invariant under
SO(3) spin-rotations and the total magnetization [ d°r F is
conserved.

III. DARK-SOLITON-LIKE MAGNETIC DOMAIN WALLS

For a uniform ferromagnetic system with total density n,
and at ¢ = 0, the energy density H = g,n?/2 + g|F|*/2 is
minimized for states with |F| = n;,. The chemical potential is
w = (g, + gs)np. We search for a straight-line domain wall
connecting the two distinct magnetic ground states charac-
terized by F = +£n,€, where € is a 3D unit vector along an
arbitrary direction [see Fig. 1(a)]. For convenience, the do-
main wall is chosen parallel to the y axis and the core is
located at x = 0. We find a solution of the general form

F >~ n(x) tanh (x/£)e, (3)

where ¢ = h/\/4|gs|Mny. This result is exact for a particular
set of interaction parameters, and a good approximation in
general, as we discuss further below. This domain wall is of
the Ising type, rather than the Bloch or Néel type, signified
by F vanishing at the core and changing its sign across the
core. The solution (3) has the characteristic profile of dark
soliton and we refer to it as dark-soliton-like magnetic domain
wall (MDW). This domain wall is in magnetic order but not in
the superfluid order, i.e., the superfluid density n(x) does not
vanish, but has a dip at the core to minimize the energy.

A. Exact solutions

When the width of the density dip coincides with £, occur-
ring at g, = —g,/2 [37], Eq. (2) admits an exact solution

F(x) = ny tanh (;—E)e n(x) = nb[l _ %sech2<2x—£>:|.

“

This system has a SO(3) symmetry, which relates a con-
tinuous family of degenerate MDW solutions connected by
U(1) gauge and spin U(a, B, T) = e ®S:e=PS ¢S rota-
tions, where {«, 8, t} are the Euler angles. We illustrate three
members of this family in Table I: (i) For the case of an
F, domain wall [i.e. & = X], the underlying wave functions
can have two distinct vector-soliton profiles, and the cor-
responding stationary GPE can be mapped onto that of a
miscible binary BEC. (ii) A sine-Gordon-type soliton (SGS)
of the phase difference 6; = 0+ — 6y, where ¥, = |,,]€.
A SGS has been predicted to exist in a coherently-coupled
binary BEC, with dynamics mimicking processes in quantum
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TABLE I. Component representation of the MDW after various spin rotations. Vector soliton sector: type-I vector soliton is chosen as a
reference point. In this presentation, the reduced GPEs are related to a miscible binary system and becomes decoupled at g, = —g,,/2, allowing
the exact solution. SGS: 6, satisfies the sine-Gordon equation. Binary domain-wall sector: The reduced GPEs describe an immiscible binary
system and the corresponding exact solution coincides with a solution discussed in a different context [40].

(o, B, T) type-I1: 0; type-1L: (7w /2, —7 /2, —7 /2) (= /2, —m /4, —7/2) (m/2,7/2,0)
u) type-I: 1; type-II: &/™/2 e—in/4 3/2
Vlgymgns2 LYy = /ip/2tanh (/20 Yo = Vnp/2 Y1 = Jazre gy = Jnge /2 Y1 = 75/2[1 F tanh (x/20)]
IL: Yy = /mp/2, Yo = +/np/2 tanh(x/2¢) 04(x) = 2arctan &/¢, 2nyy = ng = n/2 Yo =0
F F, = nptanh (x/2¢) F, = nptanh (x/2¢) F, = —np tanh (x/2¢)
GPE 0 =[H'+ 2gun+1 + (gn + 28101 Y1 0= %&r(”axed) + gsn* sin(26,) 0=[H"+ (gn +gIn+1 + (gn — gIn—11¥+41
0= [H' + gurto +2(gn + 2251190 0=25[3@00% = Z02Vn] 0 =[H'+ (g +gn1 + (gn — gIns1 1V
HE—%?’?—M + 2[n(g + g5 cos? Og) — ]
Related Vector soliton of a three-component BEC anda  sine-Gordon-type soliton, also realized ~ Density domain wall of an immiscible binary
systems miscible binary BEC in a coherently-coupled binary BEC BEC

chromodynamics [9]. Here, the SGS can be produced by a
spin rotation of the vector soliton in Table I and the nonlin-
ear spin-mixing interaction provides the necessary couplings
between the component phases, having the advantage that no
external fields are required [38]. (iii) For an F, domain wall,
the corresponding wave function coincides with a (density)
domain wall of an immiscible binary BEC [39].

In the context of binary BECs, the vector solitons, the
SGS, and the density domain wall are unrelated. In a spin-1
BEC, these distinct nonlinear excitations are unified by spin
rotations of our MDW solution. With inadequate degrees of
freedom and symmetries, such connection can not be made
within the binary BEC [19,41]. However, it is important to
note that the dynamics and stability properties of the MDW
reveal the spin-1 nature and exhibit distinct behaviors from
related excitations in binary systems (see below). A recent
study on magnetic solitons in antiferromagnetic BECs has
also explored the role of the rotational symmetry [42].

B. Away from the exactly solvable point

Away from the exactly solvable point, we develop a self-
consistent asymptotic analysis of the stationary GPEs at x >
£, combined with an account of the local core structure, and
we find an accurate approximate form for the density,

cosh(x/Af) 1 g
__7 S <__
n(x) | aicoshGe/al) + by o &°75 69
np - 4bl 8s 8n
l+ ) — < S Sb
2(gn + g5) cosh’(x/€) + g1 5 <8 Gb)

where A =+v—g/(gn+8&), a1 =—Q2g +28.8 — &)/
(385(8n+8&5)), b1 =3(8n +8:)/(28n +85), and g =
2b1(2gn — 585)/3.

In the following we show the procedure to obtain Eqgs. (5).
Specializing to the SGS (see Table I), we work with the hy-
drodynamical variables {n, ny4, 6,4, 6,}, where ny = 2ny| — ny,
0y =611 + 6y, 64,1 =6_4, and nyy = n_;. For a stationary
state, the total number current J,, = h> /CM)Y(nVO; +nyVoy)

should vanish. Apparently 6; = 0 and ny; = 0 solve J, =0,
and for this case Egs. (2) [or Egs. (A1)] reduce to

2

B

0= 2M 0x(n0x04) + g.gnz sin(26,), (62)
R [(0,0,)% 20%/n

n= m[% - Tq Fameost kg (€)

As shown in Table I, at g, = —g,/2,

0,4(x) = 2 arctan ¢"/¢,

(N

where £ = h/+/4|gs|Mn;, as introduced earlier. Away from the
exactly solvable point, we assume that the expression of 6;(x)
in Eq. (7) remains a good approximation. In other words,
F/n(x) is assumed to take the same form as at the exactly
solvable point. The reason for this will become clear later.

Let us examine the asymptotic form of Eq. (6b) far away
from the core x = 0. Assuming that g(x) = [n(x) — np]/(4np)
decays slower than (8,64)* ~ e/t for large x > ¢ [there is
no solution for g(x) decaying faster than e~>*/*], in the large x
limit, the dominant part of Eq. (6b) reads

(8n + 8,)8(x) + £7g,g"(x) = 0, ®)

having a solution g(x > €) ~ e™*/%, where £; = AL is the
effective density length scale. Combining the asymptotic be-
havior of n(x) at large x and n(x) being an even function,
it is natural to propose the ansatz (5a). The coefficients a;
and b; are introduced to adjust the core structure and are
determined by requiring that n(x) satisfies Eq. (6) to leading
order as x — 0. The working assumption to obtain Eq. (5a)
is £4 > €(A > 1/2), implying g, + 5g; < 0, which sets the
parameter range for the solution in Eq. (5a) to be applicable.
This regime includes the exactly solvable point, g = —g,,/2
with A = 1, where £; = ¢, and a single length scale describes
the spin and density character of the MDW [here (5a) reduces
to Eq. (4)]. In this strong spin-interaction regime (5a), the
density variation near the core is important. The excitation
breaks down at g; + g, = 0, which is the parameter boundary
of the ferromagnetic phase [19,20].

In the opposite limit, where |g;/g,| < 1, the quantum pres-
sure term ~d2,/n//n becomes less important and can be
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neglected. Hence, Eq. (6b) becomes an algebraic equation of
n(x) with solution given Eq. (5b). The parameters b and g,
are introduced to solve Egs. (6) near the core x = 0 to leading
order. The crossover to the weak spin-interaction regime (5b)
occurs at g, + 5g;, = 0 where A = 1/2, given by matching
the density widths ¢/2 and ¢,. For comparison, we calculate
numerical MDW results using a gradient flow method [43,44].
The analytical and numerical results in Figs. 1(b) and 1(c)
show excellent agreement.

Let us now provide a self-consistent reasoning to explain
why 6,(x) in Eq. (7) serves a good approximation in the whole
parameter range. First of all, it captures the main feature of
the domain wall in the strongly interacting regime where the
exact solution Eq. (7) is found. On the other hand, in the
weak-interaction limit (|g,/g,| < 1), the density n can be
approximated as a constant (n >~ n,,) and the energy density
becomes

—nb 1ggni cos’ ;. ®
2 27
A local minimum of the energy density, determined by

SH /86, =0, leads to the elliptic sine-Gordon equation

i /2M W2(26,) + 2npgs sin(26;) = 0, having the solution

6, = 2 arctan */¢.

Since the magnetization vanishes at the core, there is no
spin current across the MDW. However, the nematic tensor
current is nontrivial [45]. The component number currents
vary for different degenerate states. For example, with ref-
erence to the states in Table I: The component currents are
zero for the vector soliton, while for SGS there are internal
currents near the core that behave analogously to Josephson
currents [46].

in
H = ——|ve 1> +

IV. FINITE MAGNETIC FIELDS

A magnetic field along the z axis breaks the SO(3) sym-
metry and the degeneracy of states presented in Table I is
lifted. For ¢ > 0, the ground state magnetization prefers to be
transverse, realizing an easy-plane ferromagnetic phase that
possesses a remnant SO(2) symmetry [19,20]. Here, the SGS
and the binary density domain wall are no longer stationary
solutions. The type-I vector soliton is energetically favored,
and exists, with some modifications, in the whole easy-plane
phase (0 < g < 2|gs|np). At g¢ = —g,/2, the exact solution is

F=myv1—-gG tanh(zg )ep, (10)
q

1_s
qsech2 - , (11)
2 2¢,

where § = —q/2gsny, £, =L£/4/1 —§, and &, is a unit vec-
tor in the xy plane. The corresponding wave function reads

Va1 = /ip(1 — /A tanh (x/2¢4), and Yo = /np(1+ /2.

An example of a g # O result (&, = X) is shown in Fig. 1.

n(x) = nb|:1 —

V. STANDING WAVES

A conspicuous feature of the 2D dynamics of the MDW
is that it is stable against transverse deformations, strikingly
different from other domain walls/solitons [5—7,9-15], which
decay unavoidably via snake instability. We consider easy-

| /nb\z

' [ (aS)

OJ[O |Q

(a1) (a2)

FIG. 2. One period of evolution for standing wave deformations
of a MDW confined by hard-wall potentials in a square domain
x,y € [—L, L] with L = 40¢,. The equilibrium configurations are
shown in the second and fourth columns. (al)—(a5) A standing wave
on an open MDW with free end-points attached on the hard-wall
boundaries; the initial configuration (MDW core location) is x =
Acos(my/L), y € [-L, L] with L = 40§, and A = 2.5§,. (b1)—(b5),
(c1)—(c5) Standing waves on a closed MDW. The initial configu-
rations are determined by Ry — +/x2 + y* + A sin[s arctan(y/x)] = 0
where Ry = L/2, s =2 (dipole mode) for (bl) and s =3 (triple
mode) for (cl). Oscillation periods T are: (a) T =~ 6201y; (b) T =~
620¢ty; (¢) T ~ 3001y, where ty = hi/g,n, and g;/g, = —0.1. (d1)-
(d5) Results with white noise added to the initial condition of (c1),
causing a~ 1% increase in particle number. Such stability also stands
for the open domain walls. Note that for (a), (b), and (¢), |F;| = |F]|.

plane domains with F along the x axis and two fundamental
static MDW geometries in the x-y plane for g = 0: closed
circle and open straight line with endpoints attached on the
boundaries [47] (see Fig. 2). We excite standing waves on
these static MDWs by deforming them transversely. The
subsequent time evolution shown in Figs. 2(a)-2(c) is pe-
riodic and resembles harmonic modes vibrations [48]. Our
simulations [49] also show that the standing waves persist
without decay, combined with internal spin-exchange dynam-
ics between components of the wave function (see Fig. 6 in
Appendix B). During the time evolution, F;, and F; remain
zero, the magnetization conservation manifests itself as a
geometrical constraint of the domain-wall motion: The area
enclosed by the domain wall remains unchanged. There is
no spin current crossing the MDW. The enclosed regions
form magnetic bubbles, inside which the magnetization F; has
the opposite orientation from the outer one and such feature
remains in the presence of noise (see Figs. 2 and 3). Conse-
quently, propagating open MDWs and expanding/shrinking
closed MDWs are prohibited, becoming possible when apply-
ing magnetic fields along the z axis.

VI. DYNAMICAL INSTABILITY

Here, we systematically study the stability of the MDW
by means of Bogoliubov-de Gennes equations (BdGs). Let
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FIG. 3. The transverse magnetization F; during the time evolu-
tion. (¢'1)—(c'5) and (d'1)—(d’5) correspond to Fig. 2(c1)—(c5) and
(d1)—(dS), respectively.
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us consider a straight infinitely long MDW along the y axis
located in the middle of a slab of width L; > ¢. Denoting
the stationary MDW as 1, we consider a perturbation §y =
u(r)e™ 4+ v*(r)e’’. Linearizing about ¢ = ¥, + 8y in
Eq. (2) yields the BdG equations

u\  (Ler+X—p A u
h‘“(v) - ( N —~(Lop +X — m*) (v)
(12)

where the stationary wave function satisfies Lgpys =
ws, X =g ZU Su‘/fsW;Sv + gnlﬂslﬂf, A= gntﬂslﬂf +
8s ZV(SVWX)(SUwS)T and = (g.+g)m+q/2. The
translational symmetry along y allows us to parametrize
the perturbations with the wave vector k, as u(r) = u(x)ey
and v(r) = v(x)e*Y. We numerically solve Eq. (12) with
Neumann boundary conditions at x-axis boundaries [51], and
find two modes with an imaginary energy [Fig. 4(a)], marking
a dynamical instability in the system (a mode that grows
exponentially with time).

Different from the snake instability [6], the imaginary part
of the excitation energy Im(w) does not vanish as k, — 0, but
instead approaches a finite value [Fig. 4(a)], implying that this
instability also exists in 1D. F, is unchanged as the unstable
mode grows, however it causes the unmagnetized core of
the MDW to develop a F-texture of wavelength 7 /k,. This
corresponds to the formation of a chain of “magnetic vortex”
cores [52] at the nodes of this texture [Fig. 4(b)].

The k, range of unstable modes and the magnitude of the
imaginary energy is largest at intermediate values of g,/g,,
and increases with increasing g [see inset to Fig. 4(a)]. Based
on the magnetic texture created by the unstable mode, we refer
to it as spin-twist instability. In dynamics, the growth of this
instability leads to spin waves of F; and F; while the topologi-
cal structure of the MDW in F, remains unchanged, consistent
with the noisy dynamics observed in Fig. 2(d). Note that this
characteristic feature does not rely on the conservation law of
magnetization, and holds in the presence of magnetic fields
(g > 0). The growth of F, and F; could be stabilizing the
domain wall by absorbing the perturbations, in analogy to a
buffering effect.

VII. CONCLUSIONS AND OUTLOOK

We found a novel magnetic domain wall in a quasi-2D
ferromagnetic spin-1 BEC that is stable against the snake

0ss (@)

-~

s
= I
~ q = 0.5|g,|m
—

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-02-01 0 0.1 02

y/&n

FIG. 4. Unstable spin-twist modes. (a) Spectrum of the unsta-
ble modes for ¢ = 0 and two values of g,/g,. For g;/g, = —1/2,
the bifurcation point (w = 0) occurs exactly at k&, =1 /~/2. Inset
shows the magnitude of the long wavelength instability as g,/g,
varies. (b) The spin-texture created by the unstable mode [50] at
ky&, >~ 0.445 where the maximum imaginary frequency is reached
for g = 0 and g,/g, = —1/2. White circles with 4+ and — indicating
positive and negative circulation spin-vortices, respectively. The red
arrows and the background color represent transverse magnetization
field (F;, F;) and longitudinal magnetization F, respectively.

instability and white noise. Along with the exact solutions, an
accurate analytic solution applicable to the whole ferromag-
netic phase has also been developed. Through the underlying
symmetries of the spin-1 system, we have shown that various
distinct nonlinear structures such as the sine-Gordon soliton,
vector solitons and an immiscible binary density domain wall
occurring in unrelated binary systems are unified into the mag-
netic domain wall. Our findings open a possibility to study
rich 2D dynamics of domain-wall solitons, could be important
for determining the universality class of the ferromagnetic
phase transition of 2D spin-1 BECs at finite temperature
[53,54], coarsening dynamics involving both spin order and
superfluid order [29,55] and dynamics of stretched polar-core
vortices [56,57].
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It will be feasible to observe magnetic domain walls in
current experiments with ferromagnetic spinor BECs. The
necessary techniques for manipulating the spin degrees of
freedom of a spin-1 BEC [14], and for nondestructively
measuring its spin dynamics [22] have already been demon-
strated. Coupled with a planar or flat-bottom optical trap (e.g.,
[58,59]) opens the possibility for investigating of domain-wall
dynamics. Most work with ferromagnetic spin-1 BECs to date
has been conducted with 8’Rb, which has —g,/g, ~ 1072 and
is in the weakly spin-interacting regime. However, recently a
TLi spin-1 BEC has been prepared with —g;/g, ~ 0.5 [60],
thus in the strong spin-interacting regime close to the exactly
solvable point.
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APPENDIX A: SPIN-1 GROSS-PITAEVSKII EQUATIONS
IN HYDRODYNAMICAL VARIABLES

In terms of the hydrodynamical variables {n, ng, 64, 6,}, the
stationary GPE for g = 0 becomes

h2
0= —wv . (nV@s + ndved)i
2

h
0=V (Vs +naV6,) + gs(n* — n3) sin(26,), (A1b)

(Ala)

? 1 1
0= ——| ——=V*/ — V2 /n =
2M|:«/n+nd n+nd+«/n—nd n

1
- 5<|ves|2 + |ved|2>} + g, cos(26,)

+(gs +28n — 2, (Alc)
0 " : ViJ/n+ng : Vi/n—ng
= —| — n+ng — —— n—n
2M | J/n+ ny d = ny ¢
—Va - Vﬂ:| + gsng cos(2B) + gsna, (Ald)

where ng; =2n41 —ng, 6, =041 + 6y, 03 =041 — 6y, n =
ny +n_ +ng, i = (g, + gs)np is the chemical potential and
np is the ground state total number density. Here we assume
that6,; =0_;andny =n_;.

APPENDIX B: REAL-TIME EVOLUTION

Here we present further evidence of the stability. Figure 3
shows that the topological nature of the MDW, i.e., the 7-
phase jump across the core, is well preserved during the
domain-wall motion. This can be also seen in Fig. 5(a), which
shows the profile of the transverse magnetization Fy(x, y = 0)
at different times.

In our simulations, the box potential takes the following
form:

Vix,y) = V0[2 — tanh [(% _ |x|)b]

- [~ )]}

where x,y € [-L, L], L is the box size, Vy > u is the hight
of the potential barrier, b ~ &, 'is the width and ¢ should be
chosen slightly greater than one.

The standing wave excitation on the MDW can last a long
time without decay. In order to quantify this property, we

B

15 —

—t/ty=0
—1t/to = 100
—t/to = 200

15 L 1 L 1 L 1 L
-40 -30 -20 -10 10 20 30 40

25

20 R

0 1000 2000 3000 4000 5000
t/to

FIG. 5. (a) Shows the spin-density cross section Fy(x,y = 0) of
the open MDW shown in Fig. 2(a) at different times. The soliton-
like profile of the magnetization is preserved during the motion.
(b) Shows the periodic behavior of the overlap function for the
open domain-wall configuration [Fig. 2(a)], demonstrating that the
standing wave on the MDW persists without decay over long time
periods.
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FIG. 6. Spin-exchange dynamics during the MDW oscillation
shown in Fig. 2(al)—(a5). (el)—(e5), (f1)—£(5) show dynamics of
component densities 2n4; and ng, respectively.

introduce an overlap function

1/2
o) = (/ d’r|F,(r,1) — F(r, 0)|2> (B2)

that measures the overlap of transverse magnetization profile
at time ¢ with its initial profile. Figure 5(b) shows the peri-
odic behavior of O(¢) for the open domain wall [Fig. 2(a)],
revealing that the standing wave on the MDW persists without
decay.

It is worthwhile to mention that along with the domain-wall
oscillation, components of the wave function exhibit spin-
exchange dynamics [Fig. 6].
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