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Topological router induced via long-range hopping in a Su-Schrieffer-Heeger chain

Lu Qi,1 Yu Yan,1 Yan Xing,1 Xue-Dong Zhao,1 Shutian Liu,1,* Wen-Xue Cui,2 Xue Han,2

Shou Zhang,2,† and Hong-Fu Wang 2,‡

1School of Physics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
2Department of Physics, College of Science, Yanbian University, Yanji, Jilin 133002, China

(Received 25 November 2020; accepted 25 March 2021; published 12 April 2021)

We show how to implement the various kinds of topological routers via introducing the specific long-range
hopping in the one-dimensional modulated Su-Schrieffer-Heeger chain. We find that the long-range hopping with
hopping amplitudes identical to those of the intercell hopping between the first site and other odd sites holds a
distinctive topological channel (gap state), by which the particle initially prepared at the last site can appear
at the first site and all of the even sites with approximately equal probabilities. This extraordinary performance
indicates that, from the perspective of treating the last site as the input port and treating the first site and other even
sites as output ports, the present system can be naturally equivalent to a distribution device with multiple output
ports, i.e., the topological router. We show that the number of the output ports for the present topological router
can be flexibly tuned via reducing the long-range hopping terms. Especially, the system experiences a phase
transition with the increasing of the long-range hopping amplitudes, in which the original gap state becomes a
topological channel to implement the topological router with the output ports only at all even sites. We stress
that both the two kinds of topological routers are protected by the energy gap and hence are robust to the mild
disorder added into the system. Moreover, together with the construction of the topological interface, we find that
the topological routers can own the output ports in a symmetrical way about the interface site. The topological
routers may play the pivotal role in the large-scale entanglement distributions, which significantly expands and
supplies the potential applications of the topological materials in quantum information processing.
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I. INTRODUCTION

Quantum information processing [1–4] has become one
of the most concerning research hot spots in recent years.
Different from the classical information processing, quantum
information processing is a brand-new way of information
processing since the carrier of information in quantum in-
formation processing is quantum states [5–11] rather than
the classical bits, leading it to own the unique advantages in
achieving higher information processing efficiency and pro-
viding more storage space of information. Especially, in the
large-scale quantum information processing, the robust quan-
tum state transfer [12–16] is one of the key elements to realize
quantum information transmission between remote nodes. In
this way, it is necessary to construct an effective quantum
state transmission channel based on various quantum systems,
including the quantum dots [17–20], cavity quantum elec-
trodynamics [21–24], and nitrogen-vacancy centers [25–27].
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However, these systems inevitably possess the perturbation
and decoherence process due to the existence of the artificial
variance or the spontaneous defects of the systems, which
may greatly reduce the reliability of the quantum information
transmission. Thus, how to implement the robust channel of
the quantum state transfer is still an urgent and continuously
followed issue.

Topological insulators [28–31], as one of the new classi-
fications for materials, has attracted much more attention due
to the manifold novel characteristics, such as the simultaneous
existences of the insulating bulk and conducting edge states.
These conducting edge states are protected by the energy gap
and hence are immune to the mild disorder and perturbation
[32–36] added into the system. This prominent performance
leads the topological edge states to become the promising
candidate to implement the robust topological quantum state
transfer [37–41]. The central concept for the quantum state
transfer based on the topological edge channel can be com-
prehended via the topological edge pumping. Note that the
topological edge pumping has been proposed and observed
both in the periodic [42] and quasiperiodic quasicrystal [43]
systems. The robust quantum state transfer via topologically
protected edge pumping in two-dimensional topological spin
systems has also been reported in Ref. [44]. Subsequently, the
robust quantum state transfer scheme assisted by the topologi-
cal edge states has been realized based on the one-dimensional
superconducting qubit chains [45], in which the initial state
prepared at the first site can be transferred into the last site via
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the adiabatic edge pumping. It is worth noting that the limi-
tation of the adiabatic condition leads the process of the state
transfer inevitably to consume many more time resources. To
handle this obstacle, the accelerated quantum state transfers
by dint of the topological edge channels assisted by adiabatic
passage [46] and long-range hopping [47] have been proposed
recently. Based on the concept of the topological state trans-
fer, in Ref. [48], we demonstrate that the gap state induced
by the on-site energy and next-nearest-neighbor (NNN) hop-
ping can be used as the topological channel to implement
the special topological quantum state transfer, in which the
initial state prepared at the right edge can be transferred
into the first two sites with approximately equal probabilities.
The scheme mentioned in Ref. [48] actually indicates the
potential feasibility of distributing the initial state between
several nodes, which is expected to provide the prototype
to implement the large-scale topological quantum informa-
tion processing. Unfortunately, the scheme mentioned above
only owns two output ports, which obviously is insufficient
for the expected large-scale topological quantum information
processing. Thus, how to construct a topological channel with
multiple output ports to implement the quantum state transfer
is still an open problem.

In this paper, inspired by the motivation mentioned above,
we try to induce one specific topological channel via intro-
ducing the elaborate long-range hopping in the modulated
Su-Schrieffer-Heeger (SSH) model with the odd number of
lattice sites. We demonstrate that the long-range hopping with
the same strength as the intercell hopping added on the first
site and all of the other odd sites indeed induces a special gap
state, in which the gap state has the uniform distributions at
the first site and all of the even sites when the modulated pa-
rameter in a certain range. We find that, based on this special
topological channel, the initial state prepared only at the last
site can be transferred into the first site and all of the even
sites with the approximately equal probabilities. This special
topological state transfer, if we treat the last site as the input
port and treat the first and all of even sites as the output ports,
can be naturally equivalent to a router in form. The present
router is spontaneously immune to the mild disorder due to
the topological protection originating from the energy gap.
We reveal that the number of the output ports can be tuned via
reducing the long-range hopping terms. Significantly, we find
that the system experiences a phase transition with the increas-
ing of long-range hopping amplitudes, after which, the output
ports of the original topological router are only occupied on all
of the even sites. Furthermore, we also show the topological
routers assisted by the topological interface, in which the
initial particle can realize the symmetrical splittings through-
out the topological edge pumping. We stress that the present
several topological routers can be realized under the current
experimental conditions, which greatly expands the possible
applications of the topological matter in quantum information
processing, such as the large-scale quantum distributions.

The paper is organized as follows: In Sec. II, we demon-
strate that the topological router can be induced via the
long-range hopping added between the first site and all of
other odd sites. We reveal that the different kinds of topolog-
ical router can be induced by the weak long-range hopping,
the large long-range hopping, and the topological interface.

FIG. 1. The diagrammatic sketch of the modulated Su-
Schrieffer-Heeger (SSH) model with the long-range hopping. The
size of the SSH chain is L = 2N + 1 with N unit cells, in which
each unit cell contains two sublattice sites an and bn. The intra-
and intercell coupling between two adjacent sites is J1 and J2. Note
that the SSH chain has the special long-range hopping between the
first site a1 and all other a-type sites an=2,...,N+1 with the amplitude
Tn=1,...,N .

In Sec. III, we show that the topological router can be imple-
mented under the current experimental conditions. Finally, a
conclusion is given in Sec. IV.

II. TOPOLOGICAL ROUTER INDUCED
BY LONG-RANGE HOPPING

Consider a 1D SSH chain with the size of L = 2N + 1
(N is the number of unit cells and we take N as even in the
following), as shown in Fig. 1. In this chain, each unit cell
contains two sublattice sites an and bn with the intra- and
intercell coupling J1 and J2. Especially, the SSH chain owns
the elaborate long-range hopping, in which the first a-type site
a1 can support the long-range hopping with an arbitrary a-type
site in the nth (n = 2, 3, . . . , N + 1) unit cell accompanied
with the hopping amplitude Tn (n = 1, 2, . . . , N). The SSH
chain mentioned above can be described by the following
Hamiltonian, with

H =
N∑

n=1

[(J1a†
nbn + J2a†

n+1bn + Tna†
1an+1) + H.c.], (1)

where J1 = J + cos θ and J2 = J − cos θ are the modulated
nearest-neighbor (NN) hopping amplitudes with θ ∈ [0, 2π ]
being the periodic parameter. For simplicity, here, we choose
J = 1 as the energy unit in all of the paper. Note that,
when the long-range hopping terms in Eq. (1) are vanish-
ing (Tn = 0), the present SSH chain becomes a standard
SSH model with modulation, in which the system possesses
a zero-energy topological right (left) edge state within θ ∈
[0, 0.5π ] ∪ [1.5π, 2π ] (θ ∈ [0.5π, 1.5π ]). The zero-energy
topological edge states in modulated SSH chain are widely
used as the topological channel to implement the robust
quantum state transfer [37–40]. The question is whether the
channel of quantum state transfer can still hold when the long-
range hopping between a-type sites is added into the system.
In the following, we will explore the effects of the long-range
hopping between a-type sites on the topological channel.

A. Topological router induced by weak long-range hopping

For simplicity, we choose the long-range hopping ampli-
tudes to take T1 = T2 = . . . = TN = J2. The energy spectrum,
when the long-range hopping is added into the system, is
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FIG. 2. Energy spectrum, distribution of gap state, and diagram-
matic sketch of the localized state. (a) The energy spectrum of the
SSH chain when T1 = T2 = . . . = TN = J2. The energy spectrum has
a gap state (red line). The minimal energy space between the gap
state and the up energy band is labeled as �E . (b) The distribu-
tion of the gap state versus the periodic parameter θ , in which the
gap state is mainly localized at the last site within θ ∈ [0, 0.5π ]
while it is mainly localized at sites a1, b1, b2, ..., and bN uniformly
within θ ∈ [0.5π, π ]. Note that the distribution of the gap state when
θ ∈ [π, 1.5π ] (θ ∈ [1.5π, 2π ]) has the same form as the distribution
in θ ∈ [0.5π, π ] (θ ∈ [0, 0.5π ]). (c) The diagrammatic sketch of
the distribution for the gap state when θ ∈ [0.5π, π ]. When θ ∈
[0.5π, π ], the intra- and intercell coupling satisfy J1 < J2, implying
the weak bond J1 and strong bond J2. Under the limiting of the weak
bond, the SSH chain is divided into several components in the unit of
three sites, such as a1, a2 (a3, . . . , aN+1), and b1 (b2, . . . , bN ). When
the long-range hopping satisfies Tn=1,...,N = J2, the strong bonds Tn

and J2 generate a domain wall (see Fig. 1.8 in Ref. [49]), leading the
sites a1 and b1 (b2, . . . , bN ) to be isolated. These isolated sites just
correspond to the distribution of the gap state within θ ∈ [0.5π, π ].
The other parameter takes L = 2N + 1 with N = 6. The unit is
J = 1.

depicted in Fig. 2(a). Similar to the case of vanishing long-
range hopping, the present energy spectrum also possesses a
gap state in the whole energy gap. However, the difference is
that the gap state does not keep the zero energy due to the
introduction of long-range hopping. Especially, the minimal
energy space �E between the gap state and the up band
becomes much narrower since the long-range hopping is only
added on the a-type sites. The distribution of the gap state is
further plotted in Fig. 2(b), in which the gap state is mainly
localized at the last site aN+1 within θ ∈ [0, 0.5π ] while it
is uniformly distributed at sites a1, b1, b2, ..., and bN within
θ ∈ [0.5π, π ]. The reason is that, when θ ∈ [0, 0.5π ], the
NN and long-range hopping amplitudes satisfy J1 > J2 = Tn,
indicating that the two sublattice sites belonging to one unit

cell are paired due to the existence of the strong bond J1. The
paired two sublattice sites further lead the last site aN+1 to be
isolated and become the topological right edge state. On the
contrary, when θ ∈ [0.5π, π ], the NN and long-range hopping
amplitudes now become J1 < J2 = Tn. As shown in Fig. 2(c),
the weak bond J1 and two strong bonds J2 = Tn lead that the
three sites, such as a1, a2 (a3, a4, ..., aN+1), and b1 (b2, b3,
..., bN ) generate a domain wall [49], which further induces
the two sites a1 and b1 (b2,...,N ) to be isolated. As a result,
the gap state is mainly localized at sites a1, b1, b2, ..., and bN

uniformly when θ ∈ [0.5π, π ].
This special distribution of the gap state induced by the

long-range hopping Tn indicates that, if we prepare the particle
at last site aN+1 initially, with the varying of parameter θ

from 0 to π , the initial particle will be finally transferred
into the sites a1, b1, b2, ..., and bN uniformly. This transfer
process actually implies that the gap state can be used as the
topological channel to implement the state transfer between
the initial state |�〉i,1 = |0, 0, 0, 0, . . . , 0, 0, 1〉 and the final
state |�〉 f ,1 = 1√

N+1
|1, 1, 0, 1, . . . , 0, 1, 0〉. Note that here we

define the states in the particle number space, in which the
probability of the particle at each site obeys the statistics of a
single particle.

To implement the topological state transfer mentioned
above, we should rewrite the periodic parameter θ as the
time-dependent version θ = �t with the ramping speed �

and time t . In this way, the initial state |�〉i,1 will be evolved
along the gap state under the domination of i ∂

∂t
|�〉i,1 =

H (θt )|�〉i,1. Note that, due to the topological protection of
the minimal energy space �E , the evolution process is nat-
urally immune to the mild perturbation, e.g., the on-site
disorder

∑
n W (δa,na†

nan + δb,nb†
nbn) (with W being the dis-

order strength and δa,n (δb,n) being a random number within
[−0.5, 0.5]). We plot the fidelity between the evolved final
state and the ideal final state |�〉 f ,1 versus the ramping speed
� and the disorder strength W , as shown in Fig. 3(a). The nu-
merical results clearly show that, for the slow enough ramping
speed log10(�) < −2.5J and mild enough disorder strength
W < 0.5J , the state transfer between |�〉i,1 and |�〉 f ,1 can be
realized with a high enough fidelity. We stress that the former
condition of log10(�) < −2.5J originates from the adiabatic
evolution demand, while the latter condition of W < 0.5J is
associated with the topological protection originating from the
energy gap. We also depict the state transfer process when
� = 5 × 10−4 J and W = 0.25J , as shown in Fig. 3(b). Obvi-
ously, when the mild on-site disorder is added into the system,
the state transfer between |�〉i,1 and |�〉 f ,1 can indeed be im-
plemented. Furthermore, we also investigate the state transfer
process when the disorder is added into the NN hopping, as
shown in Figs. 3(c) and 3(d). The numerical results reveal
conclusions similar to the cases shown in Figs. 3(a) and 3(b).

These results indicate that, if we regard the last site aN+1

as the input port and regard the sites a1, b1, b2, ..., and
bN as multiple output ports, the state transfer process men-
tioned above is actually equivalent to a router in function
[see Fig. 3(e)], in which the particle initially prepared at the
input port can be distributed toward multiple output ports.
Especially, since the distribution process is assisted by the
topological gap state, the present state transfer is thus equiva-
lent to a topological router and naturally immune to the mild
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FIG. 3. Fidelity, evolution process of the initial state, and dia-
grammatic sketch of the topological router. (a) The fidelity between
the evolved final state and the ideal final state |�〉 f ,1 versus the
ramping speed � and on-site disorder strength W . Note that here we
only focus on the process of the state transfer and hence artificially
abandon the phase information of the evolved state in the process of
calculating the fidelity. The disorder is randomized 100 times and the
average is taken. (b) The process of the evolution for the initial state
|�〉i,1 when the on-site disorder is added into the system, in which the
parameters satisfy � = 5 × 10−4J and W = 0.25J . (c) The fidelity
between the evolved final state and the ideal final state |�〉 f ,1 versus
the ramping speed � and NN disorder strength W . (d) The process
of the evolution for the initial state |�〉i,1 when the NN disorder is
added into the system with � = 5 × 10−4J and W = 0.25J . (e) If
we treat the last site aN+1 as the input port and treat the sites a1, b1,
b2, ..., and bN as output ports, the present process of the state transfer
is naturally equivalent to a router in form. The other parameter takes
L = 2N + 1 with N = 6. The unit is J = 1.

local perturbation. The robustness of the topological router
against the local perturbation greatly decreases the obstacle
in practical applications. Moreover, we stress that the number
of the output ports in the topological router can be flexibly
tuned via reducing the terms of the long-range hopping Tn;
e.g., when T1 = T2 = . . . = TN−1 = J2, the output ports of the
topological router will be reduced by 1 (see Appendix for
more discussions). In this way, we can tune the number of the

output ports via reducing or adding the long-range hopping
terms between a-type sites.

Actually, the topological router is a kind of special topolog-
ical pumping in the SSH model, in which the particle initially
prepared at the input port can be pumped toward several
output ports. Compared with the traditional topological edge
pumping in the SSH model [45–47], the dominant advantage
of the present topological router is that the topological router
can realize the topological distributions at several output ports,
in which the number of the output ports can be flexibly tuned
via designing the long-range hopping terms. More specifi-
cally, this topological pumping mentioned in Refs. [45–47]
can only realize the pumping of the particle from one edge to
another edge. In other words, these pumping schemes, espe-
cially in Refs. [46,47], are much more focused on the transfer
efficiency than the scalability (large-scale distribution). In
the quantum network, efficiency and scalability are the basis
of the high-efficiency and large-scale quantum information
processing. The topological edge pumping via topological
channel actually plays the role in removing the obstacles of
the fast and robust excitation transmission, which has been
explored extensively and maturely. However, the investiga-
tions about the scalability or the large-scale distribution of the
quantum network by dint of the topological channel are still
relatively scarce so far. The concept of the topological router
based on the topological edge channel, as far as we know,
seems not to be proposed yet. The topological router actually
deals with the explorations of the large-scale distribution in
the quantum network based on topological matters. In addition
to the traditional topological edge pumping in the SSH model,
note that the two edge states will experience the Rabi-type
flopping for the chain with the even size of lattice [38], by
which the topological beam splitter with the tunable output
proportions at two output ports can be constructed [41]. The
similar topological beam splitter also has been proposed in
Ref. [48] via introducing the NNN hopping. Compared with
the traditional topological edge pumping in the SSH model,
these topological beam splitter schemes possess two output
ports, which takes the first step toward the large-scale topolog-
ical distributions. However, these topological beam splitters
only have two output ports, which is obviously insufficient
for the expected large-scale quantum information processing.
Thus, the appearance of the topological router with multi-
ple output ports will greatly supply the applications of the
topological matters in large-scale quantum information pro-
cessing. Especially, the tunable number of the output ports via
modulating the long-range hopping terms makes the practical
application of the topological router in a quantum network to
be much more universal and flexible.

B. Topological router induced by strong long-range hopping

In Sec. II A, we have demonstrated and shown that the
long-range hopping amplitudes T1 = T2 = . . . = TN = J2 can
induce a topological router. Here, we will investigate the
effects of the increasing long-range hopping amplitudes T1 =
T2 = . . . = TN = T J2 with T > 1 on the topological router.
We stress that the topological router is protected by the energy
gap, and thus is closely related to the minimal energy space
�E between the gap state and the up energy bands. The vary-
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FIG. 4. (a) The varying of minimal energy space �E with the
increasing of the long-range hopping amplitude. (b) The energy spec-
trum around the gap under the large long-range hopping amplitude
condition with T = 8J . The energy spectrum still has a gap state.
(c) The distribution of the gap state. (d) The fidelity between the
evolved final state and the state |�〉′

f ,1 versus the ramping speed �

and T . The fidelity exhibits a clear dividing line around T = 2.4J .
(e) The diagrammatic sketch of the distribution for the gap state when
θ ∈ [0.5π, π ]. Compared with the case shown in Fig. 2(e), the strong
enough long-range hopping amplitudes Tn=1,...,N = T J2 lead the two
sites a1 and a2 (a3, . . . , aN+1) to be paired, further leading the sites
b1, b2, . . . , bN to be isolated. The other parameter takes L = 2N + 1
with N = 6. The unit is J = 1.

ing of the minimal energy space �E versus the parameter T is
plotted in Fig. 4(a). We find that the minimal energy space �E

decreases first and increases subsequently with the increasing
of the parameter T . Especially, the minimal energy space �E

closely reaches to �E ≈ 0 when T ≈ 2.371J , implying that
the system may experience a phase transition.

To explore the possible phase transition induced by the
large parameter T , we plot the energy spectrum and the
distribution of the gap state when T = 8J , as shown in
Figs. 4(b) and 4(c). The energy spectrum still holds a gap
state and the gap state is uniformly localized at the sites b1,
b2, ..., and bN when θ ∈ [0.5π, π ]. The distribution of the
new gap state induced by large T indicates the feasibility
of implementing the state transfer between the initial state
|�〉i,1 = |0, 0, 0, 0, . . . , 0, 0, 1〉 and the final state |�〉′f ,1 =

1√
N
|0, 1, 0, 1, . . . , 0, 1, 0〉. To further estimate the feasibility

of implementing the state transfer between |�〉i,1 and |�〉′f ,1,
we plot the fidelity of the state transfer versus the ramping
speed � and the parameter T , as shown in Fig. 4(d). The nu-
merical results reveal that, corresponding to the small enough
ramping speed log10(�) < 10−3J , the large enough parameter
T with T > 2.4J ensures that the state transfer between |�〉i,1

and |�〉′f ,1 can be realized with a high enough fidelity.
The new state transfer between |�〉i,1 and |�〉′f ,1 actually

corresponds a new topological router, in which the particle
initially injected into the input port aN+1 is finally divided
into N parts appearing at all of b-type site ports. Note that,
as depicted in Fig. 4(a), the minimal energy space �E grad-
ually increases with T increasing from T ≈ 2.371J . The
enlarged minimal energy space �E means that the topologi-
cal protection of the new topological router is strengthened.
Dramatically, when the parameter T satisfies T > 7.8J , the
minimal energy space �E of the new topological router
becomes larger than the topological router mentioned in
Sec. II A, implying that the new topological router is much
more robust against the local perturbations.

The new topological router can be further comprehended
via the diagrammatic sketch shown in Fig. 4(e). Compared
with the case in Fig. 2(c), when θ ∈ [0.5π, π ], the large
enough T with T � 1 makes the two sites a1 and a2

(a3, a4, . . . , aN+1) to be paired due to the strong enough bonds
Tn = T J2, leading to the sites b1, b2, ..., and bN being isolated.
These isolated sites b1, b2, ..., and bN just correspond to the
output ports of the new topological router. The appearance
of the new topological router indicates that, in addition to
the tunable ports induced by reducing the long-range hopping
terms, we also can induce two different kinds of topological
routers via controlling the strength of the long-range hopping.
Thus, via designing the long-range hopping terms reason-
ably, we can realize various topological routers depending
on the different target, which greatly expands the potential
applications of topological materials in quantum information
processing.

C. Topological router induced by topological interface

Now, we still consider a SSH chain with the size of L =
2N + 1 (N ∈ even), but the intra- and intercell NN coupling
configurations have a rotation after the a-type site in the
(N/2 + 1)th unit cell, as shown in Fig. 5. Naturally, the SSH
chain generates an interface at the site aN/2+1. Note that the
restriction condition of even N ensures that the interface is
located at the a-type site. Similarly to the case discussed in
Fig. 1, we also symmetrically add the long-range hopping
between the two sides of the interface site, as shown in Fig. 5.
In this way, the present SSH chain is equivalent to the same
(mirror-symmetric) version as the model shown in Fig. 1 when
n ∈ [1, 2, . . . , N

2 ] (n ∈ [ N
2 + 1, N

2 + 2, . . . , N]). The Hamilto-
nian of the present SSH chain can be written as

H =
N/2∑

n=1

[(J1a†
nbn + J2a†

n+1bn + Tna†
1an+1) + H.c.]

+
N∑

n=N/2+1

[
(J2a†

nbn + J1a†
n+1bn + Tna†

N+1an) + H.c.
]
, (2)
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FIG. 5. The diagrammatic sketch of the modulated Su-Schrieffer-Heeger (SSH) model with the interface. The size of the SSH chain is
L = 2N + 1 with N unit cells (N ∈ even). The SSH chain has the intra- and intercell coupling J1 (J2) and J2 (J1) before (after) the interface
site aN/2+1. Note that the SSH chain has the long-range hopping between the first site a1 and all other a-type sites an=2,...,N/2+1 with the
amplitude Tn=1,...,N/2 before the interface site aN/2+1 and possesses the the long-range hopping between the last site aN+1 and all other a-type
sites an=N/2+1,...,N with the amplitude Tn=N/2+1,...,N after the interface site aN/2+1.

where J1 = J + cos θ (J2 = J − cos θ ) is still the modulated
NN hopping amplitude and T1 = T2 = . . . = TN = T J2 is the
long-range hopping amplitude.

According to the conclusions obtained in Sec. II A
and Sec. II B, it is easy to infer that the interface
induces a topological channel to implement the
state transfer between the initial states |�〉i,2 =
|0, 0, 0, 0, . . . , 0, 1, 0, . . . , , 0, 0, 0, 0〉 and the ideal final
state |�〉 f ,2 = 1√

N+2
|1, 1, 0, 1, . . . , 1, 0, 1, . . . , 1, 0, 1, 1〉

when T = 1 or implement the state transfer between
the initial states |�〉i,2 and the ideal final state |�〉′f ,2 =

1√
N
|0, 1, 0, 1, . . . , 1, 0, 1, . . . , 1, 0, 1, 0〉 when T � 1. To

further verify the above inference, we simulate the fidelity
of the two kinds of state transfer process versus the ramping
speed � and parameter T , as shown in Figs. 6(a) and 6(b).
The numerical results clearly reveal that we can always find

FIG. 6. Fidelity and evolution process of the initial state |�〉i,2.
(a) The fidelity between the evolved final state and the ideal final
state |�〉 f ,2 versus the ramping speed � and parameter T . (b) The
fidelity between the evolved final state and the ideal final state |�〉′

f ,2

versus the ramping speed � and parameter T . (c) The process of
the evolution for the initial state |�〉i,2 when parameters satisfy � =
10−5J and T = 1.1J . (d) The process of the evolution for the initial
state |�〉i,2 when parameters satisfy � = 10−5J and T = 8J . The
other parameter takes L = 2N + 1 with N = 6. The unit is J = 1.

an appropriate � to implement the first (second) kind of state
transfer with a high enough fidelity when the parameter T
approximately satisfies T < 1.5J (T > 1.5J). The two kinds
of state transfer processes are shown in Figs. 6(c) and 6(d).
We stress that the two kinds of state transfers induced by
the interface also correspond to two topological routers, in
which the particle initially prepared at the interface site can
be distributed toward multiple output ports. Compared with
the topological routers mentioned in Sec. II A and Sec. II B,
the present topological router induced by the interface can
realize the symmetric (the interface site is the symmetry
center) distributions of the initial particle.

III. EXPERIMENT AND DISCUSSION

The different kinds of topological routers have many po-
tential applications in quantum information processing, i.e.,
taking the topological routers as the topological channel to
implement the large-scale entanglement distribution. Thus,
before concluding, we give a brief discussion with respect to
the experimental realization of the topological routers.

A. Realization of the long-range hopping
in the Su-Schrieffer-Heeger chain

The cold atoms trapped in an optical lattice [50–54] are
widely used to investigate various topological issues, includ-
ing the topological boundary state [55–58], topological phase
transition [59–61], and topological invariant [59,62–64]. Note
that the controllable NNN hopping between two adjacent unit
cells can be realized based on parametrically coupled atomic
momentum states in the cold-atom system [65]. Moreover,
the multifold long-range hopping terms between one certain
site and other sites can also be realized via the shallow
optical lattice [66,67], in which the long-range hopping am-
plitudes decay exponentially with distance between two sites.
Although various kinds of long-range hopping can be con-
structed in cold-atom systems, the given long-range hopping
form (the long-range hopping only added between the first
a-type site and other a-type sites with the identical hopping
amplitudes) in this paper seems to still have great obstacles in
cold-atom systems.

In addition to the cold-atom system, the superconducting
circuit lattice [68–70] consisting of superconducting qubits
and superconducting resonators has also attracted much more
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attention for the mapping of topological matter due to the
designability of geometric pattern and coupling configuration
in space. Depending on the flexible designability of the su-
perconducting circuit lattice, the long-range hopping between
two sites can be designed individually, such as the long-range
hopping shown in Fig. 1. What is more important is that
the strength of the long-range hopping terms can be tuned
individually and adiabatically via the external control [69],
including the superconducting quantum interference devices,
the flux-bias line, and the additional coupler circuits. Exper-
imentally, the typical coupling between two superconducting
resonators can be tuned in the range of 0 ∼ 100 MHz [69],
together with the coupling between the superconducting res-
onator and qubit in the range of 0 ∼ 400 MHz, providing
a considerably wide tuning range for the amplitudes of the
NN and long-range hopping. In this way, the superconducting
circuit lattice based topological router can be implemented as
the topological channel to realize the large-scale distribution.

B. Analysis of the adiabatic evolution process
for the topological router

Note that, as shown in Sec. II, the various kinds of topo-
logical routers need to satisfy the strict adiabatic evolution
demand to avoid the evolution process to integrate into the
bulk, indicating that the ramping speed � should be small
enough to ensure that the whole evolution process is along
the gap state and passes the point around the minimal energy
space �E safely. However, the small enough ramping speed �

usually means that the periodic parameter should be varied ex-
tremely slowly, corresponding to an extremely long evolution
time, which brings great challenges for the practical experi-
mental platform. For example, in the superconducting circuit
lattice mentioned above, the extremely slow varied parameter
means that the external control field of the superconducting
circuit lattice should be modulated adiabatically, which may
cause certain challenges for the current experimental tech-
niques. At the same time, the extremely long evolution time
also may be beyond the life of the superconducting qubits,
which inevitably leads the decoherence effect, leading the
topological router to be invalid in superconducting circuit
experiments.

To avoid these obstacles, one alternative method is that we
enlarge the ramping speed � directly. Generally, the order of
magnitude for the ramping speed � can be roughly estimated
by the formula of

√
� < �E [45], meaning that the restriction

of the ramping speed � can be relaxed appropriately via the
larger minimal energy space �E . Meanwhile, the finite-size
effect of the SSH model determines that the energy gap is
closely related to the size of the system, in which the energy
gap exhibits an exponential decay behavior with the increas-
ing of the size of the chain, meaning that we may enlarge
the minimal energy space �E to obtain a relatively larger
� via decreasing the size of the SSH chain appropriately.
In Fig. 7(a), we plot the minimal energy space �E versus
the size of the chain L when the long-range hopping satis-
fies T1 = T2 = . . . = TN = J2 (the topological router shown
in Sec. II A). The numerical results reveal that the minimal
energy space �E indeed exhibits an exponential decay be-
havior approximately with the increasing of the size of the

FIG. 7. (a) The minimal energy space �E versus the size of the
lattice L when T1 = T2 = . . . = TN = J2. (b) The fidelity of the topo-
logical router versus the ramping speed � corresponding to different
size of the lattice. The unit is J = 1.

chain. Especially, when the size of the chain is taken L = 5,
the minimal energy space �E can even reach about 0.5J .
To further estimate the effects of the increasing size of the
lattice on the ramping speed �, we plot the fidelity of the
topological router shown in Sec. II A versus the ramping speed
� when the chain takes different sizes, as shown in Fig. 7(b).
Obviously, the shorter chain corresponds a wider range of the
ramping speed � with fidelity being close to 1. For the small
SSH chain with the size of L = 5, we find that the fidelity can
still be equal to 1 even when � = 10−2J . In superconducting
circuit lattice experiments, the current state of the art for
superconducting circuits can produce a medium-sized super-
conducting quantum computer with qubit numbers of 50–100
[45], which means that the lattice with the size of L = 5 can be
easily implemented. Besides, in the superconducting circuit
lattice, the ramping speed � = 0.01J with J/2π = 250 MHz
corresponds to the time of the transfer process ttotal = π/� =
0.2 μs, which is much shorter than typical qubit decoherence
time 30–140 μs [71]. Actually, even for the longer chain with
L = 13, the ramping speed � = 0.001 still ensures that the
time of the transfer process ttotal = 2 μs is much shorter than
the qubit decoherence times. Thus, increasing the ramping
speed � via decreasing the size of the chain is a totally
feasible way in the experiment.

Besides the way to decrease the size of the chain directly,
we also may use the shortcut method to accelerate the trans-
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fer process; e.g., we can apply the shortcut-to-adiabaticity
method to pass the point around the minimal energy space and
realize the adiabatic quantum state transfer [45]. Note that,
in Ref. [46], the author induces a topological interface state
to realize the accelerated quantum state transfer between the
left and right edge states. Via designing the adiabatic passage
in the dressed three-level description of the left, right, and
interface states, the fast state transfer between the left and
right states can be implemented. Since the topological router
mentioned in Sec. II C also has a topological interface, the
adiabatic passage method may provide enlightening sugges-
tions for our topological router. Moreover, in Ref. [47], the
authors show that the fast and robust quantum state transfer
between two edge states can be realized via introducing the
NNN hopping between a-type sites. This method actually
maps the chain into a three-level space via introducing the
hopping between NNN a-type sites. In this way, via designing
the hopping rate in the three-level space using the shortcut
technique, the state transfer between the edge sites can be
realized in a fast and robust way. Differently, the SSH model
with the long-range hopping mentioned in Fig. 1 cannot be
mapped into the similar three-level space since the long-range
hopping terms are totally different. However, we may map
the present model into a multilevel space, by which we may
realize the acceleration of the state transfer via designing
the coupling using the multilevel shortcut technique. At the
same time, we must clarify that the topological router may
not realize the splitting at each output port with the equal
probability after designing the coupling using the multilevel
shortcut technique, which is against our original intention.

IV. CONCLUSIONS

In conclusion, we have proposed several different parame-
ter regimes to induce the topological router based on the SSH
model with the NN hopping modulations. We demonstrate
that, when the introduced long-range hopping amplitudes be-
tween the first site a1 and other a-type sites are equal to
the intercell hopping strength, the long-range hopping opens
up a special topological channel. By dint of this topological
channel, the particle initially prepared at the last site can be
simultaneously transferred into the first site and all of the even
sites with the approximately equal probabilities, implying the
potential probability to implement the split-flow process with
multiple output ports, such as the topological router. We show
that, due to the topological protection originating from the
energy gap, the present topological router is spontaneously
immune to the mild disorder added into the on-site energy
and NN hopping. Furthermore, depending on the designability
of the long-range hopping terms, we reveal that the amounts
of the output ports for the topological router can be mod-
ulated via reducing the corresponding long-range hopping
terms. Dramatically, we find that the system experiences a
phase transition with the increasing of the long-range hopping
amplitudes, in which the new topological router with output
ports only at all even sites can be implemented via the gap
state. Furthermore, we also explore the effects of the topo-
logical interface on the topological routers, and show that the
topological routers can own the output ports in a symmetric
way. We stress that the topological routers are expected to

be implemented in the superconducting circuit system and
greatly expand the applications of topological matter in quan-
tum information processing.
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APPENDIX

The number of the output ports for the topological router
mentioned in Sec. II A can be tuned via designing the long-
range hopping between a-type sites. For example, when the
long-range hopping amplitudes between a-type sites satisfy
T1 = T2 = . . . = TN−1 = J2, it is easy to find that the energy
spectrum owns a gap state, in which it is mainly localized at
the last site within θ ∈ [0, 0.5π ] while is mainly localized at
sites a1, b1, b2, . . . , bN−1 within θ ∈ [0.5π, π ], as shown in
Figs. 8(a) and 8(b). This special distribution of the gap state
indicates that the gap state can be treated as the topological
channel to implement the state transfer between the states
of |0, 0, 0, 0, . . . , 0, 0, 0, 1〉 and 1√

N
|1, 1, 0, 1, . . . , 1, 0, 0, 0〉.

Compared with the case shown in Fig. 2(b), the present
topological channel obviously reduces one output port. Sim-
ilarly, we can further decrease the number of the output

FIG. 8. Energy spectrum and distribution of gap state. (a) The
energy spectrum of the SSH chain when T1 = T2 = . . . = TN−1 = J2.
The energy spectrum has a gap state (red line). (b) The distribution
of the gap state in (a) versus the periodic parameter θ , in which the
gap state is mainly localized at the last site within θ ∈ [0, 0.5π ]
while it is mainly localized at sites a1 and bn=1,...,N−1 uniformly
within θ ∈ [0.5π, π ]. (c) The energy spectrum of the SSH chain
when T1 = T2 = . . . = TN−2 = J2. The energy spectrum has a gap
state (red line). (d) The distribution of the gap state in (c) versus the
periodic parameter θ , in which the gap state is mainly localized at the
last site within θ ∈ [0, 0.5π ] while it is mainly localized at sites a1

and bn=1,...,N−2 uniformly within θ ∈ [0.5π, π ]. The other parameter
takes L = 2N + 1 with N = 6. The unit is J = 1.
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ports via continuously reducing the long-range hopping terms,
such as T1 = T2 = . . . = TN−2 = J2. The relevant spectrum
and the distribution of the gap state are shown in Figs. 8(c)
and 8(d). The numerical results clearly show that the state
transfer between the states of |0, 0, 0, 0, . . . , 0, 0, 0, 1〉 and

1√
N−1

|1, 1, 0, 1, . . . , 0, 0, 0, 0〉 can be realized via the adia-
batic pumping of the gap state. In this way, we can tune the
number of the output ports for the topological router, which
greatly improves the usability of the topological router in
practical applications.
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