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Statistics of coherent waves inside media with Lévy disorder
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Structures with heavy-tailed distributions of disorder occur widely in nature. The evolution of such systems,
as in foraging for food or the occurrence of earthquakes, is generally analyzed in terms of an incoherent series
of events. But the study of wave propagation or lasing in such systems requires the consideration of coherent
scattering. We consider the distribution of wave energy inside one-dimensional random media in which the
spacing between scatterers follow a Lévy α-stable distribution characterized by a power-law decay with exponent
α. We show that the averages of the intensity and logarithmic intensity are given in terms of the average of the
logarithm of transmission and the depth into the sample raised to the power α. Mapping the depth into the sample
to the number of scattering elements yields intensity statistics that are identical to those found for Anderson
localization in standard random media. This allows for the separation for the impacts of disorder distribution and
wave coherence in random media.
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I. INTRODUCTION

The average motion of particles in space and time in sam-
ples in which at least the first two moments of the distribution
of spacing are finite follows a diffusion equation in Brownian
models. Coherent-transport phenomena of classical and quan-
tum waves have been also studied using Brownian approaches
[1,2]. Diffusion is suppressed as a result of coherent backscat-
tering in which waves returning to points in the medium
along time-reversed paths interfere constructively. Anderson
localization occurs as diffusion ceases in sufficiently large
systems of dimensions d � 2 and in higher dimensions above
a critical value of disorder [3–6]. In one dimension, all waves
are localized. The average transmission falls exponentially
asymptotically, 〈T 〉 ∼ exp (−L/�), while 〈ln T 〉 = −L/�. In-
deed, the full statistics of transmission in standard light-tailed
distributions of separation between scattering elements is
determined in accordance with the single-parameter scaling
theory of localization in terms of the dimensionless parameter
L/� [2,7].

Most studies of coherent transport in random media con-
sider standard light-tailed distributions of disorder that lead
to Anderson localization. Such systems include mesoscopic
electronic systems in micron-scale devices at low temper-
atures and classical waves in stationary media. However,
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heavy-tailed distributions are common in biology and geology
[8] and may lead to advantageous mesoscopic devices.

Heavy-tailed Lévy α-stable distribution are characterized
by power-law tails. Thus, for a random variable z following a
Lévy α-stable distribution ρ(z) [9–11],

ρ(z) ∼ 1/z1+α (1)

for z � 1 and 0 < α < 2. For α < 1, both the first and second
moments diverge.

In Lévy-type disorder, waves can travel long distances
without being scattered and thus have a profound impact on
the transport properties. Measurements and analytic calcu-
lations of wave transmission in Lévy α-stable media give
different scaling than in standard one-dimensional (1D) ran-
dom media [8,12–26].

In this work, we treat the energy inside heavy-tailed Lévy
disordered media. The distinctive impacts of Lévy α-stable
disorder and Anderson localization upon wave propagation
are manifest. Potential applications of novel states in Lévy
disordered media for low-threshold lasing are discussed.

In particular, we investigate the statistics of waves inside
a 1D Lévy disordered structures via the statistics of intensity
I (x) at the observation point x (see Fig. 1).

As we show below, for Lévy-type disorder, the average of
the intensity and its logarithm follow power-law dependences
with the observation point. We will contrast these results with
those corresponding to systems with standard disorder, which
has been studied experimentally and theoretically [27–29].
Calculations of intensity inside Lévy disordered samples [30]
using the concept of leap-over to compute the density of
scatterers give different results from those presented below in
Fig. 4 (solid lines).
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FIG. 1. Schematic of a random waveguide with scatterers (slabs)
randomly separated according to a Lévy distribution. The scattering
processes to the left and right of the observation point x are described
by the transfer matrices Ml and Mr , respectively.

This paper is organized as follows. In Sec. II, we present
general expressions for the intensity and transmission in
a single sample in terms of transfer matrices. We then
introduce some known results for the statistics of the trans-
mission of standard disordered systems that will be contrasted
with the statistics of systems with Lévy disorder in the
subsequent section. In Sec. III, Lévy-type disorder is intro-
duced and compared to transmission in standard systems.
The results for the transmission are useful in the study of
the statistics of the intensity inside the medium. The av-
erages of the intensity and of the logarithm of intensity
are given as functions of depth in the sample. Examples of the
complete distribution of the logarithmic intensity are shown
in Sec. III. A summary of the results and discussion are given
in Sec. IV.

II. PRELIMINARIES

A. Transfer matrix: Transmission and intensity

Let us assume that we measure the intensity I (x) at a point
x. If A and B are the amplitudes of the forward and backward
going waves at this point (see Fig. 1), I (x) is given by

I (x) = |A exp (ikx) + B exp (−ikx)|2, (2)

where k is the wave number. We now introduce the transfer
matrices Ml and Mr associated with the segments of the sam-
ple on the left- and right-hand sides of the observation point,
respectively:

Ml (r) =
[
γl (r) βl (r)

β∗
l (r) γ ∗

l (r)

]
, (3)

where γl (r) and βl (r) are complex numbers satisfying |γl (r)|2 −
|βl (r)|2 = 1. The amplitudes A and B can be written in terms
of the transfer matrices Ml (r), and from Eq. (2), the intensity
is given by

I (x) = 1

|γr |2 |γlγ
∗
r + βlβ

∗
r |2

∣∣∣∣1 − β∗
r

γ ∗
r

exp −2ikx

∣∣∣∣
2

= T

Tr

∣∣∣∣1 − β∗
r

γ ∗
r

exp (−2ikx)

∣∣∣∣
2

, (4)

where T = |γlγ
∗
r + βlβ

∗
r |2 is the transmission coefficient of

the entire sample and Tr = 1/|γr |2 is the transmission coeffi-
cient of the right segment.

The transfer matrices Ml (r) are conveniently written in the
polar representation as [2]

Ml (r) =
[ √

1 + λl (r)eiθl (r)
√

λl (r)ei(2μl (r)−θl (r) )√
λl (r)e−i(2μl (r)−θl (r) )

√
1 + λl (r)e−iθl (r)

]
,

with phases θl (r), μl (r) ∈ [0, 2π ] and λl (r) � 0. An advantage
of using the polar representation is that the radial variables
λl (r) are directly related to the transmission coefficients:
λl (r) = (1 − Tl (r) )/Tl (r). Therefore, Eq. (4) can be written as

I (x) = T

Tr
|1 −

√
1 − Tr exp [−2i(μr − θr + kx)]|2, (5)

while the total transmission T is given by

1

T
= 1

TrTl
[2 + TrTl − Tr − Tl

+ 2
√

(Tr − 1)(Tl − 1) cos 2(μl − μr + θr )]. (6)

B. Statistics of the transmission in standard
disordered 1D media

Now that we have obtained analytical expressions for the
intensity and transmission of a single sample in the previous
section, we consider an ensemble of random samples. In par-
ticular, we assume that the disordered structures are composed
of randomly separated weak scatterers or slabs. Thus, the
intensity I (x) is a random quantity. From Eq. (5), the statistics
of I (x) depend on the statistical properties of the transmission
and the angular variables θl (r) and μl (r).

Before considering the case of disordered samples with
Lévy disorder, we introduce the distribution of the trans-
mission for standard disorder. The statistics of transmission
through standard disordered systems with light-tailed distri-
butions have been extensively studied using random matrix
theory [1,2]. The distribution of the transmission ps(T ) is
given by [31,32]

ps(T ) = C
[acosh(1/

√
T )]1/2

T 3/2(1 − T )1/4
e−s−1acosh2(1/

√
T ), (7)

where C is a normalization constant and s = L/�, with L being
the length of the system and � being the mean free path. The
complete distribution of transmission is determined by the
parameter s, which is proportional to the number of scatterers
n in the sample with proportionality constant a: s = an [33].

For later comparisons with systems with Lévy disorder,
we point out the asymptotic exponential decay with L of the
average transmission in standard disordered systems [1]:

〈T 〉 ∝ exp (−L/2�), (8)

and the linear behavior of the average of the logarithmic
transmission

〈− ln T 〉 ∝ L. (9)

To illustrate some statistical properties of the transmission
of standard disordered systems, we show in Fig. 2(a) the
distribution of the logarithmic transmission ps(ln T ), which
is obtained from Eq. (7), and the linear behavior of 〈− ln T 〉
with L, given by Eq. (9). The histogram and symbols in Fig. 2
are obtained from numerical simulations, as explained below.
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FIG. 2. (a) The distribution of the logarithmic transmission for
standard disorder systems. The distribution is determined by the
parameter s = 〈− ln T 〉 = 8. Inset: linear behavior of 〈ln T 〉 with the
system length. (b) The distribution of the logarithmic transmission
for Lévy disordered systems. The distribution is determined by the
parameters 〈− ln T 〉 = 8 and α = 1/2. Inset: the power-law behavior
of 〈ln T 〉 with the system length, Eq. (12).

The numerical simulations performed in this work are
based on the transfer matrix approach [18,34]. The numerical
model consists of layers 2.5 mm thick with refraction index
n2 = 1.1, randomly placed in a background with index of
refraction n1 = 1 with separations following a Gaussian dis-
tribution for standard disorder and a Lévy α-stable distribution
for Lévy disorder. We have fixed the frequency at 1 THz
in all the calculations. At this frequency, the layers have a
reflection coefficient of 0.007. Statistics are collected for 106

realizations of the disorder.

III. STATISTICS OF THE INTENSITY INSIDE 1D MEDIA
WITH LÉVY DISORDER

We utilize the model of Lévy disordered media introduced
in [15] with the asymptotic decay given in Eq. (1). We briefly
summarize the main results of Ref. [15] for the transmission
that will be useful for obtaining the statistical properties of the
intensity. We will consider the case α < 1, where the effects
of Lévy disorder on transport are strong.

In Lévy disordered samples of fixed length L, the num-
ber of scattering units n is a random variable with strong
sample-to-sample fluctuations; thus, it is crucial to know the
complete distribution of n. The probability density 
L(n; α)

of these fluctuations is given by [15]


L(n; α) = 2

α

L

(2n)
1+α
α

qα,c[L/(2n)1/α] (10)

for 0 < α < 1 in the limit L � c1/α , with c being a scaling
parameter. The probability density qα,c(x) has a power-law
tail: qα,c(x) ∼ c/x1+α for x � 1.

Using the distribution of the transmission for a fixed num-
ber of scatterers ps(T ) given in Eq. (7) and the distribution

L(n, α), Eq. (10), we write the distribution of the transmis-
sion for Lévy disordered systems pα,ξ (T ) as

Pα,ξ (T ) =
∫ ∞

0
ps(α,ξ,z)(T )qα,1(z)dz, (11)

where ps(α,ξ,z)(T ) is given by Eq. (7), with s replaced by
s(α, ξ, z) = ξ/(2zαIα ) and Iα equal to half of the mean
value 〈z−α〉: Iα = (1/2)

∫
z−αqα,1dz = cos(πα/2)/2�(1 +

α), where � denotes the gamma function [35]. The parameter
ξ introduced in Eq. (11) is the average of the logarith-
mic transmission for a fixed length L: ξ = 〈− ln T 〉L =∫ ∞

0 an
L(n)dn, which is given by

〈ln T 〉L = −
(

a

c
Iα

)
Lα. (12)

Since the factor in parentheses in Eq. (12) is a constant, the av-
erage of the logarithmic transmission is a power-law function
of L, in contrast to the linear dependence for standard disorder
in Eq. (9). Similarly, a power law is found for the average
transmission [18] 〈T 〉 ∝ L−α in contrast to the exponential
decay for standard disordered systems in Eq. (8).

In Fig. 2(b), we show an example of the distribution of
the logarithm of transmission for Lévy disordered structures
characterized by α = 1/2. The theoretical results as given in
Eq. (11) are compared to numerical simulations shown by the
histogram. The power-law behavior of 〈ln T 〉 in Lévy struc-
tures is shown in the inset in Fig. 2(b). Thus, by comparing
Figs. 2(a) and 2(b), the strong influence of Lévy disorder on
the statistical properties of transmission is clearly seen. We
also note that the only parameters that enter into Eq. (11) are
α and ξ = 〈ln T 〉. Thus, the complete statistics of transmission
is determined by these parameters.

With the above results for the statistics of transmission,
we now study the statistical properties of the intensity. As we
show next, the presence of Lévy disorder is revealed in basic
statistical quantities such as the ensemble averages 〈ln I (x)〉L

and 〈I (x)〉L.
Let us consider first the average of the logarithmic intensity

〈ln I (x)〉. The calculations are lengthy, but a simple analytical
result is obtained. 〈ln I (x)〉 is of particular importance since it
is directly related to the average of the logarithmic transmis-
sion, which along α determines all the statistical properties of
the transport in Lévy disordered systems.

We perform the average over the uniformly distributed
phases in Eq. (5) to obtain 〈ln I (x)〉 = 〈ln T 〉L − 〈ln Tr〉L−x.
Since ln T is an additive quantity, we obtain 〈ln T 〉L−x =
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FIG. 3. (a) Average of the logarithmic intensity for Lévy dis-
ordered systems with α = 1/2 and 3/4 (red and blue symbols).
The solid lines are given by Eq. (13). For comparison, the linear
dependence on x in the case of standard disorder is also shown
(green). In all cases, 〈− ln T 〉L = 5. (b) The average number of slabs
〈n〉 in the Lévy (α = 1/2, 3/4) and standard disordered structures
at the position of observation x. (c) 〈ln I〉 as a function of 〈n〉 for
α = 1/2, 3/4 and standard disorder.

〈ln T 〉L − 〈ln T 〉x, and from Eq. (10), we have

〈ln I (x)〉 = −
(

a

c
Iα

)
xα

= 〈ln T 〉L

(
x

L

)α

. (13)

Thus, 〈ln I (x)〉 ∝ xα has a power-law behavior in Lévy disor-
dered media in contrast to the linear dependence in standard
disordered media [29].

We verify the result given in Eq. (13) numerically. The
results (symbols) are shown in Fig. 3(a) together with the
theoretical results (solid lines) from Eq. (13) for α = 1/2 and
3/4. The linear behavior of 〈ln I (x)〉 for standard disorder is
also shown in Fig. 3(a) (green squares).

〈ln I (x)〉 does not fall linearly in Lévy structures as in
standard structures [Fig. 3(a)]; however, the role of coherent
backscattering in inhibiting propagation is unchanged. To gain
insight into this nonlinear behavior, we note that 〈ln I (x)〉 is
given by the difference between the average of the logarithmic
transmission of the complete sample (L) and the right segment
(L − x), as we have shown above. The power-law behavior of
〈ln I (x)〉 finds its origin in the power law of the variation of
the number of scatterers up to the depth x. This is illustrated
in Fig. 3(b), where the average number of scatterers 〈n〉 =

FIG. 4. (a) Ensemble average intensity 〈I〉 for Lévy α = 1/2 and
3/4 and standard disorder. The solid lines are obtained from Eq. (14).
In all three cases 〈− ln T 〉 = 1. (b) The average 〈I〉 for α = 1/2, as
in (a), but for waves incident from the left and right incidences. The
black squares show that the sum of both incidences is constant.

∫
n
x(n)dn = Iαxα/c is plotted at the position x/L for Lévy

(α = 1/2, 3/4) and standard disordered structures. For Lévy
disordered samples, the average number of scatterers follows
a power law with exponent α. In contrast, in standard disorder,
the average number of scatterers is a linear function of system
size. Thus, for both Lévy and standard disorders, 〈ln I〉 is a
linear function of 〈n〉, as shown in Fig. 3(c), and 〈ln I (x)〉 is
additive, as in standard disordered structures [29,36].

We now study the ensemble average intensity 〈I (x)〉; after
averaging I (x), Eq. (4), over the uniformly distributed random
phases, we write 〈I (x)〉 as [28]

〈I (x)〉 =
∫ 1

0

∫ 1

0

Tl (2 − Tr )

Tl + Tr − TlTr
Pα,ξl (Tl )Pα,ξr (Tr )dTldTr,

(14)

where the distributions Pα,ξl (Tl ) and Pα,ξr (Tr ) are the
distributions for the left and right segments, respec-
tively, with ξl = 〈ln Tl〉 = (x/L)α〈ln T 〉L and ξr = 〈ln Tr〉 =
(1 − (x/L)α )〈ln T 〉L, according to Eq. (12). We can verify the
particular cases at x = 0 and x = L: for x = 0, Tl = 1 and
〈I (0)〉 = 〈(2 − Tr )〉 = 2 − 〈T 〉, while at x = L, Tr = 1 and
therefore 〈I (L)〉 = 〈Tr〉 = 〈T 〉.

We perform numerical simulations to support Eq. (14),
in which the double integral is performed numerically. The
distribution for the left segment Pα,ξl (Tl ) in Eq. (14) is ob-
tained from Eq. (11), while for the right segment, Pα,ξr (Tr ) is
obtained by considering the corresponding probability density
of scatterers which is generated numerically. The results are
shown in Fig. 4(a) for α = 1/2 and 3/4. The numerical sim-
ulations and Eq. (14) are seen to be in good agreement. The
average intensity for standard disorder is also shown (green
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FIG. 5. Distribution of the logarithmic intensity for Lévy and
standard disordered structures. Here 〈− ln T 〉 = 10.

dots and solid line) in Fig. 4(a) to provide a contrast with the
power-law dependence found in media with Lévy disorder.

The profile of 〈I (x)〉 is not symmetric about the center,
as it is in standard homogeneously disordered systems [see
Fig. 4(a)]. In Lévy disordered structures, the disorder is in-
homogeneous; the density of scatterers is greatest near the
left side of the sample, as can be seen in Fig. 3(b), where
waves launched, causing the intensity to fall more rapidly
there. However, the sum of intensities for waves incident from
the left and right is constant and equal to twice the intensity of
the incident beam from one side, as shown in Fig. 4(b). This
can be understood by noting that for the integrand of Eq. (14)
for the wave incident from the right, Tl and ξl are replaced by
Tr and ξr , respectively, and Tr and ξr are replaced by Tl and
ξl . Adding the contributions from the waves incident from
the left and right gives Tl (2 − Tr )/(Tl + Tr − TlTr ) + Tr (2 −
Tl )/(Tl + Tr − Tl Tr ) = 2. Since Pα,ξl,(r) (Tl,(r) ) are normalized,
the average of the sum of intensities excited by waves incident
on the left and right is equal to 2. This result is illustrated in
Fig. 4(b) for the case of α = 1/2, where the black squares are
the sum of the average intensity for incident waves from the
left and right ends of the samples.

The previous discussion is general and gives an average in-
tensity profile for standard homogeneously disordered media
which is symmetric about the center of the sample [36]. This

symmetry is summarized by the expression 〈I (x)〉 + 〈I (L −
x)〉 = 2 and reflects the fact that the sum of intensities from
the right and left is equal to the local density of states (LDOS)
relative to LDOS outside the medium, which is unchanged by
disorder.

The complete distribution of the logarithm is obtained nu-
merically and shown in Fig. 5 for 〈ln T 〉 = 10. There is a
higher probability of large fluctuations of intensity in Lévy
disordered samples (blue and red histograms) compared to
standard disordered systems (green histogram).

IV. SUMMARY AND DISCUSSION

We have studied the wave intensity statistics inside random
1D media with disorder described by Lévy-type distributions
characterized by an asymptotic power-law decay. For both
〈I (x)〉 and 〈ln I (x)〉, we find a power-law decay with position.
In contrast, 〈I (x)〉 falls linearly in standard disordered sys-
tems. The slower decay with x than for the standard disorder
indicates that wave localization in space is weaker in Lévy
disorder than in standard disorder.

The equivalence of the statistics of intensity in α-stable
Lévy disordered systems and standard random media at the
corresponding layer number n suggests opportunities for en-
gineering structures for analyzing and controlling waves.
The forward and backward amplitudes within a layer of the
medium are constant so that they interfere and create an oscil-
latory pattern with high peak intensity within the layer. When
a thick layer is near the spatial and spectral peak of a mode,
the lifetime of the quasinormal mode increases, and the line
narrows as the thickness of the layer increases. The material
could therefore serve as a filter. If gain is introduced into
this system, the correspondingly long lifetime of the mode
would enhance the opportunity for emitted photons to stim-
ulate emission before escaping the sample [37]. In addition,
the large spatial extent of the mode allows the system to be
efficiently pumped without saturating the gain medium. The
prospects for an α-stable laser will be considered in future
work.
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