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Learning curves for overparametrized deep neural networks: A field theory perspective
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In the past decade, deep neural networks (DNNs) came to the fore as the leading machine-learning algorithms
for a variety of tasks. Their rise was founded on market needs and engineering craftsmanship, the latter based
more on trial and error than on theory. While still far behind the application forefront, the theoretical study
of DNNs has recently made important advancements in analyzing the highly overparametrized regime where
some exact results have been obtained. Leveraging these ideas and adopting a more physicslike approach, here
we construct a versatile field theory formalism for supervised deep learning, involving renormalization group,
Feynman diagrams, and replicas. In particular, we show that our approach leads to highly accurate predictions
of learning curves of truly deep DNNs trained on polynomial regression problems. It also explains in a concrete
manner why DNNs generalize well despite being highly overparametrized, this due to an entropic bias to simple
functions which, for the case of fully connected DNNs with data sampled on the hypersphere, are low-order
polynomials in the input vector. Being a complex interacting system of artificial neurons, we believe that
such tools and methodologies borrowed from condensed matter physics would prove essential for obtaining
an accurate quantitative understanding of deep learning.
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I. INTRODUCTION

Deep artificial neural networks (DNNs) have been rapidly
advancing the state of the art in machine learning, showing
human and sometimes superhuman performance in image
recognition [1], speech recognition [2], reinforcement learn-
ing [3], and natural language processing tasks [4]. Their rise
to prominence was largely results driven, with little theoretical
support or guarantee [5]. Such mode of invention is very
different from how, say, the transistor was discovered, and
more akin to how new materials, such as lithium-ion batteries,
are discovered. Indeed, being huge interacting systems of
artificial neurons, DNNs are more analogous to a complex
metamaterial than to an electronic component [6]. Due to this
complexity, a general theory of deep learning with predictive
power is still lacking.

Notwithstanding, recently several results were obtained
in the highly overparametrized regime [7,8] where the role
played by any specific DNN weight is small. This facilitated
the proofs of various bounds [9–11] on generalization for
shallow networks and, more relevant for this work, two corre-
spondences between fully trained DNNs and a different type
of inference model called Gaussian processes (GPs) [12]. As
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shown below, these can be thought of as noninteracting scalar
field theories with disorder and a nonlocal action.

The first such correspondence [8] between GPs and trained
DNNs is known as the neural tangent kernel result, which we
would refer to here as the NTK correspondence. It holds when
highly overparametrized DNNs are initialized according to
standard practice and trained with mean-square-error (MSE)
loss at vanishing learning rate and without weight decay.

The second correspondence [13] (the NNSP, neural net-
works stochastic process correspondence) applies when
DNNs are trained using a similar protocol which involves ran-
dom noise, roughly mimicking the stochastic gradient descent
(SGD) optimization, as well as weight decay. It relates the
outputs of the trained DNN to a stochastic process (SP) which,
in the highly overparametrized limit, tends to a GP. It thus
yields an additional training protocol, complementary in some
ways to the previous one, which is analytically tractable.

How much of deep learning can be explained through
such correspondences remains to be seen. On the one hand,
some aspects such as learning sharp filters (features) in the
first DNN layers seem out of reach as specific DNN weights
change only infinitesimally in the NTK case and remain
largely random, apart from a small bias, in the NNSP case.
In addition, learning in the NTK regime, sometimes dubbed
“lazy learning,” often lags behind state-of-the-art training
protocols (see [14] and references therein) where finite learn-
ing rates, widths, and minibatches are used. On the other
hand, lazy learning or more generally GP methods are being
extended and improved [15–18] by importing technologies
such as pooling and data augmentation. Currently, GP models
corresponding to DNNs are competitive with deep learning
on the UCI data sets [15] as well as Fashion-MNIST [16],
whereas on the CIFAR-10 data set the performance of the
best GPs currently lags 5% behind celebrated DNNs such

2643-1564/2021/3(2)/023034(22) 023034-1 Published by the American Physical Society

https://orcid.org/0000-0002-9070-9384
https://orcid.org/0000-0002-7953-4907
https://orcid.org/0000-0002-2555-7695
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.023034&domain=pdf&date_stamp=2021-04-09
https://doi.org/10.1103/PhysRevResearch.3.023034
https://creativecommons.org/licenses/by/4.0/


OMRY COHEN, OR MALKA, AND ZOHAR RINGEL PHYSICAL REVIEW RESEARCH 3, 023034 (2021)

as AlexNet [16,18], while surpassing pre-AlexNet nondeep
methods by 8% [19]. In addition, there is the prospect of
extending these correspondences by including nonlinearities
coming from finite-width [13] and finite-learning rates [20,21]
settings. These results and prospects invite further study of
how such DNNs trained in the NTK and NNSP regimes make
predictions.

In this work we introduce a versatile field theory formalism
for analyzing deep neural networks, which involves replicas,
Feynman diagrams, and renormalization group (RG) tech-
niques. In its most basic version, studied in depth below, it
applies to DNNs trained using the protocols for which the
NTK and NNSP correspondences hold exactly and lead to
GP models. For these cases we provide expressions for the
generalization power of fully connected DNNs in the form of
learning curves. These learning curves depend on the data-set
distribution and the target which we learn. For uniform data
sets on the hypersphere and any target function, our learning
curves become fully explicit and provide a clear picture of
how such DNNs generalize. This includes the more challeng-
ing case of the NTK correspondence where certain infinities in
the action are removed by our renormalization group transfor-
mation. To the best of our knowledge, the accuracy at which
our learning curves capture the empirical ones far exceeds the
current theoretical state of the art.

In addition, our formalism can also accommodate var-
ious extensions of these correspondences. For the case of
the NNSP correspondence, we can work with loss functions
different than MSE as well as corrections to the infinite
overparametrization limit. Furthermore, recent results on ex-
tensions of the NTK correspondence [20] suggest that high
learning rate leads to a renormalized NTK correspondence
whose performance can again be analyzed using our approach.
Such extensions may prove useful in addressing the gap [22]
between GPs and their DNN counterparts.

We hope that the results and formalism introduced here
would aid in developing a more physicslike paradigm for
studying DNNs, complementary to the proof-based approach
common in theoretical computer science (see also [23–27]).
Such a paradigm should fill in the gap, typically large in com-
plex systems, between what can be predicted following some
reasonable assumptions and what can be proven rigorously.

This paper is structured as follows. In Sec. III we provide
the necessary background on deep neural networks, Gaussian
processes, and the correspondences between the two. Sec-
tion IV describes our field theory approach and analytical
results. Section V considers the case of uniformly distributed
data on the hypersphere, where further analytical simplifica-
tions can be carried. Section VI introduces the RG approach
used to tackle the noiseless NTK case. Section VII applies
our results to concrete examples and compares them with
empirical results. Section VIII shows how our results can be
used to perform efficient hyperparameter optimization on ac-
tual DNNs, and Sec. IX summarizes the results and discusses
possible directions for future work.

II. PRIOR WORKS

Learning curves for GPs have been analyzed using a vari-
ety of techniques (see [12] for a review), most of which focus
on a GP-teacher averaged case where the target or teacher

is drawn from the same GP used for inference (matched
priors) and is furthermore averaged over. Fixed-teacher or
fixed-target learning curves have been analyzed using a grand-
canonical and Poisson-averaged approach [28] similar to the
one we used. However, their treatment of the resulting par-
tition function was variational whereas we take a different,
perturbation-theory-based, approach. In addition, previous
cited results for MSE loss break in the noiseless limit [28].
To the best of our knowledge, noiseless GP learning curves
have been analyzed analytically only in the teacher-averaged
case and limited to the following settings: For matched pri-
ors, exact results are known for one-dimensional data [12,29]
and two-dimensional data with some limitations of how one
samples the inputs (in the context of optimal design) [30,31].
In addition [32] derived a lower bound on generalization. For
noiseless inference with partially mismatched priors (match-
ing features, mismatching eigenvalues) and at large input
dimension the teacher and data-set averaging involved in ob-
taining learning curves, has been performed analytically and
the resulting matrix traces analyzed numerically [33]. No-
tably, none of these cited results apply in any straightforward
manner in the NTK regime.

Considering kernel eigenvalues, explicit expression for the
features and eigenvalues of dot-product kernels [K = K (x ·
x′)] were given in [34]. The fact, that the lth eigenvalue of
such kernels scales as d−l (d being the input dimension),
which we used in our derivation of the bound, has been
noticed in [33]. Kernels with a trimmed spectrum where the
spectrum is trimmed after the first r’s leading eigenvalues has
previously been suggested as a way of reducing the com-
putational cost of GP inference [35]. In contrast, we trim
the Taylor expansion of the kernel function rather than the
spectrum (which has a very different effect) and show that an
effective observation noise compensates for our trimming and
renormalization procedure.

Several interesting recent works give bounds on general-
ization [9–11] which show O(1/

√
N ) asymptotic decay of

the learning curve (at best). In contrast, our predictions are
typically well below this bound.

III. THEORETICAL BACKGROUND

A. DNNs, expected error, and learning curves

We begin with the standard definitions of DNNs as they
apply to this work. While the majority of this work is ap-
plicable to many network architectures, we will focus on a
simple feed-forward network for the sake of simplicity. A
fully connected feed-forward DNN with L hidden layers of
width nl for l = 1, . . . , L and readout layer nL+1 = k is a
function f defined recursively by

hl+1 = xlW l+1 + bl+1,

xl+1 = φ(hl+1),
f (x;W 1, . . . ,W l , b1, . . . , bl ) = xL+1,

(1)

where φ is a pointwise activation function, x0 ∈ Rd is the
input of the network, and W l+1 ∈ Rnl ×nl+1 , bl+1 ∈ Rnl+1 are
trainable weights and biases, which will be collectively re-
ferred to as weights from here on. Each component of the
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weights is usually initialized randomly from a normal distri-
bution N (0, σ 2

w ) for the weights and N (0, σ 2
b ) for the biases.

In the usual setting one starts with a training set, a set
of input points D = {xn}N

n=1 where xn ∈ Rd along with their
labels {ln}N

n=1 where ln ∈ Rk . One then picks weights for the
network by minimizing a loss function L( f (D), {ln}) which
compares the values of network function over D to the labels
{ln}N

n=1, assigning a smaller value to points where the network
function and labels are similar. One then finds weights which
minimize the loss by some variation of gradient descent,
usually stochastic gradient descent (SGD), wherein one ap-
proximates the gradient at each iteration using a random batch
of the training set (see [36] for details). The performance of
the network is then evaluated by computing the loss function
over a set of labeled points, different from the training set,
known as the test set. This is known as the test error of the
network, and is used as a proxy for the expected error, the
loss averaged over draws from the data-set distribution.

One of the most detailed objects quantifying the perfor-
mance of a machine-learning algorithm, and the main focus
of this work, is its learning curve, a graph of how the expected
error diminishes with the number of data points (N). There are
currently no analytical predictions or bounds we are aware of
for DNN learning curves which are tight even just in terms of
their scaling with N , let alone tight in an absolute sense (see
Sec. II)

B. Gaussian processes regression

In this work we will investigate the properties of DNNs by
their correspondence with GPs. We supply here some standard
definitions of GPs and their usage in regression tasks. Regres-
sion here simply means approximating a function [g(x)] based
on discrete samples [{g(xn)}N

n=1]. A GP is commonly defined
as a stochastic process of which any finite subset of random
variables follow a multivariate normal distribution [12]. In a
similar fashion to multivariate normal variables, GPs are also
determined by their first and second moments. The first is
typically taken to be zero, and second is known as the covari-
ance function or the kernel Kxx′ = E[ f (x) f (x′)], where E[·]
here denotes expectation with respect to the GP distribution.
The main appeal of GPs is that Bayesian inference with GP
priors is tractable [12]. In GP inference we use the mean of
the GP distribution conditioned on the data (posterior) as the
predictor g∗, and it is given by

g∗(x∗) =
N∑

n,m=1

Kx∗,xn [K (D) + σ 2I]−1
nmlm, (2)

where x∗ is a new data point, lm are the training targets, xn are
the training data points, [K (D)]nm = Kxn,xm is the covariance
matrix (the covariance function projected on the training data
set D), and σ 2 is the variance of the assumed Gaussian noise
of the labels, which also acts as a regulator of the prediction.
Some intuition for this formula can be gained by verifying that
in the noiseless case (σ 2 = 0) the prediction at some training
point x∗ = xq coincides with that point’s label g∗ = lq.

The quantity of interest in this paper, which we define now,
is the expected error averaged over all the possible data sets.
Throughout this paper we will assume that both train and test

points are drawn from a probability measure dμx = P(x)dx.
With this in mind, we define the expected error of a prediction
g∗ as

‖g − g∗‖2 =
∫

dμx[g(x) − g∗(x)]2
. (3)

Note that g∗ is itself a function of N draws from μ which
make up the training set DN . Our quantity of interest, the data-
set-averaged expected error (DAEE), is Eq. (3) averaged over
the ensemble of all possible N-sized training sets. We denote
this average as 〈·〉DN , so the DAEE is given by 〈‖g∗ − g‖2〉DN .
The learning curve is the dependence of the DAEE on N . We
see that in order to calculate learning curves, one needs to
calculate quantities like 〈g∗〉DN and 〈g∗2〉DN .

Equation (2) determines the predictions, and therefore the
learning curves, but it is not very convenient for analytic
exploration of the expected predictions. This fact is due to
the (potentially very) large matrix inversion involved, and the
additional averaging over DN required. Nonetheless, there are
some approximations for the expected prediction 〈g∗〉DN , the
most famous of which is the equivalence kernel (EK) result
[12]

〈g∗(x)〉DN ≈ g∗
EK,N (x) =

∑
n

λn

λn + σ 2

N

gnφn(x), (4)

where λn and φn(x) here are the eigenvalues and eigen-
functions of the kernel with respect to the input probability
measure μ, and g(x) = ∑

n gnφn(x) is the target function.
One notices immediately that this approximation breaks down
completely in the noiseless case where Eq. (4) implies perfect
estimation of the target with just one data point. To gain
some intuition as to why having σ 2 = 0 hinders predictions
of 〈g∗〉DN , one can view it as a hard constraint [ f (xn) = g(xn)],
and hard constraints are typically less tractable than soft ones.
In a related view, finite σ 2 can be seen as a form of averaging
which smooths and regulates analytical expressions making
them more tractable. Another limitation of the EK result is
that (to the best of our knowledge) there is no systematic way
to extend it in orders of 1/N and get a more detailed picture
of generalization in GP regression (GPR).

C. From DNNs to GPs through Langevin dynamics

Here we review, for completeness, several recent corre-
spondences between DNNs and GPs. It has long been known
[37] that randomly initialized, infinitely wide DNNs with in-
dependent and identically distributed weights are equivalent to
samples from a GP known as the neural network GP (NNGP).
More recently it was shown that training only the last layer
of a network with gradient descent is equivalent to posterior
sampling of the NNGP [38], and consequently averaging the
prediction of many networks trained on the same data set is
equivalent to GPR. Turning to more standard training of the
entire DNN, it has been recently established [8] that fully
training a network with vanishing learning rate for infinitely
long time and MSE loss yields the same predictions as a
noiseless GPR with a different kernel, the neural tangent ker-
nel (NTK), along with an additional initialization-dependent
term. Averaging over many initialization seeds gives an exact
correspondence with a GP whose kernel is the NTK.
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Recently, another correspondence between DNNs and GPs
has been introduced [13]. Due to its simplicity we shall red-
erive it here. Consider the training of a DNN using gradient
descent (full-batch SGD) with weight decay and added white
noise, in the limit of vanishing learning rate. For sufficiently
small learning rate, and making the reasonable assumption
that the gradients of the loss are globally Lifshitz, the SGD
equations are ergodic and converge to the same invariant
measure (equilibrium distribution) as the following Langevin
equation [39,40]:

dwi

dt
= −∂wi

(
L[zW ] +

∑
j

T w2
j

2σ 2
w

)
+

√
2T ξi(t ), (5)

where ξi(t ) being a set of Gaussian white noise [〈ξi(t )ξ j (t ′)〉 =
δi jδ(t − t ′)], T accounting for the strength of the noise, wi

being the set of network parameters (W ), zW is the net-
work output for a given configuration of W , and L is the
loss function. The equilibrium distribution or invariant mea-
sure describing the steady state of the above equation is the

Boltzmann distribution [40] P(W ) ∝ e
− 1

2σ2 L[zW ]− 1
2σ2

w

∑
i w

2
i with

T = 2σ 2. Notably, various works argue that at low learning
rates, discrete SGD dynamics running for long enough times
reaches the above equilibrium, approximately [41,42].

Next, we adopt the approach of [8] and describe the dy-
namics in function space ( f ) instead of weight space (W ).
Using the Boltzmann distribution described above, the post-
training probability density function for some function f is
given by

P[ f ] =
∫

dW P(W )δ[ f − zW ]

∝ e− 1
2σ2 L[ f ]

∫
dW e

− 1
2σ2

w

∑
i w

2
i δ[ f − zW ]

∝ Pnd [ f ]e− 1
2σ2 L[ f ]

, (6)

where we identify Pnd [ f ] ∝ ∫
dW e

− 1
2σ2

w

∑
i w

2
i δ[ f − zW ] as the

distribution of the output of the network after being trained
with no data (or, equivalently, a vanishing loss function).
δ[. . .] is a functional delta function, which can be thought of
as the limit of a large product of regular delta functions on
each Fourier component of the argument. As we will discuss,
for an infinitely overparametrized network Pnd coincides with
the prior of a NNGP with the weights and biases variance de-
termined by training parameters rather than by initialization.
However, for finite overparametrization it becomes a more
generic stochastic process determined by the neural network
(an NNSP). In [13], the leading finite-width corrections were
calculated and shown to result in f 4 corrections to the prior.

Clearly, the practical use of the above result hinges on
how quickly the dynamics mixes or reaches ergodicity. While
ergodicity in its full sense (for any weight-space observable)
seems unrealistic in this nonconvex scenario, reaching ergod-
icity in the mean of the outputs of the DNNs [for low-order
polynomials in f (x)] may be quicker. This milder form of
ergodicity was shown numerically for fully connected DNNs
trained on regression problems similar to those studied here
as well as CNNs trained on CIFAR-10 [13].

From now on we shall focus on the infinite over-
parametrized limit.

IV. FIELD THEORY FORMULATION OF GP
LEARNING CURVES

A. Rephrasing GPs as a field theory

We begin by phrasing inference with GPs in the language
of field theory. To this end, we first write a Gaussian distri-
bution over the space of functions that leads to a two-point
correlation function equal to Kxx′ . This is given by

P0[ f ] ∝ e− 1
2 ‖ f ‖2

K ,

‖ f ‖2
K =

∫
dμxdμx′ f (x)K−1(x, x′) f (x′), (7)

where K−1(x, x′) is the inverse kernel function, mean-
ing that

∫
dμx′K (x, x′)K−1(x′, x′′) = δ(x − x′′)/P(x) where

dμ = P(x)dx. This formalism is sometimes referred to as
information field theory (IFT) [43].

A different viewpoint on P0[ f ] comes from viewing f (x)
as the outputs of a wide DNN with weights drawn from an
independent and identically distributed Gaussian distribution
P0(W ). It is well known [44] that correlations between the
outputs of random DNNs are Gaussian and governed by some
kernel Kxx′ . This kernel is determined, in a tractable manner,
by the DNN architecture. From a field theory viewpoint this
can be stated as

P0[ f ] =
∫

dW P0(W )δ[ f − zW ] (8)

at infinite width, where zW (x) is the output of a DNN with
weights W on an input point x. The keen reader may be
alarmed by the fact that this definition of P0[ f ] does not
involve the measure μ(x). However, as shown in [12], the
norm ‖ f ‖2

K (called the RKHS norm), and therefore Eq. (7)
are in fact the same for any two probability measures with
identical support.

Performing Bayesian inference in the context of GPs
means conditioning Eq. (7) using Bayes’ theorem and assum-
ing Gaussian noise with amplitude σ 2 on our target function
[g(x)]. This yields the additional factor

P[ f ] ∝ e− 1
2 ‖ f ‖2

K − 1
2σ2

∑N
i=1 [ f (xi )−g(xi )]2

. (9)

It can be checked that the expectation value of f (x∗) under the
above probability yields Eq. (2).

Notably, by taking into account Eq. (8), the above
expression coincides with that obtained via the NNSP corre-
spondence (6) in the infinite overparametrization limit where
Pnd [ f ] = P0[ f ] for MSE loss and a suitably chosen Kxx′ . In the
NNSP context, the data term came out quadratic when training
using MSE loss and more generally it could be replaced with
a general loss function L[ f ], so the DNNs predictive distribu-
tion becomes

P[ f ] ∝ e− 1
2 ‖ f ‖2

K − 1
2σ2 L[ f ]

, (10)

where K in this context is the kernel of the DNN trained
with no data. Although not necessarily Gaussian, this ex-
pression can still be treated using mean-field or perturbative
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FIG. 1. A physical picture of supervised deep learning. The out-
put of the DNN, as a function of input data, can be seen as an elastic
membrane (surface) which relaxes to its equilibrium distribution
during training. In this steady state it fluctuates (green surface) so to
maximize its entropy while minimizing its energy. Its energy consists
of a data term pinning it to its target values (yellow surface) on
the training points (red points). In addition, an elastic energy term
determined by the DNN architecture affects its behavior between the
training points. For infinitely overparametrized DNNs, this elastic
energy is quadratic and the average surface (blue surface) can be
calculated analytically, up to a large matrix inversion, using Gaussian
processes regression.

approaches. A more detailed treatment of different loss func-
tions, most notably as cross-entropy loss, is left for future
work.

Denoting S[ f ] = 1
2‖ f ‖2

K + 1
2σ 2 L[ f ] (the “information

Hamiltonian,” in IFT terminology), Eq. (9) gives rise to the
partition function

Z[α] =
∫

D f e−S[ f ]+∫ dx α(x) f (x), (11)

where
∫

dx α(x) f (x) is a source term used to calculate cumu-
lants of P[ f ], and specifically the average prediction of the
network:

g∗(x∗) = δ log(Z[α])

δα(x∗)

∣∣∣∣
α=0

= 1

Z[0]

∫
D f f (x∗)e−S[ f ], (12)

where δ/δα stands for functional derivative. As shown vi-
sually in Fig. 1, this expression leads to a tangible physical
picture of how DNNs learn. Their output as a function of
the input can be seen as a fluctuating elastic membrane over
input space which, in the highly overparametrized limit, is in
its linear elastic regime. The training data appear as isolated
points at which this membrane is pinned down to certain value
by (loss-dependent) springs whose constant is proportional to
1/σ 2, the inverse of the noise on the gradients during training.
The membrane then interpolates and extrapolates between
these pinning points in a way which, on average, minimizes its
elastic energy. This elastic energy differs considerably from
that of physical membrane and in particular has a nonlocal
dependence on the shape of the membrane. Different DNNs
correspond to different elastic energies. Finite networks en-
tail nonlinear corrections to the elastic energy which may be
beneficial for learning in the case of CNNs [13].

B. Predictions in the grand-canonical ensemble

As mentioned, in order to calculate the learning curve one
needs to calculate quantities like 〈g∗〉DN and 〈g∗2〉DN . These
averages involve multidimensional integrations over all pos-
sible data sets. To facilitate their computation, we adopt the
approach of [28] and instead consider a related quantity given
by the Poisson averaging of the former

〈. . . 〉η = e−η

∞∑
n=0

ηn

n!
〈...〉Dn , (13)

where the ellipsis can be any quantity, in particular g∗ and g∗2.
This average can be thought of as a grand-canonical ensemble,
though a nonstandard one since we average the observables
and not the partition function. Taking η = N means we are
essentially averaging over values of N in an

√
N vicinity of

N . This means that as far as the leading asymptotic behavior
is concerned, one can safely exchange N and η as the differ-
ences would be subleading. We therefore focus on calculating
the grand-canonical DAEE 〈‖g∗ − g‖2〉η. In Appendix A we
compare learning curves as a function of N and η and show
that they match very well.

By using the grand-canonical ensemble, averaging over
draws from the data set can be carried out as follows. First,
using the replica trick

〈g∗(x∗)〉η = lim
M→0

1

M

δ〈ZM〉η
δα(x∗)

∣∣∣∣
α=0

, (14)

where for integer M and assuming that the loss function acts
pointwise on the training set L[ f ] = ∑n

i=1 L f (xi ), we have

〈ZM〉η = e−η

∫ M∏
m=1

D fm

× e−∑M
m=1 ( 1

2 ‖ fm‖2
K −∫ dx α fm )+η

∫
dμxe

−
∑M

m=1 L fm (x)

2σ2
. (15)

As shown in Appendix G2, a Taylor expansion in η of the
above right-hand side yields the 〈. . . 〉η averaging appearing
on the left-hand side.

Second, we notice that the main benefit of Eqs. (14) and
(15) over Eq. (2) is that it allows for a controlled expansion
in 1/η. At large η (or similarly large N) we expect the fluctu-
ations in fm(x) to be small and centered around g(x). Indeed,
such a behavior is encouraged by the term multiplied by η in
the exponent. We can therefore systematically Taylor expand
the inner exponent

e−
∑M

m=1 L fm (x)

2σ2 = 1 −
∑M

m=1 L fm (x)

2σ 2

+ 1

2

[∑M
m=1 L fm (x)

2σ 2

]2

+ · · · (16)

and each term will yield a higher order of 〈g∗(x∗)〉η in 1/η.

C. EK as a free theory

Notably, so far the choice of a loss function was
largely arbitrary. The advantage of choosing MSE loss,
L f (x) = [ f (x) − g(x)]2, is that P[ f ] also becomes a GP or,
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equivalently, has a quadratic action. From now on we shall
focus on MSE loss.

Aiming for standard perturbative calculations, we wish
to perform diagrammatic calculations with respect to a free
quadratic theory. Expanding Eq. (16) to first order and substi-
tuting in Eq. (15) we obtain

〈ZM〉η = ZM
EK + O(1/η2),

(17)

ZEK[α] =
∫

D f e−SEK[ f ]+∫ dx α(x) f (x),

where SEK[ f ] = 1
2‖ f ‖2

K + η

2σ 2

∫
dμx[ f (x) − g(x)]2, which is

quadratic in f and therefore induces a Gaussian field.
Substituting Eq. (17) in (14) we get

〈g∗(x∗)〉η = δ log(ZEK)

δα(x∗)

∣∣∣∣
α=0

+ O(1/η2)

= arg min [SEK[ f ]] + O(1/η2)

= g∗
EK,η(x∗) + O(1/η2), (18)

where the second equality is due to the fact that for Gaussian
distributions the expectation value coincides with the most
probable value, and the third equality is due to [12], with the
subtle change that N is being replaced by η.

Let us denote by 〈. . .〉0 the free-theory average, that is an
average with respect to ZEK. We therefore get 〈 f 〉0 = g∗

EK,η =
0, meaning that our free theory, though Gaussian, is not cen-
tered. The correlations of the free theory are

Cov0[ f (x), f (y)] =
∑

i

(
1

λi
+ η

σ 2

)−1

φi(x)φi(y), (19)

where again, λi and φi are the eigenvalues and eigenfunctions
of the kernel.

D. Next-order corrections

We now wish to perform perturbative calculations with
respect to to the free (Gaussian) EK theory, and obtain a
subleading (SL) correction for the EK result in the inverse
data-set size:

〈g∗(x∗)〉η = g∗
EK,η(x∗) + g∗

SL,η(x∗) + O(1/η3). (20)

Expanding Eq. (16) to second order, substituting in Eq. (15)
and keeping only O(1/η2) terms, the calculation can be car-
ried using Feynman diagrams with respect to the free EK
Gaussian theory. Leaving the details to Appendix I, the sub-
leading correction is

g∗
SL,η(x∗) = η

σ 4

∫
dμx[g∗

EK,η(x) − g(x)]

× Cov0[ f (x), f (x)]Cov0[ f (x), f (x∗)] (21)

or explicitly

g∗
SL,η(x∗) = − η

σ 4

∑
i, j,k


i, j,kgiφ j (x∗)
∫

dμxφi(x)φ j (x)φ2
k (x),


i, j,k =
σ 2

η

λi + σ 2

η

(
1

λ j
+ η

σ 2

)−1( 1

λk
+ η

σ 2

)−1

. (22)

As shown in Appendix G2, similar expressions for 〈g∗2〉η are
obtained using two replica indices. Interestingly, we find that
〈g∗2〉η = 〈g∗〉2

η + O(1/η3). Hence, up to O(1/η3) corrections,
the averaged MSE error is [〈g∗(x∗)〉η − g(x∗)]2 integrated over
x∗. Since the variance of g∗ came out to be O(1/η3) one
finds that g∗ − g, which is O(1/η), is asymptotically much
larger than its standard deviation. This implies self-averaging
at large η or, equivalently, that our data-set-averaged results
capture the behavior of a single fixed data set.

Equations (20) and (22) and their application to the cal-
culation of the grand-canonical DAEE are one of our key
results. They provide us with closed expressions for the DAEE
as a function of η, namely, the fixed-teacher learning curve.
They hold without any limitations on the data set or the
kernel and yield a variant of the EK result along with its
subleading correction. From an analytic perspective, once λi

and φi(x) are known, the above expressions provide clear
insights to how well the GP learns each feature and what
crosstalk is generated between features due to the second sub-
leading term. Notably for the renormalized NTK introduced
below, the number of nonzero λi’s is finite, and so the above
infinite summations reduce to finite ones. This makes these
expressions computationally superior to directly performing
the matrix inversion in Eq. (2) along with an N-dimensional
integral involved in data-set averaging. In addition, having
the subleading correction allows us to estimate the range of
validity of our approximation by comparing the subleading
and leading contributions, as we shall do for the uniform case
below.

V. UNIFORM DATA SETS

To make Eq. (22) interpretable, φi(x) and λi are required.
This can be done most readily for the case of data sets normal-
ized to the hypersphere (‖xn‖ = 1) with a uniform probability
measure and rotation-symmetric kernel functions. By the lat-
ter we mean Kx,x′ = KOx,Ox′ for any orthogonal matrix O with
the same dimension as the inputs. Although beyond the scope
of this work, obvious extensions to consider are data sets
which are uniform only in a subspace of x and/or small
perturbations to uniformity.

Importantly, both NNGP and NTK associated with any
DNN with a fully connected first layer and weights initialized
from a normal distribution have the above symmetry under
rotations (see Appendix E). It follows that such a kernel can
be expanded as Kx,x′ = ∑

n bn(x · x′)n. An additional corollary
[34] is that its features are hyperspherical harmonics [Ylm(x)]
as these are the features of all dot product kernels. Hyper-
spherical harmonics are a complete and orthonormal basis
with respect to a uniform probability measure on the hyper-
sphere. Note that this implies a nonstandard normalization for
the Ylm’s in this context, as they are usually normalized with
respect to Lebesgue measure. For each l these can be written
as a sum of polynomials in the input coordinates of degree
l . The extra index m enumerates an orthogonal set of such
polynomials [of size deg(l )]. For a kernel of the above form
the eigenvalues are independent of m and given by [34]

λl = �
(

d
2

)
√

π2l

∞∑
s=0

b2s+l
(2s + l )!

(2s)!

�
(
s + 1

2

)
�
(
s + l + d

2

) . (23)
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For ReLU and erf activations, the bn’s can be obtained
analytically up to any desirable order [44]. Thus, one can
semianalytically obtain the eigenvalues up to any desired ac-
curacy. For the particular case of depth 2 ReLU networks with
no biases, we report in Appendix J closed expression where
the above summation can be carried out analytically for the
NNGP and NTK kernels. However, as we shall argue soon, it
is in fact desirable to trim the NTK in the sense of cutting off
its Taylor expansion at some order m, resulting in what we call
the renormalized NTK. For such kernels, which would be our
main focus next, Eq. (23) can be seen as a closed analytical
expression for the eigenvalues.

Interestingly, for any dot-product kernel and uniform data
of dimension d on the hypersphere, there is a universal bound
given by λl � Kx,x/ deg(l ) ≈ O(d−l ), where Kx,x is a constant
in x. Indeed, Kx,x = ∑

lm λl = ∑
l deg(l )λl . The degeneracy

[deg(l )] is fixed from properties of hyperspherical harmonics,
and equals deg(l ) = 2l+d−2

l+d−2 ( l+d−2
l ) [45] which goes as O(dl )

for l � d . This combined with the positivity of the λl ’s im-
plies the above bound.

Expressing our target in this feature basis g(x) =∑
l,m glmYlm(x), Eq. (22) simplifies to

g∗
SL,η(x∗) = −

∑
l,m

η−1λlCK,σ 2/η

(λl + σ 2/η)2
glmYlm(x∗), (24)

where CK,σ 2/η = ∑
l deg(l )(λ−1

l + η/σ 2)−1 and notably
crosstalk between features has been eliminated at this order
since

∑
m Y 2

lm(x) = deg(l ) is independent of x, yielding∑
m̃

∫
dμxYlm(x)Yl ′m′ (x)Y 2

l̃ m̃
(x) = deg(l̃ )δll ′δmm′ .

By splitting the sum in CK,σ 2/η, to cases in which λl <

σ 2/η and their complement, one has the bound CK,σ 2/η <

#Fσ 2/η +∑
lm|λl <σ 2/η λl , where #F is the number of eigen-

values such that λl > σ 2/η. Thus, for kernels with a finite
number of nonzero λi’s (as the renormalized NTK introduced
below), and for large enough η, #F becomes the number of
nonzero eigenvalues and CK,σ 2/η = #Fσ 2/η has a η−1 asymp-
totic. This illustrates the fact that the above terms are arranged
by their orders in η.

We can use Eq. (24) to understand the validity of the EK
result. We therefore look for sufficient conditions for g∗

EK,η �
g∗

SL,η to hold. By a termwise comparison, for some l we obtain
CK,σ 2/η � η(λl + σ 2/η) which holds for CK,σ 2/η � σ 2. For
trimmed kernels, this yields #F � η. Notably, it means that
the original nontrimmed NTK cannot be analyzed perturba-
tively since with σ 2 = 0, #F becomes infinite. In the next
section we tackle this issue.

VI. GENERALIZATION IN THE NOISELESS CASE
AND THE RENORMALIZED NTK

The correspondence between DNNs trained in the NTK
regime and GPR using NTK implies noiseless GPR (σ 2 = 0)
for which the perturbative analysis carried in previous sec-
tions fails. Here we show that the fluctuations of f associated
with small λl ’s can be traded for noise on the fluctuations
of f associated with large λl ’s, thereby making our pertur-
bative analysis applicable. As shown in the previous section,
for uniform data sets, the smaller λl ’s correspond to higher

spherical harmonics (higher l) and hence have higher oscil-
latory components. We argue that these higher oscillatory
modes can be marginalized over in a controlled manner to
generate both noise and corrections to the large λl ’s. This
is very much in the spirit of the renormalization group
technique, wherein high oscillatory modes are integrated
over to generate changes (renormalization) of some param-
eters in the probability distribution of the low oscillatory
modes.

We begin by defining a set of renormalized NTKs. As
argued, an NTK of any fully connected DNN can be ex-
panded as Kx,x′ = ∑∞

q=0 bq(x · x′)q. The renormalized NTK

at scale r is then simply K (r)
x,x′ = ∑r

q=0 bq(x · x′)q. Harmo-
niously with this notation we denote the prediction of GPR
with the original kernel as g∗

∞. Our claim is that GPR with
K and a noise of σ 2 can be well approximated by GPR
with K (r) and noise σ 2 + σ 2

r (where σ 2
r = ∑∞

q=r+1 bq), for
sufficiently large r. Specifically, our claim is that the dis-
crepancy between the original vs truncated GPR predictions
scales as O(

√
Nd−(r+1)/2/Kx,x ), where d is the effective

data-input dimension. Importantly, as can be inferred from
Eq. (23), the renormalized NTK at scale r has zero eigen-
values for all spherical harmonics with l > r, as well as
modified eigenvalues for spherical harmonics with l � r
(compared to the nontruncated NTK). Thus, as advertised,
these high Fourier modes have been removed from the prob-
lem in exchange for a renormalized theory with a modified
low-energy spectrum, and augmented noise. In a related man-
ner, trimming the Taylor expansion after (x · x′)r effectively
reduces our angular resolution and coarse grains the fine
angular features captured by these spherical harmonics with
l > r.

To justify this approximation, we consider the difference
matrix Anm = Kxn,xm − K (r)

xn,xm
, given a data set {xn}N

n=1 drawn
from a uniform distribution on a hypersphere of dimension d .
The terms bq(xn · xm)q scale roughly as d−q/2 (see Appendix K
for a more accurate expression) due to the tendency of random
vectors in high dimensions to be orthogonal. Consequently,
the above difference diminishes very quickly with r. Notably,
this also applies for the entries of Kx∗,xn − K (r)

x∗,xm
, provided x∗

is a test point and not a train point. In contrast, the diagonal
part of A is Ann = σ 2

r and may diminish more slowly depend-
ing on the coefficients bq>r . Upon neglecting Kx∗,xn − K (r)

x∗,xm

and the off-diagonal elements of A, one finds that Eq. (2)
with these two GPRs yields identical predictions. As shown
in Appendix K, these neglected off-diagonal elements yield
a discrepancy which scales as

√
Nd−(r+1)/2. Consequently,

the MSE error between the two GPRs should scale as N
times an exponentially small factor (d−r−1). This scaling
with N should saturate when the accuracy is nearly perfect
since then the predictions remain largely constant as N is
increased.

Focusing back on the question of how to tackle noiseless
GPR, we thus find that as long as the bq’s decay slowly
enough with q, then at any finite N we can choose a large
enough r such that two desirable properties are maintained:
(a) The discrepancy between the GPRs is small and (b) σ 2

r
is large enough to ensure convergence to our perturbative
analysis. The required slow decay of bq is harmonious with
the intuition that DNNs should be initialized at the edge of
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chaos [46] where the output of the network has a fine and
multiscale sensitivity to small changes in the input. As Kx,x′ is
the correlation of two outputs with inputs x and x′, having
a power law decaying bq implies such fine and multiscale
sensitivity. Establishing relations between good initialization
and effectiveness of our renormalized NTK is left for future
work.

We have tested the accuracy of approximating noiseless
NTK GPR with renormalized NTK GPR with the appropriate
σ 2

r , both on artificial data sets (see next section) and on real-
world data set such as CIFAR-10 (see Appendix B). In both
cases we found an excellent agreement between the two GPRs
for r’s as small as 3 and 4.

VII. GENERALIZATION IN THE NTK REGIME

Collecting the results of all the preceding sections, we can
obtain a detailed and clear picture of generalization in fully
connected DNNs trained in the NTK regime on data sets with
a uniform distribution normalized to some hypersphere in in-
put space. We begin with a qualitative discussion and consider
some renormalized NTK at scale r. From Sec. V, we have that
the features of this kernel are hyperspherical harmonics and
that λl scales as d−l . We also recall that Ylm is a polynomial of
degree l and that all the hyperspherical harmonics up to degree
l span all polynomials on the hypersphere with degree up to
l . Examining Eq. (24) we find that features with λl � σ 2/η

are learnable and via the above scaling we find that we learn
polynomials of degree O[log(η/σ 2)/ log(d )] or less. In par-
ticular, a function like parity, which is a polynomial of degree
d is very hard to learn whereas a linear function is the easiest
to learn. Thus, despite having infinitely more parameters than
data points (due to infinite width) and despite being able to
span almost any function (due to the richness of the kernel’s
features), the DNN here avoids overfitting by having a strong
bias towards low-degree polynomials.

To make more quantitative statements, we now focus on
a specific setting. We consider input data in dimension d =
50 and a scalar target function g(x) = ∑

l=1,2;m glmYlm(x)
such that the vectors (gl,1, gl,2, . . . , gl,deg(l ) )T for l = 1, 2 are
drawn from a uniform measure on the deg(l ) sphere of radius
1/

√
2. We generate several toy data sets DN consisting of N

data points (xn) uniformly distributed on the hypersphere Sd−1

and their corresponding targets [g(xn)]. We consider the GP
equivalent to training a fully connected DNN consisting of
four layers with ReLU activations and width W which we
initialize with variance (σ 2

w = σ 2
b = 1/d) for the input layer

and (σ 2
w = σ 2

b = 1/W ) for the hidden layers (see for instance
[38] for how to compute the kernel, and notice there is a
factor of 1/W between our convention for σ 2

w and [38]). To
be in the NTK correspondence regime we consider training
such a network at vanishing learning rate, MSE loss, and with
W � N . One then has that the predictions of the DNN are
given by GPR with σ 2 = 0 and the K given by the NTK
kernel [8]. (To be more precise, [8] predicts correspondence
with GPR up to a random initialization factor, so to get an
exact match with GPR one would also need to average over
initialization seeds. Recent research [38] suggests this caveat
can be avoided under some conditions.)

For each such DNN we obtained the expected MSE
loss ‖g∗

∞ − g‖2 of GPR with the NTK kernel by numer-
ical integration over x∗. Repeating this process multiple
times we obtained the DAEE for N = 1, 2, . . . , Nmax with
a relative standard error of less then 5% (this typically re-
quired averaging over 10 data sets). For direct comparison
with our prediction of the learning curve, we computed the
Poisson-averaged learning curve 〈‖g∗

∞ − g‖2〉η in accordance
with Eq. (13), neglecting the terms n > Nmax. We restricted
ourselves to ηmax � Nmax − 5

√
Nmax to make tail effects

negligible. Notably, the Poisson averaging makes the final
statistical error negligible relative to the discrepancies coming
from our large-η approximations (see Appendix A). To make
it easier to appreciate the power of GPs over simpler regres-
sion models, we also provide the Poisson-averaged DAEE for
ordinary least-squares method (OLS) as a yardstick.

To pick the renormalization scale r we must consider two
factors. On the one hand, we want the discrepancy between
the renormalized and regular NTK to be small, this scales
as O(

√
Nd−(r+1)/2/Kx,x ). On the other hand, we want the

effective noise σ 2
r to be as large as possible to ensure the

accuracy of the prediction. We found that r = 3 strikes a good
balance for the range of N values used in the experiment,
but r = 4, 5, 6 also produced adequate predictions since σ 2

r
shrinks slowly with r for the architecture used.

Our analytical expressions following Eq. (23) combined
with known results [8,44] about the Taylor coefficients (bn)
yield λ0, . . . , λ3 = {3.19, 7.27 × 10−3, 5.98 × 10−6, 1.62 ×
10−7} and σ 2

r = 0.018. Since λ0, λ1 � σ 2/η � λ2, λ3 for
50 < η < 3500, CKr ,σ 2/ησ

−2 < [deg(0) + deg(1)]σ 2/η +
O[deg(2)10−6], thus, CKr ,σ 2/ησ

−2 ≈ 51/η. Thus, we expect
perturbation theory to be valid for η � 50. At η = 1000
the l = 1 features are learned well since σ 2/η = 1.8 ×
10−4 � λ1 and the l = 2 features neglected, at η = 1000
they are learned but suppressed by a factor of about 3. Had
the target contained l = 3 features, they would have been
entirely neglected at these η scales. Experimental learning
curves along with our leading and subleading estimates are
shown in Fig. 2 (left panel) showing an excellent agreement
between theory and experiment.

While no actual DNNs were trained in the above experi-
ments, the NTK correspondence means that this would be the
exact behavior of a DNN trained in the NTK regime [8,22,38].
Furthermore, since our aim was to estimate what the DNNs
would predict rather than reach state of the art predictions,
we focus on reasonable hyperparameters but did not perform
any hyperparameter optimization. The complementary case of
noisy GPR, which one encounters in the NNSP correspon-
dence, is studied in Appendix C.

To demonstrate that our results work with more complex
functions, we repeated the experiment with a different target
function which cannot be expressed as a finite-order polyno-
mial. We drew a uniformly distributed vector w on the (d −
1) sphere of radius

√
d and set the target as g(x) = |w · x|.

Figure 2 (right) shows good agreement between theory and
experiment here as well.

Lastly, we argue that the asymptotic behavior of learning
curve we predict is more accurate than the recent probably ap-
proximately correct (PAC) based bounds [9–11]. In Appendix
D we show a log-log plot of the learning curves contrasted
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FIG. 2. The experimental learning curves (solid lines) for a depth of four ReLU networks trained in the NTK regime on different target
functions on a d = 50 hypersphere are shown along with our analytical predictions for the leading (dotted line) and leading plus subleading
behavior (dashed line). Left panel shows the results for a second-order polynomial in the input, and the right panel show results for the function
|w · x| (where w is a random vector of norm

√
d) which cannot be expressed as a finite linear combination of eigenfunctions. The learning

curves of ordinary least squares (OLS) on the same regression tasks are provided to help compare the performance of GPs with simpler
regression methods.

with a 1/
√

η which is the most rapidly decaying bound ap-
pearing in those works. It can be seen that such an asymptotic
cannot be made to fit the experimental learning curve with any
precision close to ours.

VIII. APPLICATION OF RESULTS TO
HYPERPARAMETER OPTIMIZATION

As with most machine-learning algorithms, when training
a neural network for a particular task one needs to choose a
number of hyperparameters such as the network’s width at
each level Wl , depth L, variance of weights at initialization
σ 2

b , σ 2
w, activation function, and optimizer-related parame-

ters such as batch size, learning rate, etc. There are many
considerations for hyperparameter selection such as train-
ing time, memory footprint, and optimizer convergence, but
here we will focus on the expected loss of the network.
While there are some accepted heuristics, there is no a priori
way to predict the best performing architecture other than
an expensive process of trial and error. In this section we
introduce a scheme for picking theoretically advantageous
parameters, given minimal information on the target func-
tion and data-set distribution. As recent research suggests
[47] W should be increased as much as possible to put the
network in the interpolation regime, we will assume that
choice was made. We also note that σ 2

b , σ 2
w are typically

thought to be related more to convergence issues, for exam-
ple, via the exploding and vanishing gradient problem, than
to the performance of the network. However, as this work
as well as [48] suggest, these parameters have an important
effect on the network performance by changing the NTK
spectrum.

We suggest the following scenario: we have N = 1000 data
points uniformly distributed on S9. We are also given the
spectral weight of the target in each eigenspace, that is w2

 =
‖�(g)‖2 where � is the projection operator on the  sub-
space. For the case of uniform measure on the hypersphere,

the projection operator is simply � = P(〈xy〉) deg() where
P is the Legendre polynomial of degree  and deg() is
the dimension of the eigenspace, so finding w2

 is a much
simpler task than finding the deg() coefficients of the target
(which scale as d) and can be accomplished with a few
numeric integrals. In this case, we focus on a target with
w

2 = 1
3 (δ1, + δ2, + δ3,). Given this setting, we would like

to find a network architecture with minimal expected error.
For computational efficiency reasons, we decide to focus on
ReLU networks with one hidden layer, so we need to choose
four hyperparameters σ = (σw1, σw2 , σb1 , σb2 ).

We present two typical ways used to choose σ, then pro-
pose a better way to do so based our theory. The naive
and most prevalent way to choose hyperparameters is to
simply take σ typical = (

√
2,

√
2, 0.05, 0.05) which roughly

correspond to He initialization [49], a common heuristic for
avoiding gradient propagation issues. A more diligent ap-
proach would be to draw some random values in the vicinity
of σ typical, train the network, evaluate the test loss, and pick the
best performing hyperparameters σbest.

Next, we suggest a different approach which utilizes our
analytical results. We construct a symbolic expression for
the expected loss using the formalism outlined in the paper.
By taking η = N and applying the renormalization scheme
with appropriate r we get an estimator for the expected loss
L̂(σ) = ∫

dx〈[ f (x) − g(x)]2〉 which we can use to predict the
performance of different hyperparameters without training the
network. Moreover, we can use standard numerical optimiza-
tion algorithms to minimize the predicted loss and obtain
σoptimized = argminσ L̂(σ).

To test the scheme experimentally, we drew 21 random
hyperparameter proposals {σ i} uniformly distributed in the
hyper-rectangle defined by 1

2σ typical,
3
2σ typical. We constrained

the optimization algorithm to this hyper-rectangle as well
to avoid convergence issues in the training procedure, as
unconstrained optimization leads to very small values of
σw (� √

2) which in turn lead to vanishing gradients and
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TABLE I. Comparison of the performance of networks trained
in the NTK regime using different hyperparameters (σ). The “Test”
column shows an estimate of the DNN test loss, the “Prediction”
column the loss as predicted by our learning-curve, and the “GPR”
column an estimate of the data-set-averaged expected loss of the
corresponding GP. Worst, median, and best refer to one of 21 net-
works with random hyperparameters ranked by test loss. Typical and
optimized refer to networks with σ typical (defined in the text) and
the optimal hyperparameters following our optimization scheme. For
more experiment results see Appendix L.

Test Prediction GPR

Worst 0.413 0.406 0.382
Median 0.313 0.316 0.319
Best 0.175 0.198 0.214
Typical 0.307 0.307 0.317
Optimized 0.078 0.110 0.141

long training times. We defined networks corresponding to
σoptimized, σ typical, {σ i} and trained each network on the same
data set with full-batch gradient descent and learning rate 1.0
until the train loss was smaller then 0.1σ 2

r . A summary of the
experiment is outlined in Table I.

The results clearly demonstrate the effectiveness of our
scheme which reduces the test loss by a factor of 4 rela-
tive to the typical hyperparameter choice and a factor of 2
over the best performing random hyperparameters. In terms
of computational complexity, it took approximately 2.5 h to
train each network using Google’s neural tangent package
[50] on a 20-core CPU1 with W = 214. In comparison, the
time it takes to build and optimize L̂ is completely negligible
at about 30 s. The best random hyperparameters were found
on the 15th attempt, so had we stopped then we would have
wasted 35 computer hours relative to our scheme and gotten
inferior test loss. Note also that we focused on L = 2 in
order to speed up training, which scales exponentially with
depth, but the optimization procedure is not nearly as sensi-
tive to depth and could have been done for any reasonable
L. Moreover, increasing the depth would have also enlarged
the hyperparameter space, making random search even less
effective. For each network, we also experimentally obtained
the data-set-averaged expected loss using GPR with the as-
sociated NTK. The fair agreement between the test loss and
data-set-averaged expected loss (GPR in Table I) further so-
lidifies previous results and demonstrates our claim of self-
averaging.

As expected, the above results required some knowledge of
the target function, in particular its spectral weight within each
angular momentum space. Alternatively, one can capitalize on
the fact that our learning-curves prediction are quadratic in
the target, average them over a target function ensemble, and
optimize with respect to this average case. Another option is
to consider a min-max optimization scheme in which hyperpa-
rameters are optimized for the worst-case target within some

1While GPUs are generally faster, fully connected DNNs do not
gain the full benefit of GPU parallelism and we expect the computa-
tion time would only improve by a factor of O(1).

domain. The scheme can also be extended to nonuniform data
sets and different activation functions as long as some way of
computing the eigenvalues is provided.

IX. DISCUSSION AND OUTLOOK

In this work we laid out a formalism based on field theory
tools for predicting learning curves in the NTK and NNSP
correspondence regimes. Despite DNNs’ black-box reputa-
tion, well within the validly range of our perturbative analysis,
we obtained very low relative mismatch between our best
estimate and the experimental curves, with good agreement
extending well into regions with low amounts of data com-
pared to that needed to learn the target. A potential use of
such learning curves in hyperparameter optimization was also
demonstrated.

Central to our analysis was a renormalization group trans-
formation leading to effective observation noise on the target
and to a simpler renormalized quadratic action or kernel.
Notably, this RG transformation implied that wide fully con-
nected networks, even ones working on real-world data sets
such as CIFAR-10, could be effectively described by very
few parameters being the noise level and the O(1)-first Taylor
expansion parameters of the kernel.

Our analysis provides a laboratory setting in which deep
learning can be understood. In its training phase, DNNs avoid
local-minima issues and glassy behavior due to their high
overparametrization which makes the optimization problem
highly underconstrained [13,51,52]. As a result, many differ-
ent solutions or weights which fit perfectly the training data
are possible. While each such solution will behave differently
on a test point, this arbitrariness does not entail an erratic
behavior. The reason is the implicit bias DNNs have towards
simple functions. In the case of the NNSP correspondence,
a simple function is, by definition, a function that can be
generated, up to some small noise, by a large phase space of
weights.

Simplicity is therefore strongly architecture and data set
dependent. For fully connected DNNs trained in the regime
of the NTK or the NNSP correspondences, as well as data
uniformly sampled from the hypersphere, simplicity amounts
to low-order polynomials over that hypersphere. These are the
hyperspherical harmonics with low l , which are the leading
eigenfunctions with respect to such a uniform measure of a
generic kernel associated with a fully connected DNN. As
long as the DNN has at least one nonlinear layer and bi-
ases, depth has only a quantitative effect as it modifies the
eigenvalues (λl ) but does not change their scale. Generally,
the eigenvalues and eigenfunctions vary with architecture and
data distribution. Convolutional neural networks (CNNs) re-
quire further study, however, one can argue on a qualitative
level that simple functions would be polynomials with certain
spatial hierarchy. Moreover, one expects that qualitative de-
tails of this hierarchy would depend on depth as it controls
the input-fan-in of the hidden activation in the last CNN
layer.

It seems unrealistic that a purely analytical approach such
as ours would describe well the predictions of state-of-the-art
DNNs such as VGG-19 trained on a real-world data set such
as ImageNet. Similarly unrealistic is to expect an analytical
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computation based on thermodynamics to capture the effi-
ciency of a modern car engine or one based on Naiver-Stoke’s
equations to output a better shape of a wing. Still, scientific
experience shows that understanding toy models, especially
rich enough ones, has value. Indeed, toy models provide an an-
alytical laboratory where theories could be refined or refuted,
algorithms could be benchmarked and improved, and wider
ranging conjectures and intuitions could be formed. Such
models are useful whenever domain knowledge possesses
some degree of universality or independence from detail. In
converse, when all details matter, knowledge is nothing more
than a log of all experiences. The fact that DNNs work well in
variety of different architecture and data-set settings suggests
that some degree of universality worth exploring is present.
Further research would thus tell if the tools and method-
ologies that have enabled us to comprehend our physical
world can help us comprehend the artificial world of deep
learning.

Many extensions of this work, aimed at approaching real-
world settings, can be considered. First and foremost, much of
the recent excitement about DNNs comes from either CNNs
or long short-term memory networks (LSTMs). Considering
CNNs, while much of our formalism applies, the spectrum of
CNN kernels is more challenging to obtain as their kernels
are less symmetric compared to fully connected DNNs. For
similar reasons the RG approach presented here requires a
more elaborate trimming of the CNN kernel since the latter
would not consist of only powers of dot products. Further-
more, CNNs trained with SGD show rather large gaps in
performance compared to their NNGP or NTK. The culprit
here might very well be the finite-width or finite-number-of-
channels corrections to the NNGP or NTK priors. Leading
finite-width corrections, considered in Ref. [13], amount to
adding quartic terms to P0[ f ]. Those could be dealt with
straightforwardly using our perturbation theory formalism.
Interestingly, at least for CNNs without pooling, these cor-
rections introduce a qualitative change to the prior, making it
reflect the weight-sharing property of CNNs, which is lost at
the level of the NNGP or NTK [13,53]. Other viable direc-
tions are handling richer data-set distributions, extending EK
results to the more common cross-entropy loss, applying RG
reasoning on finite-width DNNs, and using the above insights
for developing DNN architecture design principles.
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APPENDIX A: POISSON-AVERAGING DEMONSTRATION

Here we demonstrate that Poisson averaging has no sub-
stantial effect on the learning curve. To this end, Fig. 3
shows the experimental learning curve from the main text
preaveraging and postaveraging. It is evident that other than
the unintended consequence of eliminating the experimental
noise, the averaged learning curve is equivalent to the original
for all practical intents.

FIG. 3. Data-set-averaged generalization before (gray) and after
(blue) Poisson averaging.

APPENDIX B: COMPARISON OF NTK AND
RENORMALIZED NTK PREDICTIONS ON SYNTHETIC

AND REAL-WORLD DATA SETS

In Sec. VII we used the renormalized NTK as a proxy for
the regular NTK; the purpose of this Appendix is to affirm the
validity of this approximation. Moreover, while our lack of
knowledge of the NTK eigenvalues and eigenfunctions with
respect to a nonuniform measure prevents us from predicting
learning curves, we would like to show that the renormalized
NTK is a valid approximation in this setting as well.

To this end, we used the following procedure. We took the
NTK kernel defined in the paper and its associated renormal-
ized kernels at different scales and trained them over the same
training set DN . In Fig. 4 (top) the training set and target func-
tion were the ones defined in the main text. In Fig. 4 (bottom)
DN consisted of uniform draws without replacements from the
CIFAR-10 training set, standardized and normalized to unit
vectors, and the target function was the one hot encoding of
the labels standardized to have zero mean and Kx,x variance.

For each training set we logged the average squared de-
viation of each renormalized kernel estimation g�

r from the
estimation of the nonrenormalized kernel g�

∞. This is the
quantity ‖g�

r − g�
∞‖2 (where in the CIFAR-10 case ‖ · ‖ im-

plies both the Euclidean norm in R10 and integration over the
input measure, which we approximated by averaging over the
CIFAR-10 test set). We averaged this quantity over different
draws of training sets to obtain 〈‖g�

r − g�
∞‖2〉DN

. The results
show good agreement between g�

∞ and g�
r as r is increased.

APPENDIX C: LEARNING CURVES IN THE
NNSP PROTOCOL

We report here the results of a similar experiment to the
one presented in the main text, but with the NTK kernel
replaced with the NNGP kernel as appropriate for the NNSP
correspondence. In this case we used a kernel simulating a
network with a single hidden layer and σ 2

w = 1/W, σ 2
b = 0,

and a target function equivalent to the one in the main text. In
the NNSP protocol the renormalization group approach is not
necessary to introduce noise to the observations, as it comes

023034-11



OMRY COHEN, OR MALKA, AND ZOHAR RINGEL PHYSICAL REVIEW RESEARCH 3, 023034 (2021)

FIG. 4. Expected deviation between renormalized and nonrenormalized kernel predictions in terms of the squared norm induced by the
input measure. The deviation is averaged over different training set draws.

into play naturally via the temperature-dependent fluctuations,
so we can choose arbitrary σ 2. Notwithstanding, the renormal-
ization group approach can aid in analyzing low-temperature
behavior.

Notice, in Fig. 5, that the subleading prediction signifi-
cantly improves upon the EK prediction. As the inset plot
demonstrates, when the data-set size is small the expected er-
ror actually increases. Surprisingly, the subleading correction
manages to capture this behavior even though the data-set size
is small, demonstrating its superiority.

FIG. 5. Experimental data-set-averaged learning curves for re-
gression with NNGP kernel, along with leading and subleading
predictions.

APPENDIX D: COMPARISON WITH RECENT BOUNDS

As mentioned in the main text, various recent bounds,
relevant to the NTK regime, have been derived recently.
Notwithstanding importance and rigor of these works, their
bounds have at best a 1/

√
N asymptotic scaling. Figure 6

shows that given a functional behavior of the experimental

FIG. 6. Asymptotic comparison of our prediction for the learning
curve with the recent lower bound of 1/

√
N .
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FIG. 7. Correlation plots between GPR loss, DNN test loss, and our prediction. The correlation between GPR and DNN test loss (middle)
affirms the relation between GPR and neural networks in the NTK regime, while the plots affirm the relation between our predictions and
experimentally obtained quantities.

learning curves such a bound cannot be nearly as tight as our
predictions.

APPENDIX E: NNGP AND NTK ARE
ROTATIONALLY INVARIANT

Let us prove that the NNGP and NTK kernels associated
with any network whose first layer is fully connected are
rotationally invariant. Indeed, let hw(x) be the output vector
of the first layer [hw(x)]i = φ(

∑
j wi jx j + b) where x j is the

jth component of the input vector x. Let zw′ (h) be the output
of the rest of the network given h. The covariance function of
NNGPs are defined by [44]

K (x, y) =
∫

dw dw′P0(w,w′)zw′ (hw(x))zw′ (hw(y)),

(E1)

where P0(w,w′) is a prior over the weights, typically taken to
be independent and identically distributed Gaussian for each
layer [P0(w,w′) = P0(w)P0(w′) and P0(w) ∝ e−∑i j w2

i j/(2σ 2 )].
Following this one can show

K (Ox, Oy)

=
∫

dw dw′P0(w,w′)zw′ (hw(Ox))zw′ (hw(Oy))

=
∫

dw dw′P0(w,w′)zw′ (hOT w(x))zw′ (hOT w(y))

=
∫

dw dw′P0(Ow,w′)zw′ (hw(x))zw′ (hw(y))

=
∫

dw dw′P0(w,w′)zw′ (hw(x))zw′ (hw(y))

= K (x, y), (E2)

where the second equality uses the definition of hw(x), the
third results from an orthogonal change of integration variable
w → OT w, and the fourth is a property of our prior over

w. Since the NTK relates to the NNGP kernel in a recursive
manner [8], it inherits that symmetry as well.

APPENDIX F: NOTATIONS FOR THE FIELD THEORY
DERIVATION

For completeness, here we restate the notations used in the
main text.

(i) x, x′, x∗: inputs.
(ii) μx: measure on input space.
(iii) K (x, x′): kernel function (covariance) of a Gaussian

process; assumed to be symmetric and positive semidefinite.
(iv) φi(x): ith eigenfunction of K (x, x′). By the spectral

theorem, the set {φi}∞i=1 can be assumed to be orthonormal,

∫
dμxφi(x)φ j (x) = δi j .

(v) λi: ith eigenvalue of K (x, x′),

∫
dμx′K (x, x′)φi(x

′) = λiφi(x).

(vi) ‖ · ‖K : RKHS norm

‖ · ‖K =
∫

dμxdμx′ f (x)K−1(x, x′) f (x′).

(vii) If f (x) = ∑
i fiφi(x), then ‖ f ‖K = ∑

i
f 2
i

λi
(where φi

is an orthonormal set). Note that this norm is independent of
μx [12].

(viii) g(x): The target function.
(ix) σ 2: Noise variance.
(x) N : Number of inputs in the data set.
(xi) DN : Data set of size N , DN = {x1, . . . , xN }.
(xii) g∗: The prediction function.
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APPENDIX G: PHRASING THE PROBLEM AS A FIELD THEORY PROBLEM

1. Without data

We start by establishing the exact equivalence between a prior of a centered GP and the corresponding partition function. For
a kernel function K , let us define the partition function

Z[α] =
∫

D f exp

(
−1

2
‖ f ‖2

K +
∫

dx α(x) f (x)

)
. (G1)

Since the RKHS norm is quadratic in f , the distribution over the space of functions induced by Z is Gaussian (a GP). Since a
GP is determined by its mean and kernel, it is sufficient to show those equalities. For the mean we get

〈 f (x∗)〉 = δ log(Z[α])

δα(x∗)

∣∣∣∣
α=0

∫
D f f (x∗) exp

(− 1
2‖ f ‖2

K

)∫
D f exp

(− 1
2‖ f ‖2

K

) = arg min

[
1

2
‖ f ‖2

K

]∣∣∣∣
x∗

= 0 (G2)

since for Gaussian distributions it holds that the average case is also the most probable case. For the covariance we get

〈 f (x) f (y)〉 = δ2 log(Z0[α])

δα(x)δα(y)

∣∣∣∣
α=0

=
∫
D f f (x) f (y) exp

(− 1
2‖ f ‖2

K

)∫
D f exp

(− 1
2‖ f ‖2

K

) =
∫ ∏

i dfi
∑

i fiφi(x)
∑

j fiφ j (x) exp
(
− 1

2

∑
l

f 2
l

λl

)
∫ ∏

i dfi exp
(
− 1

2

∑
l

f 2
l

λl

)

=
∑

i

∫
df f 2 exp

(− f 2

2λi

)
∫

df exp
(− f 2

2λi

)
︸ ︷︷ ︸

λi

φi(x)φi(y) +
∑
i = j

∫
df f exp

(− f 2

2λi

)
∫

df exp
(− f 2

2λi

)
︸ ︷︷ ︸

0

∫
df f exp

(
− f 2

2λ j

)
∫

df exp
(
− f 2

2λ j

)
︸ ︷︷ ︸

0

=
∑

i

λiφi(x)φi(y) = K (x, y). (G3)

Indeed, Z is the partition function corresponding to a centered GP with kernel K .

2. With data

We continue by establishing the exact equivalence between Bayesian inference on a GP and the corresponding partition
function. From (G1) we get that

P[ f ] ∝ exp
(− 1

2‖ f ‖2
K

)
. (G4)

For given target function g and a sampled data point (x1, g(xi )), assuming that f is our prediction it holds that g(xi ) ∼
N ( f (xi ), σ 2) since g distributes normally around f with variance σ 2. Therefore, p(g(xi )| f ) ∝ exp (−[g(xi ) − f (xi )]

2/2σ 2),
so

P[D| f ] =
N∏

i=1

p(g(xi )| f , M ) ∝ exp

(
− 1

2σ 2

N∑
i=1

[g(xi ) − f (xi )]
2

)
(G5)

and using Bayes’ theorem we get

P[ f |D] ∝ exp

(
−1

2
‖ f ‖2

K − 1

2σ 2

N∑
i=1

[g(xi ) − f (xi )]
2

)
(G6)

which gives rise to the posterior partition function

Z[α] =
∫

D f exp

(
−1

2
‖ f ‖2

K − 1

2σ 2

N∑
i=1

[g(xi ) − f (xi )]
2 +

∫
dx α(x) f (x)

)
(G7)

and again, the exponent is quadratic in f leading to a Gaussian distribution over the space of functions. Indeed, for the mean we
get

g∗(x∗) = 〈 f (x∗)〉 = δ log(Z[α])

δα(x∗)

∣∣∣∣
α=0

= arg min

[
1

2
‖ f ‖2

K + 1

2σ 2

N∑
i=1

[ f (xi ) − g(xi )]2

]∣∣∣∣∣
x∗

(G8)

in agreement with [12].
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3. Calculating observables

a. Averaging g∗

Applying the replica trick to Eq. (G8) and averaging over all the data sets of size N we obtain

〈g∗(x∗)〉DN = lim
M→0

1

M

δ〈ZM[α]〉DN

δα(x∗)

∣∣∣∣
α=0

, (G9)

for integer M we get

ZM[α] =
∫

· · ·
∫

︸ ︷︷ ︸
M

M∏
j=1

D f j exp

(
−1

2

M∑
j=1

‖ f j‖2
K −

M∑
j=1

N∑
i=1

[ f j (xi ) − g(xi )]
2

2σ 2
+

M∑
j=1

∫
α(x) f j (x)dx

)
(G10)

and after averaging

〈ZM[α]〉DN =
∫

...

∫
︸ ︷︷ ︸

M

M∏
j=1

D f j exp

(
−1

2

M∑
j=1

‖ f j‖2
K +

M∑
j=1

∫
α(x) f j (x)dx

)〈
exp

(
−

M∑
j=1

[ f j (x) − g(x)]2

2σ 2

)〉N

x∼μ

, (G11)

where 〈. . .〉x∼μ = ∫
. . . dμx.

Performing the Poissonic averaging we get

〈ZM[α]〉η = e−η

∞∑
N=0

ηN

N!

〈
ZM[α]

〉
DN

=
∫

· · ·
∫

︸ ︷︷ ︸
M times

D f1 . . .D fM exp

⎡
⎣−1

2

M∑
j=1

‖ f j‖2
K +

M∑
j=1

∫
α(x) f j (x)dx + η

〈
exp

(
−

M∑
j=1

[ f j (x) − g(x)]2

2σ 2

)
− 1

〉
x∼μ

⎤
⎦,

(G12)
so overall

〈g∗(x∗)〉η = lim
M→0

1

M

δ〈ZM[α]〉η
δα(x∗)

∣∣∣∣
α=0

. (G13)

b. Averaging g∗2

From (G9) we get that

〈g∗2(x∗)〉DN = lim
M→0

lim
W →0

1

MW

δ2〈ZM[α]ZW [β]〉DN

δα(x∗)δβ(x∗)

∣∣∣∣
α,β=0

. (G14)

Therefore,

〈g∗2(x∗)〉η = lim
M→0

lim
W →0

1

MW

δ2〈ZM[α]ZW [β]〉η
δα(x∗)δβ(x∗)

∣∣∣∣
α,β=0

. (G15)

APPENDIX H: EQUIVALENCE KERNEL AS FREE THEORY

Expending the nested exponent in Eq. (G12) using (first-order) Taylor series we get

〈ZM[α]〉η = e−η

∫
. . .

∫
︸ ︷︷ ︸

M

M∏
j=1

D f j exp

⎡
⎣−1

2

M∑
j=1

‖ f j‖2
K +

M∑
j=1

∫
α(x) f j (x)dx + η

〈
exp

(
−

M∑
j=1

[ f j (x) − g(x)]2

2σ 2

)〉
x∼μ

⎤
⎦

=
∫

. . .

∫
︸ ︷︷ ︸

M

M∏
j=1

D f j exp

⎛
⎝−1

2

M∑
j=1

‖ f j‖2
K +

M∑
j=1

∫
α(x) f j (x)dx − η

〈
M∑

j=1

[ f j (x) − g(x)]2

2σ 2

〉
x∼μ

⎞
⎠+ O(1/η2)

=
[∫

D f exp

(
−1

2
‖ f ‖2

K +
∫

α(x) f (x)dμx − η

2σ 2

∫
dμx[ f (x) − g(x)]2

)]M

+ O(1/η2)

= (ZEK[α])M + O(1/η2), (H1)

where we defined

ZEK[α]
def=
∫

D f exp

(
−1

2
‖ f ‖2

K +
∫

α(x) f (x)dμx − η

2σ 2

∫
dμx[ f (x) − g(x)]2

)
(H2)

023034-15



OMRY COHEN, OR MALKA, AND ZOHAR RINGEL PHYSICAL REVIEW RESEARCH 3, 023034 (2021)

under this approximation we get

lim
M→0

〈ZM[α]〉η − 1

M
= lim

M→0

(ZEK[α])M − 1

M
+ O(1/η2) = log (ZEK[α]) + O(1/η2). (H3)

Denoting the average with respect to ZEK as 〈. . . 〉0. The mean of the distribution induced by ZEK is

〈 f (x∗)〉0 = δ log (ZEK[α])

δα(x∗)

∣∣∣∣
α=0

=
∫
D f f (x∗) exp

(− 1
2‖ f ‖2

K − η

2σ 2

∫
dμx[ f (x) − g(x)]2

)∫
D f exp

(− 1
2‖ f ‖2

K − η

2σ 2

∫
dμx[ f (x) − g(x)]2

)
= arg min

[
1

2
‖ f ‖2

K + η

2σ 2

∫
dμx[ f (x) − g(x)]2

]∣∣∣∣
x∗

= g∗
EK,η(x∗), (H4)

where the last equality is due to [12].
The covariance induced by ZEK is

Cov0[ f (x), f (y)] = 〈 f (x) f (y)〉0 − 〈 f (x)〉0〈 f (y)〉0 = δ2 log (ZEK[α])

δα(x)δα(y)

∣∣∣∣
α=0

(H5)

∗=
∫
D f f (x) f (y) exp

(− 1
2‖ f ‖2

K − η

2σ 2

∫
dμx f 2(x)

)∫
D f exp

(− 1
2‖ f ‖2

K − η

2σ 2

∫
dμx f 2(x)

)
∗∗=
∫ ∏

i dfi
∑

i, j fi f jφi(x)φ j (y) exp
[− 1

2

∑
i

(
1
λi

+ η

σ 2

)
f 2
i

]
∫ ∏

i dfi exp
[− 1

2

∑
i

(
1
λi

+ η

σ 2

)
f 2
i

]
∗∗∗=
∑

i

∫
df f 2 exp

[− 1
2

(
1
λi

+ η

σ 2

)
f 2
]

∫
df exp

[− 1
2

(
1
λi

+ η

σ 2

)
f 2
] φi(x)φi(y)

=
∑

i

(
1

λi
+ η

σ 2

)−1

φi(x)φi(y),

where in (∗) the noncentered part of the distribution was deleted, in (∗∗) the eigenfunctions of K were chosen as a base for
the path integration, and in (∗ ∗ ∗) we used the fact that

∫
df f exp [− 1

2 ( 1
λi

+ η

σ 2 ) f 2] = 0 since it is the mean of a centered
(unnormalized) Gaussian distribution.

For a rotationally invariant kernel, the eigenfunctions are Ylm and the eigenvalues are λl (independent of m) so Eq. (H5)
becomes

Cov0[ f (x), f (y)] =
∑

l

(
1

λl
+ η

σ 2

)−1∑
m

Ylm(x)Ylm(y) (H6)

and the variance

Var0[ f (x)] =
∑

l

(
1

λl
+ η

σ 2

)−1∑
m

Y 2
lm(x)

︸ ︷︷ ︸
deg(l )

def= CK,σ 2/η, (H7)

which is a constant (independent of x).

APPENDIX I: NEXT-ORDER CORRECTION

We now wish to perform the first-order correction to the free theory. Expanding Eq. (G12) to the next order [keeping terms
up to O(1/η2)] we get

〈
ZM[α]

〉
η

=
∫

. . .

∫
︸ ︷︷ ︸

M times

D f1 . . .D fM exp

⎛
⎝−1

2

M∑
j=1

‖ f j‖2
K +

M∑
j=1

∫
α(x) f j (x)dx + η

〈
−

M∑
j=1

[ f j (x) − g(x)]2

2σ 2

〉
x∼μx

⎞
⎠

× exp

⎡
⎣η

2

〈(
M∑

j=1

[ f j (x) − g(x)]2

2σ 2

)2〉
x∼μx

⎤
⎦+ O

(
1/η3

)

=
∫

· · ·
∫

︸ ︷︷ ︸
M times

D f1 . . .D fM exp

[
M∑

i=1

(
−1

2
‖ fi‖2

K +
∫

α(x) fi(x)dx − η

〈
[ fi(x) − g(x)]2

2σ 2

〉
x∼μ

)]
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× exp

(
η

8σ 4

M∑
i=1

M∑
j=1

[ f j (x) − g(x)]2[ fi(x) − g(x)]2

)
+ O

(
1/η3

)

=
∫

· · ·
∫

︸ ︷︷ ︸
M times

D f1 . . .D fM exp

[
M∑

i=1

(
−1

2
‖ fi‖2

K +
∫

α(x) fi(x)dx − η

〈
[ fi(x) − g(x)]2

2σ 2

〉
x∼μ

)]

×
(

1 + η

8σ 4

M∑
i=1

M∑
j=1

[ f j (x) − g(x)]2[ fi(x) − g(x)]2

)
+ O(1/η3). (I1)

1. Calculating 〈g∗〉η

We now wish to calculate the correction to 〈g∗〉η given by Eq. (I1). From Eq. (G13) we get

〈g∗〉η = g∗
EK,η(x∗) + lim

M→0

1

M

η

8σ 4

∫
dμx

〈
M∑

j=1

M∑
l=1

M∑
i=1

[ f j (x) − g(x)]2[ fl (x) − g(x)]2 fi(x∗)

〉
f1,..., fM∼EK

+ O(1/η3). (I2)

Simplifying the average of the multiple sums we get

〈
M∑

j=1

M∑
l=1

M∑
i=1

[ f j (x) − g(x)]2[ fl (x) − g(x)]2 fi(x∗)

〉
f1,..., fM∼EK

= M〈[ f (x) − g(x)]4 f (x∗)〉0

+ M(M − 1)[2〈[ f (x) − g(x)]2〉0〈[ f (x) − g(x)]2 f (x∗)〉0 + 〈[ f (x) − g(x)]4〉0〈 f (x∗)〉0]

+ M(M − 1)(M − 2)〈[ f (x) − g(x)]2〉2
0〈 f (x∗)〉0. (I3)

Since f has a Gaussian distribution ( f ∼ EK), such averages can be calculated using Feynman diagrams.
Let us denote f (x) − g(x) by filled squares and f (x∗) by filled circles. Since our free theory is not centered (〈 f 〉0 = g∗

EK,η = 0),
we allow edges in the diagrams to be connected at only one side, representing the average of the vertex with respect to the EK
distribution. An edge connected to vertices on both sides represents the covariance. Note that since we divide by M and take the
limit M → 0, we do not care about diagrams which are not connected to f (x∗) since they scale as M2.

Calculating the averages we get

(I4)

(I5)

〈[ f (x) − g(x)]4〉0〈 f (x∗)〉0 = disconnected diagrams, (I6)

〈[ f (x) − g(x)]2〉2
0〈 f (x∗)〉0 = disconnected diagrams. (I7)
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Taking the limit M → 0 and summing everything together we get

lim
M→0

1

M

〈
M∑

j=1

M∑
l=1

M∑
i=1

[ f j (x) − g(x)]2[ fl (x) − g(x)]2 fi(x∗)

〉
f1,..., fM∼EK

= 8[g∗
EK,η(x) − g(x)]Var0[ f (x)]Cov0[ f (x), f (x∗)], (I8)

so finally

〈g∗〉η = g∗
EK,η(x∗) + η

σ 4

∫
dμx

[
g∗

EK,η(x) − g(x)
]
Var0[ f (x)]Cov0[ f (x), f (x∗)] + O(1/η3). (I9)

Substituting the expressions for the free variance and the covariance [Eq. (H5)] we get

〈g∗〉η = g∗
EK,η(x∗) − η

σ 4

∑
i, j,k

σ 2

η

λi + σ 2

η

(
1

λ j
+ η

σ 2

)−1( 1

λk
+ η

σ 2

)−1

giφ j (x∗)
∫

dμxφi(x)φ j (x)φ2
k (x) + O

(
1/η3). (I10)

For a rotationally invariant kernel, (I10) becomes

〈g∗〉η = g∗
EK,η(x∗) −

∑
l,m

η−1λlCK,σ 2/η

(λl + σ 2/η)2
glmYlm(x∗) + O(1/η3). (I11)

2. Calculating 〈g∗2〉η

Substituting (G10) in (G15) we get

〈g∗2〉η = lim
M→0

lim
W →0

1

MW (ZEK[α = 0])M+W

∫
D f1 . . .

∫
D fM

∫
D f̃1 . . .

∫
D f̃W

× exp

(
−η − 1

2

M∑
m=1

‖ fm‖2
K − 1

2

W∑
w=1

‖ f̃w‖2
K

)

× exp

[
η〈exp

(
−

M∑
m=1

[ fm(x) − g(x)]2

2σ 2
−

W∑
w=1

[
f̃w(x) − g(x)

]2
2σ 2

)〉
x∼μx

⎞
⎠ M∑

m=1

fm(x∗)
W∑

w=1

f̃w(x∗). (I12)

By expanding to the same order we get [all equalities are up to O(1/η3)]

〈g∗2(x∗)〉η = lim
M→0

lim
W →0

1

MW (ZEK[α = 0])M+W

∫
D f1 . . .

∫
D fM

∫
D f̃1 . . .

∫
D f̃W

× exp

⎡
⎣−1

2

M∑
m=1

‖ fm‖2
K − 1

2

W∑
w=1

‖ f̃w‖2
K + η

〈(
−

M∑
m=1

[ fm(x) − g(x)]2

2σ 2
−

W∑
w=1

[ f̃w(x) − g(x)]2

2σ 2

)〉
x∼μx

⎤
⎦

×
⎡
⎣1 + η

2

〈(
M∑

m=1

[ fm(x) − g(x)]2

2σ 2
+

W∑
w=1

[ f̃w(x) − g(x)]2

2σ 2

)2〉
x∼μx

⎤
⎦ M∑

m=1

fm(x∗)
W∑

w=1

f̃w(x∗)

= g∗2
EK,η(x∗) + lim

M→0
lim

W →0

1

MW

η

8σ 4

∫
dμx

〈(
M∑

a=1

[ fa(x) − g(x)]2 +
W∑

b=1

[ f̃b(x) − g(x)]2

)2 M∑
c=1

fc(x∗)
W∑

d=1

f̃d (x∗)

〉
0

= g∗2
EK,η(x∗) + lim

M→0
lim

W →0

1

MW

η

4σ 4

∫
dμx

[〈
M∑

a=1

[ fa(x) − g(x)]2
M∑

b=1

[ fb(x) − g(x)]2
M∑

c=1

fc(x∗)
W∑

d=1

f̃d (x∗)

〉
0

+
〈

M∑
a=1

[ fa(x) − g(x)]2
W∑

b=1

[
f̃b(x) − g(x)

]2 M∑
c=1

fc(x∗)
W∑

d=1

f̃d (x∗)

〉
0

]

= g∗2
EK,η(x∗) + η

4σ 4

∫
dμx lim

M→0

1

M

〈
M∑

a=1

[ fa(x) − g(x)]2
M∑

b=1

[ fb(x) − g(x)]2
M∑

c=1

fc(x∗)

〉
0

g∗
EK,η(x∗)

+ η

4σ 4

∫
dμx

(
lim

M→0

1

M

〈
M∑

a=1

[ fa(x) − g(x)]2
M∑

b=1

fb(x∗)

〉
0

)2

. (I13)
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The first integrand was already calculated and is given in (I8). For the second integrand we get

(I14)

so the correction for 〈g∗2(x∗)〉η is

〈g∗2(x∗)〉η = g∗2
EK,η(x∗) − 2

η

σ 4
g∗

EK,η(x∗)
∑
i, j,k

σ 2

η

λi + σ 2

η

(
1

λ j
+ η

σ 2

)−1( 1

λk
+ η

σ 2

)−1

giφ j (x∗)
∫

dμxφi(x)φ j (x)φ2
k (x)

︸ ︷︷ ︸
O(1/η2 )

+O(1/η3)

(I15)

and for a rotationally invariant kernel we get

〈g∗2(x∗)〉η = g∗2
EK,η(x∗) − 2g∗

EK,η(x∗)
∑
l,m

η−1λlCK,σ 2/η

(λl + σ 2/η)2
glmYlm(x∗) + O(1/η3). (I16)

APPENDIX J: VARIOUS INSIGHTS

1. Correction means worse generalization

The correction always means worse generalization than
what the EK suggests. Indeed, expending Eq. (I11) we get

〈g∗〉η = g∗
EK,η(x∗)−

∑
l,m

η−1λlCK,σ 2/η

(λl +σ 2/η)2
glmYlm(x∗) + O(1/η3)

=
∑
l,m

λl

λl + σ 2

η

gl,mYl,m(x∗)

−
∑
l,m

η−1λlCK,σ 2/η

(λl + σ 2/η)2
glmYlm(x∗)+O(1/η3)

=
∑
l,m

⎛
⎜⎜⎜⎝ λl

λl + σ 2

η

− η−1λlCK,σ 2/η

(λl + σ 2/η)2︸ ︷︷ ︸
positive

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
<

λl

λl + σ2
η

<1

gl,mYl,m(x∗).

2. Exact eigenvalues for two-layer ReLU NNGP
and NTK with σ2

b = 0

For the NNGP associated with a two-layer ReLU NTK
without bias we were able to fined an exact expression for
the eigenvalues for all l:

λl=2k = σ 2
w0

σ 2
w1

d

16π2

(
�
(

l−1
2

)
�
(

d
2

)
�
(

l+d+1
2

) )2

,

λl=2k+1 = σ 2
w0

σ 2
w1

1

4d
δk,0

and for NTK

λ2k = σ 2
w1

σ 2
w2

2π

d (1 + 2k) + (1 − 2k)2

8π

(
�
(
k − 1

2

)
�
(

d
2

)
�
(
k + d+1

2

) )2

,

λ2k+1 = σ 2
w1

σ 2
w2

2π

π

d
δk,0.

It is interesting to note that for all odd l > 1 λl = 0 so the
expressive power of the kernel (and hence the neural network)
is greatly reduced.

APPENDIX K: ACCURACY OF THE RENORMALIZED
NTK

Let us consider the random variable t = x · x′, for two
normalized data points x and x′ drawn uniformly from the
unit hypersphere Sd−1. Without loss of generality, x can be
assumed to be a unit vector in the direction of the last axis,
and therefore t is the last component of x′. The density at
t ∈ [−1, 1] is therefore proportional to the surface area lying
at a height between t and t + dt on the unit sphere. That pro-
portion occurs within a belt of height dt and radius

√
1 − t2,

which is a conical frustum constructed out of a (d − 2)-
dimensional hypersphere of radius

√
1 − t2, of height dt , and

slope 1/
√

1 − t2. Hence, the probability is proportional to
p(t )dt ∝ (1 − t2)(d−3)/2dt .

Defining u = (t + 1)/2, it holds that p(u)du ∝
u(d−3)/2(1 − u)(d−3)/2, meaning that u ∼ Beta( d−1

2 , d−1
2 ),

and for large d it holds that Var[t] = O(d−1). Since t is
bounded to [−1, 1], the random variable t r must have
a standard deviation which is a decaying function of r.
Indeed, for n � d and large d , approximating the integral∫

t n(1 − t2)(d−3)/2dt using saddle-point approximation we
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get that f (t ) = n ln(t ) + d−3
2 ln(1 − t2) is maximal for t0 =

[n/(n + d − 3)]1/2, and f ′′(t0) = 2[n2 − (d − 3)2]/(d − 3),
so overall

〈t2r〉 =
∫

t2r (1 − t2)(d−3)/2∫
t0(1 − t2)(d−3)/2

≈
[

1 −
(

2r

d − 3

)2]−1/2

×
(

2r

2r + d − 3

)r( d − 3

2r + d − 3

)(d−3)/2

. (K1)

This implies that for r � d , the standard deviation of t r

is O(d−r/2). Considering next the tail of the Taylor expansion∑
q>r bq(x · x′)q, projected on the data set [

∑
q>r bq(xn · xm)q].

The resulting N × N matrix is
∑

q>r bq on the diagonal, but
O(d−(r+1)/2) in all other entries. As we justified in the main
text, our renormalization transformation amounts to keeping
only the diagonal piece of this matrix and interpreting it as
noise.

Consider then (2) for g∗ in two scenarios: (I) g∗
∞ with

the full NTK [K (x, x′)] and no noise and (II) g∗
r with the

NTK trimmed after the rth power [Kr (x, x′)] but with σ 2
r =∑

q>r bq. The first K (x∗, xn) piece, for x∗ drawn from the data-
set distribution, obeys K (x∗, xn) − Kr (x∗, xn) = O(d−(r+1)/2).
Next, we compare Kr (xn, xm) + Inmσ 2

r and K (xn, xn). On
their diagonal they agree exactly but their off-diagonal
terms agree only up to a O(d−(r+1)/2) discrepancy. Denot-
ing by δK the difference between these two matrices, we

may expand K−1 = [Kr + σ 2
mI + δK]−1 = [Kr + σ 2

r I]−1[1 −
δK[Kr + σ 2

r I]−1 + δK[Kr + σ 2
r I]−1δK[Kr + σ 2

r I]−1 + · · · ].
We next argue that δK[Kr + σ 2

r I]−1 multiplied by tar-
get vector [g(xn)] is negligible compared to the identity for
large enough r, thereby establishing the equivalence of the
two scenarios. Indeed, consider the eigenvalues of δK[Kr +
σ 2

r I]−1. As δKnm is O(d−(r+1)/2) its typical eigenvalues are
O(

√
Nd−(r+1)/2) and bounded by O(Nd−(r+1)/2). The typ-

ical eigenvalues of [Kr + σ 2
mI]−1 are of the same order as

K (xn, xn) = K and bounded from below by σ 2
r . Thus, typical

eigenvalues of δK[Kr + σ 2
r I]−1 are O(

√
Nd−(r+1)/2/K ) and

bounded from above by O(Nd−(r+1)/2/σ 2
r ). The NTK has the

desirable property that σ 2
r decays very slowly. Thus, certainly

in the typical case but even in the worst-case scenario we
expect good agreement at large r. In Fig. 1, right panel, we
provide supporting numerical evidence.

We refer to Kr (x, x′) as the renormalized NTKs at the scale
r. As follows from (23), λl ’s with l � r are zero. Therefore, as
advertised, the high-energy sector has been removed and com-
pensated by noise on the target and a change of the remaining
l < r (low-energy) eigenvalues. A proper choice of r involves
two considerations. Requiring perturbation theory to hold well
(CKr ,σ 2

r /η < σ 2
r ) which puts an η-depended upper bound on r

and requiring small discrepancy in predictions puts another
η-dependent lower bound on r (typically,

√
Nd−(r+1)/2 � 1).

Lastly, we comment that our renormalization NTK ap-
proach is not limited to uniform data sets. The entire logic
relies on having a rapidly decaying ratio of off-diagonal

TABLE II. Hyperparameter performance comparison.

Test Prediction GPR σ 2
r Train σw1 σb1 σw2 σb2

Random 1 0.389 0.400 0.364 0.068 1.29e-04 1.555 0.032 2.028 0.026
Random 2 0.316 0.287 0.331 0.004 4.17e-04 0.914 0.029 0.880 0.062
Random 3 0.191 0.219 0.250 0.003 3.36e-04 0.922 0.049 0.760 0.046
Random 4 0.300 0.324 0.306 0.045 1.39e-04 1.552 0.058 1.644 0.054
Random 5 0.268 0.338 0.273 0.070 1.24e-04 1.585 0.072 2.020 0.029
Random 6 0.413 0.406 0.382 0.065 1.28e-04 2.037 0.032 1.512 0.053
Random 7 0.332 0.297 0.335 0.010 8.76e-04 0.994 0.030 1.190 0.071
Random 8 0.228 0.245 0.262 0.015 6.41e-04 1.165 0.059 1.271 0.068
Random 9 0.337 0.308 0.332 0.018 1.37e-03 0.909 0.027 1.758 0.030
Random 10 0.371 0.392 0.355 0.069 1.19e-04 1.658 0.041 1.908 0.057
Random 11 0.313 0.316 0.319 0.032 1.31e-04 1.440 0.050 1.502 0.045
Random 12 0.335 0.340 0.329 0.042 1.33e-04 2.106 0.065 1.175 0.040
Random 13 0.397 0.336 0.373 0.018 1.71e-03 1.546 0.029 1.037 0.044
Random 14 0.236 0.253 0.271 0.017 4.18e-04 1.388 0.067 1.133 0.050
Random 15 0.293 0.288 0.306 0.018 6.37e-04 1.534 0.058 1.068 0.065
Random 16 0.175 0.198 0.214 0.011 1.04e-03 1.132 0.074 1.117 0.053
Random 17 0.206 0.226 0.246 0.013 7.66e-04 1.095 0.061 1.275 0.072
Random 18 0.264 0.264 0.292 0.011 1.00e-03 1.035 0.043 1.230 0.066
Random 19 0.239 0.248 0.282 0.006 5.34e-04 0.835 0.037 1.107 0.050
Random 20 0.385 0.378 0.364 0.054 1.43e-04 1.810 0.039 1.540 0.046
Random 21 0.318 0.300 0.323 0.018 9.58e-04 1.282 0.042 1.266 0.055
Worst 0.413 0.406 0.382 0.065 1.28e-04 2.037 0.032 1.512 0.053
Median 0.313 0.316 0.319 0.032 1.31e-04 1.440 0.050 1.502 0.045
Best 0.175 0.198 0.214 0.011 1.04e-03 1.132 0.074 1.117 0.053
Typical 0.307 0.307 0.317 0.028 1.41e-04 1.414 0.050 1.414 0.050
Optimized 0.078 0.110 0.141 0.002 1.66e-04 0.707 0.075 0.707 0.027

023034-20



LEARNING CURVES FOR OVERPARAMETRIZED DEEP … PHYSICAL REVIEW RESEARCH 3, 023034 (2021)

moments [(xn · xm)2r] and diagonal moments (xn · xn)2r as one
increases r. We expect this to hold in real-world distributions.
For instance, for a multidimensional Gaussian data distribu-
tion the input dimension (d) traded by an effective dimension
(de f f ) defined by the variance of (xm · xn).

APPENDIX L: HYPERPARAMETER OPTIMIZATION
EXPERIMENT RESULTS

Table II shows a comparison of hyperparameter optimiza-
tion performance. Fig. 7 shows correlations between GPR
loss, DNN test loss, and our prediction.
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