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Incoherent control of optical signals: Quantum-heat-engine approach
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Optical pump-probe signals can be viewed as work done by the matter while transferring the energy between
two coherent baths (from pump to probe). In thermodynamics, a heat engine, such as a laser, is a device which
performs similar work but operating between two thermal baths. We propose an “incoherent” control procedure
for the optical signals using the physics of a quantum heat engine. By combining a coherent laser excitation of
an electronic excited state of a molecule with thermal relaxation we introduce an effective thermal bath treating
stimulated emission of probe photons as work performed by the heat engine. We optimize power and efficiency
for the pump-probe signal using control parameters of the pump laser utilizing a four-level molecular model in
the strong and weak coupling regime illustrating its equivalence with the thermodynamic cycle of the heat engine.
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I. INTRODUCTION

The advancement in the field of quantum heat engines
(QHEs) attracted a lot of attention in the last decade due to
its connection with the real physical systems, such as lasers,
solar cells [1], and biological systems [2]. The maximum
quantum efficiency for a three-level maser QHE, introduced
by Scovil and Schulz-DuBois [3–5] is governed by the Carnot
bound obtained by invoking the detailed balance condition.
Since then many theoretical proposals for thermodynami-
cal heat engine in the quantum regime have been discussed
[6–13]. In addition, effects of a profound quantum nature,
such as quantum coherence and correlation and their influence
on the performance of QHEs have been further investigated
[1,2,14]. Recent experiments demonstrated that the QHE
physics [15–17] can be studied using pump-probe optical
measurements [18] where the working fluid is a radiation
produced by resonantly driven electronic transitions in the
material. The spectroscopic setup can be therefore viewed as
the QHE, which transfers energy from one heat bath (pump
pulse) to another (probe pulse), while the work performed by
the system is measured in the form of detected probe pho-
tons. Furthermore, one can employ the reservoir engineering
[19–21] that has been previously studied in the context of
thermodynamics [22–26] as a control method for optical mea-
surements utilizing the analogy between spectroscopic setups
and quantum heat engines. While this analogy is not complete,
since in QHE the system is in contact with thermal environ-
ment, while spectroscopic measurements are performed with
coherent laser sources, there is a possibility to connect the two
approaches in a sensible way. In particular, we introduce an
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effective thermal bath that mimics all the dynamical properties
of the thermal bath by replacing a coherent laser excitation
followed by a dissipative phonon-assisted relaxation due to
internal degrees of freedom with an incoherent pumping. In
the effective two-level system this can be achieved by match-
ing the populations of the electronic states with two types of
baths (coherent plus relaxation vs thermal). This consequently
defines the range of parameters of the laser source which can
be used to mimic thermal operation of the effective QHE.
Once the laser parameters are fixed one can calculate the
power and efficiency of the QHE assuming either strong or
weak coupling between the molecular system and the probe
field. The former represents a conventional e.g., laser QHE
regime [27], while the later is a typical case for spectroscopic
measurements [28], where weak field-matter interactions al-
low the perturbative treatment of the signals.

Various methods have been developed to optimize spectro-
scopic signals by carefully engineering phase relations in the
system-baths interactions. For instance, pulse shaping tech-
niques allow us to modify light absorption pathways using
constructive and destructive interference by manipulating the
phase of the optical pulses [29]. Quantum control theory [30]
is yet another method, which gradually evolved from the
studies of linear, closed, and small-scale systems to nonlinear,
open, and large-scale networks. This optimization process
relies on elaborate numerical feedback loop algorithms. The
utilization of the quantum control [31] governs the system
evolution through the Hamiltonian (unitary) dynamics and has
therefore limited applicability for open quantum systems. This
limitation can be overcome by the addition of active manipu-
lation of nonunitary (i.e., incoherent) evolution described by
the Liouville operator responsible for the effects of system
environment. The control methods applicable to the dissipa-
tive (incoherent) dynamics due to the environment must be
therefore developed. These new methods must be based on a
different set of assumptions and are distinct from the coherent
control methods applicable to the unitary system evolution
[32] as well as the thermal reservoir engineering [33] with
feedback control [34–36].
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FIG. 1. (a) Schematic of the pump-probe measurement in molec-
ular system consisting of two electronic states. Pump field resonant
with electronic transition g-2 excites a vibrational wave packet in the
higher energy vibrational state 2, which relaxes to the lower energy
vibrational state 1. The probe field then stimulates the emission from
state 1 to the excited vibrational level 0 of the ground electronic state.
Finally, vibrational relaxation brings the system back to its ground
state g. (b) Equivalent three-level QHE with transitions between
energy levels g − 1 and g − 0 driven by hot (at temperature Th)
and cold (at Tc) heat baths. The single-mode stimulated emission
representing the work done by the QHE occurs at 1 − 0 transition
with the coupling strength λ.

II. EFFECTIVE HEAT BATH

We consider a two-level molecular system with the ground
state g and the excited electronic state e shown in Fig. 1(a). We
further consider two vibrational states of the excited electronic
state 1 and 2. A coherent pump field excites resonantly the
transition g − 2 with Rabi frequency �p. The upper vibra-
tional state 2 then relaxes to lower state 1 via the phonon
emission. The stimulated emission 1-0 via interaction with
the probe field with Rabi frequency λ followed by the thermal
relaxation via interaction with the cold bath 0 − g then brings
the system to its initial ground state. The corresponding equa-
tion of motion for the density matrix is given by

ρ̇gg = 2�c[(nc + 1)ρ00 − ncρgg] + i�p(ρg2 − ρ2g),

ρ̇00 = −2�c[(nc + 1)ρ00 − ncρgg] + iλ(ρ01 − ρ10),

ρ̇11 = �2[(n2 + 1)ρ22 − n2ρ11] − iλ(ρ01 − ρ10),

ρ̇22 = −�2[(n2 + 1)ρ22 − n2ρ11] − i�p(ρg2 − ρ2g),

ρ̇g2 = −[�2(n2 + 1)/2 + �cnc − i(ω2g − ωp)]ρg2

− i�p(ρgg − ρ22),

ρ̇2g = −[�2(n2 + 1)/2 + �cnc + i(ω2g − ωp)]ρ2g

+ i�p(ρgg − ρ22),

ρ̇01 = −[�2n2/2 + �c(nc + 1) − i(ω10 − ωk )]ρ01

− iλ(ρ11 − ρ00),

ρ̇10 = −[�2n2/2 + �c(nc + 1) + i(ω10 − ωk )]ρ10

+ iλ(ρ11 − ρ00), (1)

where �2/2 is the dephasing rate and n2 =
[exp(h̄ω21/kBTc) − 1]−1 is the average phonon occupation
number corresponding to a 1 ↔ 2 transition at ambient
temperature Tc. Equations (1) have been derived using the
Born-Markov approximation assuming a weak near-resonant
pump field �p � �2n2. In this work we follow the pattern
established in a series of earlier works which defined
the framework for the laser QHE [1,14,27], where we
assume a system in contact with the thermal phonon
bath with relaxation described by a constant rate �2.
This represents a limit of the fast nuclear dynamics.
Generally the connection between line-shape function
g(t ) and the spectral density function C(ω) is given
by [28] g(t ) = 1

2π

∫ ∞
−∞ dωC(ω)

ω2 [exp(−iωt ) + iωt − 1].
Representing a bath by a collections of oscillators, we
obtain C(ω) = 2κ ω	

ω2+	2 , where κ is a reorganization energy,
and 	 is a nuclear dynamics timescale. Assuming nuclear
dynamics to be fast compared to the coupling strength that
governs magnitude of fluctuations h̄	2 � 2κkT , we obtain
the homogeneous dephasing limit Re[g(t )] = �2t such that
�2 = κkT/(h̄	) is the homogeneous dephasing limit. In a
more general case of spectral density, the solution of Eq. (1)
can be found numerically as shown in Ref. [18].

We now investigate the four-level QHE based on the Scovil
and Schultz-Dubois maser [3] shown in Fig. 1(b). The quan-
tum heat engine regime is characterized by a strong coupling
to the output radiation which makes it distinct from the spec-
troscopic regime, where the probe field is typically weak. A
hot reservoir at temperature Th is resonant with the g − 1
transition and a cold reservoir at temperature Tc is coupled
with the g − 0 transition. The time evolution of the system in
a rotating frame is given by [27,37]

ρ̇ = − i

h̄
[H0 − H̄ + VR, ρR] + Lc[ρR] + Lh[ρR], (2)

where H0 = h̄
∑

i=g,0,1 ωi|i〉〈i|, H̄ = h̄ωg|g〉〈g| + h̄ω
2 (|1〉〈1| −

|0〉〈0|) and the interaction with the probe field is de-
scribed by VR = h̄λ(|1〉〈0| + |0〉〈1|), where λ = μ10Epr is
the probe-matter coupling, which is strong compared to
other relaxation processes, here μ10 is a transition dipole
moment and Epr is the classical amplitude of probe field.
Master equation (2) contains two parts. The first unitary
part contains interaction with the coherent probe field and
is governed by a commutator term. The last two terms gov-
erned by Liouville operator are describing the interaction
with the thermal reservoirs (see Appendix A). While the
latter assumes weak field-matter interaction which is typi-
cal for the thermal radiation, the former has no assumptions
about the strength of the probe field. Following the pio-
neering work on laser QHE [3] and the more recent work
of Scully and others [1,2,12,14,27] we adopt the strong
coupling to the probe field which represents the so-called
QHE limit that corresponds to, e.g., cavity radiation of the
laser. The Liouville operator for the system-bath interaction
is given by Lw[ρ] = �w(nw + 1)[2|g〉〈g|ρlw lw − |lw〉〈lw|ρ −
ρ|lw〉〈lw|] + �wnw[2|lw〉〈lw|ρgg − |g〉〈g|ρ − ρ|g〉〈g|], where
w = c(cold) and h(hot) baths and lw is 0 and 1 for the
hot and cold baths, respectively. Note, that the strong field
is generally defined with respect to the diagonal terms of
the Hamiltonian (bare eigenenergies), rather than Liouville
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operator (relaxation process). Furthermore, the QHE power,
heat flux, and other characteristics are defined via a trace op-
erator, which is invariant with respect to the choice of the basis
set. In Refs. [1,2,12,14,27,38] it has been demonstrated how to
find the system density matrix using bare system eigenstates.
In other works [24–26,39] authors chose to use dressed states,
while others [10,40] consider strong coupling to the phonon
bath and redefined master equation in a polaron frame.

Before proceeding to the QHE model, which is based on
the solution of the complete set of equations given by Eq. (1),
we first introduce an effective heat bath. To that end we
assume that the pump is relatively weak �p � �2n2 and the
coupling to the probe field is much stronger than the coupling
to the phonon bath that governs the 2 − 1 transition, which
itself is stronger than that of the bath driving 0 − g transition:
λ � �2n2 � �cnc. The latter condition can be obtained in a
variety of molecular systems [41]. Under these conditions one
can eliminate the state 0 from the total system of equations (1)
and consider only three states such that the coherent excitation
g − 2 is followed by a relaxation 2 − 1. The solution of this
reduced system for the ground g and lowest excited state 1
populations read

ρc
11(t ) = Nc(t )(n2 + 1)(1 − e−�̃t ) ρc

gg = 1 − ρc
11, (3)

where superscript c indicates the coherent bath and

�̃ = �2(n2 + 1)/4 −
√

�2
2 (n2 + 1)2/16 − 2�2

p. Normal-

ization function Nc(t ) = [1 + 2n2 + n2e−�̃t ]−1 ensures that
the population of an effective two-level system consisting
of states g and 1 is conserved (see Appendix B). In the
high temperature limit n2 � 1, and, assuming �p � �2n2

we obtain �̃ � 4�2
p

�2(n2+1) . Generally, the condition n2 � 1
represents the high temperature limit. This is the optimum
regime for operation of the QHE [42], for a room temperature
“cold bath” Tc = 0.0259 eV. The high temperature limit is
valid for various, e.g., acousticlike phonon modes, with the
energy scale up to the meV range.

The combined effect of the coherent excitation g → 2 fol-
lowed by the phonon relaxation 2 → 1 can be replaced by an
effective thermal bath at temperature Th with the average pho-
ton number nh = [exp(h̄ω1g/kBTh) − 1]−1 and dephasing �h.
In this case state 2 can be eliminated and the corresponding
equation of motion for the populations of g and 1 read

ρ̇11 = −�h[(nh + 1)ρ11 − nhρgg], ρ̇gg = −ρ̇11, (4)

which yields the time-dependent solution

ρth
11(t ) = Nthnh(1 − e−�h (1+2nh )t ), ρth

gg = 1 − ρth
11, (5)

where superscript th indicates the thermal bath and the nor-
malization Nth = [1 + 2nh]−1. In order to match the solutions
of the effective thermal bath in Eq. (5) with that of a coherent
bath in Eq. (3) the corresponding nh and �h must satisfy

nh(t ) = n2 + 1

n2e−�̃t − 1
, �h(t ) = 4�2

p

�2(n2 + 1)(2nh(t ) + 1)
.

(6)

Equation (6) describes the time-dependent parameters of the
effective thermal bath, which yields a quantitative match be-
tween the two baths (coherent and thermal) at any given

time [see Fig. 2(b)]. A more detailed description of the en-
vironment will result in more complicated relation which can
be solved numerically [43]. One can further provide an ap-
proximate relation between the bath parameters that is time
independent and is easy to analyze. Assuming n2 � 1 and
arbitrarily fixing the time: t∗ = �̃−1 log(n2/2) we obtain

n∗
h ≡ nh(t∗) = n2, �∗

h ≡ �h(t∗) = 2�2
p

�2n2
2

. (7)

Parameters in Eq. (7) results in the population dynamics
shown in Fig. 2(d). It yields a qualitatively good agreement
at initial time (ρgg(0) = 1, ρ11(0) = 0) as well as near the
steady state (ρgg(∞) = ρ11(∞) = 1/2) as seen in Fig. 2(a).
An error of ∼8% associated with the choice of t∗ becomes
apparent at intermediate times as shown in Fig. 2(c), where
a comparison with the exact numerical solution of Eq. (1)
for the full four-level system is presented. While the general
expression in Eq. (5) yields negative steady state value for nh

when t → ∞, the relevant population dynamics is determined
by �̃ which is a small number. Therefore the choice of t∗ that
is displayed in Fig. 2(d) corresponds to the value of time at
which populations approach the steady state values, while nh

is a growing function. Note that the choice of t∗ near the
steady state, can be used in the following thermodynamic
analysis. Note that the result of Eqs. (6) and (7) is applicable
for a wide variety of parameters and is valid in the high tem-
perature limit only when n2 � 1. In the low temperature limit,
a coherent bath creates a population inversion (ρc

11(∞) = 1,
ρc

gg(∞) = 0), while the thermal bath still yields weak exci-
tation: (ρth

11(∞) = 0, ρth
gg(∞) = 1), which corresponds to the

low efficiency regime and thus it will not be considered any
further.

III. POWER AND EFFICIENCY OPTIMIZATION

A. The QHE (strong coupling) regime

The output power, and efficiency of a QHE described by
Eq. (1) are given by [7,8]

PQ = − i

h̄
Tr{[H0,VR]ρR}, η = − P

Q̇h
, (8)

where superscript Q indicates the QHE power [not to be
confused with spectroscopic power in Eq. (12)], the heat
flux is Q̇h = Tr{Lh[ρR]H0}. Following the general approach
outlined in Ref. [27] summarized in Appendix C we as-
sume the high temperature limit and expand the occupation
numbers nh = n2 = Tc/ω21, nc = Tc/ωc where ωc = ω0g. We
then introduce an effective temperature of the hot bath Th =
�pωc(�2�c/2)−1/2, dimensionless temperature scale: τ =
Tc/Th, pump energy scale: cp = ωp/ωc, and coupling scale:
λ′ = λωc/(�cTh). We then optimize the power in Eq. (C7)
with respect to dimensionless variable ω21/ωc and obtain

PQ
max = PQ

0

2λ′2{2cpλ
′2τ 2 + cp′ (λ′2 + τ 2) − 2λ′τC}

3(λ′2 − τ 2)2
, (9)

where PQ
0 = �cωc, cp′ = cp − 1, C =√

(λ′2cp + cp′ )(cpτ 2 + cp′ ) and λ′ �= τ . The efficiency
corresponding to the maximum output power defined in
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FIG. 2. (a) The population of ground g and lowest excited state 1 obtained using a coherent bath in Eq. (3) (solid lines) and a thermal bath
ρth using parameters in Eq. (6) (−−dashed) and ρ ′th using Eq. (7) ( dot-dashed). (b) The difference between populations of coherent and
thermal baths ρc − ρth for parameters in Eq. (6). (c) same as (b) but for exact solution of Eq. (1) (ρ (1)) vs approximate solutions of Eqs. (3)
and (7). (d) The time evolution of the microscopic occupation number nh(t ) in Eq. (6) vs its approximation n∗

h = n2 in Eq. (7). The parameters
for the simulations are �p = 0.0001 eV, �2 = 0.025 ps−1 and n2 = 1000.

Eq. (C9) is thus given by

η∗ = 1 −
[

cp + λ′τ (λ′τcp − C)

cp(λ′2 + τ 2 + 1) − 1

]−1

. (10)

Efficiency (10) is evaluated at fixed ωc since this is a pa-
rameter of a given molecular system whereas ωh can be
manipulated via scanning of the pump frequency ωp.

We now compare the efficiency at maximum power (10)
with the corresponding high temperature bounds of the QHE
obtained in Ref. [27]. We first assume that the coupling with
probe field λ is the largest coupling in the system: λ �
�hnh, �cnc which yields

η∗
SC = 1 − [cp + τ (τ −

√
1 + τ 2)]−1, (11)

where the subscript SC indicates the strong coupling. The
entire parameter space corresponding to the efficiency given
by Eq. (11) can be separated into four regions summarized
in Table I represented by the colorful two-dimensional (2D)
shapes in Fig. 3(a). The characteristic values describing the
boundaries between the four regions correspond to 0, ηC/2
(between the I and II regions), ηC/(2 − ηC ) (between III and

IV), Carnot efficiency ηC = 1 − τ upper bound of IV) and
Curzon-Ahlborn (CA) limit [42] ηCA = 1 − τ 1/2 (between II
and III). Using dimensionless pump frequency cp as a control
parameter, which depends on the effective temperature ratio τ ,
one can obtain the corresponding 3D parameter space for each
of the regions that include {τ, cp, η

∗} as shown in Fig. 3(b).
Note, that the two parameters of the pump field: frequency
ωp and the Rabi frequency �p, which defines an effective
hot bath temperature Th, can be controlled experimentally.
Thus the 2D parameter space {τ, cp} shows a constrained

TABLE I. Parameters of the coherent bath corresponding to the
QHE efficiency bounds shown in Fig. 3.

Bound η∗ cp

I 0 2
I/II ηC/2 4/(2 − ηC )
II/III ηCA 2/

√
1 − ηC

III/IV ηC/(2 − ηC ) (2 − ηC )/(1 − ηC )
IV ηC 2/(1 − ηC )
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FIG. 3. 2D mapping of the efficiency at maximum power η∗ in Eq. (11) vs Carnot efficiency ηC = 1 − τ . (a) 3D mapping of η∗ vs ηC vs
dimensionless pump frequency cp. (b). 2D mapping of the cp vs ηC corresponding to (a).

relation between the two as seen in Fig. 3(c). For instance, the
CA limit is obtained when cp � 2/

√
τ . This corresponds to

the Rabi frequency �(CA)
p � ω2

p

√
�c�2/2Tc/(4ωc). Similarly

one can analyze other bounds corresponding to the standard
QHE model [27]. There exists an additional constraint cor-
responding to parameter γ = �h/�c. For instance, the CA
limit is obtained when γ → 0, which corresponds to �p �√

�c�2n2. In another limit η∗ = ηC/(2 − ηC ) corresponds to
γ → ∞, which yields �p � √

�c�2n2. Therefore, by setting
the specific relation between the pump frequency and intensity
one can control energy conversion between the pump and the
probe pulse near the maximum of the corresponding thermo-
dynamic cycle. Note that one can exceed not only standard
efficiency at maximum power limits such as CA, but also
the Carnot limit. This is not a surprising result, since in the
strong coupling limit QHE is approaching lasing threshold,
which corresponds to the gain regime and the input coherent
drive is not at thermodynamic equilibrium. Thus the system
under coherent drive cannot be generally treated as a closed
system. Therefore, Eq. (2) describes the system driven by the
thermal pump and is therefore bounded by the Carnot limit
applicable as long as cp < 2(1 − ηC )−1 according to regime
IV in Table I.

B. The spectroscopic (weak coupling) regime

So far we analyzed the case of the strong coupling to the
probe field (λ′ � 1), which corresponds to the laser QHE
regime. We now focus on the regime typical for spectro-
scopic signals derived using perturbative expansions over
light-matter interactions. We derive the pump-probe signal to
second order in the pump as well as in the probe described
by the double-sided Feynman diagrams shown in Fig. 4 in
Appendix D. Diagrams (a) and (b) illustrate how the two
interactions with the pump pulse excite a molecular system
from its ground state g to the excited state population 2,
which then relaxes to 1 via phonon scattering. The consequent
two interactions with the probe bring the system to 0 state
population. In diagram c the system remain in the ground

state population g after a Raman process initiated by the pump
(g − 2 − g). Interaction with a cold bath promotes the system
to the population of 0 state and the consequent Raman process
initiated by the probe (0 − 1 − 0) brings it back to the 0 state
population. The corresponding power is defined as a rate of
change of the probe photon number multiplied by a photon
energy Ps = ω10

d
dt 〈Ê†

pr (t )Êpr (t )〉, which takes the form

Ps = ω10E2
puE2

prIm[R(−ωpr, ωp)], (12)

where superscript s indicates spectroscopic regime, Epu and
Epr are the classical amplitudes of the pump and probe fields,
respectively. Note, that both definitions of the output power
in Eqs. (8) and (12) are equivalent and represent the rate
of change of the probe photon energy flux according to
Ref. [1]. However, while Eq. (8) contains a definition orig-
inated from the general solution of the equations of motion
for arbitrary pump and probe intensities, Eq. (12) results from
the perturbative expansion with respect to pump- and probe-
matter interactions. The molecular response function has
three terms R(−ωpr, ωp) = ∑

j=a,b,c R j (−ωpr, ωp) defined by
Eqs. (D1)–(D3) of Appendix D corresponding to the three
diagrams in Fig. 4 [28,44]. Following a similar optimization
of the power defined by Eq. (D12) with respect to ω21 that
results in Eq. (9), we obtain for the maximum power

Ps
max = λ′2γcPs

0

f 2τ 4
( f + 2

√
γc)2(cp′ + γc + f

√
γc/2), (13)

where Ps
0 = 6�2

c T 2
c /(σpωc), σp is a bandwidth of the pump

field, f = √
γc − √

8cp′ + 9γc, and γc = �2/�c. Since the
spectroscopic signal represents power rather than the effi-
ciency we will be comparing maximum power PQ

max in Eq. (9)
vs Ps

max in Eq. (13). We first note, that while Ps has been
obtained to second order in the probe field, the QHE power
PQ in Eq. (9) is derived to all orders in the probe. Therefore,
we expand PQ to second order in λ′. Second, Ps

max depends
on extra parameter γc which is absent in the QHE result.
Maximized powers become equivalent PQ

max = Ps
max at γc =

2c2
p/(9τ 2) assuming for brevity that PQ

0 = Ps
0 = 1. On the
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other hand the maximum of Eq. (13) with respect to γc is
achieved at γ ∗

c = cp′/2. Thus, Eqs. (9) and (13) reduce to

PQ∗
max = 2λ′2cp′

3τ 2
, Ps∗

max = λ′2c2
p′

16τ 4
. (14)

To further compare expressions in Eq. (14) one can iden-
tify the pump pulse parameters (ωp) and �p corresponding
to limiting cases. For instance, PQ∗

max = Ps∗
max at c∗

p′ = 32τ 2/3
which corresponds to �∗

p = 4Tc[�2�c/(3ωcωp)]1/2. Further-

more, by setting c∗∗
p′ = 16τ 2/3 (i.e., �∗∗

p = �∗
p/

√
2) we obtain

PQ∗∗
max = 2Ps∗∗

max = 32/9 which corresponds to the maximum of
the difference between the two expressions. Thus, in the weak
coupling regime one can also achieve a degree of control
over the pump-probe signal by identifying the constrained
parameter space for the pump field.

IV. CONCLUSIONS

We have developed a method for control of the optical
signals based on the analogy with quantum heat engines
where energy transfer occurs from the pump to the probe
field. We found that the yield of the spectroscopic mea-
surement can be improved when the corresponding regime
is close to the thermodynamic cycle. The proposed model
can provide reasonable qualitative guidance for the exper-
imental realization in molecular systems consisting of two
electronic states where the process of coherent excitation and
consequent relaxation can be viewed as an effective thermal
heat bath environment. This apparent connection between
the thermodynamics of the QHE and the spectroscopy may
emerge as an “incoherent control” tool for optimization of the
optical measurements, which can enhance the yield of the flu-
orescence, the pump-probe measurements, and improve the
signal-to-noise ratio in a wide class of the optical signals.
The rich physics of the QHE can be extended to the Otto-cycle
engines mimicking the time-domain nonlinear optical signals,
which will be the subject of the future studies.
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APPENDIX A: DERIVATION OF THE DISSIPATIVE
LINDBLAD SUPEROPERATOR

We consider a four-level system interacting resonantly with
the classical pump and probe fields. The four-level system is
in contact with the ambient reservoir at room temperature Tc.
This thermal reservoir drives the relaxation between states 2-1
and 0-g. The Hamiltonian for the system-bath interaction for
the transition 2 − 1 reads

V̂ (t ) = h̄
∑

gkb̂kei(ω−νk )t |2〉〈1| + H.c., (A1)

and the Hamiltonian for the cold bath interacting with 0 − g
transition is given by

V̂ (t ) = h̄
∑

Gqb̂qei(ω−νq )t |0〉〈g| + H.c., (A2)

where the system-bath coupling constant gk = P21.ε̂kEk/h̄
and Gq = Pog.ε̂qEq/h̄ with the dipole moment for transition
2 ↔ 1 and 0 ↔ g is given by P21 and Pog, respectively, and
the polarization of the field is denoted as ε̂k and ε̂g, respec-
tively. The electric field per photon is Ek = (h̄νk/2ε0Vph)1/2

and Eq = (h̄νq/2ε0Vph)1/2 respectively, where Vph is the pho-
ton quantization volume. We assume that the system interacts
with the reservoir represented by the reservoir density opera-
tor ρR. The equation of motion for the system density operator
ρ is given by

L21[ρ] = − i

h̄
TrR[V (t ), ρ(t0) ⊗ ρR]

− 1

h̄2 TrR

∫ t

t0

[V (t )[V (t ′), ρ(t ′) ⊗ ρR(t0)]]dt ′. (A3)

We note the bath operator represents the thermal state, i.e.,
〈b̂k〉 = 〈b̂†

k〉 = 0, 〈b̂kb̂k′ 〉 = 〈b̂†
kb̂†

k′ 〉 = 0, 〈b̂†
kb̂k′ 〉 = n̄kδkk′ and

〈b̂kb̂†
k′ 〉 = (n̄k + 1)δkk′ where n̄k = [exp(βcεk ) − 1]−1 is the

phonon occupation number corresponding to the cold temper-
ature Tc = β−1

c . Inserting ˆV (t ) in Eq. (A3), we obtain

L21[ρ] = − 1

h̄2

∫ t

t0

dt ′ ∑
kk′

gkgk′ {(X+X+ρ(t ′) − 2X+ρ(t ′)X+

+ ρ(t ′)X+X+)〈bkbk′ 〉ei(ω−νk )t+i(ω−νk′ )t ′

+ (X+X−ρ(t ′) − X−ρ(t ′)X+)〈bkb†
k′ 〉

× ei(ω−νk )t−i(ω−νk′ )t ′ + (X−X+ρ(t ′) − X+ρ(t ′)

× X−)〈b†
kbk〉e−i(ω−νk )t+i(ω−νk )t } + H.c., (A4)

where X+ = |2〉〈1| and X− = |1〉〈2|. On substituting the vari-
ous expectation values from above paragraph in Eq. (A4), we
obtain

L21[ρ] = − 1

h̄2

∫ t

t0

dt ′ ∑
k

g2
k{nk (|1〉〈1|ρ(t ′) + ρ(t ′)

×|1〉〈1| − 2|2〉〈2|ρ11)e−i(ω−νk )(t−t ′ ) + (nk + 1)

×(|2〉〈2|ρ(t ′) + ρ(t ′)|2〉〈2| − 2|1〉〈1|ρ22)

×ei(ω−νk )(t−t ′ )}. (A5)

The sum over k is replaced by an integral through prescription

∑
k

→ Vph

π2

∫ ∞

0
dkk2. (A6)

We can assume that the density matrix is varying slowly with
the time and using the Markov approximation ρ(t ′) ≈ ρ(t ).
We then extend the upper limit of integration to infinity. Then
the time integration yields∫ ∞

t0

dt ′ei(ω−νk )(t−t ′ ) = πδ(ω − νk ) + iP
1

ω − νk
, (A7)

where P denotes the Cauchy principal value. The above ex-
pression splits the correlation into real and imaginary parts to
obtain the decays rate and Lamb shift, respectively. So, the
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Cauchy part will not affect our result and for simplicity, we
consider the transition between the atomic levels only. In the
Weisskopf-Wigner approximation [Born-Markov plus rotat-
ing wave approximation (RWA) approximations], we replace
gk ≈ gk0 and nk ≈ nk0 = n2 assuming broadband coupling,
and obtain the final form of the Liouville operator driving the
2-1 transition

L21[ρ] = γ2(n2 + 1)

(
|1〉〈1|ρ22 − |2〉〈2|ρ + ρ|2〉〈2|

2

)

+ γ2n2

(
|2〉〈2|ρ11 − |1〉〈1|ρ + ρ|1〉〈1|

2

)
, (A8)

where γ2 = 2k0Vphg2
k0

πc . Similarly we derive the Lc[ρ] describing
the interaction with a cold bath of the 0-g transition, which
yields

Lc[ρ] = γc(nc + 1)(2|g〉〈g|ρ00 − |0〉〈0|ρ − ρ|0〉〈0|)
+ γcnc(2|0〉〈0|ρgg − |g〉〈g|ρ − ρ|g〉〈g|), (A9)

where γc = 4q0Vphg2
q0

πc , has an extra factor of 2 compared with γ2

to be consistent with the earlier works [27]. Using Eqs. (A8)
and (A9), we obtain Eq. (1).

APPENDIX B: EFFECTIVE THERMAL BATH

The two electronic energy levels of the molecule are shown
in Fig. 1. Two vibrational states of the electronic ground state
are g and 0 while 1 and 2 are two vibrational states of the
electronically excited state. Coherent pump pulse excites the
transition g − 2 with Rabi frequency �p. The corresponding
equation of motion for the density matrix is given in Eq. (1)
(coherent bath) and the steady state solution for the popula-
tions of g, 1, and 2 states are given by

ρ ′c(ss)
gg = ρ

′c(ss)
22 = n2

3n2 + 1
, ρ

′c(ss)
11 = n2 + 1

3n2 + 1
. (B1)

In order to eliminate state 2 we normalize the above solution
for the population of states g and 1 such that ρc(ss)

gg + ρ
c(ss)
11 =

1, we then obtain

ρc(ss)
gg = n2

2n2 + 1
, ρ

c(ss)
11 = n2 + 1

2n2 + 1
. (B2)

Similarly we obtain steady state solution for the thermal bath
using Eq. (5):

ρth(ss)
gg = n0 + 1

2n0 + 1
, ρ

th(ss)
11 = n0

2n0 + 1
. (B3)

We then solve Eq. (1) nonperturbatively over the �p by factor-
izing Eqs. (1) into two uncoupled systems of equations: one
part containing the ground state population ρgg and coherences
ρg2 and ρ2g and another containing the excited state popula-
tions ρ11 and ρ22. Since electronic coherence ρg2 evolves fast,
we can assume a stationary population for the excited state
2 while keeping the ground state evolution exactly. To have
the correct solution in the steady state, we match the value
of the stationary population for the excited state 2 with its
steady state solution: ρ22 → ρ

′c(ss)
22 while initial conditions are

ρgg(0) = 1, ρg2(0) = ρ2g(0) = 0. In this case the solution for

the coherences yields:

ρc
g2(t ) = 4i(2n2 + 1)�pe− 1

4 �2(n2+1)t sinh
(

1
4 tZ

)
(3n2 + 1)Z , (B4)

where Z =
√

�2
2 (n2 + 1)2 − 32�2

p. while the ground state

population reads (assuming 4
√

2�p � �2(n2 + 1)

ρc
gg(t ) = n2

3n2 + 1
+ (2n2 + 1)e−�̃t

3n2 + 1
. (B5)

We now calculate the population of states 1 and 2 using the
solution for ρg2 given by Eq. (B4), and the initial conditions
are ρ11(0) = ρ22(0) = 0 which yields

ρ11(t ) = (n2 + 1)(1 − e−�̃t )

3n2 + 1
, ρ22(t ) = n2(1 − e−�̃t )

3n2 + 1
.

(B6)

APPENDIX C: THREE LEVEL QHE

A detailed derivation of the matrix equations for a three
level atom and induced coherence given in the Supplemental
Material of Ref. [1]. Here we consider a three level system
g, 0, and 1 and the Hamiltonian for the three level system is
given by

H0 =
∑

i=g,0,1

ωi|i〉〈i|, (C1)

while the probe-system interaction is described by [27]

V (t ) = λ(eiωt |1〉〈0| + e−iωt |0〉〈1|), (C2)

where λ is a probe-matter coupling. Transition 0 − g is
in contact with the cold reservoir at temperature Tc. The
corresponding Liouville operator for the cold bath-system
interaction is given by Eq. (A9).

An effective hot bath at temperature Th is driving the g − 1
transition described by the Liouville operator

Lh[ρ] = �h(nh + 1)[2|g〉〈g|ρ11 − |1〉〈1|ρ − ρ|1〉〈1|]
+�hnh[2|1〉〈1|ρgg − |g〉〈g|ρ − ρ|g〉〈g|]. (C3)

Here the average occupation numbers are given by

nc = (
e

ωc
Tc − 1

)−1
, nh = (

e
ωh
Th − 1

)−1
. (C4)

The evolution of the density matrix reads

˙�00 = −iλ(ρ10 − ρ01) − 2�c(1 + nc)ρ00 + 2�cncρgg,

˙�11 = iλ(ρ10 − ρ01) − 2�h(1 + nh)ρ11 + 2�hnhρgg,

˙�01 = −i�ρ01 − iλ(ρ11 − ρ00) − �c(1 + nc)ρ01

− �h(1 + nh)ρ01,

˙�10 = i�ρ01 + iλ(ρ11 − ρ00) − �c(1 + nc)ρ10

− �h(1 + nh)ρ10, (C5)

where � = ω + ω0 − ω1 is the detuning between the out-
put laser radiation and molecular level transition; nh and nc,
�h and �c are the average occupation numbers and dephas-
ing rates for the hot and cold baths, respectively. Solving
Eqs. (C5) in the steady state assuming � = 0 we obtain for
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FIG. 4. The double sided Feynman-diagram representing the pump-probe signal in Eq. (12). There are a total of six pathways that contribute
to the pump-probe signal; diagrams (a)–(c), and their complex conjugate.

the power and efficiency defined by Eq. (8) as well as the heat
flux [27]:

P = ih̄λ(ωc − ωh)(�01 − �10),

Q̇h = ih̄ωhλ(�01 − �10), (C6)

η = 1 − ωc

ωh
.

where ωh = ω1 − ωg and ωc = ω0 − ωg. After solving
Eq. (C5) the output power reads

P = 2

3

λ2�h�c(nc − nh)(ωc − ωh)

(�hnh + �cnc)(λ2 + �h�cncnh)
. (C7)

In the high temperature limit nc = n1 � Tc/ωc, n2 � Tc/ω21

(both n2 and nc have the same “cold” temperature since
they are related to the same ambient (phonon) environment).
Introducing dimensionless parameters: ωh = cωc and c21 =
(cp − c)ωc where cp = ωp/ωc and c21 = ω21/ωc, the effective

hot bath temperature Th = ωc

√
2�2/γ2�c, Eq. (C7) reads

P = 2P0λ
′2c21(cp − 1)(1 − c21)

3(λ′2 + c21)(τ 2 + c21)
, (C8)

where P0 = �cωc, λ′ = λωc/(�cTh), τ = Tc/Th and we as-
sume that cp � c21 is valid, e.g., the visible range for the
pump field and IR phonon range. Using the above dimension-
less parameters we recast the efficiency in Eq. (C6) as

η = 1 − 1

cp − c21
. (C9)

Further maximization of Eq. (C8) with respect to c21 yields
Eq. (9). The corresponding efficiency at maximum power is
given by Eq. (10).

APPENDIX D: PERTURBATIVE PUMP-PROBE SIGNAL

The pump-probe signal is given by Eq. (12). The response
function can be read off the diagrams in Fig. 4, which yields

Ra(−ωpr′ ,ωpr,−ωp′ , ωp) = 〈V00,10G10,10(ωpr + ωp − ωp′ )V10,11G11,22(ωp − ωp′ )V22,2gG2g,2g(ωp)V2g,gg〉, (D1)

Rb(−ωpr′ ,ωpr, ωp′ ,−ωp) = 〈V00,10G10,10(ωpr − ωp + ωp′ )V10,11G11,22(−ωp + ωp′ )V22,g2Gg2,g2(−ωp)Vg2,gg〉, (D2)

Rc(−ωpr′ ,ωpr, ωp′ ,−ωp) = 〈V00,10G10,10(ωpr − ωp + ωp′ )V10,00G00,gg(−ωp + ωp′ )Vgg,g2Gg2,g2(−ωp)Vg2,gg〉. (D3)

The perturbative result in Eqs. (D1)–(D3) contains both
population and coherence Green’s functions. The coher-
ence Green’s functions for the 1-0 transition is given by
G10,10(ω) = −[i(ω − ω10) − �10]−1, for the g-2 transition
G2g,2g(ω) = −[i(ω − ω2g) − �2g]−1, where �10 = [�c(nc +
1) + �2n2]/2 and �2g = [�cnc + �2(n2 + 1)]/2. The popula-
tion Green’s function is a solution of the coupled transport
(relaxation) equations:

˙ρ22 = −�2(n2 + 1)ρ22 + �2n2ρ11,

˙ρ11 = �2(n2 + 1)ρ22 − �2n2ρ11, (D4)

˙ρ00 = −�c(nc + 1)ρ00 + �cncρgg,

ρ̇gg = �c(nc + 1)ρ00 − �cncρgg. (D5)

Equations (D4) and (D5) can be recast as a Pauli master
equation:

ρ̇ii(t ) = −
∑
ii, j j

κii, j jρ j j (t ), (D6)

where, κii, j j is the population transport matrix. In Eq. (D6),
the diagonal elements, i = j, κii,ii are positive, whereas
the off-diagonal elements, i �= j, κii, j j are negative. The
population transport matrix satisfies the population conser-
vation:

∑
i κii, j j = 0. The evolution of the diagonal elements

is defined by the population Green function, ρ j j (t ) =∑
i G j j,ii(t )ρii(0). where G j j,ii(t ) is given by [44]

G j j,ii(t ) =
∑

n

ξ
(R)
jn D−1

nn exp(−λnt )ξ (L)
ni , (D7)

023029-8



INCOHERENT CONTROL OF OPTICAL SIGNALS: … PHYSICAL REVIEW RESEARCH 3, 023029 (2021)

where λn is the nth eigenvalue of left and right eigenvector
(ξ (L)

n , ξ (R)
n ) and D = ξLξR is a diagonal matrix. Using Eq. (D7)

we obtain for the population Green’s functions:

G00,gg(t ) = nc(1 − e−t (1+2nc )�c )

(1 + 2nc)
, (D8)

G11,22(t ) = (1 + n2)(1 − e−t (1+2n2 )�2 )

(1 + 2n2)
. (D9)

Assuming a narrowband resonant pump and probe fields
ωp′ = ωp = ω2g and ωpr′ = ωpr = ω10, Eqs. (D1)–(D3) read

Ra = Rb = 4|μ10|2|μ2g|2(1 + n2)

(nc�c + n2�2)2(1 + 2n2)σp
, (D10)

Rc = 4nc|μ10|2|μ2g|2
(nc�c + n2�2)2(1 + 2nc)σp

, (D11)

where σp is an infinitesimal parameter of the order of the
pump bandwidth required for the convergence of the Fourier
transform. Taking the high temperature limit nc � 1, n2 � 1
the total power (12) reads

Ps = 12(ωh − ωc)λ2�2
p

(nc�c + n2�2)2σp
, (D12)

where we used ω10 = ωh − ωc, λ = μ10Epr , �p = μ2gEp. Ex-
panding occupation numbers in the high temperature limit
nc = Tc/ωc, n2 = Tc/ω21 and maximizing the power with re-
spect to c21 = ω21/ωc, we obtain Eq. (13).
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