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Frame dragging and the Hong-Ou-Mandel dip: Gravitational effects in multiphoton interference
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Applying quantum field theory on a classical, curved space-time has led to the enthralling theoretical
predictions of, e.g., black hole evaporation and particle creation in the early, expanding universe. However, the
prospects of observing such in the near to mid future seem far from practical. This is discouraging because
extrapolation of general relativity “down to the Hilbert space level,” though expected, carries no empirical
support as of yet. On the other hand, fueled by the continuing developments in quantum technology, there
has been growing interest in the prospect of observing more modest effects of general relativity at the level
of quantum interference phenomena. Motivated by these recent developments, in this work, we investigate the
Hong-Ou-Mandel (HOM) effect—a two-photon quantum-interference effect—in the space-time of a rotating
spherical mass. In particular, we propose and analyze a common-path setup restricted to the surface of the
Earth and show that, in principle, gravitational frame dragging induces observable shifts in the two-photon
HOM dip. For completeness and correspondence with current literature, we also analyze the emergence of
gravitational time dilation, for a dual-arm interferometer. The formalism thus presented establishes a basis
for encoding general-relativistic effects into local, multiphoton, quantum-interference experiments. We also
consider signatures of noninertial reference-frame effects on two-photon interference such as, e.g., the Sagnac
effect induced by Earth’s rotation, which seems detectable with current quantum-optical technology. This can
be viewed as a stepping-stone towards the more ambitious goal of observing gravitational frame dragging at the
level of individual photons.

DOI: 10.1103/PhysRevResearch.3.023024

I. INTRODUCTION

General relativity and quantum mechanics constitute the
foundation of modern physics, yet at seemingly disparate
scales. On the one hand, general relativity predicts devia-
tions from the Newtonian concepts of absolute space and
time—due to the mass-energy distribution of nearby matter
and by way of the equivalence principle [1,2]—which appear
observable only at large-distance scales or with high-precision
measurement devices [3]. On the other hand, quantum me-
chanics predicts deviations from Newtonian concepts of
deterministic reality and locality [4] and appears to dominate
in regimes in which general relativistic effects are typically
and safely ignored. This dichotomous paradigm of modern
physics is, however, rapidly changing due to (a) the ever-
increasing improvement of quantum measurement strategies
and precise control of quantum technologies [5,6] and (b)
current efforts to extend quantum-mechanical demonstrations
to large-distance scales, such as bringing the quantum to
space [7,8].
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The maturation of quantum technologies complements the
theoretical maturation of quantum fields in curved space—
a formalism describing the evolution of quantum fields on
the (classical) background space-time of general relativity—
which has been finely developed over the last 50-odd
years [9,10]. Alas, there has not yet been a physical ob-
servation requiring the principles of both general relativity
and quantum mechanics for its explanation. With these con-
siderations in mind, the present thus seems a ripe time
to furnish potential proof-of-principle experiments capable
of and exploring the cohesion of general relativistic and
quantum-mechanical principles, in the near term. Such is the
aim of our work.

In this paper, we investigate the emergence of gravita-
tional effects in two-photon quantum interference [i.e., in
Hong-Ou-Mandel (HOM) interference [11–13]] for various
interferometric configurations (Fig. 1). We show, in general,
how to encode frame dragging and gravitational time dilation
into multiphoton quantum-interference phenomena, and we
show, in particular, that a background curved space-time in-
duces observable changes in a two-photon HOM-interference
signature. Observing these signatures in practice would vin-
dicate the extrapolation of general relativity “down to the
Hilbert space level.”

HOM interference is simple to analyze, yet is a pre-
cursor to bosonic many-body quantum-interference phenom-
ena [13–15] and even “lies at the heart of linear optical
quantum computing” [16]. Furthermore, there exists a simple
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FIG. 1. Schematic of a Hong-Ou-Mandel interferometer, in a
common-path configuration, located on the Earth’s surface. The gray
boxes just after the photon source are fiber-coupler and beamsplit-
ter systems, with high transmissivity, used to ensure common-path
propagation (cf. [27,28]).

yet sharp criterion partitioning the sufficiency of classical
and quantum explanations. Namely, if the visibility V of the
HOM-interference experiment is greater than 1/2, a quantum
description for the fields is sufficient, whereas a classical
description fails to adhere to observations ([12,13]; though,
see [17] for recent criticism of the visibility criterion). Fur-
thermore, the emergence of gravitational effects in photonic
demonstrations necessitates a general-relativistic explanation;
whereas, for massive particles, the boundary between general-
relativistic and Newtonian explanations is more intricate and
oft-blurred. As rightly pointed out and emphasized by the
authors of Refs. [18,19], within any quantum demonstration
claiming the emergence of general-relativistic effects, a clear-
cut distinction between classical and quantum explanations as
well as between Newtonian and general-relativistic explana-
tions must exist, in order to assert that principles of general
relativity and quantum mechanics are at play, in tandem.

To place our work in a sharper context, observe
that one may roughly decompose the mutual arena of
gravitation/relativity (beyond rectilinear motion) and quan-
tum mechanics into four classes: (i) classical Newtonian
gravity in quantum mechanics [20–23], (ii) noninertial ref-
erence frames in quantum mechanics [24–28], (iii) classical
general relativity in quantum mechanics [18,19,29–34], and
(iv) the quantum nature of gravity [35–40]. Although there
has been a great deal of theoretical investigation in these areas,
there has only been observational evidence for (i) and (ii) (see,
e.g., Refs. [20–23] and [24–27], respectively), which indeed
has supported consistency between these formalisms when
they are concurrently considered (e.g., consistency between
Newton’s theory of gravitation and nonrelativistic quantum
mechanics [20–23]). Our work serves as a contribution to
(iii), where one must describe the gravitational field by a
classical metric theory of gravity and physical probe systems
via quantum-mechanical principles.

We compartmentalize our paper in the following way. In
Sec. II A, we provide a model for the electromagnetic field in
curved space-time, in the weak-gravity regime, and proceed
to quantize the field under suitable approximations. We work
to first order in small perturbations about the Minkowski
space-time metric. In this approximation, the corresponding

formalism describes passive transformations (phase shifts) on
quantum states of the electromagnetic field, induced by curved
space-time. Hence, particle production is beyond the regime
that we consider here. One can consider this formalism as
geometric quantum optics in a locally curved space-time. In
Sec. II B, we discuss the metric local to an observer and its
relation to the background post-Newtonian (PN) metric, thus
prescribing the space-time upon which the quantum field of
Sec. II A propagates. In Sec. II C, we provide some back-
ground on HOM interference and comment on interferometric
noise and gravitational decoherence in context. In Sec. III,
we combine and apply the formalism of previous sections to
various interferometric configurations, explicitly showing that
gravitational effects, in principle, induce observable changes
in HOM-interference signatures. We also provide order-of-
magnitude estimates for these effects and briefly discuss
observational potentiality. Finally, in Sec. IV, we summarize
our work.

We utilize Einstein’s summation convention throughout
and assume a metric signature (−,+,+,+).

II. METHODS

A. Modeling quantum optics in curved space-time

1. Geometric optics in curved space: A brief review

We model the electromagnetic field by a free, massless,
scalar field φ satisfying the (minimally coupled) Klein-
Gordon equation

∇μ∇μφ = 0, (2.1)

where ∇μ is the metric compatible covariant derivative of
general relativity. Such a model disregards polarization-
dependent effects but accurately accounts for the amplitude
and phase of the field.

We assume the field to be quasimonochromatic in the geo-
metric optics approximation [1,41] so that it can be rewritten
(in complex form) as

φk = α′
keiS′

k , (2.2)

with S′ the eikonal (or phase), α′ a slowly varying envelope
with respect to variations of the eikonal, and k denoting the
wave-vector mode which φk is centered about. The wave
equation (2.1) in the geometric optics approximation yields
transport equations along the vector field ∇μS′

k in the slowly
varying envelope approximation,

(∇μS′
k )(∇μS′

k ) = 0, (2.3)

(∇μS′
k )(∇μ ln α′

k ) = − 1
2∇μ∇μS′. (2.4)

The first equation implies that ∇μS′
k is a null vector. One can

show that it also satisfies a geodesic equation

(∇μS′
k )∇μ(∇νS′

k ) = 0.

Thus, the transport equations, (2.3) and (2.4), determine how
the eikonal and amplitude, respectively, evolve along the null
ray drawn out by ∇μS′

k . Observe that the evolution of the
eikonal along the ray is sufficient to determine the field φ

entirely. These are the main results of geometric optics.
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Lastly, from the transport equations, one may derive a
conservation equation

∇μ(∇μS′
k|α′

k|2) = 0, (2.5)

which, via Gauss’s theorem, leads to a conserved “charge”

Qk :=
∫

�

d�μ(∇μS′
k )|α′

k|2, (2.6)

with � being a spacelike hypersurface. Physically, the conser-
vation equation is a conservation of photon flux such that the
number of photons Qk is a constant for all time.

The equations thus posed are precisely that of geometric
optics in curved space-time, excepting a transport equation for
the polarization vector of the field (see, e.g., Refs. [1,41]).

2. Geometric optics in the weak-field regime

We work with laboratory or near-Earth experiments in
mind. Therefore, it is sufficient to consider general relativity
in the weak-field regime.

We assume local gravitational fields, accelerations, etc.,
are sufficiently weak and consider first-order perturbations
hμν about the Minkowski metric ημν such that the space-time
metric gμν , in some local region in space, can be written as

gμν = ημν + hμν. (2.7)

The metric perturbation induces perturbations of the eikonal
and amplitude about the Minkowski values (Sk, αk ), i.e.,

S′
k = Sk + δSk, (2.8)

α′
k = αk (1 + εk ), (2.9)

with (δSk, εk ) being the leading perturbations of O(h). Defin-
ing kμ := ∂μSk as the Minkowski wave vector, we show that
the general transport equations, (2.3) and (2.4), imply the O(1)
transport equations

kμkμ = 0 ⇒ kμ∂μkν = 0, (2.10)

kμ∂μαk = − 1
2∂μkμ, (2.11)

which are the geometric optics equations in Minkowski space-
time, and O(h) transport equations

kμ∂μδSk = − 1
2 kμkνhμν, (2.12)

kμ∂μεk = − 1
2

(
∂μ∂μδSk + 
μ

μνkν
)
, (2.13)

with


μ
βν = 1

2ημκ (∂βhνκ + ∂νhβκ − ∂κhβν ),

being the torsion-free connection coefficients of general rela-
tivity to O(h) [1]. Therefore, one observes that the null ray kμ,
together with the metric perturbation hμν , uniquely determines
the eikonal S′

k , the amplitude α′
k [per Eqs. (2.10)–(2.13)], and

hence, the field φ [Eq. (2.2)].
Generic solutions. Let us suppose that the null curve γ

is parametrized by parameter λ and has (Minkowski) coor-
dinate expression xμ(λ) such that kμ = dxμ/dλ. This implies
dλ = dx0/k = d�x · �k/k2, with k2 := �k · �k the Euclidean scalar

product. With this supposition, we find general solutions to the
perturbative transport equations

δSk = −1

2

∫
γ

dxμkνhμν, (2.14)

εk = −1

2

∫
γ

dλ
(
∂μ∂μδSk + 
μ

μνkν
)
. (2.15)

Observe that, to first nontrivial order,

(1 + εk ) = exp

[
−1

2

∫
γ

dλ
(
∂μ∂μδSk + 
μ

μνkν
)]

.

Combining this with the O(1) amplitude and using the fact
that

∇μ∇μS′
k = ∂μkμ + ∂μ∂μδSk + 
μ

μνkν,

to O(h), we obtain

α′
k = exp

[
−1

2

∫
γ

dλ(∇μ∇μS′
k )

]
, (2.16)

where the initial amplitude is taken as unity, for simplicity.
This is analogous to the generic solution for the amplitude
in curved space-time, excepting that the geometric curve, γ ,
over which the integral is evaluated, is the flat-space geodesic
generated by ∂μSk and not the null geodesic generated by
∇μS′

k .

3. Approximately orthonormal modes and quantization

We wish to investigate local (e.g., in a finite region of
space) quantum optics experiments on a curved background
space-time, in the weak-field regime. Hence, we must produce
a quantum description for the field. To do so, we introduce
a set of approximately orthonormal solutions to the Klein-
Gordon equation (2.1), which, upon quantization, allows us
to define creation and annihilation operators of the quantum
field obeying the usual commutation relations [10]. From this
construction, a Fock space can be built and quantum optics
experiments analyzed per usual. We note that the following
formalism describes “local” field solutions which are valid
descriptions of the field, in some finite region of space (of
size � �; see below), to some specified accuracy [to O(h2);
see below].

Approximately orthonormal modes. From the generic so-
lutions, define the mode uk which satisfies the Klein-Gordon
equation in the weak-field regime

uk := Nkα
′
kei(kμxμ+δSk ), (2.17)

where Nk is a normalization constant. We prove that, to
some error, the set {uk} define an orthonormal set of classical
solutions to the Klein-Gordon equation, with respect to the
Klein-Gordon inner product [10]

( f , g)KG := i
∫

�

d�μ( f ∗∂μg − g∂μ f ∗), (2.18)

where � ia a suitable normalization volume, i.e., a spatial
hypersurface of sufficient size. The sketch of the proof goes
as follows.

We wish to show that

(uk, uk′ )KG ≈ δ(�k − �k′), (2.19)
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to O(h2). Consider hμν to be time-independent and to vary
over a characteristic length scale ∂h ∼ �−1, where, for ex-
ample, � ∼ c2/g. We further assume the integration volume
� to obey �1/3 � �, i.e., h � 1 within the spatial region of
interest (the laboratory). Then, analyzing the Klein-Gordon
inner product perturbatively, we see that

(uk, uk′ )KG ≈ (uk, uk′ )(0)
KG + (uk, uk′ )(1)

KG, (2.20)

where (uk, uk′ )(0)
KG ∝ δ(�k − �k′) is the flat-space inner product

for the plane-wave modes and (uk, uk′ )(1)
KG is the inner product

containing terms to O(h), which can be written as

(uk, uk′ )(1)
KG ∝ e−i(ωk−ωk′ )t

∫
�

d3�x ei(�k−�k′ )·�x f (h), (2.21)

with (t, �x) being Lorentz coordinates on � and f (h) a function
of O(h) that varies over the length scale �. It is then sufficient
to show that (uk, uk′ )(1)

KG only has support at k = k′. This is
done in two steps. For k − k′ � �−1, the phase rapidly oscil-
lates with respect to f (h) over the entire integration volume.
Thus, by the Reimann-Lebesgue lemma, the integral aver-
ages to zero. On the other hand, for k − k′ ∼ �−1, we have
(k − k′)x ∼ O(h) ∀x ∈ �. Thus, we may set k = k′ in the
integral, to accuracy O(h2). Therefore, the integral (2.21) only
has support at k = k′ to O(h2), which was to be shown.

Canonical quantization. We decompose the field in the
basis set {uk},

φ =
∫

d3�k(akuk + c.c), (2.22)

with the basis coefficients, ak , found from the Klein-Gordon
inner product

ak = (uk, φ)KG, (2.23)

a∗
k = (φ, uk )KG. (2.24)

As a technical aside, we note that the basis expansion of
the field, Eq. (2.22), is only an approximate description of the
field to accuracy O(h2). Technically, one should first define
the mode coefficients, ak and a∗

k , per Eqs. (2.23) and (2.24),
which can be defined for any function uk whatsoever. One then
supposes that the field φ can be expanded as in (2.22). The for-
mer definition and the latter supposition are then consistent to
accuracy O(h2), by virtue of the approximate orthonormality
of the mode functions, uk .

We proceed to canonically quantize the field by introduc-
ing the canonical momentum for the classical Klein-Gordon
field [10]

π = |h|1/2∂τφ,

which is defined on a future-oriented spatial hypersurface �τ ,
with |h| the determinant of the induced spatial metric on �τ .
Note that �τ is simply the surface of simultaneity at time τ .

The field φ and canonical momentum π are then promoted
to Hermitian operators, φ → φ̂ and π → π̂ , set to satisfy the
equal-time canonical commutation relation

[φ̂(�x), π̂ (�y)] := iδ(�x − �y), (2.25)

per the correspondence principle. Here, (�x, �y) are spatial coor-
dinates on �τ . Under this prescription, the field operator has

a basis decomposition

φ̂ =
∫

d3�k(âkuk + â†
ku∗

k ), (2.26)

with (â, â†) the annihilation and creation operators, which are
found per above:

âk = (uk, φ̂)KG, (2.27)

â†
k = (φ̂, uk )KG. (2.28)

Given the basis decomposition and canonical commutation
relation (2.25), one can show that

[âk, â†
q] = (uk, uq )KG (2.29)

≈ δ(�k − �q). (2.30)

Fock space and wave packets. The (approximate) orthonor-
mality of the classical mode solutions, together with the
commutation relations, is sufficient to build a Fock space
spanned by states of the form [10]⊗

k

(â†
k )nk

√
nk!

|0〉 , (2.31)

with

|0〉 :=
⊗

k

|0k〉 ,

being the vacuum state on �τ . Thus, the usual interpretation of
the creation operator â†

k follows (e.g., as creating a single pho-
ton in the mode uk). Note, however, that the Fock states above
are non-normalizable (or normalizable up to a Dirac-delta
distribution). We remedy this difficulty by constructing wave
packets. As an example, we construct a positive frequency
wave packet,

f =
∫

d3�k f ∗
k uk, (2.32)

with fk ∈ C, usually peaked around some wave vector, but
more suitably a normalized L2 function in k space. From this,
we define the annihilation wave-packet operator associated
with f ,

â f := ( f , φ̂)KG ≈
∫

d3�k fkâk . (2.33)

Commutation relations for the wave-packet operators then
follow

[â f , â†
f ] = ( f , f )KG ≈

∫
d3�k| fk|2 = 1, (2.34)

where approximate orthonormality of the mode functions was
assumed and the L2 property of fk was used. Per above,
one can build a Fock space of wave-packet states which are
properly normalizable. Furthermore, this construction permits
the interpretation of â†

f as creating a photon occupying the
wave packet f .

B. The metric

In order to analyze gravitational effects in quantum optics
experiments in a laboratory environment, we must prescribe
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FIG. 2. Schematic of the observer’s world line C through space-
time, with ê(0) parallel to the observer’s four-velocity and {ê(k)}
designating the spatial triad attached to the observer. All measure-
ments are made, by the observer, with respect to these basis vectors.

the metric local to a laboratory observer, which can be done in
the so-called proper reference frame—a reference frame nat-
urally adapted to an arbitrary observer in curved space-time.
We follow Refs. [1,42] in the construction of the proper ref-
erence frame and its relation to the background PN frame, by
providing key equations and brief explanations, while leaving
explicit details to the references therein. We set the speed of
light to c = 1 in what follows.

1. Proper reference frame: The local metric

Consider an ideal observer moving along their world line
C(t ), where t is the (proper) time the observer measures with
a good clock. The observer also “carries” with them a space-
time tetrad {ê(μ)}, associated with coordinates x(μ), such that
(i) the time coordinate satisfies x(0) = t , which implies ê(0) :=
∂(0)t is the observer’s four-velocity (tangent to C), and (ii) the
set {ê(k)} is a rigid set of spatial axes “attached” to the observer
(Fig. 2). Thus, the observer measures the passage of time,
spatial displacements, angles, local accelerations, rotations,
etc., with respect to these basis vectors. The tetrad is chosen
in such a manner that (i) the local metric, g(μ)(ν), reduces to
the Minkowski metric on C [43],

g(μ)(ν)|C = η(μ)(ν),

and (ii) the metric, in a neighborhood of C, describes that of
an accelerating and rotating reference frame in flat space-time,
which, to linear displacements in x(k), takes the form

ds2 = −(1 + 2�γ ·�x)dt2 + 2(�ω′ × �x) · �x dt + d�x2, (2.35)

where (�γ , �ω′) are the acceleration and angular velocity that
the observer measures with, e.g., accelerometers and gyro-
scopes. Note that these accelerations and angular velocities
are independent of spatial coordinates x(k); though, in general,
they may depend on the observer’s proper time, t .

At this juncture, some general observations and comments
about the proper reference frame should be made. First, one
should apparently associate the (small) linear displacements

from the observer’s world line, as considered in this sec-
tion, with the “weak-field regime,” considered in previous
parts of the paper. Second, in the context of general rela-
tivity, accelerations and rotations are coordinate-dependent
quantities. Therefore, for a free-falling (parallel-transported)
observer, such quantities vanish entirely. Then, the first non-
trivial components in the metric are at O(x2) and depend on
Reimann curvature [42] (see also Chap. 13 of [1]). All this is
not to say that the above construction is invalid or not use-
ful. On the contrary, the proper reference frame is extensive
enough to accommodate for local gravitational time dilation
and general-relativistic frame-dragging effects. Thirdly and
lastly, the proper reference frame is quite generic and does
not, necessarily, relate to gravitational effects. It is only once
Einstein’s field equations are considered and a background
space-time prescribed therefrom that the local dynamics, ob-
served about C, can be attributed to gravitational phenomena.

2. Relation to background PN metric

One may use the PN formalism (see [2] and Chap. 39
of [1]) to describe the space-time metric near massive bodies
in the weak-field, slowly moving, and slowly evolving regime,
which is sufficient to analyze, e.g., solar-system experiments
aiming to test metric theories of gravity. From the viewpoint
of general relativity, the idea is to expand, in successive
orders of a small parameter ε, and solve Einstein’s field equa-
tions, thereby obtaining a sufficiently accurate background
space-time metric. The small parameter ε is set by physical
quantities—the Newtonian potential U and the velocity v of
the body in the PN frame—such that

U, v2 ∼ O(ε2).

The condition of “slowly evolving,” for all quantities Q, is set
by ∂tQ/∂iQ ∼ O(ε).

Now, for example, letting bare subscripts indicate tensor
components in the PN frame, the space-time metric for a solid
rotating sphere (the Earth) in the PN formalism is

gμν :

⎧⎨⎩
g00 = −(1 − 2U ) + O(ε4)
g0i = −4Vi + O(ε5)
gi j = (1 + 2U )δi j + O(ε4),

(2.36)

where

U = GM

r
, (2.37)

�V = �J × �r
2r3

, (2.38)

and �J = I �ω, with I being the moment of inertia and �ω the
rotation rate of the earth in the PN frame. It follows that the
off-diagonal metric components are of O(ε3). From here, one
can relate the PN space-time metric to physical quantities that
an (proper) observer locally measures, i.e., to the accelerations
and rotations (�γ , �ω′). One accomplishes this in the following
manner (see [42] for explicit details).

Let parenthetic subscripts indicate tensor components in
the proper reference frame of an observer constrained to
the surface of the Earth. Thus, the spatial triad {ê(k)} physi-
cally corresponds to rigid Cartesian axes stuck to the Earth’s
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surface, where, e.g., two basis vectors may point along in-
creasing longitudinal and latitudinal lines at the observer’s
position and the third along the radial normal. Then, the
following transport equation governs the evolution of the ob-
server’s tetrad along their world line,

Dêμ
(α)

dt
= −êμ

(β )�
(β )

(α), (2.39)

where D/dt is the covariant derivative along the observers
world line and êμ

(α) are the vector components of the observer’s
tetrad basis in the PN frame. The antisymmetric transport
tensor �(α)(β ) encodes gravitational and noninertial effects
and is found via

�(α)(β ) = 1

2
gμν

(
êμ

(α)

Dêν
(β )

dt
− êν

(β )

Dêμ
(α)

dt

)∣∣∣∣
C
. (2.40)

The components of the transport tensor correspond precisely
to the locally measured acceleration and rotational velocity,
i.e.,

�(0)( j) := γ( j), �(i)( j) := ε(i)( j)(k)ω
′
(k),

with εi jk being the Levi-Civita symbol. From this, one
finds [42]

�γ = �a − ∇U, (2.41)

with �a being the coordinate (e.g., centrifugal) acceleration.
Note that, for an earthbound observer ∇U = �g, where g ≈
9.8 m/s2 is the gravitational acceleration on the Earth’s sur-
face.

One also finds an explicit expression for the rotation vector,

�ω′ = �ω
(
1+ 1

2v2+ U
)+ 1

2 �v × �γ − (
3
2 �v × ∇U + 2∇ × �V )

.

(2.42)

The first term is the rotation rate of the Earth, as measured
by an earthbound observer. The second term is the Thomas
precession term. Finally, the third and fourth terms are the
geodetic and Lense-Thirring terms, respectively. Considering
the coordinate velocity (and acceleration, a) as being due
solely to the rotational motion of the Earth (hence, �v = �ω × �R
with R being the Earth’s radius) one finds the centrifugal
component of the Thomas precession term, �v × �a, to be 1000
times smaller than the gravitational terms. We thus ignore
this term hereafter. For brevity, we shall also let �ω denote the
rotational rate as measured by an earthbound observer.

C. Two-photon interference and the Hong-Ou-Mandel dip

The HOM effect is a two-photon quantum-interference
effect, which embodies the general phenomena of boson
(photon) bunching—the inclination for identical bosons to
congregate—as a consequence of the commutation relations
for a bosonic field, and can be used to quantify the distin-
guishability of single photons [14]. For example, a primitive
HOM configuration consists of a two-photon source, which
creates independent single-photon wave packets, and a 50/50
beamsplitter, where the photons interfere. At the output ports
of the beamsplitter, one positions photodetectors, records co-
incident detection events, and quantifies the probability of a
coincident detection (i.e., the likelihood that both detectors

register a single-photon event). For identical single photons
(identical polarization, spectral, and temporal profiles, etc.)
the probability of a coincident detection is zero, due to the
tendency of the photons to bunch in one output port of the
beamsplitter or the other. If, however, we consider spectral
wave packets, we can induce distinguishability by introducing
a relative time delay between the wave packets prior to the
beamsplitter, ceteris paribus. As a consequence, the likeli-
hood of a coincident detection event increases, as the relative
time delay departs from zero. The transition of the coinci-
dence probability, from zero to a nonzero value, leads to a
diplike structure in its functional behavior, with respect to the
time delay (see, e.g., inset of Fig. 4). This dip in coincidence
events is the well-known HOM dip [11,12]. We mathemati-
cally describe this contrivance as follows.

Consider a two-photon source, which generates indepen-
dent single photons, in spatial modes (a, b) and occupying
wave packets ( f , g), such that initial two-photon state is

|�〉 = â†
f b̂†

g |0〉 =
(∫∫

dν1dν2 f1g2â†
1b̂†

2

)
|0〉 , (2.43)

where subscripts indicate spectral dependence. Introducing
a relative time delay δt in mode a, such that â → eiνδt â,
followed by the 50/50 beamsplitter transformation,

â† −→ 1√
2

(â† + b̂†), b̂† −→ 1√
2

(b̂† − â†),

leads to the state

|�δt 〉 = 1

2

∫
dν1dν2 f1g2eiν1δt

× [(â†
1b̂†

2 − â†
2b̂†

1) − (â†
1â†

2 − b̂†
1b̂†

2)] |0〉 , (2.44)

with the first parenthetic term causing coincident detection
events and the second term embodying photon bunching.
Note that, for identical monochromatic wave packets (e.g.,
equivalent Dirac-delta distributions for the spectral functions),
the first term vanishes, independent of any delay, and both
photons come out in mode a or mode b.

To calculate the likelihood of single-photon coincidence
events, we introduce the single-photon projection operators

�̂a =
∫

dν â†
ν |0〉〈0|âν, (2.45)

�̂b =
∫

dν b̂†
ν |0〉〈0|b̂ν . (2.46)

The coincidence detection probability pc, as a function of the
time delay, is then given by

pc(δt ) = 〈�δt |�̂a ⊗ �̂b|�δt 〉. (2.47)

For identical, Gaussian wave packets ( fk = gk) with spectral
width σ , the coincident probability [44] reduces to

pc(δt ) = 1
2

[
1 − exp

( − 1
2σ 2δt

2)]
. (2.48)

For δt = 0, the coincident probability vanishes, since the
single photons jointly exit from one port of the 50/50 beam-
splitter or the other; however, this is the ideal case, without
noise and with unit visibility.
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Digression on noise: Visibility, fluctuations,
and gravitational decoherence

The expressions in the previous section dealt with ideal
HOM interference, where one has perfect control over all
distinguishability parameters. In reality, however, such is not
the case, and one is led to the more general expression for the
coincidence probability

pc(δt ) = 1
2

[
1 − V exp

( − 1
2σ 2δt

2)]
, (2.49)

where V is the visibility of the interference experiment, de-
fined by

V := pmax
c − pmin

c

pmax
c

, (2.50)

with

pmax
c := lim

δt→∞
pc(δt ), pmin

c := lim
δt→0

pc(δt ).

Systematic control allows one to maintain the visibility cri-
terion V > 1/2, which demarcates the boundary between
sufficient quantum and/or classical descriptions for the
fields [12,13].

One source of noise, pertinent to this work, is temporal
fluctuations arising from, say, random changes in the relative
paths taken by the photons. One can model this as a back-
ground Gaussian noise, where the time delay is a random
variable with mean δt and fluctuation σ̃ . The mathematical
particulars are inconsequential (see, e.g., [46] for various
noise models in optical interferometry); however, since we
concern ourselves with gravitationally induced temporal shifts
in the HOM dip, we require the size of the fluctuations σ̃

to be smaller than the average size of the shift, in order for
the gravitational phenomena to be resolvable in practice. Such
is easier for, e.g., common-path (Sec. III A) versus dual-arm
(Sec. III B) interferometry.

A more fascinating noise source is that of
gravitational/space-time fluctuations, which could, in
principle, measurably affect the visibility of optical
interference signatures. General relativity treats space-time as
a dynamical variable, hence, gravitational fluctuations, either
of classical or quantum origin, lead to a loss of coherence in
quantum systems [47]. Unlike other sources of noise, which
can be eliminated by lowering temperatures and creating
extreme vacua, it is impossible to get rid of gravitational
decoherence.

On the classical side, space-time fluctuations can have
well-determined and various origins, from the seismic activity
of nearby masses, to the more exotic incoherent super-
positions of gravitational waves and/or artifacts of other
gravitational sources scattered about the universe. One can
model such fluctuations as stochastic waves, with unequal
time correlation functions of metric components, which one
characterizes with spectral distributions. Then, for example,
the geometry of an interferometer along with these spec-
tral distributions determine the visibility of an interference
signature and can thus, in principle, have observable mani-
festations [49].

On the quantum side, however, a fully determined and
consistent understanding of the origins of quantum space-
time fluctuations is far from satisfactory. Nevertheless, several

FIG. 3. Space-time diagram of counterpropagating null rays.
Two electromagnetic signals (red and blue curves) counterpropagate
along a common path in space. Relativistic frame-dragging effects
cause the pitch of the space-time helices to differ, which leads to
differing arrival times at a stationary detector system. All motion is
constrained to a world tube of spatial size �� ∼ min(c2/g, c/ω′).

phenomenological models have been proposed, including
treatments where one links the collapse of the wave func-
tion to gravitational decoherence or semiclassical treatments,
which replace the sources in Einstein’s field equations with the
expectation value of the stress-energy tensor operator. These
models generally rely on parameters determining the scale
at which quantum-gravity effects become relevant, i.e., the
Planck scale; however, this scale is discouragingly minuscule
(Planck length, �P ∼ 10−35 m). Therefore, it is difficult to
imagine that quantum-gravitational fluctuations will become
prevalent in interferometry scenarios, in the near to mid term.
Though, with the continuing development of large-scale inter-
ferometers and ever-improving sensitivities, perhaps bounds
may be put on these scales in the future.

III. SETUP AND RESULTS

A. Frame dragging and the HOM dip

Consider a HOM-interference experiment, wherein two
single-photon wave packets counterpropagate through a
common-path interferometer constrained to the Earth’s
surface (Fig. 1). Relativistic effects, e.g., the Sagnac, Lense-
Thirring, and geodetic effects, induce distinguishability be-
tween the counterpropagating paths, leading to a temporal
shift in the HOM dip, which would otherwise be at δt = 0
if relativistic effects were absent (Fig. 3).

The off-diagonal terms of the metric perturbation are the
sole contributors to the time delay, ceteris paribus, which one
can calculate via concurrent use of Eqs. (2.14) and (2.35), in
the proper reference frame of an observer. For a single path
around the interferometer loop, say, the right-handed path, one
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FIG. 4. Photon path delay (cδt , where c is the speed of light) as a function of the interferometer-orientation angle α, for a common-path
configuration, with A = 1 km2. Solid (red), dotted (yellow), and dashed (black) lines represent various latitudes θ at which a detector is placed.
Left: Path delay due to the Sagnac effect. The inset is a representative figure for the HOM-dip shift (the spectral widths have been exaggerated
for visual clarity) due to the relative delay between the counterpropagating modes, at a fixed orientation angle α = π/2 and at various latitudes
θ . Similar results hold for, e.g., a fixed latitude and various orientation angles; this latter scenario being more practical, as one would be at a
fixed position on earth (θ = constant) while performing the experiment at several interferometer-orientation settings (various α). Right: Path
delay due to the combined Lense-Thirring and geodetic effects.

finds (reintroducing factors of c)

δtRH = c−1
∮

dx(i)h(0)(i) = c−2
∮

d�x · (�ω′ × �x)

= c−2
∫

d �A · ∇ × (�ω′ × �x) = 2�ω′ · �A
c2

, (3.1)

where �A is the areal vector, perpendicular to the inter-
ferometry plane, and we have used the spatial-coordinate
independence of ω′. A similar relation holds for the left-
handed path, albeit with opposite sign, such that

δt := δtRH − δtLH = 4�ω′ · �A
c2

, (3.2)

with �ω′ given by Eq. (2.42).

To evaluate the above expression, for an observer con-
strained to the Earth’s surface, we choose an earth-centered
spherical-coordinate system (êr, êθ , êφ ) comoving with the
observer, with �ω aligned along the polar axis [50]. The
Earth’s radius R and the observer’s latitude θ establishes the
earthbound constraint, since due to the intrinsic axisymmet-
ric structure of the background space-time, characterization
of the observer’s longitude is superfluous. Furthermore, we
assume the areal vector to take the form �A = A(êr cos α −
êθ sin α), with α being the angle between the observer’s nor-
mal and the areal vector of the interferometer. Under these
considerations, the coordinate expression for the time delay is
then

δt = 4ωA
c2

cos(θ − α)︸ ︷︷ ︸
Sagnac

+ 4ωA
c2

(
2GM

c2R
sin θ sin α + GI

c2R3
(2 cos θ cos α − sin θ sin α)

)
︸ ︷︷ ︸

geodetic + Lense-Thirring

, (3.3)

which agrees with [51]. We note that the general relativistic
contributions are on the order of rS/R ∼ 10−9 times smaller
than the Sagnac contribution, where rS = 2GM/c2 is the
Schwarzschild radius of the Earth.

We now substitute the above expression into the coin-
cidence probability formula (2.48) and plot the results for
various parameter values (θ,A, α). See Fig. 4 for analysis.

Order-of-magnitude estimates

Perhaps more insightful than a full-blown analysis is an
order-of-magnitude estimate for these effects. A key quantity

to then consider is the size of the temporal shift relative to the
physical size of the interferometer; thus, define

F := δt�

A , (3.4)

which has dimensions s/km2 and where δt� is crudely the dif-
ference between the maximum and minimum time delay. This
quantity is of practical interest as, e.g., given some physical
constraint on the areal dimensions, one can see what level of
precision is required in order to observe relativistic effects.
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As an example, the quantity F , for the Sagnac effect,
goes as

FSag ∼ 4ω

c2
∼ 10−15 s/km2,

and since the Lense-Thirring and geodetic effects are a bil-
lionth of the size of the Sagnac effect, we have

FGR ∼ 10−9FSag ∼ 10−24 s/km2,

where the subscript GR concurrently signifies the Lense-
Thirring and geodetic effects.

The smallness of the Lense-Thirring and geodetic effects is
immediately concerning, as it implies stringent experimental
constraints (high precision and control of a large-area inter-
ferometer); however, this is not to say that observation of
such is impractical. On the contrary, there is ongoing research
towards terrestrially measuring these frame-dragging effects
with classical-optical interference [51,52]. With regard to a
similar undertaking in HOM interferometry, a full feasibility
analysis is duly wanting [53].

On the other hand, observing signatures of the Sagnac
effect (induced by the eEarth’s rotation) via HOM interfer-
ence appears experimentally accessible. Recently, phenomena
akin to this were observed by Restuccia et al. [27] (and
analyzed further in [28]), wherein the authors constructed a
HOM configuration (Fig. 1) upon a rotating table with tunable
rotation rate, and subsequently discovered a rotation-induced
shift in the HOM dip (proportional to the rotation frequency),
as one would predict with the formalism presented here. To
measure an analogous effect induced by the Earth’s rotation,
one requires much greater time-delay precision, due to the
minute rotational frequency of the Earth ω ∼ 10−5 s−1. This
seems presently achievable with modest resources. For ex-
ample, considering a fiber loop of radius r and N turns, the
effective area of the interferometer is A = Nπr2 or A = lr/2,
where l = 2πNr is the length of the fiber. Taking l ≈ 2 km
and r ≈ 1 m implies ASag ∼ 10−3 km2, which in turn implies
a required time-delay precision at the attosecond (1 as =
10−18 s) scale, on a par with current experiment [55]. Proof-
of-principle demonstrations like these are quite intriguing, as
they constitute quantum fields in noninertial reference frames.

B. Gravitational time dilation and the HOM dip

We now consider a HOM-interference experiment, for
a dual-arm configuration, and calculate the time delay due
to the effects of the uniform gravitational acceleration and
centrifugal acceleration measured by an observer fixed upon
the Earth’s surface (see Fig. 5). We ignore the off-diagonal
rotation-induced contributions, as they are equivalent (up to a
factor of 2) to the calculations of the previous section.

The unit vectors, along each arm of the interferometer, are
given by

n̂BA = n̂CD = (sin α sin β, cos α, sin α cos β ),

n̂DA = n̂CB = (cos α sin β,− sin α, cos α cos β ).

The coordinate equations for the lines along the arms are thus

BA :
x

d sin α sin β
= y

d cos α
= z

d sin α cos β
,

CD :
x − l cos α sin β

d sin α sin β
= y + l sin α

d cos α
= z − l cos α cos β

d sin α cos β
,

FIG. 5. A dual-arm configuration with a two-photon source (or,
a beamsplitter and two photon-detectors) at C, mirrors at B/D, and
a beamsplitter and two photon-detectors (or, a two-photon source) at
the origin A. The local reference frame is fixed to the earth’s surface
at a latitude θ . The z-axis is parallel to the radial vector êr , and the
y-axis points along the longitudinal line êφ at the observer’s position.
The locally measured angles, α and β, determine the orientation of
the interferometer, with respect to the horizontal and vertical planes.
The area of the interferomter is A = ld .

DA :
x

l cos α sin β
= y

−l sin α
= z

l cos α cos β
,

CB :
x − d sin α sin β

l cos α sin β
= y − d cos α

−l sin α
= z − d sin α cos β

l cos α cos β
.

By concurrent use of Eqs. (2.14) and (2.35), we calculate the
phase difference, δS, accrued along a path due to the uniform
acceleration �γ ,

δS = − 1

2c

∫
dx(0)k(0)h(0)(0) = k(0)c−3

∫ (
d�x · k̂

)
�γ · �x.

(3.5)
For example, setting �γ = gêz, where g ≈ 9.8 m/s2 is the grav-
itational acceleration on the Earth’s surface, we find the phase
along the segment BA to be

δSBA = k(0) g

c3

∫ A

B
( �dx · n̂BA)z,

where n̂BA is the unit vector along BA. Integrating along each
arm of the interferometer, we then obtain

δSBA = k(0) g

2c3
d2 sin α cos β,

δSCB = k(0) g

c3

(
l2

2
cos α cos β + ld sin α cos β

)
,

δSCD = k(0) g

c3

(
d2

2
sin α cos β + ld cos α cos β

)
,

δSDA = k(0) g

2c3
l2 cos α cos β.
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Since the observer is fixed to the Earth’s surface (a non-
inertial reference frame), they also measure a centrifugal
acceleration

�a = ω2R sin θ (sin θ êz + cos θ êy).

Then, setting �γ = �a in Eq. (3.5), we find additional phase
differences along the different interferometer arms,

δSBA = k(0) ω
2R

2c3
d2 sin θ (cos θ cos α + sin θ sin α cos β ),

δSCB = k(0) ω
2R

c3
sin θ

[
sin θ cos β

(
l2

2
cos α + ld sin α

)

− cos θ

(
l2

2
sin α + ld cos α

)]
,

δSDC = k(0) ω
2R

c3
sin θ

[
cos θ

(
d2

2
cos α − ld sin α

)

+ sin θ cos β

(
d2

2
sin α + ld cos α

)]
,

δSDA = k(0) ω
2R

2c3
l2 sin θ (sin θ cos α cos β − cos θ sin α).

Therefore, considering identical single photons traversing
separate paths ABC and CDA, we obtain the total time delay
between the paths (after dividing by the mean frequency k(0)),
due to both the gravitational and centrifugal accelerations,

δt = gA
c3

cos β(cos α − sin α)︸ ︷︷ ︸
gravitational, g

+ ω2RA
c3

sin θ [sin θ cos β(cos α − sin α) + cos θ (cos α + sin α)]︸ ︷︷ ︸
centrifugal, a

, (3.6)

where A = ld is the interferometer area. We note that a/g ∼
10−2. Plots for these results are shown in Figs. 5 and 6.

Order-of-magnitude estimates

Consider the photon time delay per unit area, characterized
by the quantity F [Eq. (3.4)] and induced by gravitational and
centrifugal accelerations. For the gravitational acceleration,
we have

Fg ∼ g

c3
∼ 10−19 s/km2,

which is 103 times smaller than the Sagnac effect and 106

times larger than the minute geodetic and Lense-Thirring ef-
fects considered in Sec. III A. Similarly, for the centrifugal
acceleration, we have

Fa ∼ ω2R

c3
∼ 10−21 s/km2.

Note that Lyons et al. [55] recently achieved HOM time-
delay resolution at the attosecond scale (1 as = 10−18 s),
closely approaching the scale implied by Fg, but with a
much smaller interferometer area than required here. Nev-
ertheless, a tabletop HOM experiment of this sort seems
achievable with present or near-term technology. Indeed,
Hilweg et al. [54] investigated the feasibility of a similar
experiment aimed at measuring gravitational time-dilation
effects via single-photon interference, with a variant Mach-
Zehnder interferometer, and found that, though challenging,
a tabletop experiment is possible with long-fiber spools and
active phase stabilization. An analogous feasbility analysis
for a HOM experiment, leveraging parameter estimation tech-
niques, like those used in [55], should be pursued.

IV. SUMMARY AND CONCLUSION

In this work, we showed how to encode general-relativistic
effects (e.g., frame-dragging and gravitational time-dilation
effects) into multiphoton quantum-interference phenomena,

for various interferometer configurations. This was
theoretically achieved by quantizing a massless scalar field in
a weak gravitational field (geometric quantum optics in curved
space-time, in the weak-field regime; Sec. II A). Applying
this formalism to a terrestrial laboratory setting (Sec. II B),
we showed that, in principle, gravitational effects can induce
observable changes in quantum-interference signatures,
using HOM interference as an exemplar (Secs. II C and III).
Noninertial effects, due to the Earth’s rotation and centrifugal
acceleration, were also considered, and the potentiality of
practical demonstrations was briefly analyzed. Though the
latter analysis was unfulfilling (a full feasibility, in this regard,
is still wanting), the landscape of potential proof-of-principle
demonstrations, like these, appears promising. The reason
being that analogous enterprises exploring, e.g., gravitational
time dilation via single-photon interference, with tabletop
long-fiber spools [54] or with quantum satellites [32], have
been pursued and found feasible with current technology.
Further inspiration for this potentiality comes from consider-
ation of recent experimental endeavors: a HOM-interference
experiment in a rotating, noninertial reference frame [27];
high-precision HOM time-delay resolution [55]; and current
attempts to measure relativistic frame-dragging effects with a
classical, optical, earthbound system [51,52].

Apart from fundamental physics considerations, we should
mention that quantum states of light and quantum measure-
ment strategies could also be leveraged for more efficient
estimation of gravitational parameters, such as, e.g., the PN
parameters of general relativity or the gravitational parame-
ters of rotating massive bodies (see, e.g., [56,57]). The main
idea is to encode general relativistic parameters into optical
phases (as done here), using exotic, quantum states of light
as a resource, while taking advantage of quantum parameter-
estimation strategies, resulting in a “quantum advantage” over
any classical measurement scheme (see, e.g., [58–60] for gen-
eral discussions in this regard). Indeed, gravitational wave
observatories are already employing such ideas for enhanced
phase sensitivity [61]. It is thus probable that the “quantum
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FIG. 6. Photon path delay (cδt), for a dual-arm configuration, with A = 1 km2. Top left (right): Path delay induced by the gravitational
acceleration g ≈ 9.8 m/s2, as a function of the orientation angle β (α). Bottom left (right): Path delay induced by the centrifugal acceleration
a ≈ 3.4 × 10−2 m/s2, as a function of the latitude θ , for various orientation angles α (β) and with β = 0 (α = 0) for all curves.

advantage” that quantum states of light permit will also appear
in other tests of general relativity, in the near to mid future;
though we do not delve into the details of such in this work.

Lastly, one may view our result as a quantum analog to the
seminal proposal of Scully et al. [62], made nearly 40 years
ago, who originally investigated the potentiality of observing
gravitational frame dragging with classical electromagnetic
fields. In a similar fashion, a proof-of-principle demonstration
of our results would signify the dragging of space-time as

witnessed by individual quanta of the electromagnetic field,
extending the validity of general relativity down to the Hilbert
space level.
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Chruściel, and P. Walther, Gravitationally induced phase shift
on a single photon, New J. Phys. 19, 033028 (2017).

[55] A. Lyons, G. C. Knee, E. Bolduc, T. Roger, J. Leach,
E. M. Gauger, and D. Faccio, Attosecond-resolution Hong-Ou-
Mandel interferometry, Sci. Adv. 4, eaap9416 (2018).

[56] J. Kohlrus, D. E. Bruschi, J. Louko, and I. Fuentes, Quantum
communications and quantum metrology in the spacetime of a
rotating planet, EPJ Quantum Technol. 4, 7 (2017).

[57] S. P. Kish and T. C. Ralph, Quantum metrology in the Kerr
metric, Phys. Rev. D 99, 124015 (2019).

[58] J. P. Dowling, Quantum optical metrology–the lowdown on
high-N00N states, Contemp. Phys. 49, 125 (2008).

[59] M. Fink, F. Steinlechner, J. Handsteiner, J. P. Dowling, T.
Scheidl, and R. Ursin, Entanglement-enhanced optical gyro-
scope, New J. Phys. 21, 053010 (2019).

[60] E. Polino, M. Valeri, N. Spagnolo, and F. Sciarrino, Photonic
quantum metrology, arXiv:2003.05821.

[61] P. Ball, Squeezing more from gravitational-wave detectors,
Physics 12, 139 (2019).

[62] M. O. Scully, M. S. Zubairy, and M. P. Haugan, Proposed
optical test of metric gravitation theories, Phys. Rev. A 24, 2009
(1981).

023024-13

http://arxiv.org/abs/arXiv:1912.12732
https://doi.org/10.1103/PhysRevD.84.122002
https://doi.org/10.1103/PhysRevResearch.2.032069
https://doi.org/10.1088/1367-2630/aa638f
https://doi.org/10.1126/sciadv.aap9416
https://doi.org/10.1140/epjqt/s40507-017-0061-0
https://doi.org/10.1103/PhysRevD.99.124015
https://doi.org/10.1080/00107510802091298
https://doi.org/10.1088/1367-2630/ab1bb2
http://arxiv.org/abs/arXiv:2003.05821
https://doi.org/10.1103/Physics.12.139
https://doi.org/10.1103/PhysRevA.24.2009

