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Intrinsic mechanism for magnetothermal conductivity oscillations
in spin-orbit-coupled nodal superconductors
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We describe a mechanism by which the longitudinal thermal conductivity κxx , measured in an in-plane
magnetic field, oscillates as a function of field angle in layered nodal superconductors. These oscillations occur
when the spin-orbit splitting at the nodes is larger than the nodal scattering rate, and are complementary to vortex-
induced oscillations identified previously. In sufficiently anisotropic materials, the spin-orbit mechanism may be
dominant. As a particular application, we focus on the cuprate high-temperature superconductor YBa2Cu3O6+x .
This material belongs to the class of Rashba bilayers, in which individual CuO2 layers lack inversion symmetry
although the crystal itself is globally centrosymmetric. We show that spin-orbit coupling endows κxx/T with a
characteristic dependence on magnetic field angle that should be easily detected experimentally, and argue that
for underdoped samples the spin-orbit contribution is larger than the vortex contribution. A key advantage of
the magnetothermal conductivity is that it is a bulk probe of spin-orbit physics, and therefore not sensitive to
inversion breaking at surfaces.
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I. INTRODUCTION

Nodal superconductors are characterized by an energy gap
that vanishes at point or line “nodes” on the Fermi surface.
Low-energy quasiparticle excitations exist in the neighbor-
hood of the nodes, and these excitations are reflected in
characteristic power laws in the temperature dependence of
various thermodynamic quantities [1]. These power laws
can distinguish different node types (i.e., line versus point),
but contain incomplete information about the symmetry
of the superconducting state. Magnetothermal conductivity
measurements are particularly useful in this regard, as the
magnetic field dependence contains information about the k-
space structure of the gap nodes [1].

A typical experiment involves the measurement of the
thermal conductivity tensor κi j in a magnetic field, which
is swept through polar and/or azimuthal angles. In a nodal
superconductor, the longitudinal thermal conductivity, for
example, κxx, will oscillate as a function of the relative ori-
entation of the field and the gap nodes [2,3]. The oscillation
pattern has a nontrivial dependence on field strength and
temperature, but with appropriate modeling will reveal the
symmetry of the superconducting state [3,4]. Experimentally,
this technique has been used to study the gap symmetry
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for a variety of unconventional superconductors, including
organic [5] and heavy Fermion materials [1,6,7], optimally
doped YBa2Cu3O7−δ [8–10], and Sr2RuO4 [11].

There are two established mechanisms underlying these os-
cillations, both of which are associated with the vortex lattice
formed by the magnetic field. At low temperatures, circulat-
ing vortex currents “Doppler shift” the quasiparticle energies
by an amount h̄vs(r) · k, where k is the quasiparticle wave
vector and vs(r) is the superfluid velocity in the neighborhood
of r [2,12]. The Doppler shift induces a nonzero density of
states (DOS) at each node that depends on the angle between
the Fermi wave vector kF at that node and vs(r). The total
induced DOS, and consequently the thermal conductivity,
therefore changes with the orientation of the vortex lattice or,
equivalently, the field angle. At high temperatures, a second
mechanism takes over, namely anisotropic quasiparticle scat-
tering by vortices becomes the dominant source of field-angle
dependence [3].

In this work, we discuss a third mechanism that is es-
pecially relevant to layered superconductors in the highly
anisotropic (quasi-two-dimensional) limit. In this geometry,
an in-plane magnetic field generates only weak circulating
vortex currents because of the small quasiparticle mobility
along the interlayer direction. Under such circumstances, we
show that one may still observe pronounced field-angle os-
cillations in the presence of spin-orbit coupling (SOC). As
a particular application of this mechanism, we focus on so-
called “hidden spin-orbit” superconductors.

In the past few years, a number of materials have been
discovered that exhibit signatures of SOC despite being
both centrosymmetric and time-reversal symmetric [13–18].
Naive considerations would suggest this is not possible:
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by Kramers’ theorem, materials that satisfy both inversion
and time-reversal symmetry must have degenerate energies
Ek↑ and Ek↓, which seems to eliminate the possibility of
k-space spin textures. Such spin textures, which are a hall-
mark of SOC, have nonetheless been observed. Key to
this is that the Kramers-degenerate states are spatially sep-
arated, which leads to spin textures that are localized in
space [19–21].

Rashba bilayers form a prominent subclass of hidden spin-
orbit materials. In these materials, the unit cell contains pairs
of conducting layers; while the unit cells are centrosymmetric,
the individual layers are not. Rather, the layers are “inver-
sion pairs,” meaning that they transform into one another
under inversion [20,21]. The individual layers thus exhibit
some combination of Rashba and Dresselhaus SOC, with the
Rashba contribution typically being larger in layered materi-
als [20]; however, global inversion symmetry guarantees that
spin textures in one layer are compensated for by opposite
textures in the other layer. It is thus essential that the coupling
between the layers be weak, as the k-space spin textures will
be quenched when the two layers are strongly hybridized.

Rashba bilayers have been investigated as possible topo-
logical insulators [22], as semimetals with electrically tunable
Dirac cones [23], and as model systems with nontrivial
superconducting [24–27] and nematic [28,29] phases. Fur-
thermore, many high-temperature superconductors, including
YBa2Cu3O6+x (YBCO6+x) and Bi2Sr2CaCu2O8+x (Bi2212),
satisfy the structural requirements to be Rashba bilayers;
however, the relevance of this fact to cuprate physics is not
established and hinges on the size of the effect.

Rashba-like spin polarization patterns have been directly
measured in Bi2212 via spin-polarized angle-resolved pho-
toemission spectroscopy (ARPES) experiments [30]. While
important, these observations require independent confirma-
tion because ARPES is a surface probe and therefore sensitive
to inversion symmetry breaking at surfaces. Indirect evidence
for SOC has been obtained from the magnetic breakdown
energy scale that one infers from many quantum oscilla-
tion experiments in YBCO6+x [31,32]. However, it remains
open whether the observed splitting is due to spin-orbit
physics [33,34], or to interlayer coupling [35]. A recent mi-
croscopic model for YBCO6+x [36] suggests that the Fermi
surface is spin-split by ∼10–20 meV due to a Rashba-like
SOC; however, this is an upper bound as interlayer coupling
may quench spin-orbit physics.

In this work, we show that the nodal structure of the d-wave
superconducting gap allows for an elegant and straightforward
observation of spin-orbit coupling through the longitudinal
thermal conductivity in a transverse magnetic field. This ef-
fect will be present whether or not the superconductor is
quasi-two-dimensional (quasi-2D), but must be disentangled
from Doppler shift contributions if circulating vortex currents
are not negligible. Importantly, this is a bulk measurement
that is insensitive to inversion symmetry breaking at sam-
ple surfaces and is complementary to other recent proposals:
Kaladzhyan et al. showed that the dominant Friedel oscillation
wave vectors associated with impurity scattering (as measured
by scanning tunneling spectroscopy) reflect the spin-splitting
of the Fermi surface and can be used to obtain the spin-
orbit coupling constant [37], while Raines et al. discussed

the practicality of spin-Hall and Edelstein effects as probes
of SOC [38].

We provide a simple description of the effect in Sec. II.
While the mechanism has some similarities to the Doppler
shift mechanism described in Ref. [2], there is the essential
difference that a finite DOS is induced by Zeeman coupling to
the quasiparticles rather than by circulating currents. Thermal
conductivity calculations are described in Sec. III A, although
details are left to the appendices, and results of these cal-
culations are given in Sec. III B. We address the important
question of how to distinguish spin-orbit and Doppler-shift
contributions to the magnetothermal conductivity in Sec. IV.
In that same section, we make an estimate that suggests that
magnetothermal oscillations in YBa2Cu3O6.5 are dominated
by spin-orbit effects.

II. ORIGIN OF THE DENSITY OF STATES OSCILLATIONS

For a singlet superconductor, the BCS Hamiltonian takes
the form

ĤBCS =
∑
k,σ

εkc†
kσ ckσ + 1

2

∑
k

[χk(c†
k↑c†

−k↓ − c†
k↓c†

−k↑)

+ H.c.] (1)

where H.c. is the hermitian conjugate, εk is the normal-state
dispersion measured relative to the chemical potential, and χk
is the superconducting order parameter. The pairing term is
typically simplified by making the permutation −c†

k↓c†
−k↑ =

c†
−k↑c†

k↓ and recognizing that χk = χ−k. However, Eq. (1) can
be extended easily to include SOC and is therefore left as-is
for this discussion.

Written in this form, Eq. (1) generates four flavors of BCS
quasiparticle, described by the creation operators

γ
†
k↑+ = ukc†

k↑ + v∗
kc−k↓, (2)

γ
†
k↑− = −vkc†

k↑ + ukc−k↓, (3)

γ
†
k↓+ = ukc†

k↓ − v∗
kc−k↑, (4)

γ
†
k↓− = vkc†

k↓ + ukc−k↑, (5)

where the coherence factors are

uk = 1√
2

√
1 + εk

Ek
, vk = χk√

2|χk|

√
1 − εk

Ek
, (6)

and Ek =
√

ε2
k + χ2

k is the usual BCS quasiparticle excitation
energy. The operators γ

†
kσ s defined by Eqs. (2)–(5) are labeled

by their spin-state σ and band index s = ±; we have fol-
lowed the convention that the quasiparticle spectrum has two
branches, with energies Ekσ± = ±Ek, corresponding to the
quasiparticle operators γ

†
kσ±. The branches are independent

of σ , and are thus doubly degenerate with the upper (lower)
branches empty (fully occupied) at zero temperature.

These branches are pictured in Fig. 1(a) along two cuts
through the Brillouin zone for the case of a nodal dx2−y2 super-
conductor. The locations of the cuts are indicated in Fig. 1(b),
which shows also the normal-state Fermi surface and gap
nodes, i.e., points on the Fermi surface where χk vanishes
such that Ek = 0. Throughout this work, the dispersion εk is
obtained from fits to the low-energy angle-resolved photoe-
mission spectrum (Table I) [39]. In Fig. 1(a), the excitation
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FIG. 1. Effects of a Zeeman field on quasiparticle dispersion for a 2D dx2−y2 superconductor. Results are shown (a)-(d) for vanishing SOC
and (e-h) for a nonzero Rashba SOC. (a) Without SOC, there are two doubly-degenerate quasiparticle branches, with energies Ekσ s = sEk,
with σ the spin index and s = ± the band index. The solid (dashed) branches are plotted along the solid (dashed) cut through the Brillouin
zone indicated in (b). The dispersion is gapless along cuts through any nodal point (dashed line), but is otherwise gapped (solid line). (b) For
a dx2−y2 superconductor, there are four nodal points (green dots) located on the normal-state Fermi surface (black line) and labeled by a
nodal index n. (c) A magnetic Zeeman field rigidly shifts the quasiparticle branches by energies ±μB, such that the branches are no longer
degenerate. (d) These shifts inflate the nodal points to form Bogoliubov Fermi surfaces (green ellipses). (e) With SOC, bands are labeled by
their helicity a = ± and band index s = ±. SOC shifts the gap nodes shown in (b) by −aδk, with the red (blue) bands corresponding to a = +
(a = −). (f) Spin-momentum locking on the normal-state Fermi surface determines the spin polarization of quasiparticle states near the gap
nodes. Arrows correspond to the spin polarizations of the bands in (e). For node n, θn is defined as the smallest angle between the nodal spin
polarization and the horizontal axis for the positive helicity band. (g) In an in-plane magnetic Zeeman field, the quasiparticle branches are
shifted by −aμB cos(θn + φ), where φ is the angle between the field and the horizontal axis. (h) As a result, the sizes of the Bogoliubov Fermi
surfaces are node-dependent. Note that the SOC (α = 40 meV) and the field strength (μB = 30 meV) are artifically inflated for clarity. Other
parameters are as described in the main text.

branches disperse linearly near the node, and are gapped away
from the node.

The quasiparticles defined by Eqs. (2)–(5) have well-
defined spins, such that the z component of the spin operator
is

Ŝz = 1

2

∑
k

(c†
k↑ck↑ − c†

k↓ck↓),

= 1

4

∑
k

∑
s=±

(γ †
k↑sγk↑s − γ

†
k↓sγk↓s). (7)

TABLE I. Tight-binding parameters for YBa2Cu3O6+x , obtained
by fits to angle-resolved photoemission experiments [39]. The
dispersion is εk = t0 − 2t1(c1x + c1y ) + 4t2c1xc1y − 2t3(c2x + c2y ) +
4t4(c2xc1y + c2yc1x ), where cn(x,y) = cos(nkx,y ).

Parameter Value (meV)

t0 100
t1 105
t2 29
t3 25
t4 4

A magnetic Zeeman field adds a term −gμBBŜz to the elec-
tronic Hamiltonian, with g the electronic g factor and μB the
Bohr magneton. Because Ŝz is diagonal in the quasiparticle
operators γkσ s, this additional term leaves the quasiparticles
intact, but rigidly shifts their dispersions by an amount −μB
(σ = ↑) or +μB (σ = ↓), where μ = 1

2 gμB is the electron
dipole moment. These shifts are independent of the field di-
rection (including out-of-plane fields), as the spin quantization
axis is arbitrary in the absence of SOC, and is the same for
each of the nodes. The resultant superconducting bands are
shown in Fig. 1(c) along the same cuts as in Fig. 1(a). The
band shifts inflate the nodal points to form so-called Bogoli-
ubov Fermi surfaces [40] that separate occupied and empty
quasiparticle states. These are shown as green ellipses in
Fig. 1(d); they are the same for all nodes and are independent
of field direction [41].

The situation changes when the SOC is nonzero. Here, the
size of the induced Bogoliubov Fermi surfaces varies from
node to node and depends on the field angle. For a generic 2D
dx2−y2 superconductor with Rashba SOC, the Hamiltonian is
Ĥ = ∑

k
′C†

kHkCk, with

Hk =
[hk �k

�
†
k −hT

−k

]
, (8)
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where Ck = (ck↑, ck↓, c†
−k↑, c†

−k↓)T , the prime in-
dicates the summation is over a reduced Brillouin zone
(kx, ky) ∈ [0, π ] ⊗ [−π, π ], and

hk = εkτ0 + (gk − μB) · τ, (9)

�k = iτyχdk + i(dk · τ)τy, (10)

gk = α(sin ky,− sin kx, 0). (11)

Here, hk is the Hamiltonian for the normal state, τ and τ0

are the Pauli spin matrices, gk is the Rashba spin-orbit term,
and B is the in-plane magnetic field. As shown in Fig. 1(f),
SOC splits the normal-state Fermi surface into spin-polarized
bands, with the electron spins locked to their momentum.

For generality, the superconducting order parameter in
Eq. (10) includes both a singlet part χdk and a triplet part
dk [42]. The latter is formally required because a nominally
singlet superconductor must develop a triplet component in
response to the SOC. While mixed-parity states with compa-
rable singlet and triplet components are possible, the more
common situation is that one component is dominant [42].
Our numerical calculations for YBCO6+x, for example, find
that the triplet amplitudes are of order 1% of the singlet com-
ponent (see Appendix A). We thus drop the triplet component
from our calculations.

For a pure dx2−y2 superconductor, SOC shifts the nodes
shown in Fig. 1(a) by displacements ±δk [Figs. 1(e) and 1(f)],
where δk ∼ α/vF . This doubles the number of nodes in each
quadrant of the Brillouin zone, but the dispersion near each
of the shifted nodes has the same structure as when SOC is
absent [Fig. 1(e)]. (Note that although calculations are per-
formed in a reduced Brillouin zone, we continue to show the
full zone for illustrative purposes.)

In most SOC materials, the coupling constant α is orders
of magnitude larger than μB ∼ 1 meV, and in this limit the
physics of the nodal dispersion is easily understood. Crucially,
the SOC selects a preferred polarization axis near each of
the gap nodes, and this axis is largely unchanged by the
Zeeman field in the limit μB 
 α. In each quadrant (labeled
n = 1, . . . , 4) one may locally rotate the spin-quantization
axis such that the Hamiltonian for each band has a BCS-like
form (Appendix B). The quasiparticle creation operators are
then similar to Eqs. (2)–(5) near the gap nodes, but with “up”
and “down” spin directions aligned with the red and blue
arrows, respectively, in Fig. 1(f). For quadrant n, we denote
the angle between the “up” direction and the kx axis by θn.

In the limit μB 
 α, the principal effect of the Zee-
man field is to shift the nodal dispersions by an amount
−aμB cos(θn + φ), where φ is the angle between the mag-
netic field and the kx axis, and a = ± is the helicity of the
band (positive helicity indicates that the spin winds clockwise
around the center of the Brillouin zone). This has several
consequences. First, the dispersions near the two spin-split
nodes are shifted in opposite directions because their helicities
are opposite [Fig. 1(g)]; however, the size of the induced
nodal Fermi surfaces is nearly the same [Fig. 1(h)] and the
spin-split nodes make nearly identical contributions to the
thermal conductivity. Second, nodes belonging to different
quadrants of the Brillouin zone experience different shifts
reflecting the different values of θn, so that the sizes of the

FIG. 2. Density of states induced by an in-plane Zeeman field
as a function of field angle. (a) Fermi surface structure in the re-
duced Brillouin zone. The sizes of the Bogoliubov Fermi surfaces
depend on the nodal index n and on the field angle φ. Fermi surfaces
with n = 1 (magenta) vanish when φ = (m + 1

4 )π , while those with
n = 2 (violet) vanish when φ = (m − 1

4 )π , with m ∈ Z. (b) The
DOS (per unit cell) induced by the Zeeman field is shown for each
pair of gap nodes in (a). �ρ(εF ) is calculated using Eq. (C4) with
realistic parameters for YBa2Cu3O6.5 (a0 = 3.8 Å, vF = 1.2 eVÅ,
v2 = 0.017 eVÅ, and γ = 0.1 meV). (c) Corresponding oscillations
of the specific heat coefficient �γ0 on field angle are a signature of
Rashba spin-orbit coupling. For comparison, the estimated specific
heat coefficients from circulating vortex currents are included (see
Sec. IV). Results in (b) and (c) are for T → 0, and μB = 1 meV,
which corresponds to B = 17 T.

induced Bogoliubov Fermi surfaces are different [Fig. 1(h)].
Finally, the relative sizes of the different nodal Fermi surfaces
depend on the angle φ of the magnetic field.

The sizes of the Fermi surface pockets [Fig. 2(a)] are
directly related to the induced DOS �ρ(εF ) at the Fermi
energy. Analytic expressions for �ρ(εF ) may be obtained
(Appendix C), and their field-angle-dependence, shown for
each of the nodal regions in Fig. 2(b) is a signature of Rashba
SOC. The two regions oscillate out of phase with each other,
and the total induced DOS obtained from their sum has min-
ima at field angles φ = (m ± 1

4 )π . This is reflected in the
linear specific heat coefficient,

�γ0 = lim
T →0

�cv

T
= π2

3
k2

B�ρ(εF ), (12)

shown in Fig. 2(c). The size of the oscillations depends on
both B and on the single-particle scattering rate γ . For the
benchmark case of YBa2Cu3O6.5 shown in Fig. 2(c), the in-
duced specific heat coefficient �γ0 is comparable to typical
measured values for an out-of-plane magnetic field (i.e. for the
vortex phase) [43]. Significantly, the predicted magnetother-
mal oscillations are a factor of 4 larger than the expected
vortex contributions for an in-plane field. In Fig. 2(c), the
vortex contribution is calculated using an estimate from
Ref. [2] and is discussed in detail in Sec. IV.

To obtain quantitative estimates for YBa2Cu3O6.5, we have
used a dispersion εk that was obtained from a tight-binding
fit to ARPES measurements on YBCO6+x [39], and a real-
istic gap function χdk = χd (cos kx − cos ky)/

√
2 with χd =

50 meV. These choices give a nodal Fermi velocity vF =
1.2 eVÅ, in close agreement with experiments [44], and
a superconducting nodal group velocity v2 = |∇k�k|node =
0.17 eV Å. Unless specified otherwise, the Rashba coupling
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constant is taken to be α = 10 meV throughout this work,
which gives a spin splitting at the gap nodes of 25 meV [36].

Although our explanation of the DOS oscillations is based
on the weak-field limit, the effect is general provided the
spin-splitting of the nodes is greater than the quasiparticle
scattering rate γ . The effect is present regardless of the di-
mensionality of the system and will dominate over the vortex
contribution in highly anisotropic materials; however, even in
three dimensional materials the SOC and vortex effects can be
comparable.

We finish this section with a comment that is specific to
Rashba bilayers. The model explored in this section describes
a single CuO2 layer, and there are two issues that might limit
its applicability to the bilayer. First, in a Rashba bilayer, the
sign of α is opposite in each layer, and it is a concern that the
contributions from each layer might cancel. However, from
Fig. 2(a), it is clear that reversing the direction of each nodal
polarization will have no effect on the induced DOS. Indeed,
as we show explicitly below, the field-angle dependence of
the thermal conductivity is an even function of α. Second, one
must keep in mind that hybridization of the two layers via a
hopping matrix element t⊥ will quench the spin polarization.
As discussed elsewhere [33,34,36], the spin polarization at
the gap nodes is of order α/

√
t2
⊥ + α2. The analysis contained

in this work assumes that t⊥ 
 α, which is supported by an
apparent collapse of bilayer splitting at the gap nodes in un-
derdoped YBCO6+x [45]. An experimental failure to measure
the predicted thermal conductivity oscillations likely implies
that the limit t⊥ 
 α does not apply.

III. THERMAL CONDUCTIVITY

A. Calculations

In this section, we discuss calculations of the longitudinal
thermal conductivity in the presence of an in-plane mag-
netic Zeeman field. As in the previous section, we assume
that the triplet contribution to the superconducting order pa-
rameter can be neglected. For YBCO6+x, we have checked
numerically that neglect of the triplet components has no
observable effect on the calculated longitudinal thermal con-
ductivity. This is essentially different, then, from the intrinsic
thermal Hall effect in a perpendicular Zeeman field, which
depends crucially on the triplet component; together with
SOC, a perpendicular Zeeman field creates a gapful mixed-
parity topological superconductor [46–48] whose finite Chern
number determines the T -linear part of the thermal Hall con-
ductivity [49].

Following Refs. [50,51], the thermal current operator is

JQ = − i

2

∑
k

′ ∑
i, j

Vk,i j (Ċ
†
k,iCk, j − C†

k,iĊk, j ), (13)

where Ċk,i indicates a time derivative of Ck,i and the subscripts
i and j are elements in the four-component operator space
introduced in Eq. (8). The 4 × 4 velocity matrix is

Vk =
[

vk v�,k

v†
�,k vT

−k

]
. (14)

In this expression, vk = ∇khk and v�,k = ∇k�k, with hk and
�k given by Eqs. (9) and (10), respectively. Equation (13)
does not include corrections due to circulating thermal cur-
rents that appear when time-reversal symmetry is broken [52],
as these do not contribute to the longitudinal thermal conduc-
tivity.

From the Kubo formula, the longitudinal thermal conduc-
tivity satisfies

κxx

T
= − π

h̄dT 2

∫ ∞

−∞
dx x2 ∂ f (x)

∂x
�xx(x). (15)

where f (x) is the Fermi function, d is the mean interlayer
distance (for the bilayer case of YBCO6+x, it is the c-axis
lattice constant divided by two), and where

�xx(x) = h̄2

2Nka2
0

∑
k

′
Tr[Ak(x)VkAk(x)Vk]. (16)

is the dimensionless thermal conductivity kernel. In Eq. (16),
Nk is the number of k-points in the reduced Brillouin zone,
a0 is the lattice constant, and Ak(x) is the spectral function
obtained from the Hamiltonian Hk,

Ak(x) = 1

2π i
[(x − iγ − Hk )−1 − (x + iγ − Hk )−1], (17)

with γ the quasiparticle scattering rate. At low temperature,
κxx is linear in T , with Eq. (15) simplifying to

κxx

T
= π3k2

B

3h̄d
�xx(0). (18)

In the limit of strong SOC, |α| � μB, γ , it is further pos-
sible to obtain an analytic result for �xx(x) (see Appendix B),

�xx(x) = 1

8π3

v2
F + v2

2

vF v2

{
4 +

∑
±

E
[

x ± μB cos
(

π
4 + φ

)
γ

]

+
∑
±

E
[

x ± μB cos
(

3π
4 + φ

)
γ

]}
, (19)

with v2 = |∇kχk|node and

E (y) =
(

y + 1

y

)
tan−1 y. (20)

Note that, in the large-α limit, �xx(x) is independent of α.

B. Results

Figure 3 shows the longitudinal thermal conductivity in an
in-plane magnetic field, as a function of the angle between
the field and the x axis. We focus initially on the large-SOC
limit, with α = 10 meV, since this is the regime that we expect
to be relevant to YBCO6+x. The essential point of this figure
is that at sufficiently low temperatures, κxx/T exhibits clear
and pronounced oscillations. The size of the oscillations is
approximately proportional to μB/γ , and grows by an order
of magnitude between the intermediate scattering [Figs. 3(a)
and 3(b)] and clean [Fig. 3(c)] limits. The shape of the oscilla-
tions also depends on the ratio μB/γ , taking an approximately
sinusoidal form when μB ∼ γ , and deviating strongly from it
when μB � γ . The figure also shows that the approximate
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FIG. 3. Thermal conductivity in the strong SOC limit (|α| �
μB, γ ). The thermal conductivity is shown as a function of the angle
φ between the magnetic field and the x axis for a range of tem-
peratures between T = 0 K and T = 5.8 K = 0.5 meV. Curves are
generated for (a) the numerical evaluation of Eqs. (15) and (16), and
(b) and (c) the analytical approximation Eq. (19). The magnetic field
is μB = 2 meV, which (assuming μ = μB) corresponds to B = 34 T.
In (c), an additional curve is shown for T = 23.2 K, corresponding
to kBT = μB. The SOC constant is α = 10 meV. (a) and (b) are for
an intermediate scattering rate, γ = 1 meV, and demonstrate that the
analytical result is quantitatively accurate when the SOC is large;
(c) is in the clean limit, γ = 0.1 meV, which is appropriate for
YBCO6.5. Note that the scale in (c) is an order or magnitude larger
than in (a) and (b).

expression (19) for the transport kernel �xx(x) works well
when α is large.

The oscillations shown in Fig. 3 change their qualitative
character as a function of temperature. At low T , κxx is maxi-
mal when the field angle is an integer multiple of π

2 ; above a
crossover temperature kBTcross ≈ μB/5, the oscillations are in-
verted, with minima at integer multiples of π

2 . The oscillations
persist up to kBT ∼ μB, at which point the angle dependence
can barely be discerned [Fig. 3(c), for T = 23.2 K].

Because we focus on low temperatures, both the scattering
rate and superconducting gap are treated as constant in our
calculations. The inversion of the oscillation pattern is there-
fore entirely due to the thermal factor in Eq. (15), and can be
traced back to the dependence of the DOS, ρ(φ, x), on field
angle and energy. A simple explanation of this effect can be
obtained in the clean limit. In zero field, the low-energy DOS
for a d-wave superconductor is ρ(x) ∝ |x|; that is, it vanishes
at energy x = 0, and rises linearly with |x|. In an in-plane field,
the band energies are shifted by ±μB cos(θn + φ), where the
sign depends on the helicity of the band [recall Fig. 1(g)].
The total low-energy DOS is obtained by summing the shifted
contribution from each of the bands (±) and nodal regions (n),

ρ(φ, x) ∝
∑
±

2∑
n=1

|x ± μB cos(θn + φ)|, (21)

FIG. 4. Schematic densities of states for a d-wave superconduc-
tor in an in-plane Zeeman field at field angles φ = 0 and φ = π

4 . Plots
are obtained from Eqs. (23) and (24). The densities of states cross at
xcross = μB(

√
2 − 1).

where θ1 = π
4 and θ2 = 3π

4 . This same term appears in
Eq. (19), where for μB � γ one may write

E
[

x ± μB cos(θn + φ)

γ

]
≈ π

2γ
|x ± μB cos(θn + φ)|. (22)

Thus, from Eq. (19), �xx(x) in the clean limit is equal to a
constant plus a term proportional to ρ(φ, x).

When φ = 0, cos(θn + φ) = ± 1√
2
, and

ρ(0, x) ∝
{

4 μB√
2
, |x| <

μB√
2

4|x|, |x| >
μB√

2

. (23)

Conversely, when φ = π
4 , the cosine is zero for n = 1, and ±1

for n = 2, yielding

ρ

(
π

4
, x

)
∝

{
2|x| + 2μB, |x| < μB

4|x|, |x| > μB
. (24)

The two densities of states curves, shown schematically in
Fig. 4, cross at xcross = (

√
2 − 1)μB. Because of the direct

link between �xx(x) and the DOS, xcross sets the temperature
scale for the inversion of the thermal conductivity oscillations.
The actual crossover temperature, kBTcross ≈ μB/5 is smaller
than xcross by a factor of approximately 2 because of the
weighting factor x2∂ f (x)/∂x in Eq. (15).

A second energy scale is apparent in Fig. 4, namely, the
DOS is independent of φ when |x| > μB. This sets the tem-
perature scale at which the thermal conductivity oscillations
die out.

Having understood the temperature dependence of κxx, we
now examine the dependence on other model parameters.
Inspection of Eq. (19) reveals that, in the zero-temperature
limit, κxx/T is a function of μB/γ , and is independent of α.
This is apparent in Fig. 5(a), which shows that the oscillation
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FIG. 5. Numerical results for the thermal conductivity as a func-
tion of (a) spin-orbit coupling strength and (b) magnetic field. Results
are shown at field angles φ = 0 and φ = π/4; in each plot, the
difference between the two curves gives the amplitude of the oscilla-
tion. Except where indicated otherwise, results are for α = 10 meV,
μB = 2 meV, γ = 1 meV, and T = 0 K.

amplitude at T = 0 saturates at an approximately constant
value when |α| � γ . We also note that the amplitude is a
symmetric function of α, confirming our earlier assertion that
the thermal conductivity oscillations due to the two layers
making up a Rashba bilayer are additive.

Figure 5(b) shows the dependence of κxx/T on magnetic
field strength. When μB → 0, the conductivity kernel be-
comes independent of the scattering rate [51],

�xx(0) → 1

π3

v2
F + v2

2

vF v2
, (25)

yielding limT →0 κxx/T = 0.062 mW K−2 cm−1. This value is
close to that measured by Sutherland et al. in YBCO6.54 [53].
When μB is not zero, the field dependence reflects the
structure of the function E (μB/γ ) in Eq. (19). For small
argument, the field dependence is quadratic, with E (μB/γ ) ≈
1 + 2

3 (μB/γ )2, while for large arguments it is linear with
E (μB/γ ) ≈ πμB/2γ .

The value of γ is thus central to the observability of
the thermal conductivity oscillations, which are suppressed
when γ > μB. Angle-resolved photoemission spectroscopy
(ARPES) experiments have placed an upper bound of γ =
12 meV on the nodal scattering rate for the bilayer cuprate
superconductor Bi2212 [54], consistent with the strong
inhomogeneity observed in that material in tunneling ex-
periments [55,56]. Spin-orbit effects might thus be hard to
observe in Bi2212. Conversely, microwave conductivity mea-
surements have found very small transport scattering rates
γtr � 0.1 meV in YBCO6.50 at low temperatures [57]. The
reasonable assumption γtr ∼ γ places YBCO6.50 in the clean
limit, where thermal conductivity oscillations should be easily
observable.

Figure 6 shows the range of behavior that can be expected
for κxx/T in the clean limit for different values of α spanning
|α| 
 μB to |α| � μB. For comparison, the analytic result
for large SOC is also plotted, and is quantitatively similar
to the numerical data for all values of α. Remarkably, there
is very little to distinguish the different thermal conductivity

FIG. 6. Thermal conductivity in the clean limit, γ 
 |α|, μB, as
a function of field angle. Numerical data (circles) are compared to
the analytical result obtained from, Eqs. (18) and (19). Equation (19)
is nominally valid for |α| � μB but provides a good quantitative fit
to the data even for α = μB. Results are for T = 0, μB = 3 meV,
and γ = 0.1 meV.

data sets, even though α changes by a factor of 20 across
the figure. Thus pronounced oscillations in the thermal con-
ductivity should be observable so long as |α| > γ . By fitting
Eq. (19) to experimental measurements of κxx/T at low T and
for μB � |α|, it is possible to extract both the ratio vF /v2 and
the scattering rate γ .

IV. DISCUSSION AND CONCLUSIONS

In this work, we have shown that spin-orbit coupling gener-
ates a characteristic field-angle dependence of the longitudinal
thermal conductivity in nodal superconductors. These oscilla-
tions reflect how the density of states induced by a magnetic
Zeeman field depends on the angle between the field and the
spin polarization at the gap nodes. Although we have focused
on the case of a dx2−y2 superconductor with Rashba SOC,
the mechanisms described in this work will be present for
any nodal superconductor in which spin-orbit physics leads to
spin-momentum locking at the gap nodes. At low temperature
(T 
 μB), the oscillation pattern is a simple function of the
angle between the nodal spin axis and the magnetic field, and
therefore depends both on the location of the nodes and the
structure of the SOC. When the SOC is known, the magne-
tothermal oscillations can be used to determine the locations
of the nodes; conversely, when the node positions are known,
the oscillations yield a fingerprint of the SOC.

This analysis is simplest if there is a clean separation
between spin-orbit and vortex contributions to the magne-
tothermal oscillations. Indeed, the field-angle oscillations are
qualitatively similar in both cases, and the question of how
one may distinguish them is important. For d-wave supercon-
ductors, it is common to write the field-angle dependence of
the thermal conductivity as a series,

κxx = κ0,xx + κ2 cos 2φ + κ4 cos 4φ + . . . , (26)

κyy = κ0,yy − κ2 cos 2φ + κ4 cos 4φ + . . . (27)
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The terms κ2 and κ4 are the amplitudes of the twofold- and
fourfold-symmetric contributions to κxx, respectively, and φ is
the field angle as before. The fourfold term, κ4, is a direct con-
sequence of the fourfold symmetry of the excitation spectrum.
It is generally attributed to the symmetry of the gap function,
but may also reflect the underlying band structure [4].

κ4 may be positive or negative, with κxx having its mini-
mum at φ = π/4 in the first case, and its maximum at π/4
in the second. For oscillations due to the vortex lattice, the
general trend at low fields is that κxx is positive at low T ,
but then goes negative as T is increased [3]. Figure 3 shows
that the trend is similar here, with the crossover happening
at kBT ≈ 0.2μB in the clean limit. The T dependence of
κ4 therefore does not allow us to isolate the source of the
oscillations. However, the field-strength dependence is quali-
tatively different for the two mechanisms, and does allow one
to distinguish between them. In the clean limit (μB � γ ) and
at low T , κ4 grows as

√
B for vortex-driven oscillations [2] but

as B for SOC-driven oscillations.
Another distinction between SOC- and vortex-driven mag-

netothermal conductivity oscillations lies in κ2. In previous
work, κ2 was found to arise from the scattering of thermal
currents by the vortices, and the twofold anisotropy reflects
the difference between driving currents parallel to and per-
pendicular to the vortices. While in many materials this term
is dominant at elevated temperatures, it is suppressed in
quasi-2D materials where the circulating currents are small.
Formally, κ2 = 0 in our calculations, and any nonzero value
of κ2 would therefore signal a nonzero vortex contribution. A
weak κ2 in conjunction with a significant κ4 is a strong hint
that SOC is the dominant factor in observed magnetothermal
conductivity oscillations.

One consequence of κ2 vanishing is that, for the SOC-
driven oscillations, the longitudinal thermal conductivity
should be the same for both [100] and [110] heat currents pro-
vided the material is tetragonal, and provided the transverse
components κxy and κyx vanish. Under typical experimental
conditions the heat current perpendicular to the applied tem-
perature gradient is zero, and the [100] and [110] longitudinal
thermal conductivities are therefore [3]

κl =
{

κxx − κxyκyx

κyy
, [100]

2 κxxκyy−κxyκyx

κxx+κyy+κxy+κyx
[110]

. (28)

For purely SOC-driven oscillations the intrinsic contribution
to κxy/T in the limit T → 0 vanishes for a d-wave su-
perconductor in an in-plane Zeeman field [49,52], and the
leading-order intrinsic contribution to κxy must therefore be
O(T 2). Since the leading-order contributions to κxx and κyy are
O(T ), limT →0 κl reduces to κxx and 2κxxκyy/(κxx + κyy) for the
[100] and [110] directions, respectively. These are equal for
tetragonal superconductors.

For the case of YBCO6+x, we note that the material itself
is orthorhombic due to the presence of one-dimensional CuO
chains. This twofold anisotropy is tied to the crystal lattice,
rather than the vortex lattice, and will show up primarily as
a difference in the zeroth order term in the expansions of κxx

and κyy, so that κ0,xx �= κ0,yy.
We can estimate the relative importance of the vortex and

SOC contributions for YBCO6.5 by focusing on the specific

heat. At this doping level, YBCO6+x is strongly anisotropic,
with the c-axis conductivity a factor of 103 smaller than the
in-plane conductivity. The DOS induced by circulating vor-
tex currents can be obtained from the clean-limit (γ → 0)
approximation given in Ref. [2],

ρ(φ) ≈ ρ0
2
√

2EH

π h̄v2
max (| sin φ|, | cos φ|), (29)

with ρ0 the normal state DOS and

EH ∼ vF

2

√
λab

λc

√
πB

�0
, (30)

where �0 = π h̄/e is the superconducting flux quantum. In
YBCO6.5, the ratio of in-plane and out-of-plane penetration
depths λc/λab ≈ 35 [58,59], and the fitted dispersion εk gives
the normal state DOS at the Fermi level ρ0 = 3.35 eV−1. The
resultant shift in the specific heat constant, �γ0 is shown
in Fig. 2(c) and is considerably smaller than that obtained
from SOC. It is reasonable to expect a similar disparity for
the thermal conductivity, so that experimental observations of
magnetothermal conductivity oscillations for in-plane fields,
along with a small value for κ2, would be consistent with
significant spin-orbit coupling.

We finish with a few caveats. First, we note that a detailed
quantitative description of any particular material will depend
on the details of the scattering rate. In particular, we have
taken a simple model in which γ depends on neither wave
vector or energy. While such an assumption is sensible for
many materials, it can be problematic in nodal superconduc-
tors where the scattering rate can have a nontrivial energy
dependence that is determined by the strength of the scattering
potential. In cuprates, for example, quantitatively accurate
models typically require an admixture of Born and unitary
scatterers [60–62]. Each of these has a characteristic energy
dependence that will modify the temperature dependence of
the oscillations. Rigorous modeling of experiments will thus
require a realistic disorder model.

Second, the question of how to extract the size of the spin-
orbit coupling constant α remains open. While the existence
of SOC in a nodal superconductor is easy to establish via
the thermal conductivity oscillations, the amplitude of the
spin-orbit coupling constant is harder to determine. In clean
materials, the size of the oscillations is nearly independent
of α [Fig. 5(a)] and there is no clear crossover in behavior
as a function of magnetic field strength between μB 
 α

and μB � α. Rather, the amplitude of the oscillations is an
indication of whether the spin splitting of the Fermi surfaces
is large or small relative to the scattering rate.

Third, we have neglected in this work variations of the
chemical potential with the field angle, which is another po-
tential contribution to the field-angle dependence of κxx. In
our analytical calculations, these variations would manifest
themselves as modulations of both the Fermi velocity and the
anomalous velocity, v2. We have checked numerically that, at
least for the model used in this work, chemical potential mod-
ulations have a negligible effect on the thermal conductivity.

In summary, we have demonstrated the existence of a novel
intrinsic mechanism for oscillations of the longitudinal mag-
netothermal conductivity as a function of magnetic field angle.
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Zeeman coupling to nodal quasiparticles inflates the nodes
into Bogoliubov Fermi surfaces, whose sizes depend on the
field angle, the structure of the SOC, and the location of the
gap nodes. The magnitude of the induced specific heat and
thermal conductivity both depend on the sizes of the induced
Fermi surfaces, and the angle dependence of the thermal prop-
erties provides a tool to explore the SOC (if the locations of
the gap nodes are known) or the nodal structure (if the SOC is
known). As a probe of SOC, this technique has the advantage
of being a bulk measurement, and is therefore insensitive to
inversion-symmetry breaking at surfaces.

The structure of the magnetothermal oscillations is quali-
tatively similar to what was found earlier for vortex-induced
oscillations, but can be distinguished by details of the field
and angle dependence. Interestingly, we find that the pattern
of the oscillations inverts at high temperature, similar to what
was reported earlier for vortex-induced oscillations.
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APPENDIX A: SUPERCONDUCTING STATE

We consider the superconducting state of a single CuO2

layer with Rashba SOC. The superconducting state is predom-
inantly singlet, with a d-wave symmetry, but additional triplet
pieces are induced by both the SOC and the in-plane Zeeman
field. The goal of this section is to evaluate the size of the
triplet components.

Taking the basis

Ck = [ck↑, ck↓, c†
−k↑, c†

−k↓]T , (A1)

the Hamiltonian has the form Ĥ = ∑
k
′C†

kHkCk, where the
primed sum is restricted to half of the Brillouin zone, and

Hk =
[hk �k

�†
k −hT

k

]
(A2)

with

hk =
[
εk g̃k

g̃∗
k εk

]
(A3)

and

�k =
[−dxk + idyk dzk + χdk

dzk − χdk dxk + idyk

]
. (A4)

where g̃k = α(sin ky + i sin kx ) − μBe−iφ and φ is the angle
between the x axis and the in-plane magnetic field.

We take the simplest form of pairing interaction appropri-
ate for the cuprates,

V (k − k′) = V0[cos(kx − k′
x ) + cos(ky − k′

y)]

= V0

∑
i

ηikηik′ (A5)

with

ηdk = 1√
2

(cos kx − cos ky), (A6)

ηsk = 1√
2

(cos kx + cos ky), (A7)

ηxk = sin kx, (A8)

ηyk = sin ky. (A9)

Under the assumption that the singlet order parameter is
d-wave, we write χdk = χdηdk with

χd = V0

4

∑
k′

ηdk′ (〈c−k′↓ck′↑〉 − 〈c−k′↑ck′↓〉). (A10)

Similarly, the triplet components have odd spatial parity, and
can therefore be written

dxk = dxxηxk + dxyηyk, etc. (A11)

with (a = x, y)

dxa = V0

4

∑
k′

ηak′ (〈c−k′↓ck′↓〉 − 〈c−k′↑ck′↑〉), (A12)

dya = V0

4i

∑
k′

ηak′ (〈c−k′↓ck′↓〉 + 〈c−k′↑ck′↑〉), (A13)

dza = V0

4

∑
k′

ηak′ (〈c−k′↓ck′↑〉 + 〈c−k′↑ck′↓〉). (A14)

We choose parameters such that the singlet component of the
order parameter is χd = 50 meV, which is comparable to the
antinodal gap in underdoped YBCO6+x.

SOC induces a triplet component of the form ±dxk + idyk
that goes along with the singlet piece [63]. For our model
parameters, self-consistent calculations find that the triplet
component is approximately 1% of the dominant singlet com-
ponent, and is nearly independent of magnetic field strength
and direction. In addition, the Zeeman field induces a second
triplet component dzk that depends on field angle. This com-
ponent is found to be three orders of magnitude smaller than
the singlet component.

APPENDIX B: THERMAL CONDUCTIVITY:
LARGE SOC LIMIT

In this Appendix, we derive an analytic approximation
for �xx(x) that is valid in the limit α � γ , μB. To evaluate
Eq. (16), we transform both the Hamiltonian and the quasi-
particle velocity operators to the helical basis. When the SOC
is large, we can neglect the mixing of bands of different
helicities, either by impurities or by the magnetic field. This
simplification allows us to derive an explicit expression for
�xx(x).

a. The Hamiltonian in the helical basis. As a first step, we
transform the Hamiltonian, Eq. (A2), to the helical basis via
the unitary transformation,

Uk =
[

Uk 0

0 U∗
−k

]
; Uk = 1√

2

[
1 −eiθk

e−iθk 1

]
, (B1)
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with eiθk = gk/|gk| and gk = α(sin ky + i sin kx ). In zero field,
Uk diagonalizes the nonsuperconducting Hamiltonian hk,
with U†

khkUk = diag(ξk+, ξk−) and ξk± = εk ± |gk|.
In the superconducting state and with nonzero in-plane

magnetic field, we obtain the transformed Hamiltonian,

Hξ

k = U†
k HkUk =

[
hξ

k �
ξ

k

�ξ †
k −hξ

−k

]
. (B2)

The diagonal block is

hξ

k =
[
ξk+ − μB cos(θk + φ) iμBeiθk sin(θk + φ)

−iμBe−iθk sin(θk + φ) ξk− + μB cos(θk + φ)

]
.

(B3)

The off-diagonal block has a similar structure to Eq. (A4);
however, it simplifies considerably if the triplet components
of the order parameter can be neglected. Then

�
ξ

k =
[
�+

k 0

0 �−
k

]
, (B4)

with �±
k = −e±iθkχdk. When B = 0, the two helical bands are

not mixed by singlet superconductivity under the restriction
of zero-momentum pairing, and the Hamiltonian Hξ

k thus
describes two independent superconducting bands, each of
which has a BCS-like structure.

b. The velocity matrix in the helical basis.. Next, we trans-
form the matrix defined by Eq. (14) via

Vξ

k = U†
k VkUk. (B5)

The top left block transforms as

U†
kvkUk =

[∇kξ
+
k 0

0 ∇kξ
−
k

]
+ i(∇kθk )

[
0 gk

−g∗
k 0

]
, (B6)

while the top right block is

U†
kv�,kU∗

−k =
[−eiθk∇kχdk 0

0 −e−iθk∇kχdk

]
. (B7)

Then

Vξ

k =

⎡
⎢⎢⎢⎢⎣

vξ

k+ van
k v+

�,k 0(
van

k

)∗
vξ

k− 0 v−
�,k

(v+
�,k )∗ 0 vξ

−k+
(
van

−k

)∗

0 (v−
�,k )∗ van

−k vξ

−k−

⎤
⎥⎥⎥⎥⎦, (B8)

where vξ

kα = ∇kξkα , va
�,k = −eiaθk∇kχdk, and the SOC-

related anomalous velocity is van
k = i(∇kθk )gk.

c. Reordering the basis. To move forward, it is useful to
rearrange the Hamiltonian and velocity into blocks with given
helicity, ⎡

⎢⎢⎢⎢⎣
ψk+
ψk−
ψ

†
−k+

ψ
†
−k−

⎤
⎥⎥⎥⎥⎦ →

⎡
⎢⎢⎢⎢⎣

ψk+
ψ

†
−k+

ψk−
ψ

†
−k−

⎤
⎥⎥⎥⎥⎦. (B9)

The velocity operator becomes

Vξ

k =

⎡
⎢⎢⎢⎢⎣

vξ

k+ v+
�,k van

k 0

(v+
�,k )∗ vξ

−k+ 0 (van
−k )∗

(van
k )∗ 0 vξ

k− v−
�,k

0 van
−k (v−

�,k )∗ vξ

−k−

⎤
⎥⎥⎥⎥⎦ (B10)

= V0
k + Van

k , (B11)

where V0
k contains the diagonal blocks of Vξ

k and Van
k contains

the off-diagonal blocks. The Hamiltonian is

Hξ

k =
[

hk+ h′
k

h′
k hk−

]
(B12)

with

hka =
[
ξka − aμB cos(θk + φ) �a

k

�a∗
k −ξka − aμB cos(θk + φ)

]
,

(B13)

where a = ± labels the band helicity and

h′
k = iμB sin(θk + φ)

[
e−iθk 0

0 eiθk

]
. (B14)

The matrix h′
k mixes bands with different helicities and may

be dropped when μB 
 |α|.
d. Spectral function. To zeroth order in h′

k, Hξ

k has the
energy eigenvalues

Ekas = −aμB cos(θk + φ) + sEka, (B15)

Eka =
√

ξ 2
ka + |�ka|2, (B16)

where a = ± is the helicity index and s = ± indicates
whether the quasiparticle branch is upward or downward dis-
persing. The Green’s function is

g0
ab(k, z) = δa,b

z̃2
a − E2

ka

[
z̃a + ξka �ka

�∗
ka z̃a − ξka

]
, (B17)

where a and b represent the different helicities, and z̃± =
z ± μB cos(θk + φ) with z a complex frequency. To obtain the
spectral function for (real) frequency x, we take

a0
ab(k, x) = 1

2π i

[
g0

ab(k, x − iγ ) − g0
ab(k, x + iγ )

]
= δa,b

2Eka

∑
±

±δ(±Eka − x − aμB cos(θk + φ))

×
[
ξka ± Eka �ka

�∗
ka −ξka ± Eka

]
. (B18)

In this expression, the δ functions are understood as
Lorentzians, δ(x) = π−1γ /(x2 + γ 2).

e. Thermal conductivity. We evaluate the transport kernel
�(x) from Eq. (16), using both the leading-order spectral
function, Eq. (B18), and the leading-order velocity operator
V0

k defined in Eq. (B11), which neglects interband mixing
due to the anomalous velocity term van

k . As noted before, this
calculation is zeroth order in interband mixing, but not zeroth
order in the magnetic field.
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FIG. 7. (a) Bogoliubov Fermi surface pockets in the full
Brillouin zone, along with the spin polarization of each quasipar-
ticle branch near the node. (b) Schematic of the reduced Brillouin
zone, which consists of the region 0 < kx < π , −π < ky < π . Nodal
points, at which the superconducting d-wave order parameter van-
ishes, are indicated by dots. Arrows located at each dot indicate the
directions of the normal and superconducting group velocities. Local
coordinate axes k1 and k2 are attached to each of the nodes, and are
parallel to the velocities. Each of the four nodes is labeled by its
quadrant (n = 1, 2) and its helicity (a = ±).

We take the Brillouin zone to be 0 < kx < π , −π < ky <

π , and sum over four nodal regions [Fig. 7(b)]; two of these
correspond to a sum over helicty index a; the other two will be
indicated by a sum over nodal index n = 1, 2. We use rotated
momenta k1 and k2 near each node, with the understanding
that they are rotated by 90◦ between nodes in regions 1 and 2,
and that the zero of the coordinate system is at the nodal point
for each (n, a). The advantage of this definition is that we can
write

ξka = h̄vF k1; �ka = eiaθn h̄v2k2, (B19)

for each node, with the approximation that θk can be treated
as constant in the neighborhood of each node. Recalling that
tan θk = sin kx/ sin ky, we obtain θ1 = π/4 for node 1 and

θ2 = 3π/4 for node 2. Similarly, we will assume that the
quasiparticle velocities depend only on the nodal index n, and
are constant in the vicinity of each node.

Under these transformations,

1

Nk

∑
k

′ → a2
0

2π2

∫
dkxdky (B20)

→ a2
0

2π2h̄2vF v2

2∑
n=1

∑
a=±

∫ ∞

0
EdE

∫ 2π

0
dζ , (B21)

where a0 is the lattice constant. The kernel for the thermal
conductivity is therefore

�xx(x) = 1

4π2

∑
a=±

2∑
n=1

∫ ∞

0

EdE

vF v2

∮
dζ

×Tr
[
a0

n,aa(E , ζ , x)vx
n,aaa0

n,aa(E , ζ , x)vx
n,aa

]
, (B22)

where we have made the linearized nodal approximation,
ξ = E cos ζ , �a = Eeiaθn sin ζ and ζ ∈ [0, 2π ]. The trace in
these equations is over particle-hole channels associated with
superconductivity, so the matrices are 2 × 2. The velocity
matrix vx

n,aa is the 2 × 2 matrix obtained from the top-left
(a = +) or bottom-right (a = −) block of V0

k. The superscript
x refers to the component of the quasiparticle velocity along
the x direction. Noting that vx

F = vF /
√

2 and vx
2 = −v2/

√
2

[Fig. 7(b)],

vx
n,aa = 1√

2

[
vF −eiaθnv2

−e−iaθnv2 −vF

]
. (B23)

In linearized nodal coordinates, the spectral function in
Eq. (B22) is

a0
n,aa(E , ζ , x) = 1

2

∑
s=±

δ[sE − x − aμB cos(θn + φ)]

×
[

1 + s cos ζ seiaθn sin ζ

se−iaθn sin ζ 1 − s cos ζ

]
. (B24)

Separating the thermal conductivity kernel into contributions
from the two helicity bands, �xx(x) = ∑

a �a(x), we obtain
for the + helicity band

�+(x) = 1

4π2vF v2

{∫ ∞

0
dE Eδ2[E − x − μB cos(θ1 + φ)]

}

× 1

8

∮
dζTr

[[
1 + cos ζ eiθ1 sin ζ

e−iθ1 sin ζ 1 − cos ζ

][
vF −eiθ1v2

−e−iθ1v2 −vF

][
1 + cos ζ eiθ1 sin ζ

e−iθ1 sin ζ 1 − cos ζ

][
vF −eiθ1v2

−e−iθ1v2 −vF

]]

+ 1

4π2vF v2

{∫ ∞

0
dE Eδ2[E + x + μB cos(θ1 + φ)]

}

× 1

8

∮
dζTr

[[
1 − cos ζ −eiθ1 sin ζ

−e−iθ1 sin ζ 1 + cos ζ

][
vF −eiθ1v2

−e−iθ1v2 −vF

][
1 − cos ζ −eiθ1 sin ζ

−e−iθ1 sin ζ 1 + cos ζ

][
vF −eiθ1v2

−e−iθ1v2 −vF

]]

+ 2

4π2vF v2

{∫ ∞

0
dE Eδ[E − x − μB cos(θ1 + φ)]δ[E + x + μB cos(θ1 + φ)]

}

× 1

8

∮
dζTr

[[
1 + cos ζ eiθ1 sin ζ

e−iθ1 sin ζ 1 − cos ζ

][
vF −eiθ1v2

−e−iθ1v2 −vF

][
1 − cos ζ −eiθ1 sin ζ

−e−iθ1 sin ζ 1 + cos ζ

][
vF −eiθ1v2

−e−iθ1v2 −vF

]]

+ (θ1 → θ2). (B25)
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Using the Lorentzian form for the delta function, the energy integrals easily give

γ 2

π2

∫ ∞

0
dE

E

[(E ∓ x̃)2 + γ 2]2
= 1

2π2

[
1 ± x̃

γ

(
π

2
± tan−1 x̃

γ

)]
, (B26)

γ 2

π2

∫ ∞

0
dE

E

[(E − x̃)2 + γ 2][(E + x̃)2 + γ 2]
= 1

2π2

γ

x̃
tan−1 x̃

γ
. (B27)

Performing the matrix multiplications, taking the traces, and integrating over the angle ζ gives

�+(x) =
(
v2

F + v2
2

)
8π3vF v2

{
2 + E

[
x + μB cos

(
π
4 + φ

)
γ

]
+ E

[
x + μB cos

(
3π
4 + φ

)
γ

]}
, (B28)

where

E (x) =
(

x + 1

x

)
tan−1 x. (B29)

A nearly identical calculation gives the contribution �−(x) to the thermal conductivity kernel from the − helicity bands.
�−(x) has the same form as Eq. (B28), but with μB → −μB. The total kernel is then

�xx(x) = 1

8π3

v2
F + v2

2

vF v2

{
4 +

∑
±

E
[

x ± μB cos
(

π
4 + φ

)
γ

]
+

∑
±

E
[

x ± μB cos
(

3π
4 + φ

)
γ

]}
. (B30)

The thermal conductivity follows from

κxx

T
= π

h̄dT 2

∫
dx x2 ∂ f (x)

∂x
�xx(x). (B31)

In the limit T → 0, this expression simplifies to

κxx

T
→ k2

Bπ3

3h̄d
�xx(0) = k2

B

12h̄d

v2
F + v2

2

vF v2

{
2 + E

[
μB cos

(
π
4 + φ

)
γ

]
+ E

[
μB cos

(
3π
4 + φ

)
γ

]}
. (B32)

As an important check, notice that as μB → 0, E → 1, and

κ0
xx

T
→ k2

B

3h̄d

v2
F + v2

2

vF v2
(B33)

which is the result first worked out by Durst and Lee [51].

APPENDIX C: DENSITY OF STATES: LARGE SOC LIMIT

In this section, we derive an expression for the DOS induced by the in-plane magnetic field in the limit of large SOC, namely
|α| � μB, γ .

From Eq. (B18), the spectral function is approximately

a0
aa(k, x) = 1

2

∑
s=±1

δ[sEka − x − aμB cos(θk + φ)]

[
1 + s cos ζ s sin ζ

s sin ζ 1 − s cos ζ

]
. (C1)

For the residual DOS at the Fermi energy, we set x = 0 and sum k over the reduced Brillouin zone [Fig. 7(b)]. Since both
helicities make identical contributions to the DOS, we calculate the result for the positive helicity and multiply the result by 2.
Making use of Eq. (B21), we obtain

ρ(εF ) = 2

Nk

∑
k

′
[a0

++(k, 0)]11 = a2
0

2π2vF v2

2∑
n=1

∑
s=±

∮
dζ

∫ ∞

0
EdEδ[sE + μB cos(θn + φ)], (C2)

where θ1 = π
4 and θ2 = 3π

4 . Again, substituting Lorentzians for the delta functions, we get

ρ(εF ) = a2
0γ

π2vF v2

2∑
n=1

[
ln

�2

[μB cos(θn + φ)]2 + γ 2
+ 2

μB cos(θn + φ)

γ
tan−1 μB cos(θn + φ)

γ

]
, (C3)
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where � is a cutoff. The change in the DOS induced by the magnetic field is obtained by subtracting off the B = 0 result,

�ρ(εF ) = 2a2
0

π2vF v2

2∑
n=1

[
γ ln

γ√
[μB cos(θn + φ)]2 + γ 2

+ μB cos(θn + φ) tan−1 μB cos(θn + φ)

γ

]
. (C4)

The change in the linear specific heat coefficient due to the magnetic field is then

�γ0 = lim
T →0

�cv

T
= π2

3
k2

B�ρ(εF ). (C5)
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