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Variational wave functions for Sachdev-Ye-Kitaev models
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Given a class of q-local Hamiltonians, is it possible to find a simple variational state whose energy is a
finite fraction of the ground-state energy in the thermodynamic limit? Whereas product states often provide
an affirmative answer in the case of bosonic (or qubit) models, we show that Gaussian states fail dramatically
in the fermionic case, such as for the Sachdev-Ye-Kitaev (SYK) models. This prompts us to propose a new
class of wave functions for SYK models inspired by the variational coupled cluster algorithm. We introduce
a static “(0+0)-dimensional” large-N field theory to study the energy, two-point correlators, and entanglement
properties of these states. Most importantly, we demonstrate a finite disorder-averaged approximation ratio of
r ≈ 0.62 between the variational and ground-state energy of the SYK model for q = 4. Moreover, the variational
states provide an exact description of spontaneous symmetry breaking in a related two-flavor SYK model.
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I. INTRODUCTION

Variational wave functions are at the heart of our under-
standing of a variety of condensed matter systems such as
quantum Hall systems [1], superconductors [2], and corre-
lated metals [3]. These wave functions provide an intuitive
description of these phases and are often useful for numerics.
Working with pure states also makes it possible to study en-
tanglement, a property which has been crucial to characterize
exotic phases of matter [4]. Furthermore, with the advent
of quantum simulators [5,6], and, in particular, of hybrid
quantum-classical variational algorithms [7–9], it is desirable
to find preparable states that can reach low-energy regimes of
strongly correlated Hamiltonians.

A related topic of recent interest is Hamiltonian complexity
[10], which studies the computational complexity of approx-
imating the ground state of certain classes of Hamiltonians.
These problems belong to the quantum Merlin-Arthur (QMA)
class since a verifier can check a solution (i.e., a quantum
state) efficiently on a quantum computer by measuring its
energy [11–13]. Whereas approximating the ground-state en-
ergy within a small additive error was shown to be QMA
complete for a wide range of Hamiltonians, the complexity of
approximating the ground-state energy density within finite
relative error is still undecided and is closely related to the
quantum probabilistically checkable proof (PCP) [14–18] and
no low-energy trivial states (NLTS) conjectures [19]. Proving
these conjectures would, roughly speaking, require finding
classes of Hamiltonians for which not only the ground state
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but also all states below a finite energy density are impossible
to reach with a simple ansatz.

Given a class of traceless Hamiltonians and a class of
ansatz wave functions, one can define a figure of merit called
the approximation ratio, given by rψ ≡ Eψ/EGS, where EGS

is the energy of the ground state and Eψ = minψ 〈ψ |H |ψ〉,
where ψ belongs to the class of ansatz wave functions. For
nontrivial Hamiltonians, simple wave functions (e.g., product
states) are of course not expected to reach an approxima-
tion ratio very close to 1. The question we aim to answer
instead is whether they can at least achieve rψ > 0 in the
thermodynamic limit. Remarkably, the answer can be shown
to be affirmative for a variety of bosonic (or qubit) mod-
els [14,16,20–23]. For example, for traceless two-local qubit
Hamiltonians of the type

H =
N∑

i, j=1

3∑
μ,ν=1

Jμ,ν
i, j σ

μ
i σ ν

j , (1)

where σ ν
j are Pauli matrices, Lieb showed that the approxi-

mation ratio of product states has a lower bound: rprod � 1/9
[20,22].

Our work is motivated by the following question: Can
similar results be obtained for q-local fermionic Hamiltonians
[22]? For fermionic systems, Gaussian states are a natural
analog of product states and include the Slater determinants
calculated with the Hartree-Fock method. However, for q > 2,
we will provide strong evidence that the approximation ratio
of Gaussian states goes to 0 in the thermodynamic limit:
rGauss → 0 for N → ∞. This highlights a fundamental differ-
ence between the bosonic and fermionic case. It also motivates
the following question: If Gaussian states are not up to the
task, is there any other class of tractable wave functions that
could provide a finite approximation ratio?

Rather than trying to make statements about all prob-
lems in the class, we study instances of q-local fermionic
Hamiltonians that are typical for a natural measure, which
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enables us to establish relations with the statistical mechanics
of disordered quantum systems. Namely, we will focus on a
paradigmatic example of disordered fermionic systems, the
Sachdev-Ye-Kitaev (SYK) models [24–26]. The model has
become a primary platform for studying non-Fermi-liquid
regimes [27–37], quantum many-body chaos and operator
complexity [26,29,38,39], thermalization [40–42], and dual-
ities between quantum-field theory and gravity [25,43–47].
Whereas a lot is known already about thermal ensembles in
SYK models, less is known about wave functions of typical
low-energy states. In fact, existing work on pure states in
SYK models has relied on thermal states in disguise, such as
thermofield double states [48,49] and Kourkoulou-Maldacena
(KM) states [50,51], and thus requires computation in a
thermal-field theory. We will propose instead a class of varia-
tional wave functions for which equal time observables can be
computed within a static (0+0)-dimensional (“0+0D”) field
theory.

This paper is organized as follows. In Sec. II, we formally
define the q-SYK model and construct a variational ansatz for
the model. In Sec. III, we show that the energy and particle
density of the ansatz can be evaluated exactly in the large-N
limit. In the same section, we compare the analytical predic-
tions for the ansatz with those obtained using the thermal-field
theory of the SYK model. We discuss the nature of entangle-
ment for the ansatz in Sec. IV by computing the scaling of
the second Rényi entropy with subsystem size. Finally, we
provide a discussion of our findings in Sec. V. Additional
details about various results are provided in the Appendixes
and referred to in the main text.

II. MODEL AND ANSATZ

The q-SYK model is defined as

HSYK = g
∑

1 � i1 < · · · < i(q/2) � N,

1 � j1 < · · · < j(q/2) � N

× Ji1···i(q/2); j1··· j(q/2) ĉ
†
i1

· · · ĉ†
i(q/2)

ĉ j1 · · · ĉ j(q/2) , (2)

with i, j ∈ [1, N] and with g = (q/2)!/
√

(q/2)( N
2 )

q
2 − 1

2 . The
symbols ĉ†

i and ĉi denote fermionic creation and annihila-
tion operators, respectively. The couplings Ji1···i(q/2); j1··· j(q/2) are
Gaussian random numbers which satisfy appropriate sym-
metrization conditions [52]. The variance is represented as J2

and will be set to 1 except when written explicitly. This Hamil-
tonian has an extensive energy bandwidth which is symmetric
around zero due to particle-hole symmetry [53].

The simplest variational wave functions for a fermionic
model are Gaussian states (which include Slater determi-
nants), and the corresponding optimization procedure is the
celebrated Hartree-Fock method [54]. In quantum chemistry,
this technique typically recovers 99% of the electronic en-
ergy and is the basis for a variety of more sophisticated
approaches. By contrast, for SYK models with q > 2, an
elementary calculation (see Appendix A) shows that the en-
ergy bandwidth of Gaussian states (which is centered around
zero) scales subextensively with N . In the large-N limit,
Gaussian states therefore only reach a vanishing fraction of
the full many-body bandwidth of the SYK model, and their

FIG. 1. Constructing the wave function: The N orbitals are par-
titioned into left and right subsystems. The operator T̂ † moves q/2
fermions (with q = 4 in the figure) at a time from the right side to
the left side, with the same amplitude Ji1···i(q/2); j1··· j(q/2) as the corre-
sponding term in the Hamiltonian. Starting from a state |0̃〉 in which
the right side is filled with fermions and the left side is empty, the
variational wave function is constructed by repeated applications
of T̂ †.

disorder-averaged approximation ratio goes to zero. This is
a strong indication that the “worst-case” approximation ratio
of Gaussian states for q-local fermionic Hamiltonians with
q > 2 goes to 0 in the large-N limit, in contradiction to the
conjecture found in Ref. [22]. Intuitively, this happens since
minimizing the energy requires optimizing over the value of
q-point correlators, but these correlators are overconstrained
for a Gaussian state: Due to Wick’s theorem, all higher-order
correlators are simple functions of two-point correlators.

Since the Hartree-Fock method does not produce any use-
ful result, we take a different approach: Let us look for a
subset of terms in H which commute with each other and
for which the energy can be minimized easily. The selected
subset of terms should be extensive in order for the state to
have a finite approximation ratio; that is, it should contain a
number of terms which scales as Nq. We propose to construct
such a set by partitioning the system into two subsystems (see
Fig. 1), with NL sites on the left and NR = N − NL sites on the
right, and by keeping only terms with creation operators on
the left side and annihilation operators on the right side:

T̂ † = g
∑

i1 < · · · < i(q/2) ∈ L,

j1 < · · · < j(q/2) ∈ R

× Ji1···i(q/2); j1··· j(q/2) ĉ
†
i1

· · · ĉ†
i(q/2)

ĉ j1 · · · ĉ j(q/2) , (3)

where L = [1, . . . , NL] and R = [NL + 1, . . . , N]. The param-
eter p = NR/NL can be tuned at will, but we will focus on
p = 1 for now. It will be useful to define the partitioned-SYK
Hamiltonian,

HpSYK = T̂ + T̂ †, (4)

which contains an extensive subset of the terms of HSYK and
which is an example of the systems studied in Ref. [36].

Using this notation, the ansatz wave function is defined as

|ψ (a)〉 = 1√
N

exp(−aT̂ †)|0̃〉, (5)

where |0̃〉 is the state for which all states on the right (left)
are full (empty), a is a real variational parameter, and the nor-
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malization is given by N (a) = 〈0̃| exp(−aT̂ ) exp(−aT̂ †)|0̃〉.
The intuition behind this state is as follows: Starting from
a state that is empty on the left and fully occupied on the
right, we create a population of particles on the left and holes
on the right by applying the corresponding terms from the
Hamiltonian.

Interestingly, this wave function belongs to the class of
variational coupled cluster (VCC) states developed for quan-
tum chemistry [55–58]. This algorithm has the advantage
of being variational (as opposed to regular coupled cluster
[59,60]) but is usually limited to a very small number of
orbitals due to the factorial complexity of the method. By
contrast, we were able to perform VCC directly in the large-N
limit for a class of SYK models.

The disorder-averaged energy density for the state is given
by E (a) = 1

N 〈ψ (a)|HSYK|ψ (a)〉 and can be calculated (see
Appendix B for details) using

E (a) = 1

N
〈ψ (a)|HpSYK|ψ (a)〉 = − 1

N

∂ln(N )

∂a
, (6)

where we used the fact that the expectation value of the terms
which are present in HSYK but not in HpSYK vanishes after
disorder averaging.

III. LARGE-N THEORY

To enable the computation of ln(N ), we introduce a field-
theoretic approach similar to the fermionic path integral (see
Appendix B for details). First, we perform a particle-hole
transformation on the right side, whereby ĉi∈R = ĥ†

i∈R and
ĉ†

i∈R = ĥi∈R. We then define the fermionic-coherent states
|ci∈L〉, |hi∈R〉 for left and right, characterized by the Grassmann
numbers ci, c̄i and hi, h̄i, respectively, such that 〈ci|ĉ†

i = 〈ci|c̄i,
〈hi|ĥ†

i = 〈hi|h̄i. The disorder averaging is implemented using
the replica trick ln(N ) = limR→0[NR − 1]/R. This results
in a “static” action involving Grassmann numbers ci, hi with
no imaginary-time dynamics. Introducing the static Green’s
functions

Gc = −N−1
L

∑
i∈L

〈cic̄i〉, Gh = −N−1
R

∑
i∈R

〈hih̄i〉, (7)

along with the self-energies �c, �h, into the action allows
us to integrate the fermions ci, hi. The particle densities
in the left and right subsystems are simply given by ρL =
N−1

L

∑
i∈L〈ĉ†

i ĉi〉 = 1 + Gc and ρR = N−1
R

∑
i∈R〈ĥiĥ

†
i 〉 = −Gh,

respectively. For p = 1, particle conservation implies ρL +
ρR = 1, and thus Gc = Gh ≡ G and �c = �h = �. At the
saddle point, one finds

−G−1 = 1 + �,

� = −a2J2Gq−1, (8)

which are polynomial equations for G(a) and �(a) that can
easily be solved numerically. These relations derive from the
generating function ln(N ), which takes the form

−ln(N ) = −N

[
ln(1 + �) + �G + a2J2

q
Gq

]
, (9)

at the large-N saddle point. Interestingly, this generating func-
tional can be interpreted as a static limit of the free energy for

FIG. 2. Top: Particle densities on the left and right sides (ρL and
ρR, respectively). The densities are equal at as. Bottom: Variational
energy, with a minimum at amin.

the SYK model [26,29], given by

FSYK = −N

[
T ln det(∂τ + �) +

∫
dτ�(τ )G(β − τ )

+ (J2/q)
∫

dτG(τ )(q/2)G(β − τ )(q/2)

]
, (10)

where τ ∈ [0, β] denotes the imaginary-time variable and β =
T −1 is the inverse temperature. Indeed, if the imaginary-time
dynamics is eliminated by substituting ∂τ → 1, G(τ ) → G,
and �(τ ) → �, an expression similar to −ln(N ) in Eq. (9) is
recovered.

The energy density E (a) is calculated using Eq. (6) to give

E (a) = −2

q
aJ2Gq, (11)

where G is obtained by solving the saddle-point equations
(see Fig. 2). The most important point is that E (a) does not
decay with N , which means that the variational states have an
extensive bandwidth and thus a finite approximation ratio in
the large-N limit.

The variational energy has a single minimum as a function
of a (see Fig. 2, bottom), with the following properties:

amin = 1

J

(q + 1)
q−1

2

q
q
2

, (12)

Emin = −J
2

q

q
q
2

(q + 1)
q+1

2

. (13)

We can now compare Emin with the energy density of the
ground state of the SYK model (ESYK). The latter can be
obtained by taking the zero-temperature limit of FSYK [see
Eq. (10)]. We give a comparison as a function of q in Fig. 3(a).
For example, for q = 4, we find Emin = 8/25

√
5 ≈ −0.143

and ESYK ≈ −0.2295. Since we expect both Emin and ESYK

to be self-averaging, we define the disorder-averaged approx-
imation ratio as rψ = Emin/ESYK. We thus find rψ ≈ 0.62 for
q = 4. To put things into perspective, we have calculated that
Emin has the same energy density as the thermal ensemble of
the SYK model at temperature T/J ≈ 0.455.
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(a) (b)

FIG. 3. (a) Comparison between variational energy Emin and ex-
act ground-state energies of HSYK and HpSYK, for p = 1 and varying
q. We find Emin and EpSYK to be equal within our numerical accuracy
for q � 4. (b) Comparison between variational wave function (WF;
lines) and exact ground state of HpSYK (symbols), when q = 4, for
the energy and the particle densities in the left and right subsystems.

A peculiarity of |ψ (a)〉 is that the particle densities on the
left and right depend on a and are only equal for a = as =
2(q/2)−1/2 (see Fig. 2) [61]. Since as 
= amin, the variational
state with the lowest energy has an asymmetric particle den-
sity between left and right, in contrast to the ground state of
the original SYK model, for which all orbitals are at half fill-
ing. This discrepancy arises from the fact that our construction
aims at minimizing HpSYK, which contains only a subset of the
terms in HSYK, and creates an artificial distinction between the
two subsystems. The Hamiltonian HpSYK is actually interest-
ing in its own right as it can be understood as an example
of two-flavor SYK models, in which two SYK quantum dots
are coupled by q-body interactions, as studied in Ref. [36].
For q � 4, HpSYK was shown to have a low-temperature phase
which exhibits phase separation: One subsystem (say, the one
on the left) has density 1/(q + 1), and the other one has
density q/(q + 1). This phase has a gap to single-particle
excitations and spontaneously breaks particle-hole symmetry
and left-right interchange symmetry, but it conserves their
product.

Interestingly, |ψ (amin)〉 reproduces this density imbalance
perfectly: We find ρL,min = 1 − ρR,min = 1/(q + 1). Further-
more, we find Emin to be equal to the ground-state energy
of HpSYK (which can be obtained in a similar fashion
as ESYK; see Appendix C) within numerical accuracy for
q � 4. We checked that this agreement even extends to
the asymmetric case of p = NR/NL 
= 1. In the context of
two-flavor SYK models, this ratio gives the relative size
of the two dots [36]. The comparison for ρL, ρR, and
Emin with the exact values is shown in Fig. 3(b), for q =
4. The only discrepancy appears as p → 0, which is ex-
pected since HpSYK undergoes an additional phase transition
to a gapless phase at pc � 0.072 [36]. Another discrep-
ancy appears for q = 2, in which case the variational
wave function fails to describe the Fermi liquid phase of
HpSYK which survives down to T = 0 (see Appendix D
for more details).

FIG. 4. Second Rényi entropy S(2) of the state |ψ (a)〉 as a func-
tion of partition size x for multiple values of a and for p = 1 and
q = 4. Inset: S(2)(x = 0.5) and ρL as a function of a. The state is
maximally entangled at the left-right symmetric value of a = as. The
entanglement decays monotonically with a beyond that value.

IV. ENTANGLEMENT

The entanglement properties of |ψ (a)〉 can also be cal-
culated using a recently developed formalism [37]. Some of
the earlier studies on entanglement in the SYK model can
be found in Refs. [62–65]. We focus on the second Rényi
entropy, S(2) = −N−1ln Tr[ρ̂2

A], for a bipartition of the system
into regions A and B, and where ρ̂A = TrB|ψ (a)〉〈ψ (a)| is
the reduced-density matrix. The partition is parametrized by
x ∈ [0, 1], which gives the proportion of orbitals in A. For
x � 0.5 we take region A to be entirely composed of the left-
side fermions, while x > 0.5 also includes a portion (x − 0.5)
of the right-side fermions. The large-N limit for S(2) is ob-
tained using an approach similar to calculating ln(N ) (see
Appendix E).

The results for S(2) are shown in Fig. 4 for q = 4. The
x dependence of S(2) resembles the one obtained for KM
states in the SYK model [51], with a small-x linear behavior
indicative of a volume law of entanglement and a maximum
at x = 0.5. Starting from 0 at a = 0, the entanglement grows
until the left-right symmetric point a = as is reached, after
which it decays monotonically (see Fig. 4 inset). Remarkably,
we find S(2)(x) = min(x, 1 − x) ln(2) at a = as, which means
|ψ (as)〉 is maximally entangled between the left and right
subsystems.

V. DISCUSSION

In this paper, we have highlighted a fundamental difference
between bosonic (or qubit) and fermionic q-local Hamilto-
nians, as regards the complexity of finding wave functions
with a finite approximation ratio (Eψ/EGS > 0) in the thermo-
dynamic limit. We showed that for a prototypical fermionic
model, the SYK model, the bandwidth of Gaussian states
scales subextensively with system size, leaving a parametri-
cally large gap between the ground state and Gaussian states.
This raises the question of whether other classes of tractable
wave functions could (partially) fill this gap. We took a step
in that direction by proposing a wave function inspired by the
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variational coupled cluster algorithm with a disorder-averaged
approximation ratio of r ≈ 0.62.

From a physical perspective, this wave function is eas-
ily tractable, since it is described by a static large-N field
theory for which saddle-point equations are simply given by
polynomial equations. It remains, however, unpractical from a
computational point of view since a “brute-force” calculation
of its properties would have factorial complexity on a classical
computer. Furthermore, to the best of our knowledge, there is
no efficient algorithm to prepare a VCC state on a quantum
computer. It is therefore desirable to find other classes of
wave functions with r > 0 which could efficiently be stud-
ied with a classical or quantum computer. Unitary coupled
cluster states are particularly promising regarding the latter
possibility [7,8,66,67] and could be studied by extending the
techniques developed here.

Moreover, our approach of focusing on a subset of terms
in the SYK Hamiltonian could be transposed to other versions
of SYK models with a reduced number of terms, such as low-
rank SYK [68] and sparse SYK [69,70]. More generally, we
surmise that large-N techniques and SYK models could prove
a useful tool in the search for new variational wave functions.
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APPENDIX A: SUBEXTENSIVE SCALING OF ENERGY
FOR GAUSSIAN STATES

In this Appendix we show that the energy bandwidth of
Gaussian states is subextensive for the SYK model with q >

2. We start with a derivation specific to q = 4 and then treat
the more general case by mapping it to a classical spin-glass
model.

Case of q = 4. We use the Majorana version of the SYK
model for convenience, written as

H = − 1

N3/2

∑
i jkl

Ji jklγiγ jγkγl , (A1)

where γi represent the Majorana fermions with {γi, γ j} = δi j .
Using Wick’s theorem and the permutation properties of Ji jkl ,
the expectation value of the Hamiltonian for an arbitrary
Gaussian state can be written as

〈H〉 = − 3

N3/2

∑
i jkl

Ji jkl〈γiγ j〉〈γkγl〉

= −12
1

N3/2

∑
i < j, k < l

Ji jkl〈γiγ j〉〈γkγl〉. (A2)

Interpreting Ji< j,k<l as a real symmetric matrix and Li< j ≡
i〈γiγ j〉 as a vector, we go to the eigenbasis of J , leading to

〈H〉 = 12
1

N3/2

∑
i < j, k < l

Ji jkl Li jLkl = 12
1

N3/2

∑
μ

λμL2
μ,

(A3)

where λμ are the eigenvalues of Ji< j,k<l and Lμ are its eigen-
vectors. Minimizing 〈H〉 now amounts to minimizing this
quadratic form, but with an extensive number of constraints
on the values of Lμ in order for them to be consistent with
a Gaussian state. In order to obtain a nontrivial bound on
〈H〉, it is sufficient to take into account the simplest of such
constraints, which sets the norm of the vector L:∑

μ

L2
μ =

∑
i< j

L2
i j = N/8. (A4)

Minimizing the quadratic form under this single constraint is
straightforward and leads to the following bound:

〈H〉 � 12
1

N3/2

N

8
λmin, (A5)

where λmin is the smallest eigenvalue of J .
We now need to find the scaling of λmin. In the large-N

limit, we expect the matrix Ji< j,k<l to behave as a random
matrix of dimension O(N2) × O(N2) and thus to have a semi-
circle distribution of eigenvalues with radius O(N ) (this was
verified numerically for N up to 200). We therefore expect
λmin to be a negative number of order N . From Eq. (A5), this
means that the bandwidth of Gaussian states scales at most
as

√
N (whereas the full bandwidth scales as N since it is

extensive).
General case. We can show that the above subextensive

scaling also holds when q > 4 by mapping the problem to the
p-spin spherical spin-glass model [72]. To do this, we start
from the following Hamiltonian:

H = iq/2

N (q−1)/2

∑
i1···iq

Ji1···iqγi1 · · · γiq . (A6)

We compute the expectation value for a Gaussian state in a
similar way as above, leading to

〈H〉 = iq/2

N (q−1)/2

q!

(q/2)!

×
∑

(i1<i2 ),(i3<i4 ),...,(iq−1<iq )

Ji1,...,iq〈γi1γi2〉 · · · 〈γiq−1γiq〉.

Denoting a1 = (i1 < i2) and similarly for the other indices,
we rewrite the expectation value as

〈H〉 = 1

N (q−1)/2

q!

(q/2)!

∑
a1,...,aq/2

Ja1···aq/2 La1 · · · Laq/2 , (A7)

where La is again understood as an [N (N − 1)/2]-
dimensional vector. Even though there exists a large number
of constraints on the vector L, we find again that it is sufficient
to impose the simplest one (

∑
a L2

a = N/8) to obtain a nontriv-
ial bound. This will provide the spherical constraint for the
mapping to the spherical p-spin model. The p-spin spherical
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model is defined as [72]

Hp-spin = 1

M (p−1)/2

M∑
a1···ap=1

Ja1···apsa1 · · · sap, (A8)

with a ∈ 1, . . . , M and
∑

a s2
a = M, and where Ja1···ap are

Gaussian-distributed random numbers. This model is exten-
sive: Its bandwidth scales as M, the number of classical spins.

We can now make the identifications

p = q/2, (A9)

M = N (N − 1)

2
, (A10)

sa = 2
√

N − 1La (A11)

in order to relate the two models. This finally leads to

〈H〉 � 1

N (q−1)/2

q!

(q/2)!

1

(2
√

N − 1)q/2
M (p−1)/2Ep-spin,

(A12)

where Ep-spin is the ground-state energy of an instance of the
spherical p-spin model for which the couplings Ja1,...,ap are
given by the corresponding J(i1<i2 ),...,(iq−1,iq ) of the SYK Hamil-
tonian. We now make the assumption that these instances of
the p-spin spherical model are typical, or in other words that
the correlations present in J(i1<i2 ),...,(iq−1,iq ) due to permutation
symmetries can be neglected. If that is the case, we can use
the fact that the spherical p-spin model is extensive to deduce

that Ep-spin scales as M ∼ O(N2). By using this relation, the
right-hand side of Eq. (A12) can be shown to scale as N

3
2 − q

4 .
The bandwidth of Gaussian states therefore scales at most as
N

3
2 − q

4 , which is subextensive for q > 2. Setting q = 2, we find
a Gaussian state bandwidth which is extensive, as expected
since in that case the ground state is a Gaussian state. For
q = 4, we find

√
N as previously shown. For larger q, the

Gaussian states’ bandwidth gets narrower and narrower.

APPENDIX B: LARGE-N ANALYSIS OF THE
VARIATIONAL WAVE FUNCTION

In this Appendix, we discuss the details pertaining to the
computation of ln(N ) [see Eq. (9)] in the large-N limit. As
stated in the main text, the said quantity works as a generating
functional for computing observables and correlation func-
tions for the variational wave function. Since calculating the
disorder average of the ln term directly is hard, we use the
replica trick to represent the term as

ln(N ) = lim
R→0

NR − 1

R , (B1)

where R denotes the number of replicas. The normaliza-
tion N (a) = 〈0̃| exp(−aT̂ ) exp(−aT̂ †)|0̃〉 [see Eq. (3) for
the definition of T̂ ] can be written as an integral over the
fermionic-coherent states |ci∈L〉, |h j∈R〉, representing the par-
ticles and holes, such that

NR =
(∫

D[c, h]〈0̃| exp(−aT̂ )|ci, h j〉〈ci, hi| exp(−aT̂ †)|0̃〉
)R

=
∫

D[c, h] exp

⎡
⎢⎢⎢⎣

R∑
r=1

(
−
∑
i∈L

c̄i,rci,r −
∑
j∈R

h̄ j,rh j,r

)
+
∑

r

(−a)g

×
∑

i1 < · · · < i(q/2) ∈ L,

j1 < · · · < j(q/2) ∈ R

(
Ji1···i(q/2); j1··· j(q/2) c̄i1,r · · · c̄i(q/2),r h̄ j(q/2),r · · · h̄ j1,r + J∗

i1···i(q/2); j1··· j(q/2)
h j1,r · · · ci1,r

)
⎤
⎥⎥⎥⎦, (B2)

where the Grassmann numbers c̄ir , cir , h̄ir , hir are indexed by the replica index r and the site index i. Contrary to usual thermal-
field theory, the Grassmann numbers do not require an imaginary-time τ index since the terms in the cluster operator T̂ commute.
Disorder-averaging Eq. (B2) over all possible realizations of Ji1···i(q/2); j1··· j(q/2) gives us

N R =
∫

D[c, h] exp

[∑
r

(
−
∑
i∈L

c̄ircir −
∑
j∈R

h̄ jrh jr

)
+ 2a2J2

q(
√

NLNR)q−1

∑
r1,r2

(∑
i∈L

c̄i,r1 ci,r2

)q/2(∑
j∈R

h̄ j,r1 h j,r2

)q/2]
. (B3)

To obtain the large-N limit of the above integral, we introduce the static Green’s functions Gc, Gh and demand that they must
satisfy

Gc(r1, r2) = − 1

NL

∑
i∈L

〈
cir1 c̄ir2

〉
,

Gh(r1, r2) = − 1

NR

∑
j∈R

〈
hir1 h̄ir2

〉
(B4)
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at the large-N saddle point. The above constraints can be
incorporated into Eq. (B3) using the static self-energies �c,
�h such that

NR =
∫

D[c, h]D[G, �]

× exp

[∑
r1,r2,i

−c̄ir1 [δr1,r2 + �c(r1, r2)]cir2

−
∑

r1,r2, j

h̄ jr1 [δr1,r2 + �h(r1, r2)]h jr2

]

× exp

[∑
r1,r2

NL�c(r1, r2)Gc(r2, r1)

+ NR�h(r1, r2)Gc(r2, r1)

+ 2a2J2
√

NLNR

q
Gc(r1, r2)q/2Gh(r1, r2)q/2

]
, (B5)

where �c,h act as Lagrange multipliers. We integrate out the
fermions from the above to get

NR =
∫

D[G, �] exp(−S[G, �]),

S[G, �] = −NL ln[det(1 + �c)] − NR ln[det(1 + �h)]

−
∑
r1,r2

(
NL�c(r1, r2)Gc(r2, r1)

+ NR�h(r1, r2)Gh(r2, r1)

+ 2a2J2
√

NLNR

q
Gc(r1, r2)q/2Gh(r1, r2)q/2

)
,

(B6)

where we have introduced the effective action S[G, �] and 1
represents the identity matrix in the replica space. We evaluate
the integral in Eq. (B6) at the saddle point for the action
S. Furthermore, we shall consider a replica-diagonal ansatz
for Gc,h, �c,h, i.e., Gc,h(r1, r2) = δr1,r2 Gc,h and �c,h(r1, r2) =
δr1,r2�c,h. This results in the following simplified form for the
effective action:

S[G, �] = −RN (1 + p)−1

(
ln (1 + �c) + p ln (1 + �h)

+�cGc + p�hGh + 2a2J2√p

q
Gq/2

c Gq/2
h

)
, (B7)

where we have used the site ratio p = NR/NL and the total
number of sites N = NR + NL. Minimizing the above replica-
diagonal action with respect to Gc,h, �c,h, we get the saddle-
point conditions

(1 + �c,d )−1 = −Gc,d ,

�c = −√
pa2J2Gq/2−1

c Gq/2
d ,

�d = −a2(1/
√

p)J2Gq/2−1
d Gq/2

c . (B8)

The value for ln(N ) at the saddle point is given by

ln(N ) = lim
R→0

exp−S[G,�] −1

R

= N (1 + p)−1

(
ln (1 + �c) + p ln (1 + �h)

+�cGc + p�hGh + 2a2J2√p

q
Gq/2

c Gq/2
h

)
. (B9)

The expression for ln(N ) given in Eq. (9) of the main text is
then obtained by setting p = 1 and Gc = Gh = G, �c = �h =
�, so that

ln(N ) = N

[
ln(1 + �) + �G + a2J2

q
Gq

]
. (B10)

Similarly, the saddle-point conditions in Eq. (B8) take the
form

−G−1 = 1 + �,

� = −a2J2Gq−1, (B11)

as reported in Eq. (8) of the main text.
Energy density. Having obtained the saddle-point solutions

Gc, Gh, we can now calculate the energy density for the
ansatz with respect to the full SYK Hamiltonian, which can
be written as HSYK = HpSYK + Hother. The HpSYK [defined in
Eq. (4)] encodes the scattering of q/2 fermions from left (L)
to right (R) and vice versa, whereas Hother denotes the other
scattering processes not accounted for by HpSYK. It is easy to
show that after disorder averaging over Ji1···i(q/2); j1··· j(q/2) ,

E (a) = 1

N
〈ψ (a)|HSYK|ψ (a)〉

= 1

N
〈ψ (a)|HpSYK|ψ (a)〉 + 1

N
〈ψ (a)|Hother|ψ (a)〉︸ ︷︷ ︸

=0

= 1

N
〈ψ (a)|HpSYK|ψ (a)〉, (B12)

since the Ji1···i(q/2); j1··· j(q/2) in Hother will appear an odd num-
ber of times and average out to zero. We now work with
〈ψ (a)|HpSYK|ψ (a)〉. Since HpSYK = T̂ + T̂ † [see Eq. (4)], we
have

−∂a ln(N ) = − 1

N
∂a ln(〈0̃| exp(aT̂ ) exp(−aT̂ †)|0̃〉)

= 1

N

〈0̃| exp(aT̂ )(T̂ + T̂ †) exp(−aT̂ †)|0̃〉
N

= 〈ψ (a)|HpSYK|ψ (a)〉, (B13)

i.e., E (a) = 1
N 〈ψ (a)|HpSYK|ψ (a)〉 = −(1/N )∂aln(N ), which

was reported in Eq. (6) of the main text. Proceeding forward,
we can calculate E (a) from Gc, Gh as shown below:

E (a) = 1

N
〈ψ (a)|HpSYK|ψ (a)〉 = −∂a

lnN
NL + NR

= −|a|4J2

q

√
p

1 + p
Gq/2

c Gq/2
h , (B14)

where we have used Eq. (B9) to take the derivative.
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Density of particles and holes. The density of particles,
say, for the left-side fermions, is obtained by calculating the
expectation value

ρL = 〈0̃| exp(−aT̂ )ĉ†
i ĉi exp(−aT̂ †)|0̃〉

〈0̃| exp(−aT̂ ) exp(−aT̂ †)|0̃〉 (B15)

in the large-N limit. Instead of evaluating the above expres-
sion directly, we use a chemical-potential-like source term μ,
such that

ρL = ∂μ→0ln〈0̃| exp(−aT̂ ) exp(μĉ†
i ĉi ) exp(−aT̂ †)|0̃〉.

(B16)

The advantage of using a source term is that we can re-
peat the same analysis used for computing the energy earlier
[Eq. (B14)] in this case as well. At the end of this, we get the
following saddle-point equations:

[1 + (1 + μ)�c]−1(1 + μ) = −Gc,

(1 + �h)−1 = −Gh,

�c = −a2J2Gq/2−1
c Gq/2

h ,

�h = −a2J2Gq/2−1
h Gq/2

c , (B17)

which give back the saddle-point conditions of Eq. (B8) in the
μ → 0 limit. The corresponding replica-diagonal action for
the ln(· · · ) term in Eq. (B16) is found to be

SρL (μ) = −R
[

NL ln det [1 + (1 + μ)�c]

+ NR ln det [1 + �h] + 2a2J2
√

NLNR

q
Gq/2

c Gq/2
d

+ NL�cGc + NR�hGh

]
. (B18)

Using the fact that ln〈0̃| exp(−aT̂ ) exp(μĉ†
i ĉi ) exp(−aT̂ †)|0̃〉

= SρL (μ)/R, we compute the derivative of SρL (μ)/R with
respect to μ as shown below:

∂μ→0ln〈0̃| exp(−aT̂ ) exp(μĉ†
i ĉi ) exp(−aT̂ †)|0̃〉

= N

2
[1 + (1 + μ)�c]−1�c

= N

2

�c

(1 + �c)
= N

2
[1 − (1 + �c)−1] = N

2
[1 + Gc],

which according to Eq. (B16) gives us the density of particles
on the left side

ρL = 1 + Gc. (B19)

Similarly, the density of holes on the right side, i.e., 〈ĥ†
i ĥi〉,

can be calculated by using the source term exp(μĥ†
i ĥi ) in

place of exp(μĉ†
i ci ) in Eq. (B16) to get 〈ĥ†

i ĥi〉 = 1 + Gh, from
which the density of right-side fermions (particles) can be
determined to be

ρR = 1 − 〈ĥ†
i ĥi〉 = −Gh. (B20)

APPENDIX C: THERMAL-FIELD THEORY FOR THE
PARTITIONED-SYK MODEL

We now discuss the the thermal-field theory for the
partitioned-SYK model. This will allow us to compute the
exact properties for the ground state when the temperature T
is extrapolated to zero. We reiterate the Hamiltonian for the
partitioned-SYK model for ease of access:

HpSYK = g
∑

i1 < · · · < i(q/2) ∈ L,

j1 < · · · < j(q/2) ∈ R

× Ji1···i(q/2); j1··· j(q/2) ĉ
†
i1

· · · ĉ†
i(q/2)

c j1 · · · c j(q/2)

+ H.c., (C1)

where g = (q/2)!/
√

q/2(
√

NLNR)
q−1

2 . The partition function
Z = Tr[exp(−βHpSYK )], where β = T −1, can be written as a
path integral

Z =
∫

D[c̄, c] exp (−S[c̄, c]),

S[c̄, c] =
∫ β

0
dτ

[∑
i

c̄i(τ )∂τ ci(τ ) + g
∑

i1 < · · · < i(q/2) ∈ L,

j1 < · · · < j(q/2) ∈ R

× (Ji1···i(q/2); j1··· j(q/2) c̄i1 · · · c̄i(q/2) c j1 · · · c j(q/2) + H.c.
)]

,

(C2)

using the fermionic-coherent states |ci=1···N 〉 [36] described
by antiperiodic Grassmann fields c̄i(τ ), ci(τ ) living on the
imaginary-time interval τ ∈ [0, β]. In the above equation,
we have defined the action S[c̄, c] whose saddle point
would give us access to the large-N limit. Since we are in-
terested in the disorder-averaged free energy

F = −T ln Z, (C3)

we use the replica trick, ln(Z ) = limR→0(ZR − 1)/R, yet
again, to perform the averaging over Ji1···i(q/2); j1··· j(q/2) . The

replica-partition function ZR is found to be

ZR =
∫

D[c̄, c] exp (−SR[c̄, c]),

SR =
∫ β

0
dτ1,2

R∑
r1,r2=1

[
N∑

i=1

c̄ir1 (τ1)δr1,r2δ(τ1 − τ2)∂τ1 cir1 (τ2)

− 2J2

q(
√

NLNR)q−1

(∑
i∈L

c̄i,r1 (τ1)ci,r2 (τ2)

)q/2

×
(∑

j∈R

c j,r1 (τ1)c̄ j,r2 (τ2)

)q/2]
, (C4)
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where SR denotes a new action over replicas and the Grassmann fields c̄i,r1 (τ ), ci,r2 (τ ) have picked up the additional replica
indices r1, r2. Introducing the large-N Green’s functions

G(r1,r2 )
L (τ1, τ2) = − 1

NL

∑
i∈L

〈
cir1 (τ1)c̄ir2 (τ2)

〉
,

G(r1,r2 )
R (τ1, τ2) = − 1

NR

∑
j∈R

〈
cir1 (τ1)c̄ir2 (τ2)

〉
(C5)

for the left-side and right-side fermions along with their associated self-energies �
(r1,r2 )
L (τ1, τ2) and �

(r1,r2 )
R (τ1, τ2) and subse-

quently integrating out the fermionic fields c̄i, ci, etc., we arrive at the following action:

SR[G, �] = −NL ln det
[
δr1,r2δ(τ1 − τ2)∂τ1 + �L

]− NR ln det
[
δr1,r2δ(τ1 − τ2)∂τ1 + �R

]
− 2J2

√
NLNR(−1)q/2

q

∫ β

0
dτ1,2

R∑
r1,r2=1

G(r1,r2 )
L (τ1, τ2)q/2G(r2,r1 )

R (τ2, τ1)q/2

−
∫ β

0
dτ1,2

R∑
r1,r2=1

[
NL�

(r1,r2 )
L (τ1, τ2)G(r2,r1 )

L (τ2, τ1) + NR�
(r1,r2 )
R (τ1, τ2)G(r2,r1 )

R (τ2, τ1)
]
, (C6)

such that ZR = ∫ D[G, �] exp (−SR[G, �]). Assuming
time-translational invariance and a replica-diagonal ansatz for
the saddle point, i.e., G(r1,r2 )

L,R (τ1, τ2) ∝ δr1,r2 GL,R(τ1 − τ2) and

the same for �
(r1,r2 )
L,R (τ1, τ2), we obtain a simplified form for

the replica action

SR = RNS

= N (1 + p)−1

[
− ln det

[
δ(τ1 − τ2)∂τ1 + �L

]
− p ln det

[
δ(τ1 − τ2)∂τ1 + �R

]
− 2J2√p(−1)q/2

q
β

∫ β

0
dτGL(τ )q/2GR(−τ )q/2

−β

∫ β

0
dτ [�L(τ )GL(−τ ) + p�R(τ )GR(−τ )]

]
,

(C7)

where we have used the site ratio p = NR/NL and defined the
action per replica S . The saddle-point conditions are found to
be

GL,R = − [δ(τ1 − τ2)∂τ1 + �L,R
]−1

,

�L(τ ) = (−1)q/2+1J2√pGR(τ )q/2GL(−τ )q/2−1,

�R(τ ) = (−1)q/2+1 J2

√
p

GL(τ )q/2GR(−τ )q/2−1, (C8)

by minimizing S with respect to G, �. The above equations
were solved iteratively [36], for a given value of T and p,
after discretizing the imaginary-time interval [0, β]. The free
energy can then be calculated by plugging the solutions of
Eq. (C8) into Eq. (C7) and using

F = −T ln(Z ) = −T lim
R→0

exp−S[G,�] −1

R = T NS. (C9)

The ground-state energy density EpSYK is calculated using the
thermodynamic relation

EpSYK = (F/N ) + T s, (C10)

where s = −(1/N )∂T F is the entropy density obtained from
F via numerical differentiation. The densities for the left- and
right-side fermions are obtained using

ρL,R = GL,R(τ = 0−), (C11)

which follows from the usual definition of the two-point
Green’s functions. We access the energy density and particle
density for the ground state by numerically extrapolating the
values for small but finite T to T → 0.

APPENDIX D: THE NONINTERACTING (q = 2)
PARTITIONED-SYK MODEL

In this Appendix, we study the noninteracting limit of the
partitioned-SYK model on a system of 2N sites. The Hamil-
tonian for the model is obtained by setting q = 2 in Eq. (3),
which is

HpSYK(q = 2) = T̂ + T̂ †, (D1)

where

T̂ † = 1√
N

∑
i j

Ji jc
†
i d j,

T̂ = 1√
N

∑
i j

J∗
i jd

†
j ci. (D2)

The single-particle spectrum of the above model was checked
to be gapless via exact diagonalization of the Hamiltonian.
The energy for our variational ansatz was also calculated
using the large-N approach discussed in the main text (see
Appendix B), and the minimized energy was found to be
Emin = −0.3849 . . .. Interestingly, due to the noninteracting
nature of the Hamiltonian, we can calculate this value for
energy analytically. We now discuss the analytical approach.
For simplicity, let us take Ji j to be a real N × N symmetric
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matrix, with Gaussian matrix elements having variance 1. We
can then diagonalize T̂ †, leading to

T̂ † =
∑

μ

εμC†
μDμ, (D3)

with εμ ∼ O(1) distributed according to the semicircle law.
The operators C†

μ, Cμ and D†
μ, Dμ represent the single-particle

eigenstates (orbitals) obtained after diagonalization and obey
fermionic anticommutation relations. We express the varia-
tional ansatz in the following way:

|ψ (a)〉 = e−aT̂ † |0〉
=
⊗

μ

(|01〉μ + (−a)εμ|10〉μ), (D4)

where
⊗

μ represents the direct product operation and |01〉μ
denotes the state where the Cμ orbital is occupied and the Dμ

orbital is empty, while the reverse is true for the state |10〉μ.
The energy for the above ansatz is then obtained as

E/2 = 〈ψ (a)|T̂ + T̂ †|ψ (a)〉
〈ψ |ψ〉

= −
∑

μ

εμ

aεμ

1 + a2ε2
μ

= −1

a
Tr

[
a2J 2

1 + a2J 2

]

= −1

a

∑
n�1

(−1)n+1a2nTr[J 2n]

= +1

a

∑
n�1

(−a2)nTr[J 2n], (D5)

where we have defined the matrix J = 1√
N

Ji j . We can now
take the disorder average using random matrix theory

Tr[J 2n] = NCn, (D6)

where Cn are the Catalan numbers. Using the disorder average,
we find

E/2N = −1

a
[F (−a2) − 1], (D7)

where F (x) is the ordinary generating function of the Catalan
numbers, given by

F (x) =
∑
n�0

Cnxn = 1 − √
1 − 4x

2x
. (D8)

This leads to an expression for the disorder-averaged energy

E/2N = −1 + 2a2 − √
1 + 4a2

2a3
. (D9)

The minimum of E/2N occurs at a = √
3/2, and the mini-

mum value is Emin = E/2N = −2/(3
√

3) � −0.38, which is
equal to the value reported at the beginning of this Appendix.

Comparison with exact ground state. The exact ground state
(GS) at half filling is given by

|GS〉 =
⊗

μ

(
1√
2
|01〉μ − 1√

2
sgn(εμ)|10〉μ

)
, (D10)
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4 -0.230 -0.143 0.623
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E

FIG. 5. (a) Comparison of the exact ground-state energy density
EpSYK (circles), obtained using thermal-field theory by extrapolating
T → 0, with the prediction from the variational ansatz [Eq. (5)] Emin

(squares). The match is excellent for q � 4 since the partitioned-
SYK model breaks particle-hole symmetry and develops a gap in
the single-particle spectrum. However, when q = 2, i.e., the non-
interacting limit of the partitioned-SYK model, the single-particle
spectrum is gapless, and the prediction from the ansatz deviates from
the exact value. The ground-state energy ESYK (denoted with crosses)
for the full q-body SYK model is shown for comparison. (b) Tabular
description of the data in (a) listing the numerical values for the
approximation ratio r = Emin/ESYK.

where the states |01〉μ, |10〉μ have the same meaning as de-
scribed below Eq. (D4). The ground-state energy density is
given by

EpSYK = − 1

2N

∑
μ

|εμ|. (D11)

Since εμ are distributed according to the semicircle law, taking
the disorder average leads to

EpSYK = −1

2

1

2π

∫ 2

−2
dε
√

4 − ε2|ε|

= − 4

3π
� −0.42. (D12)

Comparing the energy density of the wave function (Emin ≈
−0.38) with EpSYK, we find Emin > EpSYK (only slightly).
More importantly, we see that, unlike in the q � 4 case, the
wave function does not predict the energy exactly when the
ground state is gapless; see Fig. 5.

APPENDIX E: SCALING OF SECOND RÉNYI ENTROPY
WITHIN THE VARIATIONAL WAVE FUNCTION

In order to estimate entanglement within the variational
wave function, we divide the system into parts A (the
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subsystem) and B (the rest) and compute the reduced-density
matrix ρ̂A from the full density matrix

ρ̂ = |ψ (a)〉〈ψ (a)| = 1

N exp (−aT̂ †)|0̃〉〈0̃| exp (−aT̂ ).

(E1)
We denote the fraction of sites in A as x. We demonstrate the
computation of Rényi entropy for x = 0.5, i.e., A is composed
of the left-side fermions, and report the result for arbitrary x
at the end. Additionally, we also set the site ratio p = 1.0. The
reduced-density matrix ρ̂A, when x = 0.5, is found to be

ρ̂A = TrB[ρ̂] =
∫ ∏

i∈R

dh̄idhi exp

(
−
∑

i

h̄ihi

)
〈−hi|ρ̂|hi〉

= 1

N

∫ ∏
i

d2hi exp

(
−
∑

i

h̄ihi

)

× exp
(− (−1)(q/2)agJi jc

†
i1

· · · c†
i(q/2)

h̄ j1 · · · h̄ j(q/2)

)
× |0̃〉c〈0̃|c exp

(− agJ∗
i jh j(q/2) · · · h j1 ĉi(q/2) · · · ĉi1

)
, (E2)

where we have used the fermionic-coherent state |hi∈R〉 for the
holes and their corresponding Grassmann numbers h̄i, hi. The
symbol |0̃〉c denotes the vacuum for the ĉi∈L fermions. Since,
the second Rényi entropy is related to the second moment of
the reduced-density matrix, i.e.,

S(2) = −ln Tr
[
ρ̂2

A

]
, (E3)

we represent ρ̂2
A as an integral over Grassmann variables

ρ̂2
A = 1

N 2

[ ∫
d2hJ1 exp (−h̄ j1h j1)

× exp(−(−1)(q/2)gaJIJ ĉ†
I h̄J1)|0̃〉c〈0̃|c

× exp (−gaJ∗
IJhJ1ĉI )

][ ∫
d2hJ2 exp (−h̄ j2h j2)

× exp(−(−1)(q/2)gaJIJ ĉ†
I h̄J2)

× |0̃〉c〈0̃|c exp (−gaJ∗
IJhJ2ĉI )

]
, (E4)

where we have introduced the shorthand notation I =
{i1, . . . , i(q/2)}, J = { j1, . . . , j(q/2)}, cI = ci1 · · · ci(q/2) , etc.,
with sum over repeated indices (i, j, I , J) implied. We can
evaluate the trace of ρ̂2

A by introducing the Grassmann num-
bers c̄i1, ci1, to get

TrA
(
ρ̂2

A

) = 1

N 2

∫
d2cI1 exp (−c̄i1ci1)

×
[ ∫

d2hJ1 exp (−h̄ j1h j1) exp((−1)q+1gaJIJ

× c̄I1h̄J1)〈0̃|c exp(−gaJ∗
IJhJ1ĉI )

]

×
[ ∫

d2hJ2 exp(−h̄ j2h j2) exp(−(−1)(q/2)agJIJ

× ĉ†
I h̄J2)|0̃〉c exp (−agJ∗

IJhJ2cI1)

]
. (E5)

The expectation value appearing inside the trace can be
evaluated by introducing c̄i2, ci2, as shown below:

〈0̃|c exp(−agJ∗
IJhJ1ĉI ) exp((−1)1+(q/2)agJIJ ĉ†

I h̄J2)|0̃〉c

=
∫

d2cI2 exp(−c̄i2ci2)〈0̃|c exp(−agJ∗
IJhJ1ĉI )|ci2〉

× 〈ci2| exp(−(−1)(q/2)agJIJ ĉ†
I h̄J2)|0̃〉c

=
∫

d2cI2 exp(−c̄i2ci2) exp(−gaJ∗
IJhJ1cI2)

× exp(−(−1)(q/2)agJIJ c̄I2h̄J2). (E6)

Substituting the above expression into Eq. (E5), we get an
expression for TrA(ρ̂2

A) involving only Grassmann variables,
i.e.,

TrA
[
ρ̂2

A

] = 1

N 2

∫
d2cI1,I2d2hJ1,J2 exp(−S ), (E7)

where the action

S =
2∑

α=1

(−c̄iαciα − h̄ jαh jα )

+ ga
∑
I,J

[JIJ c̄I1h̄J1 + J∗
IJhJ1cI2

+ (−1)(q/2)JIJ c̄I2hJ2 + J∗
IJhJ2cI1]. (E8)

A useful point to note here is that the Grassmann variables
are now indexed by an additional number 1 or 2, since we are
dealing with the square of the density matrix ρ̂A. The disorder
averaging of ln Tr[ρ̂2

A] [see Eq. (E3)] over Ji1···i(q/2); j1··· j(q/2) can
be implemented in the same way, using the replica trick, as
was done for lnN (see Appendix B). Subsequently, the large-
N limit of the resulting replica action, as in the lnN case, can
also be obtained by introducing the static Green’s functions
[Gc,h, see Eq. (B4)] and self-energies (�c,h), except that this
time they are 2 × 2 matrices. Therefore we have

Gc = N−1
L

[∑
i∈L〈c̄i1ci1〉

∑
i∈L〈c̄i1ci2〉∑

i∈L〈c̄i2ci1〉
∑

i∈L〈c̄i2ci2〉
]
,

Gh = N−1
R

[∑
i∈R〈h̄i1hi1〉

∑
i∈R〈h̄i1hi2〉∑

i∈R〈h̄i2hi1〉
∑

i∈R〈h̄i2hi2〉

]
(E9)

and similar definitions for the self-energies. At the large-N
saddle point, the second Rényi entropy is found to be

S(2) = F1 + 2ln(N ), (E10)

where

F1 = − N

2
[ ln[det(1 + �c)] + ln[det(1 + �h)]

+ Tr[�cGc] + Tr[�hGh]]

− a2N

q
[Gc(2, 1)(q/2)Gh(1, 1)(q/2)

+ (−1)(q/2)Gc(2, 2)(q/2)Gh(1, 2)(q/2)

+ Gc(1, 1)(q/2)Gh(2, 1)(q/2)

+ (−1)(q/2)Gc(1, 2)(q/2)Gh(2, 2)(q/2)], (E11)
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where 1 represents the 2 × 2 identity matrix and ln(N ) is
obtained from Eq. (B10). Also, we have set J = 1. The 2 × 2
matrices G, �, appearing above, are found by solving the
saddle-point conditions

(1 + �c,h) = − G−1
c,h,

�c(1, 1) = − a2Gh(2, 1)(q/2)Gc(1, 1)(q/2)−1,

�c(1, 2) = − a2Gh(1, 1)(q/2)Gc(2, 1)(q/2)−1,

�c(2, 1) = − a2(−1)(q/2)Gh(2, 2)(q/2)Gc(1, 2)(q/2)−1,

�c(2, 2) = − a2(−1)(q/2)Gh(1, 2)(q/2)Gc(2, 2)(q/2)−1,

(E12)

with the equations for the components of �h obtained by
interchanging c ←−−→ h in the subscript. Similarly, the result for
arbitrary subsystem sizes x can be found to be

S(2)(x) = 2ln(N ) +
{

F (x) 0 � x � 0.5
F (1 − x) 0.5 � x � 1,

(E13)

where

F (x) = −N

2
[2x ln[det(1 + �A)]

+ (1 − 2x) ln[det(1 + �̃B)] + ln[det(1 + �B)]

+ 2xTr[�AGA] + (1 − 2x)Tr[�̃BG̃B] + Tr[�BGB]]

− a2N

q

[
(2xGA(2, 1) + (1 − 2x)G̃B(1, 1))

q
2 GB(1, 1)

q
2

+ (−1)
q
2 (2xGA(2, 2) − (1 − 2x)G̃B(1, 2))

q
2 GB(1, 2)

q
2

+ (2xGA(1, 1) + (1 − 2x)G̃B(2, 1))
q
2 GB(2, 1)

q
2

+ (−1)
q
2 (2xGA(1, 2) − (1 − 2x)G̃B(2, 2))

q
2 GB(2, 2)

q
2
]
,

(E14)

and the saddle-point conditions are given by

GA,B = − (1 + �A,B)−1,

G̃B = − (1 + �̃B)−1,

�11
A = − a2GB(2, 1)q̃[2xGA(1, 1)

+ (1 − 2x)G̃B(2, 1)]q̃−1,

�12
A = − a2GB(1, 1)q̃[2xGA(2, 1)

+ (1 − 2x)G̃B(1, 1)]q̃−1,

�21
A = − a2[−GB(2, 2)]q̃[2xGA(1, 2)

− (1 − 2x)G̃B(2, 2)]q̃−1,

�22
A = − a2[−GB(1, 2)]q̃[2xGA(2, 2)

− (1 − 2x)G̃B(1, 2)]q̃−1,

�̃11
B = − a2GB(1, 1)q̃[2xGA(2, 1)

+ (1 − 2x)G̃B(1, 1)]q̃−1,

�̃12
B = − a2GB(2, 1)q̃[2xGA(1, 1)

+ (1 − 2x)G̃B(2, 1)]q̃−1,

�̃21
B = − a2[−GB(1, 2)]q̃[2xGA(2, 2)

− (1 − 2x)G̃B(1, 2)]q̃−1,

�̃21
B = − a2[−GB(2, 2)]q̃[2xGA(1, 2)

− (1 − 2x)G̃B(2, 2)]q̃−1,

�11
B = − a2GB(1, 1)q̃−1[2xGA(2, 1)

+ (1 − 2x)G̃B(1, 1)]q̃,

�12
B = − a2GB(2, 1)q̃−1[2xGA(1, 1)

+ (1 − 2x)G̃B(2, 1)]q̃,

�21
B = − a2[−GB(1, 2)]q̃−1[2xGA(2, 2)

− (1 − 2x)G̃B(1, 2)]q̃,

�22
B = − a2[−GB(2, 2)]q̃−1[2xGA(1, 2)

− (1 − 2x)G̃B(2, 2)]q̃, (E15)

where we have defined q̃ = (q/2). Here, GA (G̃B) represents
the Green’s function for the left-side fermions in A (B), and
GB represents the Green’s function for the right-side fermions
in B. The same convention applies for the self-energies as
well. When we substitute x = 0.5 into Eqs. (E14) and (E15),
G, �A,B → G, �c,h while the terms involving G̃B drop out,
and we recover Eqs. (E11) and (E12), respectively.
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