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Kitaev materials are promising materials for hosting quantum spin liquids and investigating the interplay of
topological and symmetry-breaking phases. We use an unsupervised and interpretable machine-learning method,
the tensorial-kernel support vector machine, to study the honeycomb Kitaev-� model in a magnetic field. Our
machine learns the global classical phase diagram and the associated analytical order parameters, including
several distinct spin liquids, two exotic S3 magnets, and two modulated S3 × Z3 magnets. We find that the
extension of Kitaev spin liquids and a field-induced suppression of magnetic order already occur in the large-S
limit, implying that critical parts of the physics of Kitaev materials can be understood at the classical level.
Moreover, the two S3 × Z3 orders are induced by competition between Kitaev and � spin liquids and feature a
different type of spin-lattice entangled modulation, which requires a matrix description instead of scalar phase
factors. Our work provides a direct instance of a machine detecting new phases and paves the way towards the
development of automated tools to explore unsolved problems in many-body physics.
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I. INTRODUCTION

Kitaev materials have attracted immense attention in the
search for quantum Kitaev spin liquids (KSLs) [1]. These
materials feature highly anisotropic magnetic interactions, a
necessary ingredient to realize the Kitaev model, and are
found in Mott insulators with strong spin-orbit coupling [2–5].
Experimental signatures of the half-quantized thermal Hall
effect, a key characteristic of spin-1/2 KSLs, in α-RuCl3 [6,7]
and the absence of noticeable magnetic orders in H3LiIr2O6

[8] and Cu2IrO3 [9] demonstrate that these materials are con-
sidered among the most prominent candidates for hosting spin
liquids. Theoretical studies have put forward an even greater
variety of spin liquids and other exotic states [10–35] and gen-
eralized the family of Kitaev materials to high-spin systems
[36,37]. Three-dimensional hyper- and stripy-honeycomb ma-
terials are also synthesized in iridates β-, γ -Li2IrO3 and are
under active investigation [4,38–41]. Nevertheless, this enor-
mous progress goes hand in hand with many open questions.
The role of non-Kitaev interactions, which generically exist
in real materials, is yet to be understood. The microscopic
model of prime candidate compounds including α-RuCl3 and
the nature of their low-temperature phases remain under de-
bate [42–66]. Moreover, conceptual understanding beyond the
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exactly solvable Kitaev limit largely relies on mean-field and
spin-wave methods [67–72], as different numerical calcula-
tions of the same model Hamiltonian predict phase diagrams
that are qualitatively in conflict with each other [18–24].

A data-driven approach such as machine learning may
open an alternate route to research in Kitaev materials. In
recent years, its potential in physics has begun to be realized
[73,74]. Successful applications include representing quan-
tum wave functions [75], learning order parameters [76,77],
classifying phases [78,79], designing algorithms [80,81], ana-
lyzing experiments [82,83], and optimizing material searches
[84]. Most of these advances are focused on algorithmic
developments and resolving known problems. Instead, it re-
mains very rare that such techniques are applied to a hard,
unsolved problem in physics and provide new insights.

In this article, we employ our recently developed tensorial-
kernel support vector machine (TK-SVM) [85–87] to learn
the global phase diagram of the honeycomb Kitaev-� model
under a [111] field, which remains unsettled even in the
(semi)classical large-S case. The symmetric off-diagonal �

term is a typical non-Kitaev exchange present in real com-
pounds and can originate from the direct overlap of d
orbitals and intermediate d-p hopping [48,67]. In particular,
in α-RuCl3, this exchange is believed to be comparable to
the Kitaev interaction [43–46,60]. Furthermore, it leads to
macroscopic degeneracies and classical spin liquids [88].

We determine the global classical phase diagram of the
K-�-h model in a completely unsupervised fashion. The
strong interpretability of TK-SVM further allows us to
achieve an analytical characterization of all phases. We hence
provide a direct instance of a machine identifying new phases
of matter in strongly correlated condensed-matter physics and
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show that the competition and cooperation between Kitaev
and � spin liquids are key in understanding the emergence
of orders in the K-� model. We summarize our main findings
below.

First, KSLs can survive non-Kitaev interactions in the
large-S limit. The classical phase diagram shows remark-
able similarities to its quantum counterpart in the subregion
intensively investigated for spin-1/2 systems, including a
field-induced suppression of magnetic order. Second, the ex-
plicit emergent local constraints for classical � spin liquids
(�SLs) are found and their local transformations are formu-
lated. Third, cooperation and competition between Kitaev and
� constraints lead to two S3 orders and two S3 × Z3 orders.
The latter features a different spin-lattice entangled modu-
lation and may be realized by materials governed by strong
Kitaev and � interactions.

This article is organized as follows. In Sec. II, we define
the K-�-h Hamiltonian and explain the essential ingredients
of TK-SVM. Section III is devoted to an overview of the
machine-learned phase diagram. Section IV discusses the
emergent local constraints of classical Kitaev and � spin liq-
uids and their local Z2 symmetries. The exotic S3 and S3 × Z3

orders are elaborated in Sec. V. We conclude with an outlook
in Sec. VI.

II. MODEL AND METHOD

We subject the honeycomb Kitaev-� model in a uniform
[111] field to the analysis of TK-SVM. The spins will be
treated as classical O(3) vectors to achieve a large system size,
which is important to capture competing orders induced by the
� interaction.

Hamiltonian. The K-�-h Hamiltonian is defined as

H =
∑
〈i j〉γ

[
KSγ

i Sγ

j + �
(
Sα

i Sβ
j + Sβ

i Sα
j

)] −
∑

i

�h · �Si, (1)

where K and � denote the strength of Kitaev and off-diagonal
interactions, respectively; γ ∈ {x, y, z} labels the three differ-
ent nearest-neighbor (NN) bonds 〈i j〉γ ; α, β, γ are mutually
orthogonal; and �h = h(1 1 1)/

√
3. We parametrize the inter-

actions as K = sin θ , � = cos θ , with θ ∈ [0, 2π ). The region
θ � 3π/2 corresponds to parameters of 4d/5d transition met-
als with ferromagnetic (FM) K [4], while θ ∈ [π/2, π ) relates
to 4 f -electron-based systems with antiferromagnetic (AFM)
K [89].

The Hamiltonian given by Eq. (1) features a global
CR

6 CS
3 symmetry, which acts simultaneously on the real

and spin space, where CR
6 rotates the six spins on a

hexagon (anti)clockwise, and CS
3 (anti)cyclically permutates

{Sx, Sy, Sz}. In the absence of magnetic fields, the Hamilto-
nian is also symmetric under a sublattice transformation by
sending K → −K , � → −�, and, meanwhile, Si → −Si for
either of the honeycomb sublattices. This sublattice symmetry
indicates equivalence between the K-� model of FM and
AFM Kitaev interaction, which is respected by the h = 0
phase diagram shown in Fig. 1(a) and the associated order
parameters.

Machine learning. The TK-SVM is defined by the decision
function,

d (x) =
∑
μν

Cμνφμ(x)φν (x) − ρ. (2)

Here, x = {Sx
i , Sy

i , Sz
i |i = 1, 2, . . . , N} denotes a spin config-

uration of N spins, which is the only required input. No prior
knowledge of the phase diagram is required.

φ(x) denotes a feature vector mapping x to an auxiliary fea-
ture space. When orders are detected, they are encoded in the
coefficient matrix C = {Cμν}. The first term in d (x) captures
both the form and the magnitude of orders in the system, re-
gardless of whether they are unconventional magnets, hidden
nematics [85,86], or classical spin liquids [87]. The extraction
of analytical order parameters is straightforward in virtue of
the strong interpretability of the SVM (see Appendix A for
details).

The second term ρ in the decision function is a bias pa-
rameter and reflects an order-disorder hierarchy between two
sample sets. It detects whether samples in one training set are
more ordered or disordered than those in the other set, and
hence allows one to infer if two states belong to the same
phase [86,87]. This property of the ρ parameter leads to a
graph analysis. By treating points in the physical parameter
space as vertices and assigning an edge to any two vertices,
one can create a graph with the edge weights determined
by ρ. Computing the phase diagram is then realized by an
unsupervised graph partitioning (see Appendix B).

The concrete application of TK-SVM consists of several
steps. First, we collect samples from the parameter space of
interest. For the K-�-h model, large-scale parallel-tempering
Monte Carlo simulations [90,91] are utilized to generate those
configurations, with system sizes up to N = 10 368 spins
(72×72 honeycomb unit cells). As major parts of the phase
diagram are unknown, we distribute the phase points (almost)
uniformly in the θ -h space. In total, M = 1 250 distinct (θ, h)
points at low temperature T = 10−3

√
K2 + �2 are collected;

each has 500 sufficiently uncorrelated samples. Then, we per-
form a SVM multiclassification on the sampled data. From the
obtained ρ’s, we build a graph of M vertices and M(M − 1)/2
edges and partition it by Fiedler’s theory of spectral clus-
tering [92,93]. The outcome is the so-called Fiedler vector
reflecting clustering of the graph, which plays the role of the
phase diagram [see Fig. 1(c)]. In the next step, based on the
learned phase diagram, we collect more samples (typically a
few thousands) for each phase and perform a separate mul-
ticlassification. The goal here is to learn the Cμν matrices
of high quality in order to extract analytical quantities. The
dimension of this reduced classification problem depends on
the number of phases (subgraphs). Finally, we measure the
learned quantities to validate that they are indeed the correct
order parameters.

III. GLOBAL VIEW OF THE PHASE DIAGRAM

The K-�-h model shows a rich phase diagram, including
a variety of classical spin liquids and exotic magnetic orders.
In the vicinity of the ferromagnetic Kitaev limit with � � 0
(i.e., θ � 3π

2 ), which has been intensively studied for spin-
1/2 systems, the classical phase diagram shares a number of
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FIG. 1. Machine-learned phase diagram for the honeycomb K-� model in a [111] magnetic field, with K = sin θ, � = cos θ and at
temperature T = 10−3

√
K2 + �2. (a) Circular representation of the h = 0 phase diagram as a function of angle θ . Classical � (�SLs)

and Kitaev (KSLs) spin liquids reside in the limits θ ∈ {0, π

2 , π, 3π

2 } [(K, �) = (0,±1), (±1, 0)]. These special limits divide the phase
diagram into two frustrated (K� < 0) and two unfrustrated (K� > 0) regions, labeled by “−” and “+,” respectively. While �SLs exist
only in the two large-� limits, KSLs extend into the frustrated regions, until |�/K|1 ∼ 0.16 (θ ∼ 0.551π, 1.551π ). From |�/K|2 ∼ 0.27
(θ ∼ 0.584π, 1.584π ), two modulated S3 × Z3 orders will be stabilized owing to competition between a KSL and a �SL. These orders have
a highly exquisite magnetic structure featuring spin-lattice entangled modulation. In the windows between KSLs and the modulated S3 × Z3

orders, there are two non-Kitaev correlated paramagnets (CPs). The two unfrustrated regions, respectively, host a ferromagnetic (FM) and
an antiferromagnetic (AFM) S3 order, induced by cooperation between the KSLs and �SLs. The h = 0 phase diagram is symmetric under
θ → θ + π and a sublattice transformation (see Sec. II). (b) Magnetic cells of the S3 and modulated S3 × Z3 orders. The shaded sites show a
magnetic cell for the FM and AFM S3 order, comprised of six spins. The modulated S3 × Z3 orders consist of three distinct S3 sectors (labeled
A, B,C) and, in total, 18 sublattices (Sec. V). (c) Finite h phase diagram. The FM S3 and the KSL (�SL) for K = −1 (� = −1) will be fully
polarized (FP) once the [111] field is applied. However, an antiferromagnetic � extends the FM KSL to a small, but finite h ∼ 0.01. AFM �SL
and AFM KSL are robust against external fields. The former persists until h � 0.2, while the latter is nontrivially polarized from h ∼ 0.14 with
global U(1)-symmetric correlations [U(1)g]. In the frustrated regions and intermediate fields, there are areas of different partially polarized
correlated paramagnets (CPh’s). In particular, in the sector of K < 0, � > 0, the CPhK− and CPh�+ regimes erode the modulated (S3 × Z3)2

phase, as field-induced suppression of magnetic order takes hold. Each pixel in the phase diagram represents a (θ, h) point and is color coded
by the corresponding Fiedler vector entry. The sharp jumps in color coincide with the well-separated peaks in the distribution of Fiedler vector
entries, while gentle gradients are indicative of crossovers; cf. Appendix B. Dashed lines separate a spin liquid from a correlated paramagnet,
based on susceptibility of the associated ground-state constraint (GSC). The Fiedler vector and the GSCs are computed from rank-1 and rank-2
TK-SVM, respectively. See the text and Appendices B and C for details.

important features with the quantum counterpart. We will
focus here on the topology of the machine-learned phase
diagram. The specific properties of each phase are analyzed
in subsequent sections.

We first discuss the phase diagram at h = 0, depicted in
Fig. 1(a). In the absence of external fields, the Hamiltonian
given by Eq. (1) has four limits at (K, �) = (±1, 0) and
(0,±1), corresponding to two classical KSLs and two �SLs.
These particular limits divide the K-� phase diagram into
four regions. When both the Kitaev and � interactions are

ferromagnetic or antiferromagnetic, the system is unfrus-
trated, while when they are of different sign, the system stays
highly frustrated.

In the two unfrustrated K� > 0 regions, when K and � are
both finite, the system immediately changes from a spin liquid
to a magnetic order, which is sometimes described as a 120◦
state [67,69]. The explicit order parameter of the two phases
corresponds to the symmetric group S3, and hence we refer
to them as the FM S3 and AFM S3 phases, respectively, to
distinguish them from other types of 120◦ states. As we shall
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see in Sec. V, these two orders can be understood as the result
of cooperation between the Kitaev and � spin liquids.

The physics is profoundly different in the frustrated re-
gions. The two KSLs can extend to a finite value of �

for K� < 0. There has been mounting evidence suggesting
that quantum KSLs survive in some non-Kitaev interactions
[6,7,20–26]. It is quite remarkable that such an extension
already manifests itself in the classical large-S limit. Using
the corresponding ground-state constraint (GSC), we estimate
|�/K| ∼ 0.16 (see Appendix C). This large extension may
find its origin in the large extensive ground-state degeneracy
(exGSD) of classical KSLs.

By contrast, the two classical �SLs are found to only exist
in the limit � = ±1, as in these cases the exGSD is much
smaller (cf. Sec. IV).

The majority of the frustrated regions are occupied by
two exotic orders. In the ferromagnetic K sector, it has been
recently proposed to accommodate incommensurate orders or
disordered states by numerical studies based on small system
sizes [18–20]. However, by learning the explicit order parame-
ter (Sec. V), our machine reveals that the order there as well as
its counterpart on the antiferromagnetic K sector have a more
intriguing structure. They possess threefold of the magnetic
structure discussed for the FM and AFM S3 phase, leading
to 18 sublattices. The three S3 sectors mutually cancel via a
different modulation, and we henceforth refer to them as the
modulated S3 × Z3 phase. We also find out that competition
between a Kitaev and a � spin liquid induces these orders.

Between each modulated S3 × Z3 phase and the corre-
sponding KSL, there is a window of another correlated
disordered region. It may be understood as a crossover be-
tween the two phases, as we are considering O(3) spins at two
dimensions and finite temperature. We refer to such regions as
correlated paramagnets (CPs), which, however, may shrink in
size if the phase transitions get sharper.

When the [111] magnetic field is turned on, the fate of
each phase strongly depends on the sign of its interactions, as
shown in Fig. 1(c). Those featuring only ferromagnetic inter-
actions, including the FM S3 phase and the FM Kitaev and �

spin liquids, immediately polarize. However, the phases with
one or both antiferromagnetic interactions are robust against
finite h. Specifically, the AFM KSL persists up to h ∼ 0.14.
And before trivial polarization occurs at much stronger fields,
there exists an intermediate region, dubbed U(1)g, where the
magnetic field induces two different correlations with a global
U(1) symmetry (Sec. IV). Interestingly, this region appears to
coincide with a gapless spin-liquid phase recently proposed
for quantum spin-1/2 and spin-1 systems [27–31].

The frustrated K� < 0 regions are again richest in physics.
The FM KSL extends to a small, but finite field h ∼ 0.01
thanks to an antiferromagnetic �, while the AFM KSL ex-
tends over a much greater area. At intermediate h, there are
disordered regions separating a S3 × Z3 phase from a spin
liquid or a trivially polarized state. We refer to them as par-
tially polarized correlated paramagnets (CPh’s) to distinguish
them from the parent spin liquid. In particular, the CPhK−

and CPh�+ regimes erode the modulated (S3 × Z3)2 phase
(see Appendix D). It is worth mentioning that a field-induced
unconventional paramagnet has also recently been proposed
for quantum spin-1/2 in the CPhK− region [22,24]. These com-

mon features indicate that some critical properties of Kitaev
materials, for those where Kitaev and � interactions play a
significant role, may already be understood at the classical
level.

Before delving deeper into each phase, we comment on
the distinctions between the graph partitioning in TK-SVM
and traditional approaches of computing phase diagrams. In
learning the finite-h phase diagram [Fig. 1(c)], we did not
use particular order parameters or any form of supervision.
Instead, M(M − 1)/2 = 780 625 distinct decision functions
are implicitly utilized; each serves as a classifier between
two (θ, h) points (see Appendix B). Moreover, all phases are
identified at once, rather than individually scanning each of
the phase boundaries. These make TK-SVM an especially
efficient framework to explore phase diagrams with complex
topology and unknown order parameters.

IV. EMERGENT LOCAL CONSTRAINTS

A common feature of classical spin liquids is the existence
of a nontrivial GSC, which is an emergent local quantity
that defines the ground-state manifold and controls low-lying
excitations. A system can be considered as a classical spin
liquid if it breaks no orientation symmetry, and meanwhile its
GSC has a local symmetry. We now discuss the GSCs learned
by TK-SVM for the classical Kitaev and � spin liquids.

Our machine learns a distinct constraint for each spin liq-
uid in the phase diagram (Fig. 1). These constraints can be
expressed in terms of quadratic correlations on a hexagon. We
classify six types of such correlations at h = 0 and another
two field-induced correlations for the AFM KSL, as tabulated
in Table I.

For KSLs, we reproduce the GSCs previously obtained by
a Jordan-Wigner construction [94],

GKSL = 1
2 〈G1〉� = ±1, 〈Gk 
=1〉� = 0, (3)

where “±′′ corresponds to the FM and AFM interaction,
respectively (the same convention used below); 〈. . . 〉� de-
notes the thermal average over hexagons. As discussed in
Refs. [94,95], these constraints impose degenerate dimer cov-
erings on a honeycomb lattice, which are precisely the ground
states of classical KSLs.

In the case of classical �SLs, our machine identifies two
constraints,

G�SL = 1
7 〈G2 ± G3 + G5〉� = ±1,

〈G1〉� = 〈G4〉� = 〈G6〉� = 0, (4)

which directly differentiate between the FM and AFM case,
and satisfying them will naturally lead to the ground-state
flux pattern W ∼ {1, 0, 0} for every three hexagon plaquettes
[88,96], where W = Sx

1Sz
2Sy

3Sx
4Sz

5Sy
6.

Aside from manifesting ground-state configurations,
knowing the explicit GSC will make clear the symmetry prop-
erties and the extensive degeneracy of a spin liquid. The above
Kitaev and � constraints preserve the global CR

6 CS
3 symmetry

of the Hamiltonian given by Eq. (1) and, more importantly,
possess a different local Z2 symmetry, representing distinct
classical Z2 spin liquids.
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TABLE I. Quadratic correlations classified by rank-2 TK-SVM.
GKSL = 1

2 〈G1〉� = ±1 and 〈Gk 
=1〉� = 0 define the ground states
of FM and AFM KSLs, respectively. G�SL = 1

7 〈G2 ± G3 + G5〉� =
±1 and vanishing G1, G4, G6 define the ground states of FM and
AFM �SLs. For the two S3 orders, all Gk contribute with an equal
weight. No stable ground-state constraints are found in the modu-
lated S3 × Z3 phases and those correlated paramagnetic regions. All
Gk preserve the global CR

6 CS
3 symmetry of the K-�-h Hamiltonian

given by Eq. (1). G1 (G2, G3, G5) is locally Z2 invariant on a bond
(hexagon). Gh

1, Gh
2 are field-induced correlations for the AFM Kitaev

model with a global U(1) symmetry. See the text for details and Fig. 2
for an illustration of the convention.

Symmetry

Correlations Global Local

G1 = ∑
〈i j〉∈�

Sγ

i Sγ

j CR
6 CS

3 Z2

G2 = ∑
〈i j〉∈�

∑
αβ

|εαβγ |Sα
i Sβ

j CR
6 CS

3 Z2

G3 = ∑
[i j]∈�

Sγ2
i Sγ1

j CR
6 CS

3 Z2

G4 = ∑
[i j]∈�

|εαγ1γ2 |
(
Sγ1

i Sα
j + Sα

i Sγ2
j

)
CR

6 CS
3

G5 = ∑
(i j)∈�

Sc
i Sc

j CR
6 CS

3 Z2

G6 = ∑
(i j)∈�

∑
ab

|εabc|Sa
i Sb

j CR
6 CS

3

Gh
1 = ∑

〈i j〉∈�

∑
αβ

Sα
i Sβ

j U(1)

Gh
2 = ∑

(i j)∈�

∑
ab

Sa
i Sb

j U(1)

The Kitaev constraints given by Eq. (3) are invariant by
locally flipping the γ component of a NN bond 〈i j〉γ ,

Sγ
i → −Sγ

i , Sγ
j → −Sγ

j , i, j ∈ 〈i j〉γ ∈ G1. (5)

For a given dimer covering configuration, this will give rise
to (23)1/3 redundant degrees of freedom on each hexagon.
Together with the 1.381N/2 dimer coverings on a honeycomb
lattice [97–99], it enumerates 1.662N extensively degenerate
ground states [94], resulting in a residual entropy S

N ≈ 0.508
at zero temperature.

The local invariance of the �SL constraints given by
Eq. (4) takes a different form, defined on a hexagon,

Sα
i → −Sα

i , Sβ
j → −Sβ

j , ∀〈i j〉α,β⊥γ ∈ G2,

Sγ2
i → −Sγ2

i , Sγ1
j → −Sγ1

j , ∀[i j]γ1γ2 ∈ G3,

Sc
i → −Sc

i , Sc
j → −Sc

j , ∀(i j)c‖γ ∈ G5. (6)

Here, α, β are the components normal to γ ; “[.]” denotes
the second-nearest-neighbor bonds with γ1, γ2 corresponding
to the two connecting NN bonds; “(.)” denotes the third-
nearest-neighbor bonds, and c equals the γ on a parallel
NN bond; as depicted in Fig. 2. This symmetry is consid-
erably involved but also evident once the explicit GSC is
identified.

The corresponding exGSD can again be counted by the
local redundancy on a hexagon, giving 2N/6 ≈ 1.122N with a
residual entropy S

N ≈ 0.115. This degeneracy is exponentially

FIG. 2. Convention of the quadratic correlations in Table I. 〈.〉,
[.], and (.) denote the first, second and third nearest-neighbor (NN)
bonds, respectively. γ = x, y, z label the type of a NN bond. γ1, γ2

correspond to the two connecting NN bonds. c = γ is determined by
the parallel NN bond. α, β, γ (a, b, c) are mutually orthogonal. CR

6 is
a symmetry that rotates the six spins on a hexagon (anti)clockwise.
CS

3 denote (anti)cyclic permutations of the three spin components.

less than that of KSLs. As a result, �SLs are more prone to
fluctuations (see Figs. 1 and 4).

Furthermore, in addition to the constraints for ground
states, in the U(1)g region in the phase diagram [Fig. 1(c)],
we identify two field-induced quadratic correlations. The two
correlations, denoted as Gh

1 and Gh
2 in Table I, are invariant

under global rotations about the direction of the �h111 fields.
From the general symmetry principle, a continuous global
symmetry will naturally support gapless modes. Hence, aside
from being different local observables in the classical AFM
Kitaev model, they may also shine a light on the nature of the
corresponding gapless quantum spin liquid [27–31].

Note that the GSCs and other quadratic correlations
learned by TK-SVM are not limited to classical spins. Their
formalism holds for general spin-S and can be directly
measured in the quantum K-� model. Comparing to other
quantities (such as plaquette fluxes, Wilson/Polyakov loops,
and spin structure factors), which may exhibit similar behav-
iors in different spin liquids, GSCs can be made unique to
a ground-state manifold and hence may be more distinctive.
Moreover, their violation provides a natural way to measure
the breakdown of a spin liquid, which is what we use to
estimate the extension of the KSLs (see Appendix C).

V. COOPERATIVE AND COMPETITIVE
CONSTRAINT-INDUCED ORDERING

A standard protocol to devise spin liquids is to introduce
competing orders. In contrast to this familiar scenario, the
emergence of the S3 and the modulated S3 × Z3 orders are
caused here by cooperation and competition between two spin
liquids.

Unfrustrated S3 orders. We first discuss the two S3 phases
in the unfrustrated regions K� > 0. The discussion will also
facilitate the understanding of the more exotic S3 × Z3 phases.

From the learned Cμν matrices (see Appendix A), we iden-
tify that both S3 orders have six magnetic sublattices with an
order parameter

−→
M S3 = 1

6

6∑
k=1

Tk �Sk, (7)
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TABLE II. Ordering matrices in the S3 and modulated S3×Z3 magnetizations. “+” (“−”) corresponds to the FM (AFM) S3 order and the
modulated (S3 × Z3)1(2) order. a ∈ [0, 1] is |�/K| dependent. The S3 matrices form the symmetric group S3. The S3 × Z3 matrices consist of
three distinct S3 sectors, featuring a spin-lattice entangled modulation T A

k + T B
k + T C

k = 0. A global sign difference is in Tk with k = 2, 4, 6,
reflecting the sublattice symmetry of the Hamiltonian given by Eq. (1) in the zero field.

S3

T1 =
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, T2 = ±

⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠, T3 =

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠, T4 = ±

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠, T5 =

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠, T6 = ±

⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠

Mod S3×Z3

T A
1 =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, T A

2 = ±
⎛
⎝0 1 0

1 0 0
0 0 −a

⎞
⎠, T A

3 =
⎛
⎝ 0 0 1

−1/2 0 0
0 −1/2 0

⎞
⎠, T A

4 = ±
⎛
⎝ 0 0 −a

0 a − 1 0
−a 0 0

⎞
⎠, T A

5 =
⎛
⎝0 −1/2 0

0 0 −1/2
1 0 0

⎞
⎠, T A

6 = ±
⎛
⎝1 0 0

0 0 a − 1
0 a − 1 0

⎞
⎠

T B
1 =

⎛
⎝−1/2 0 0

0 −1/2 0
0 0 −1/2

⎞
⎠, T B

2 = ±
⎛
⎝ 0 a − 1 0

a − 1 0 0
0 0 1

⎞
⎠, T B

3 =
⎛
⎝ 0 0 −1/2

−1/2 0 0
0 1 0

⎞
⎠, T B

4 = ±
⎛
⎝0 0 1

0 −a 0
1 0 0

⎞
⎠, T B

5 =
⎛
⎝ 0 1 0

0 0 −1/2
−1/2 0 0

⎞
⎠, T B

6 = ±
⎛
⎝a − 1 0 0

0 0 −a
0 −a 0

⎞
⎠

T C
1 =

⎛
⎝−1/2 0 0

0 −1/2 0
0 0 −1/2

⎞
⎠, T C

2 = ±
⎛
⎝ 0 −a 0

−a 0 0
0 0 a − 1

⎞
⎠, T C

3 =
⎛
⎝0 0 −1/2

1 0 0
0 −1/2 0

⎞
⎠, T C

4 = ±
⎛
⎝ 0 0 a − 1

0 1 0
a − 1 0 0

⎞
⎠, T C

5 =
⎛
⎝ 0 −1/2 0

0 0 1
−1/2 0 0

⎞
⎠, T C

6 = ±
⎛
⎝−a 0 0

0 0 1
0 1 0

⎞
⎠

where Tk are ordering matrices, given in Table II, and the
FM and AFM S3 orders differ by a global sign in T2, T4, and
T6. The six ordering matrices form the symmetric group S3.
Its cyclic subgroup, C3 := {T1, T3, T5}, are threefold rotations
about the [111] direction in spin space, while T2, T4, and
T6 correspond to reflection planes (110), (011), and (101),
respectively. These matrices also reproduce the dual transfor-
mations that uncover the hidden O(3) points residing at K = �

in the unfrustrated regions of the K-� model [69].
The two S3 orders feature the same static spin-structure fac-

tor (SSF). Both develop magnetic Bragg peaks at the K points
of the honeycomb Brillouin zone (Fig. 3), as the well-known√

3×√
3 order. This highlights the importance of knowing

explicit order parameters, as different phases may display
identical features in momentum space.

Furthermore, we identify the other two GSCs,

GS3 = 1
15 〈±G1 ± G2 + G3 + G4 ± G5 ± G6〉� = 1, (8)

which equally comprise GKSL and G�SL in Eqs. (3) and (4),
with additional G4 and G6 terms owing to the normalization
|�S| = 1.

FIG. 3. Static spin-structure factors (SSFs), S( �K ) = 〈 1
N

∑
i j

�Si ·
�Sj ei �K ·(�ri−�r j )〉, where �ri is the position of a spin at site i, and 〈.〉
denotes the ensemble average. The two S3 orders develop magnetic
Bragg peaks at the K points of the honeycomb Brillouin zone (orange
hexagon). The two S3 × Z3 orders show Bragg peaks at 2

3 M points,
owing to the larger magnetic cell. The length of nearest-neighbor
bonds of the honeycomb lattice is set to unity.

As we measure in Figs. 4(a) and 4(c), in the spin-liquid lim-
its θ ∈ {0, π

2 , π, 3π
2 }, Kitaev and � GSCs satisfy, as GKSL =

±1 or G�SL = ±1 with other correlations vanishing. However,
when both K and � interactions are present and of the same
sign, the two characteristic correlations GKSL and G�SL will
lock together. This eliminates the local symmetries of the
Kitaev and � spin liquids and gives way to the S3 orders.

It is worth noting that the two S3 phases also represent
rare instances where magnetic states possess nontrivial GSCs,
which normally exist in cases of classical spin liquids and
multipolar orders [87].

Mod S3 × Z3 phases. The modulated S3 × Z3 orders can be
measured by the order parameter

−→
M S3×Z3 = 1

18

A,B,C∑
α

6∑
k=1

T α
k

�Sα
k , (9)

where T α
k are 18 ordering matrices given in Table II, and

α = A, B,C distinguish three different S3 sectors as illustrated
in Fig. 1(b). The (S3 × Z3)1 and (S3 × Z3)2 orders differ by a
global sign for all even k’s.

These orders exhibit a delicate spin-lattice entangled mod-
ulation,

T A
k + T B

k + T C
k = 0. (10)

In concrete terms, T α
3,5 remain threefold rotations along the

[111] direction, but there is an additional cos(2π/3) factor
entering some, but not all, spin components. The location of
this factor, as shown in Table II, alternates among the three S3

sectors, to achieve the cancellation in Eq. (10). Furthermore,
mirror reflections, T α

k with even k’s are decorated by a factor
a ∈ [0, 1], in such a way that a cancellation with the mirror of
the same type occurs, as (a − 1) + (−a) + (1) = 0. The value
of a, which TK-SVM also identifies, strongly depends on the
relative strength |�/K|, while the reflection planes remain
locked on (110), (011), (101).

This modulation is very different from those in multiple-q
orders and spin-density-wave (SDW) orders where phase fac-
tors universally act on all spin components. Moreover, since
this modulation does not preserve spin length, the S3 × Z3
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FIG. 4. Measurements of the S3 and modulated S3 × Z3 magne-
tizations (green), and characteristic Kitaev (blue) and � (orange)
correlations, with K = sin θ , � = cos θ , h = 0, T = 0.001. M =
〈| 1

Ncell

∑
cell

−→
M |〉 measures the magnitude of the respective magneti-

zation, where
−→
M denotes the ordering moments in one magnetic cell,

and 1
Ncell

∑
cell (.) and 〈.〉 indicate the lattice and ensemble average, re-

spectively. At the Kitaev (θ = π

2 , 3π

2 ) and � (θ = 0, π ) limits, either
GKSL = ±1 or G�SL = ±1, satisfying the corresponding ground-state
constraint. In the unfrustrated regions, K� > 0, Kitaev and � cor-
relations behave on an equal footing as GKSL = G�SL = ±1, and
cooperatively induce the (a) AFM or (c) FM S3 order. (b), (d) In the
frustrated regions, K� < 0, GKSL and G�SL develop towards opposite
directions. Though the system stays disordered near the Kitaev lim-
its, from |�/K| ∼ 0.27 up to the large-� limits, the S3 × Z3 orders
are established owing to the competition between GKSL and G�SL.

magnetization will not saturate to unity, but to a reduced value
M � 2

3 , reflecting an intrinsic frustration.
The SSF of the two S3 × Z3 phases is shown in

Fig. 3(b). The large magnetic cell leads to a reduced

Brillouin zone. The SSF pattern nevertheless only par-
tially reveals properties of the ordering and does not show
information on the spin-lattice entangled modulation in
Eq. (10), again underlining the significance of analytical order
parameters.

To better understand the nature of the modulated S3×Z3

orders, we show their magnetization along with the GKSL and
G�SL correlations in Figs. 4(b) and 4(d). To exclude the |K/�|
dependence in the order parameter, we defined an alternative
magnetization by including only odd k’s in Eq. (9),

−→
M ′

S3×Z3
=

1
9

∑A,B,C
α

∑1,3,5
k T α

k
�Sα

k . Clearly, in the frustrated regions, the
characteristic Kitaev and � correlations develop toward op-
posite directions. Near the Kitaev limits, θ = π

2 , 3π
2 , GKSL

dominates; the system stays disordered, either in an extended
KSL phase or a CP region. When G�SL is sufficiently strong
to compete with GKSL, at |�/K| ∼ 0.27, an S3 × Z3 order
emerges from the two conflicting quadratic correlations, and
expands until the large-� limits owing to the small exGSD of
a �SL.

Because of the relevance to the spin-liquid candidate
α-RuCl3, (a part of) the parameter regime with FM K and
intermediate AFM � has attracted much attention, as the
� term in this material is found to be comparable to the
Kitaev interaction [43–46]. On the one hand, exact diag-
onalization (ED) of small systems [20], (infinite) density
matrix renormalization group [(i)DRMG]; simulations on nar-
row cylinders [18,20,24], classical Luttinger-Tisza [67], and
cluster mean-field [70] analyses observed there a disordered
phase or incommensurate order. On the other hand, classi-
cal simulated-annealing calculations for small system sizes
[19] and simple-update infinite projected-entangled-pair state
(iPEPS) simulations [22] reported magnetic states with en-
larged unit cells but of an unknown nature. Our results are
compatible with the latter observations. The magnetic Bragg
peaks (located at the 2

3 M points) of the (S3 × Z3)2 phase are
consistent with the SSFs reported in Ref. [19]. However, our
machine identifies the order parameter and the correlations
underlying the phase.

The fate of the modulated S3 × Z3 order in quantum
K-� models, for the case of spin-1/2 as well as higher-S
values, is open and left for future studies. It is, however,
not uncommon that when a system establishes a robust
magnetic order in the classical large-S limit, this order
can persist in the quantum cases with a reduced ordering
moment due to quantum fluctuations. Such examples are
known for various spin-liquid candidates; see, for instance,
Refs. [100–102].

The firmness of the S3 × Z3 orders can be demonstrated
in several ways. In Figs. 4(b) and 4(d), we confirm their
stability by varying θ = arctan(K/�) over the entire frustrated
region. Moreover, the global phase diagram in Fig. 1(c) shows
that they are robust against finite fields. This is further ver-
ified in Appendix D, where we show a direct Monte Carlo
measurement of the (S3 × Z3)2 order and its suppression in
intermediate fields. In addition, the stability of this order
against thermal fluctuations, inevitable for real systems, is also
established in Appendix D. Interestingly, the melting involves
two stages and gives rise to an intermediate paramagnetic
regime found for temperatures significantly below the Neel
temperature.
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From the machine-learning point of view, the two modu-
lated S3 × Z3 orders provide a hallmark of a machine-learning
algorithm identifying different, complicated phases. Further-
more, the identification of the spin-liquid constraints also
gives insight into their origin, by which the emergence of mag-
netic orders in the K-� model can be consistently explained.

VI. CONCLUSIONS

Machine-learning techniques are emerging as promising
tools in various disciplines of physics [73]. However, results
going beyond the state of the art are required before they
will disrupt current procedures. By subjecting the honeycomb
K-�-h model to the analysis of our unsupervised and in-
terpretable TK-SVM method, we have shown that machine
learning can indeed handle highly complicated problems in
frustrated magnets and reveal unknown physics.

We found that the classical phase diagram of the K-�
model in a [111] field is exceptionally rich (see Fig. 1), host-
ing several unconventional symmetry-breaking phases and a
plethora of disordered states at very low temperature. The
phase diagram clearly shows the finite extent of the KSLs, an
intermediate disordered phase at the AFM Kitaev limit, and a
field-induced suppression of magnetic orders, which were pre-
viously only reported for quantum systems. These common
features strongly suggest that certain aspects of the Kitaev
materials can already be understood from a semiquantitative
classical picture and also call for a systematic investigation
of larger spin models in order to find potential higher-S spin
liquids.

Two phases, the modulated S3 × Z3 magnets, with a dif-
ferent type of modulation were identified. On the one hand,
these states represent a concrete instance of machine learning
successfully discovering different phases. Their structure is
sufficiently complicated, but it is picked up without difficulty
by TK-SVM. On the other hand, they also imply that the
competition between Kitaev and non-Kitaev exchanges can
significantly enrich the physics and lead to more unconven-
tional phases than expected.

We discovered the GSCs of the classical �SLs and repro-
duced the ones of the KSLs. Not only did these constraints
enhance our understanding of the �SLs, they also put the
emergence of the complicated orders in the K-� model in
a unifying picture. The two unfrustrated S3 magnets emerge
when the characteristic Kitaev and � correlations coopera-
tively eliminate the macroscopic degeneracy of each other. By
contrast, the two modulated S3 × Z3 magnets can be under-
stood as the consequence of the competition between the KSL
and �SL. This mechanism may be viewed as an alternative
protocol for devising exotic phases.

Our work may stimulate future applications of machine
learning in Kitaev materials and beyond. The study of Kitaev
materials is motivated by realizing the Kitaev model [2,3]. In
real systems, non-Kitaev interactions are ubiquitously present
and cannot be treated as perturbations. In the case of α-RuCl3,
aside from the dominating Kitaev and � exchanges, the
Heisenberg J1, J3, and, possibly, the off-diagonal �′ terms
also play a role [64,65]. Temperature and external fields add
further dimensions to the physical parameter space [6,51,66].
Similar complications are also encountered in other candi-

date compounds such as A2IrO3 (A = Na, K) [103,104] and
the three-dimensional hyper- and stripy-honeycomb materials
β-, γ -Li2IrO3 [38–40]. While these additional terms besides
the Kitaev exchange can enrich the underlying physics, they
also dramatically complicate the analysis. Machine learning is
designed to discover complex structures in high-dimensional
data. In the framework of TK-SVM, partitioning a phase
diagram can be formulated as a two-dimensional Laplacian
matrix [92,93], independent of the number of physical param-
eters. This ability permits an efficient scanning over complex,
multidimensional phase diagrams. The nature of each phase
will also be uncovered in virtue of the machine’s inter-
pretability. TK-SVM may hence speed up our understanding
of competing interactions in a multidimensional parameter
space, which can in turn facilitate the experimental search and
theoretical development for exotic phases.

The TK-SVM library has been made openly available with
documentation and examples [105]. The data used in this work
are available upon request.
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APPENDIX A: SETTING UP OF TK-SVM

The TK-SVM method has been introduced in our previous
work [85–87]. Here we review its essential ingredients for
completeness.

For a sample x = {Sa
i |i = 1, 2, . . . , N ; a = x, y, z}, the fea-

ture vector φ = {φμ} maps x to degree-n monomials,

φμ = 〈
Sa1

α1
Sa2

α2
. . . San

αn

〉
cl, (A1)

where 〈· · · 〉cl represents a lattice average up to a cluster
of r spins; α1, . . . , αn label spins in the cluster; and μ =
{α1, a1; . . . , αn, an} are collective indices.

TK-SVM constructs from φμ a tensorial feature space (φ-
space) to host potential orders [85,86]. The capacity of the
φ-space depends on the degree (n) of monomials and the size
(r) of the cluster. As the minimal n and r are unknown param-
eters, in practice, we choose large clusters according to the
Bravais lattice and n ∈ [1, 6], where n = 1 detects magnetic
orders and n > 1 probes multipolar orders and emergent local
constraints. In learning the phase diagram shown in Fig. 1, we
constructed φ-spaces using clusters up to 288 spins (12×12
honeycomb unit cells) at rank 1 and clusters up to 18 spins at
rank 2, which are much beyond the needed capacity. We also
confirmed that the results are consistent when varying the size
and shape of clusters and found ranks n � 3 to be irrelevant.
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FIG. 5. Visualization of the Cμν matrix of the FM S3 and the
mod (S3 × Z3)2 phase. Each pixel corresponds to an entry of Cμν .
Nonvanishing entries identify the relevant components of φμ entering
the order parameter. Here, results of a 18-spin cluster are shown
for demonstration, while much larger clusters are used for the phase
diagram in Fig. 1. The S3 order is represented multiple times as its
magnetic cell has six sublattices.

The coefficient matrix C = {Cμν} measures correlations of
φμ, defined as

Cμν =
∑

k

λkφμ(x(k) )φν (x(k) ), (A2)

where the Lagrange multiplier λk denotes the weight of the
kth sample and is solved in the underlying SVM optimization
problem [85,86]. Its nonvanishing entries identify the relevant
basis tensors of the φ-space, and their interpretation leads to
order parameters.

FIG. 6. The θ ∈ [ 3π

2 , 2π ) sector of the graph is shown for vi-
sualization. Each vertex labels a (θ, h) point, following a uniform
distribution θ = 0.02π , h = 0.01. The edges connecting two ver-
tices are determined by ρ in the corresponding decision function and
the weight function given by Eq. (B2). Edge weights are weakened to
reduce visual density. The entire graph contains M = 1 250 vertices
with θ ∈ [0, 2π ) and M(M − 1)/2 = 780 625 edges, whose partition
gives the phase diagram in Fig. 1(c).

In Fig. 5, we show the Cμν matrix of the FM S3 and the
mod (S3 × Z3)2 phase, for example. The corresponding order
parameters are given in Eqs. (7) and (9) and are measured in
Fig. 4.

APPENDIX B: DETAILS OF GRAPH PARTITIONING

Not all Cμν matrices need to be interpreted. In the graph
partitioning, where the goal is to learn the topology of the
phase diagram, it suffices to analyze the bias parameter ρ.
When A, B are two phase points where spin configurations are
generated, the bias parameter ρAB in the corresponding binary
classification problem behaves as

|ρAB|
{� 1, A, B in the same phase
� 1, A, B in different phases. (B1)

Thus, as demonstrated in our previous work, ρ can detect
phase transitions and crossovers [86,87]. (Though the sign of
ρAB also has physical meaning and can reveal which phase is
in the (dis)ordered side, the absolute value is sufficient for the
graph partitioning; see Ref. [87] for details.)

The graph partitioning in TK-SVM is a systematic ap-
plication of the ρ criteria given by Eq. (B1). The graph is
built from M = 1 250 vertices, each corresponding to a point
(θ, h), and M(M − 1)/2 connecting edges, as exemplified in
Fig. 6. The weight of an edge is defined by ρ in the SVM
classification between the two endpoints, with a Lorentzian
weighting function

w(ρ) = 1 − ρ2
c

(|ρ| − 1)2 + ρ2
c

∈ [0, 1]. (B2)

Here, ρc sets a characteristic scale for “�1” in Eq. (B1), as
a larger ρc tends to suppress the weight of the edges. The
choice of ρc is not critical since points in the same phase are
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FIG. 7. Histogram of Fiedler vector entries. Each entry corre-
sponds to a vertex of the graph, namely, a (θ, h) point. Their values
are color coded by the phase diagram in Fig. 1(c). A logarithmic
scale is used in the main panel as the histogram is spanning several
orders. The inner panel uses a linear scale and shows a zoom-in view
of the bulk of the distribution. From left to right, the five profound
peaks in the inner panel correspond to the two S3 × Z3 phases, the
FM S3, the AFM S3 phase, and the full polarized phase, respectively.
Flat regions correspond to correlated paramagnets and indicate wide
crossovers to neighboring phases.

always more connected than those from different phases. In
computing the phase diagram in Fig. 1, ρc = 1000 is applied,
but we also verified that the results are robust when ρc is
changed over an interval ranging from a small ρc = 10 to a
large ρc = 104, where all edge weights are almost eliminated.

A graph with 106 edges is considered a small problem
in graph theory and may be partitioned with different meth-
ods. We have applied Fiedler’s theory of spectral clustering
[92,93]. The result is a so-called Fiedler vector of the di-
mensionality M, corresponding to the M vertices. Strongly
connected vertices, namely, those in the same phase, share
equal or very close Fiedler-entry values, while those in dif-
ferent phases have substantially different Fiedler entries. In
this sense, the Fiedler vector can act as a phase diagram.

Note that the two-dimensional representation of the graph
shown in Fig. 6 is only for visualization. Regardless of the
dimension of a physical parameter space, a graph can always
be formulated by a Laplacian matrix, and its partitioning gives
a vectorial quantity, i.e., the Fiedler vector [86,92,93].

Figure 7 shows the histogram of the Fiedler entries for the
phase diagram in Fig. 1(c), which clearly exhibit a multin-
odal structure. Each peak corresponds to a distinct phase and
the wide bumps are indicative of crossover regions or phase
boundaries.

APPENDIX C: EXTENSION OF CLASSICAL KSLS

Since a GSC, G, characterizes a classical spin liquid,
we can accordingly define a susceptibility to measure how
sharply it is defined,

χG = V

T
(〈G2〉 − 〈G〉2), (C1)

FIG. 8. Susceptibility for the characteristic Kitaev correlation
GKSL as a function of |�/K|, in the vicinity of the (a) FM and
(b) AFM Kitaev limit with K� � 0. The first peak of χGKSL in a
fixed h identifies the crossover from a classical KSL to a non-Kitaev
correlated paramagnet. At h = 0, the KSLs survive until |�/K| ∼
0.16. When magnetic fields are applied, the peak moves consistently
towards a smaller value of |�/K| with its width broadening. The
wide bumps at larger |�/K| signal the second crossover to a mod-
ulated S3 × Z3 phase, for which the optimal quantity is the S3 × Z3

magnetization.

where 〈. . . 〉 is the ensemble average and V denotes the vol-
ume of the system. Such a susceptibility was introduced in
Ref. [87], and we showed with various examples its high
sensitivity to the breakdown of an associated classical spin
liquid.

To estimate the extension of classical KSLs, we define
the susceptibility χGKSL . It is shown in Fig. 8 as a func-
tion of the competing � interaction. At a fixed h, χGKSL

develops two peaks or bumps, reflecting the violation of the
GSC. The sharper peak at a smaller |�/K| is responsible for
the crossover between a KSL and a non-Kitaev correlated
paramagnet. The broad bump at a larger |�/K| signals the
second crossover to a modulated S3 × Z3 phase. (The opti-
mal measure to this second crossover is the S3 × Z3 order
parameter instead of χGKSL . However, the location of the bump
qualitatively agrees with the results based on the S3 × Z3

magnetization; see Fig. 4, for example.)
In order to examine the effects of magnetic fields on the

AFM KSL, we measure the field dependence of the two U(1)g-
symmetric correlations, Gh

1 and Gh
2, and the magnetization

per spin parallel (m‖) and perpendicular (m⊥) to the [111]
field, as shown in Fig. 9. Under weak and intermediate fields,
most of the spins respond paramagnetically, as m‖ is small
and m⊥ vanishes. While Gh

1 and Gh
2 smoothly increase with

the external field, the bumps in their derivative may imply
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FIG. 9. Field dependence of the magnetization per spin parallel
(m‖) and perpendicular (m⊥) to the [111] field, and the normalized
U(1)g-symmetric correlations, Gh

1 and Gh
2, at the AFM Kitaev limit

(K, �) = (1, 0). The spins are mostly paramagnetic under weak and
intermediate fields. Bumps in dGh/dh may imply prominent changes
in the system.

prominent changes in the system, which are used to estimate
the extent of the AFM KSL. The regime with intermediate
field is marked as a U(1)g region in order to distinguish it
from a polarized state. In the main text (see Secs. III and IV),
we discussed that this regime coincides with a gapless spin
liquid proposed for quantum spin-1/2 and spin-1 AFM Kitaev
models [27–31]. A similar segmentation in the finite-h phase
diagram is observed in the quantum case [28,31].

The behaviors of χGKSL , Gh
1, and Gh

2 are used to estimate the
boundary [indicated by the dashed lines in Fig. 1(c)] between
the KSLs and other correlated paramagnets, supplementing
the graph partitioning. This is needed because, in the graph
partitioning shown in Fig. 1, we only employed a rank-1
TK-SVM which is designed for detecting the presence and
absence of magnetic order. To classify different spin liquids,
we use rank-2 TK-SVM to identify their GSCs. In principle,
we could also have performed a separate graph partitioning
with rank-2 TK-SVM. But, given the rank-1 results, most of
the phase diagram has already been fully classified this way
and there are only a few locations left worth examining at
higher rank.

In Fig. 10, we evaluate the zigzag magnetization in the
extended KSL and CP region with FM K and AFM �. The
zigzag order has been considered as a �-induced competing
order to a KSL. However, it can be shown that it is unstable
at low temperature and experiences strong finite-size effects.
This is also consistent with the picture that in order to sta-
bilize the zigzaglike order found in α-RuCl3 [46,51], other

FIG. 10. Monte Carlo measurement of the zigzag order in the
region of FM K and small AFM � at h = 0, where the magnetization
MZZ = 〈| 1

Ncell

∑
cell (�SA − �SB + �SC − �SD )|〉, and A, B,C, D label the

four sublattices. Simulations initiated with perfect zigzag states are
compared with random initializations. The zigzag order appears to
be unstable in all cases. The small residual moments are a finite-size
effect and decrease significantly with increasing system sizes.

terms, such as the first- and third-nearest-neighbor Heisen-
berg J1, J3 interactions [18,23,59] or the off-diagonal �′ term
[19,20,22,24], are needed.

APPENDIX D: FIELD AND TEMPERATURE
DEPENDENCE OF THE MODULATED (S3 × Z3)2 ORDER

The machine-learned global phase diagram in Fig. 1(c)
shows that the modulated S3 × Z3 orders extend over a finite
region of a [111] field. In particular, in the parameter regime
relevant for α-RuCl3, namely, a FM K and an intermediate
AFM �, the (S3 × Z3)2 order experiences a field-induced
suppression. This is further confirmed in Fig. 11 by direct
measurement of the S3 × Z3 magnetization. After suppressing
the order, the system enters a partially polarized frustrated
regime, owing to the competition between the external field
and the Kitaev and � interactions. A similar classical regime

FIG. 11. Monte Carlo measurement of the (S3 × Z3)2 magneti-
zation as a function of the [111] field, in the region of FM K and
intermediate AFM �. The (S3 × Z3)2 magnetization extends over a
finite region of external field and is subsequently suppressed to a
small but finite value; see Fig. 1(c).
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FIG. 12. Temperature dependence of the (S3 × Z3)2 order and
the corresponding Kitaev and � correlations for h = 0, � = −0.5,
and K > 0. The system exhibits a two-step melting, dividing the
temperature range into three regimes. In the low-temperature regime,
the (S3 × Z3)2 order is established along with strong GKSL and
G�SL. The intermediate regime is a correlated paramagnet, where the
competing Kitaev and � correlations are already noticeable but not
strong enough to stabilize magnetic order. A trivial paramagnet is
found for high temperatures. The dashed lines mark the location of
crossovers.

was discussed in Ref. [24] and was considered as the parent
phase of two quantum nematic paramagnets in the spin-
1/2 K-� model [22,24].

In Fig. 12, we evaluate the temperature dependence of
the (S3 × Z3)2 magnetization and the corresponding Kitaev
and � correlations. The system exhibits two crossovers when
increasing temperature. Order is established in the low-
temperature regime with strong GKSL and G�SL. Its melting
is followed by an intermediate regime where the Kitaev and �

correlations already develop but are not yet strong enough to
stabilize magnetic order. This is consistent with the scenario
discussed in Sec. V that the S3 × Z3 order can be understood
from the competition between the two quadratic correlations.
This intermediate regime also extends until nearly one order
below the Neel temperature, which is set by the interaction
strength, and may hence be viewed as a finite-temperature
correlated paramagnet.

While a two-step melting is often observed for spin liquids,
including the quantum KSL [27,110] and the classical �SL
[96], as well as for spin nematics, such as the multipolar orders
in the kagome [111] and pyrochlore [112] antiferromag-
nets, such a phenomenon is quite unusual for a magnetically
ordered system. We leave for future studies to find out what
type of excitations are responsible for the two crossovers,
and whether such a two-step melting can also be present
when other interactions that can exist in real materials are
included.

The (S3 × Z3)1 phase has the same temperature depen-
dence because of the sublattice symmetry of the K-� model
at zero field. However, the sign of GKSL and G�SL is swapped
as in the case of Figs. 4(b) and 4(d).
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