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Electric polarization as a nonquantized topological response and boundary Luttinger theorem
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We develop a nonperturbative approach to the bulk polarization of crystalline electric insulators in d � 1
dimensions. Formally, we define polarization via the response to background fluxes of both charge and lattice
translation symmetries. In this approach, the bulk polarization is related to properties of magnetic monopoles
under translation symmetries. Specifically, in 2D, the monopole is a source of 2π flux, and the polarization is
determined by the crystal momentum of the 2π flux. In 3D, the polarization is determined by the projective
representation of translation symmetries on Dirac monopoles. Our approach also leads to a concrete scheme to
calculate polarization in 2D, which in principle can be applied even to strongly interacting systems. For open
boundary conditions, the bulk polarization leads to an altered boundary Luttinger theorem (constraining the
Fermi surface of surface states) and also to modified Lieb-Schultz-Mattis theorems on the boundary, which we
derive.
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I. INTRODUCTION

The bulk electric polarization of an insulator is a concept of
fundamental importance in condensed matter physics. Polar-
ization as a bulk quantity in ferroelectricity, piezoelectricity
(polarization induced by mechanical stress), etc. have been
widely studied in traditional solid-state physics. An important
theoretical discovery that related (the change in) polarization
to a geometric Berry phase [1–10] reveals its profound con-
nection to topology properties in quantum systems such as
quantum Hall effects and topological insulators. The precise
definition and interpretation of polarization, however, is a
subtle issue (see, for example, Refs. [3,11]).

Intuitively, the polarization measures the density of elec-
tric dipole moments in the bulk. Polarization density in a
d−dimensional crystalline system with volume V and charge
density ρ(r) reads

P̂ = 1

V

∫
dd rρ(r)r. (1)

However, a surface charge distribution will induce a nonvan-
ishing change in polarization per volume due to the position
operator in the definition. Powerful methods that avoid such
an issue have been established to calculate the polarization,
at least within the independent electron approximation of
band theory [1,2,9,10,12,13]. Periodic boundary conditions
were instead adopted and polarization was calculated using
Wannier functions of the occupied bands. It is also demon-
strated that for a generic insulating system with interactions,
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the change in polarization during an adiabatic evolution is
well-defined and given by the integrated bulk currents, which
could be further expressed as a many-body Berry phase [14].

In this paper, we develop a more topological approach
to define and to directly measure the bulk polarization in
arbitrary spatial dimensions. Specifically, we use a topolog-
ical term to define polarization (per unit cell volume) in any
dimensions and explore its consequences for both the periodic
and open boundary conditions. For the periodic boundary con-
ditions, the polarization determines the properties of magnetic
monopoles under translation symmetries (such as momenta).
For the open boundary condition, the bulk polarization de-
termines the degree of Luttinger theorem violation on the
boundary and more generally is related to quantum anomalies
of the boundary low-energy theory. Our approach applies to
short-range entangled systems of interacting fermions and
bosons (or spins) as long as there are lattice translation sym-
metries and a conserved U (1) charge with a charge gap (i.e.,
an insulator).

The paper is organized as follows. In Sec. II, we moti-
vate a 1D expression of the topological term for polarization
and discuss its various implications and issues for the gen-
eralization to higher dimensions. Section III introduces the
notion of translation gauge fields and the topological term
for polarization as a central result of this work. Section IV
explores the connections of translation properties of magnetic
monopoles and polarization density in 2D and 3D, implicated
by the topological term in Sec. III. Section V discusses open
systems where bulk polarization modifies the boundary Lut-
tinger theorem. The relation of surface charge distribution to
bulk polarization is further clarified through this discussion.
Lieb-Schultz-Mattis (LSM)-type constraints descending from
our topological term on topologically ordered systems and
defect scenarios are also discussed. Section VI summarizes
the results and provides physical arguments underlying the
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entire paper. The Appendices contain details on calculation
recipes, subtleties on polarization, derivation and discussion
of anomalies, and numerical results.

Before discussing the main results, we note that there is a
feature in the definition of polarization when the unit cell has
a nontrivial geometric structure. The polarization P consists
of two parts: a classical electric dipole moment within each
unit cell and an extra part that measures inter-unit-cell entan-
glement [15,16]—the latter is denoted as P̃ in Ref. [11]. Both
P and P̃ have been discussed in the literature depending on
context. We review these notions briefly in Appendix A. Our
results below can be applied to both the full P and to P̃ as long
as we adopt the appropriate calculation scheme as described
below.

II. POLARIZATION IN 1D

Polarization has been [14,17,18] formulated in 1D systems
of size L at integer fillings in terms of the expectation value
of the large gauge transformation operator on the ground state
(GS), i.e.,

2πP = Im ln〈GS|ei2π P̂|GS〉, (2)

where P̂ is the dipole moment density in Eq. (1) and the
operator induces a gauge transform on the electron opera-
tor cr → crei2πr/L . Watanabe and Oshikawa [11] showed its
equivalence to the Berry phase for a flux-piercing process of
a 1D ring where flux θ adiabatically increases from 0 to 2π

(under an appropriate gauge choice of the GS). The electro-
magnetic field Ax(r) = θ/L increases as the flux pierces the
system. In the 1 + 1D action, the 2πP phase accumulation
associated with the time-dependent Ax(t ) can be naturally
written as P

∫
dxdt∂t Ax, where

∫
dxAx(t ) increases from 0 to

2π . Hence, the polarization can be considered as an electro-
magnetic response defined by a topological � term in the low
energy (IR) (setting h̄ = c = e = 1),

S1D
P = P

∫
dxdt (∂t Ax − ∂xAt ), (3)

where we added another term ∂xAt to keep the gauge invari-
ance. The flux-piercing process induces a change of 2π in∫

dxAx and hence a phase of 2πP in the action. This term can
also be motivated by the fact that a dipole moment d couples
to electric field as −d · E. Since

∫
dA = ∫

dxdt (∂t Ax − ∂xAt )
is always an integer (the first Chern number) multiple of 2π on
a closed two-manifold, P is defined mod 1. The periodicity of
P can be understood on the lattice by noticing that shifting an
integer charge by one lattice unit (we set to be a = 1) in every
unit cell is equivalent to a relabeling of lattice coordinates and
should not have any physical effect.

The polarization, defined via Eq. (3), has several conse-
quences. First, for periodic systems, as discussed above, an
adiabatic flux-threading process where

∫
dx Ax changes by

2π leads to a Berry phase � = 2πP from the space-time
path integral of Eq. (3). This Berry phase is in principle a
measurable quantity and is sometimes used as the definition
of polarization in 1D [14,17]. For open boundary conditions,
Eq. (3) becomes a boundary term ±P

∫
dtAt , which represents

a fractional charge q = ±P (mod 1) at each boundary—the
mod-1 condition comes from the fact that one can always de-

posit an integer charge on the boundary without affecting the
bulk. This is consistent with the intuitive connection between
polarization and dipole moments.

We note that for the Berry phase to be well-defined, the GS
is required to return to itself up to a phase after an adiabatic
flux threading, i.e., the GS space should be nondegenerate.
As a counterexample, for fractional filling cases, according to
LSM theorem, a gapped GS must break translation invariance.
For a rational filling p/q (irreducible fraction), it could be
remedied by threading 2πq flux and measure the polarization
as the Berry phase divided by q, modulo 1/q [18]. Raising
this to higher dimensions poses some challenges. A simple
generalization of the electromagnetic (EM) response term
Eq. (3) to higher dimensions does not produce a topological
term. One can consider it as a Berry phase term and measure
the polarization through the Berry phase of a flux-threading
process (say, in the x direction) similar to that in 1D. The
Berry phase, however, is given by

�x = V

Lx
2πPx (mod 2π ), (4)

where V = LxLy... is the system volume and Lx is the length
in the x direction. If we assume lattice translation symmetries
(which we do for the rest of the paper), the intensive quantity
P can be extracted from the L dependence of � (but simply
dividing by V/Lx will not work since the phase is defined mod
2π ). However, it raises the conceptual question whether P
itself bears any physical meaning. For example, for a 2D crys-
talline insulator with Ly = 2N (N → ∞ in thermodynamic
limit) and a polarization density Px = 1/2, the Berry phase
from Eq. (4) is always trivial. Is there a formula for the po-
larization in this case? One can always define polarization by
starting with a reference state with a known polarization (for
example, where polarization is constrained by symmetries)
and connect it to the Hamiltonian of interest by an adiabatic
path, and integrating the currents obtained while connecting
the initial and final states. However, this algorithm requires
defining such an adiabatic path and is conceptually different
from a direct measure of polarization that we seek.

A similar issue appears with open boundary conditions:
The density of dipole moment, which is the classical definition
of polarization, is given by the surface charge density. Unlike
the 1D case where the boundary charge is robustly determined
mod 1, the surface charge density in higher dimensions can
be continuously tuned by boundary perturbations (for exam-
ple, a boundary chemical potential). It then appears that the
boundary does not necessarily reflect the bulk polarization.
An exception was observed in Ref. [13]: When the boundary
is gapped and nondegenerate, the boundary charge density
faithfully represents the bulk polarization mod 1. As we shall
see, a topological approach is needed because polarization
cannot be measured by local probes—something global, such
as symmetry fluxes or physical boundaries, has to be intro-
duced. This justifies the use of the term topological response,
even though the response itself (the polarization) is in general
not quantized and hence its value will change in response to
symmetric perturbations. The familiar electromagnetic polar-
izability (the � term) in 3D also falls into this category when
the time-reversal and mirror symmetry (or, more generally,
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symmetries that invert an odd number of space-time coordi-
nates) are absent.

III. POLARIZATION FROM TOPOLOGICAL TERMS

Interesting IR physics can often be probed by the re-
sponse to background gauge fields. In the study of polarization
density in d > 1, the relevant symmetries include charge
conservation and lattice translation symmetries, so we shall
consider coupling the system to gauge fields associated with
these symmetries. For charge conservation, the gauge field
is simply the electromagnetic field Aμ. For each translation
symmetry Z, say in the ith direction, we introduce a Z-gauge
field xi. This translation gauge field [19] is less familiar, so
we review it below. The gauge field xi is locally flat (dxi = 0)
so only its Wilson loops

∫
C1

xi ∈ Z over loops (or one-cycles,
C1) in space-time is meaningful—formally, this means that
xi ∈ H1(M,Z) where M is the space-time manifold. Further-
more, just like the Wilson loops in other gauge theories, the
integer

∫
C1

xi measures the number of x̂i translations one has
to go through to travel across C1. To be more concrete, con-
sider a path integral description, with dynamical degrees of
freedom ψ (bosonic or fermionic) defined in continuous time
t ∈ [0, T ) and on discrete lattice sites s in space,

e−iSeff[A,xi] =
∫

D[ψ (s, t )] exp

(
−i

∑
s

∫
dtLs[ψ, A]

)
, (5)

where we have used locality and translation symmetries to
write the Lagrangian as a sum of local terms of identical
form, Ls[ψ, A], which involves only fields near site s. We
take periodic boundary conditions in space and time (so M is a
torus). The translation gauge fields enter the partition function
by specifying exactly how the periodic boundary conditions
are taken:

ψ (s, t ) = ψ

(
s + x̂ j

∫
i
x j, t

)
,

ψ (s, t ) = ψ

(
s + x̂ j

∫
t
x j, t + T

)
. (6)

We now explain these equations in more detail. The Wilson
loop of xi in the x̂i direction gives the lattice size

∫
i xi = Li.

For j �= i, the number
∫

i x j measures how much the slice
of the lattice at xi = Li is displaced along the x̂ j direction
before it is identified with the slice at xi = 0. Similarly, the
time component

∫
t xi measures the displacement of the entire

lattice at t = T before being identified with t = 0. In other
words, while the longitudinal parts of the translation gauge
fields measure the lattice size, the transverse parts measure the
quantized shear strains of the lattice in both space and time.
We can also consider a (d − 2) -dimensional defect in space,
around which

∫
xi = n �= 0: this is simply a lattice dislocation

with Burgers vector B = n̂xi.
The translation gauge field xi is closely related to the con-

cept of tetrad in the theory of elasticity [20], which has been
used to characterize three-dimensional integer quantum Hall
effect recently [21–23] and torsions in Weyl semimetals [24].
Consider embedding the lattice into a continuous space, so
each site s can be assigned a continuous coordinate us. We can
treat u as a field, then the tetrad ∇ui will have all the properties

of xi discussed above and can be used as a representation
(a gauge choice) of xi. The gauge-invariant properties of xi

such as the Wilson lines, however, do not depend on how the
lattice is embedded into a continuous space. In this sense,
the xi gauge field measures the topological part of the elas-
ticity response. Another straightforward way is to consider
the strain tensor ∂id j (r) in elasticity theory [25,26], where
the displacement fields d(r) for site r are defined modulo the
lattice spacing, i.e., a relabeling of sites by an integer vector
N(r) does not make a physical difference. This invariance
calls for the gauge field xi,

di(r) → di(r) + Ni(r), (Ni ∈ Z),

∇di → ∇di + xi, (7)

where xi = ∇Ni is defined on a discrete lattice and can be
viewed as the translation gauge field. Now recall that the elec-
tric polarization in 1D can be defined through the topological
term P

∫
dA [Eq. (3)]. The natural generalization to higher

(d + 1) dimensions is the following term:

Spolar =
∑

i

(−1)i+1Pi

∫
x1 ∧ ...xi−1 ∧ dA ∧ xi+1... ∧ xd . (8)

Here ∧ should really mean cup product 	 for discrete coho-
mology instead of the usual wedge product, but the distinction
does not matter for our purpose.

We now give some justifications for Eq. (8) as a definition
of bulk polarization. First, it is the only topological term
involving dA and xi that is first order in the field strength
dA, as we expect for the polarization. Each component of
polarization Pi is defined mod 1 since the integral always
gives integral multiples of 2π on closed manifolds (the term
is therefore a topological � term), and is in agreement with
the intuition that shifting integer charges by one lattice unit
does not have a physical effect. We note that for a system
with spin degeneracy, in principle, two EM fields A↑,↓ could
be used to couple to the phases of spin-up, -down electron
operators, respectively. Consequently, two topological terms
with coefficients P↑,↓ are present and each of the two polar-
ization quantities is defined mod 1. Total polarization density
P = P↑ + P↓ is defined mod 2. When evaluated for a uniform
electric field E on a perfect lattice (free of dislocation and
shear strain) of size L1 × L2..., this term becomes

Spolar(Li ) = (V/Li )
∑

i

Pi

∫
dtdxiEi, (9)

which agrees with the expectation that the total polarization
is (V/Li )Pi when the system is viewed as 1D in x̂i direc-
tion. In addition, if P has a time-dependence P(t ), then by
taking derivative with respect to A from the above action
we obtain the charge current j = ∂P/∂t , which agrees with
physical expectations and is sometimes used as a practical
way to define polarization. If P is spatially dependent, say
varying in the x̂i direction, taking derivative with respect to
At on the term (−1)i+1

∫
Pix1 ∧ · · · xi−1 ∧ dA ∧ xi+1 · · · ∧ xd

gives −ρ = ∂xiPi, agreeing with the relation −ρ = ∇ · P [27]
This integrating by part may leave a boundary term which
accounts for the change of surface bound charge σi due to
spatial variation of polarization through σi = P · n̂, where n̂
is the normal vector of the surface. We emphasize that while
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the special or temporal variations of P results in locally mea-
surable quantities like ρ or j, the more subtle constant piece
of P comes with an intrinsically topological nature and needs
to be defined via the topological term Eq. (8).

We note that the translation gauge field can also be used
for magnetic translations. Suppose we have a lattice system
in which each unit cell traps a U(1) magnetic flux φ in the xy
plane, then in our formulation the Dirac quantization condi-
tion for the U(1) gauge field is now changed to∫

C2

(dA − φx ∧ y) = 0 (mod 2π ), (10)

where C2 represents arbitrary two-cycles in space-time. Most
of our discussions in this paper will be equally applicable
for magnetic translations as long as the above modified Dirac
quantization condition is imposed.

IV. POLARIZATION AND MONOPOLES

We now examine the consequences of the polarization as
defined through Eq. (8) on a closed manifold (like periodic
boundary conditions). Motivated by the 1D case, it is useful
to consider instantons of the A field. In 1D, the instanton is
the familiar adiabatic flux-threading, a smooth configuration
in space-time. In higher dimensions, the instantons become
operators supported on (d − 2)-dimensional submanifolds in
space, with

∫
dA = 2π on the two complementary spatial

dimensions. For d = 2, this is simply a unit flux insertion
in space, and for d = 3 it corresponds to a unit flux tube
in space whose open ends become Dirac monopoles. On the
(d − 2) + 1 manifold of the instanton, the topological terms
reduces to the following Dijkgraaf-Witten [28] type:

Sin =
∑

i

(−1)i+12πPi

∫
x1 ∧ ...xi−1 ∧ xi+1... ∧ xd . (11)

Let us look at some physically relevant examples. At d = 2,
we obtain

Sin,2D = 2π

∫
dt

(
P1x(t )

2 − P2x(t )
1

)
, (12)

which means that the 2D monopole—a point operator in
space—carries charge of 2π (−P2, P1) under translation sym-
metries in x̂1 and x̂2, respectively. But charge under translation
symmetry is simply the crystal momentum. We then conclude
that in 2D the monopole carries lattice momentum

kM = 2π (−P2, P1) = 2π ẑ × P. (13)

It may be helpful to have some simple semiclassical picture
here. Consider a 2π -flux quanta spread uniformly over a re-
gion much larger than the lattice unit. We can then consider
the momentum of such a monopole kM, i.e., the Berry phase
from moving the unit flux configuration by one lattice unit.
Equivalently, we can consider the many-body momentum of
the fermions ke under the flux configuration, which would
be the inverse of the monopole momentum. Now imagine a
semiclassical continuum system—a nonuniform electric field
is induced during the turning on of the magnetic flux, which
then induces a momentum on a small electric dipole moment
d according to δk ∼ ∫

dt (d · ∇)E ∼ − ∫
dtd × (∇ × E) ∼

FIG. 1. The polarization 2πP1 calculated from band theory and
monopole momentum k2 along the orthogonal direction always agree
as one tunes a parameter t . Details can be found in Appendix B.

d × B. Since the dipole density is given by P, we have

ke = −kM =
∫

d2rP × B = 2πP × ẑ, (14)

which is what we obtained from the topological term.
We can use the monopole momentum as a practical way

to calculate electric polarization in 2D. We outline the calcu-
lation scheme here and discuss more details in Appendix B.
Consider a 2D crystalline insulator on a torus, and smoothly
spread a total magnetic flux of 2π on the lattice—say 2π/LxLy

flux per plaquette. The total momentum of the many-electron
system ke can be measured from the GS wave function, as
Berry phase factors associated with lattice translations, and
from Eq. (14) we have ke = 2πP × ẑ. The virtue of this
calculational scheme is that it is well defined (although possi-
bly complicated) even for strongly correlated systems, where
band theory techniques cannot be used.

Another consequence of the connection between polariza-
tion and monopole momentum is that we can now define
polarization in 2D even in the presence of gapless Dirac
fermions. The only subtlety is that with a unit flux in space,
each Dirac cone contributes a zero-energy mode, leading to
multiple degenerate GSs depending on which zero modes
are occupied. For each of the degenerate monopoles, we can
nevertheless define its lattice momentum and interpret it as a
bulk polarization, which then also depends on the zero-mode
fillings. In Fig. 1, we report a numerical calculation of the po-
larization using the monopole momentum for a lattice system
of gapless Dirac fermions with a specific choice of zero-mode
filling. The same polarization can also be calculated using the
standard method from band theory which we also report in
Fig. 1. The two results clearly agree as we vary a parameter
t in the Hamiltonian. More details of the calculational recipe
and the lattice model can be found in Appendix B. In fact,
there is a long history of numerically calculating monopole
momenta for lattice Dirac fermions, motivated by the study of
monopole operators in Dirac spin liquids [29–32]. We showed
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FIG. 2. The semiclassical picture relates projective representa-
tion of monopoles to polarization by electromagnetic duality that
exchanges magnetic monopole and electric charge. The electric dis-
placement field (left) D = P is mapped to magnetic field (right)
B̃ = 2πD and the monopole to an electric charge. The Aharonom-
Bohm (AB) phase θAB seen by the electric charge is proportional to
magnetic field (right), hence the monopole Berry phase proportional
to displacement field (left).

that what this calculation really produces is the polarization of
the underlying Dirac fermions.

For d = 3, the term in Eq. (11) becomes a 2D integral,

Sin,3D = πεi jk
∫

Pix j ∧ xk, (15)

which describes a 2π flux loop decorated with a 1D topo-
logical phase enriched by translation symmetries. This leads
to nontrivial boundary modes when the flux loop has open
ends, which are nothing but Dirac monopoles. The boundary
mode is characterized by a projective representation [33–35]
of translation symmetries, namely, translations in different
directions commute up to a phase when acting on a Dirac
monopole:

T −1
j T −1

i TjTi = exp(i2πεi jkPk ). (16)

This also has a simple semiclassical picture shown in Fig. 2.
Consider a 3D continuum system with polarization density
P. The polarization leads to an electric displacement field
D = P. A magnetic monopole sees the D field as an effective
dual magnetic field B̃ = 2πD = 2πP. A particle moving in
an effective magnetic field realizes translation symmetries
projectively, namely, different translation operations commute
up to a phase factor according to Eq. (16).

Similar to the 2D case, the relation Eq. (16) is relevant
for U(1) quantum spin liquids in three dimensions, described
at low energy by an emergent Maxwell U(1) gauge theory
that is potentially realized, for example, in quantum spin ice
materials [36]. Our results indicate that the monopoles in
a U(1) spin liquid will carry projective translation quantum
numbers if the emergent electric charges form an insulator
with nontrivial polarization density.

It was known from earlier approaches that polarization
is related to other topological quantities including Hall con-
ductance and magnetopolarizability (the axion angle). In
Appendix (D2), we show that these connections can be easily
understood using the polarization-monopole connection.

TABLE I. Polarization density P is related to the properties of
the monopoles in dimensions d = 1, 2, 3.

Monopole property Polarization

1D Berry phase � = 2πP
2D Momentum kM = 2π ẑ × P
3D Projective momentum T −1

j T −1
i TjTi = exp(i2πεi jkPk )

We summarize the connection between bulk polarization
and monopole (instanton) properties in d = 1, 2, 3 in Table I.

V. BOUNDARY LUTTINGER THEOREM AND ANOMALY

We now explore the consequences of bulk polarization for
open boundaries. Consider a boundary at x1 = 0 separating
the vacuum at x1 > 0 and the polarized bulk at x1 < 0, which
preserves all translation symmetries except the one along x̂1.
The �-term in Eq. (8) becomes a boundary term:

S∂ = −P1

∫
∂

A ∧ x2... ∧ xd . (17)

The meaning of this term can be seen by taking functional
derivative with A0: It simply means a (fractional) charge den-
sity of ρ∂ = P1 on the boundary. If the boundary has trivial
dynamics in the IR, namely, with a unique gapped GS, then
Eq. (17) is the only nontrivial term in the IR description of the
boundary. This is the well-known statement that for a trivially
insulating boundary, the charge density is given by the bulk
polarization density mod 1 [13].

In general, depending on details at the boundary, the
boundary can also host nontrivial low-energy degrees of free-
dom. Let us first consider the simplest scenario: a Fermi liquid
metal on the boundary. In this case, the boundary charge
density ρ is obviously not fixed by bulk polarization P (in
a direction perpendicular to the boundary) since it can be
continuously tuned by perturbations that live only on the
boundary. But we expect the Fermi surface volume VF to
be tuned simultaneously with the charge density following
�VF/(2π )d−1 = �ρ from Luttinger theorem. We therefore
expect

ρ = VF

(2π )d−1
+ P · n̂ (mod 1), (18)

where n̂ is the normal vector of the boundary. From this
relation, the polarization density P can be viewed as a source
of Luttinger theorem violation on the boundary. Alternatively,
we can view VF as a quantum correction to the classical ex-
pectation of P = ρ. The boundary Luttinger theorem Eq. (18)
can be understood using an anomaly-matching argument. It
is useful to first phrase the usual Luttinger theorem in terms
of anomaly matching, following ideas similar to those in
Ref. [37]. Consider a theory in (d − 1) space dimensions of
low-energy fermions near a Fermi surface, where fermion
modes far away from the Fermi surface have been integrated
out already. We couple the background gauge fields A and
xi minimally to these fermions and denote the action as
SFS[ψ, A, xi]. It is known that under a large gauge transform,
in which the real space Wilson loop along the x̂i direction∫

Ci
A changes by 2π , the total crystal momentum of these low
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energy fermions changes by [37]

�K = 2π
VF

(2π )d−1
L1...Li−1x̂iLi+1...Ld−1. (19)

This means that the theory SFS[ψ, A, xi] is not invariant un-
der large gauge transforms. Instead, under a gauge transform
A → A + dα, the low-energy theory near the Fermi surface
transforms as

SFS[ψ, A, xi] → SFS[ψ, A, xi] + VF

(2π )d−1

∫
dα ∧

∏
i

xi.

(20)

To see Eq. (19) from Eq. (20), simply recall that
∫

Ci
xi = Li

and that the total momentum along x̂i is the coefficient of∫
dtxi. Equation (20) is also related to the familiar chiral

anomaly in (1 + 1) dimension, which we briefly explain in
Appendix D Now, for a purely (d − 1)-dimensional system
that is not the boundary of another space, we should add a
background term

Sfull = SFS[ψ, A, xi] − VF

(2π )d−1

∫
A ∧

∏
i

xi, (21)

so the full theory is gauge invariant. The meaning of the
counter term, as we discussed under Eq. (17), is simply a
charge density of ρ = VF/(2π )d−1—this is nothing but the
familiar Luttinger theorem!

It is now straightforward to extend to the case of Eq. (18).
Consider a Fermi liquid on the (d − 1) dimensional boundary
of a d dimensional bulk, with Fermi volume VF, and boundary
charge density ρ. The surface theory reads

Sfull = SFS[ψ, A, xi] − ρ

∫
A ∧

∏
i

xi,

=
{

SFS[ψ, A, xi] − VF

(2π )d−1

∫
A ∧

∏
i

xi

}

−
(

ρ − VF

(2π )d−1

)∫
A ∧

∏
i

xi. (22)

The collection in {...} is gauge invariant but the last term is
not if (ρ − VF/(2π )d−1) /∈ Z. We should therefore view the
last term as a polarization term in d space dimensions, hence
Eq. (18). The lesson is that bulk polarization does not directly
give a boundary charge density, rather it leads to a boundary
quantum anomaly. In Appendix F, we numerically study a free
fermion model on square lattice and verify that Eq. (18) is al-
ways satisfied across a range of parameters with qualitatively
different edge behaviors. Equation (18) also applies with P
replaced by P̃ if we also replace the bound charge density by
the excess charge density.

When viewed as an anomaly-matching condition, Eq. (18)
can also be applied to surface states other than Fermi liquids—
we simply need to replace VF by the appropriate anomaly
indicators of the low-energy theories. Namely, we demand
ρ = nA + P mod 1 where nA is the anomaly indicator of the
low-energy effective theory. For example, for rational values
of ρ − P, the anomaly can be matched by a gapped GS with
intrinsic topological order, which typically hosts nontrivial

quasiparticles with fractional electric charge. In such states,
the anomaly is encoded in how the topologically nontrivial
excitations (like anyons in 2D and flux loops in 3D) transform
under translation symmetries. These anomalies are closely
related to the LSM-type theorems that constrain the possible
low-energy theories of a given lattice system [19,37–42]. We
briefly describe the LSM-type anomaly for topological orders
in two and three dimensions in Appendix E. These results
reduce to the previously obtained boundary Luttinger relations
in the absence of polarization, as described in Ref. [43], and
also apply to 2D systems with a nonzero Hall conductivity,
provided an appropriate gauge choice in Appendix F, dis-
cussed previously in Ref. [44] within band theory.

The logic we used to study the boundary can also be
used to study dislocations. A dislocation has space dimension
(d − 2) and therefore can preserve at most (d − 2) translation
symmetries. For simplicity, we consider a dislocation with
Burgers vector B = x̂2 and unbroken translation symmetries
Zx3 × ...Zxd . The polarization term Eq. (8) reduces to the fol-
lowing on the dislocation (with space-time dimension d − 1):

Sdisloc = P1

∫
A ∧ x3 ∧ ...xd . (23)

This has the same form as the boundary term Eq. (17), only in
one dimension lower. This term leads to the same Luttinger
theorem violation as Eq. (18) on the (d − 2)-dimensional
dislocation, where VF is again interpreted as the anomaly
indicator of the low-energy effective theory. A special case
is d = 2 which has been discussed in Ref. [45], where the VF

term is not needed and the polarization directly determines the
fractional electric charge nucleated at the dislocation point.

VI. SUMMARY

In this paper, we proposed a nonperturbative definition
of the physically measurable polarization density in a crys-
talline insulator through translation properties of test magnetic
monopoles. Our formalism is applicable in any space di-
mension to systems of interacting electrons but equally to
interacting bosons or spins that enjoy a U(1) symmetry, as
long as there is a unique gapped GS. The central result is
a response involving background U(1) fluxes and translation
gauge fields, captured by a topological term. This response
is topological despite the fact that the coefficient which is
identified with the polarization is not quantized. Indeed, to
probe this response, one needs to implement a global (non-
perturbative) change, e.g., a U(1) flux (monopole/instanton),
a lattice shear, a dislocation, or a physical boundary. This
surprising connection seems natural in light of the necessity
of charge quantization to properly define polarization [13],
which is the consequence of a compact U(1) symmetry group,
which, by the Dirac quantization argument, is related to the
existence of magnetic monopole operators. The subtleties in
previous literature associated with defining polarization (P vs
P̃) are neatly accounted for by gauge field configurations that
have different distributions within a unit cell, corresponding
to different approaches toward the continuum limit. Besides
being given a recipe to obtain the polarization in numerical
calculations, the connection bears conceptual significance to
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boundary physics. We see that the classical relation between
polarization and boundary charge density receives a quantum
correction in the form of an anomaly associated with the
boundary low-energy theory. For a boundary Fermi liquid,
the anomaly is associated with the familiar Luttinger theorem
and, for a more general boundary phase, it is associated with
a LSM-like theorem, but for a general filling.

Note added: We note recent works [26] that studied
the response of (2 + 1)D Abelian topological phases with
crystalline symmetries utilizing crystalline gauge fields for
translations and rotations.
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APPENDIX A: POLARIZATION WITH NONTRIVIAL UNIT
CELL STRUCTURES

Here we discuss different definitions of polarization to
emphasize the lattice point of view. Most of the physics below
are discussed in Refs. [11,16].

To illustrate the essential point, it suffices to consider a
simple 1D lattice with two sublattices and one electron orbital
on each—generalizations to more complicated unit cells (or
even higher dimensions) will be straightforward. We label the
unit cells by i ∈ Z and sublattices by {a, b}. We consider a
simple insulator with unit charge occupation per unit cell,
namely, 〈ni,a + ni,b〉 = 1, with an extra unit negative (ion)
charge qion = −1 sitting on site a to make the entire system
charge neutral.

The electric polarization is defined via the response to a
smooth gauge field (ϕ, A) defined on the lattice—but what
does smooth mean? Clearly we want the gauge field to be
slowly varying when moving from one unit cell to another,
which means the lattice momentum of the gauge field is close
to zero. For example, Ai,a;i,b ≈ Ai+1,a;i+1,b and ϕi,a ≈ ϕi+1,a.
However, this does not uniquely specify how the gauge field
should be distributed within a unit cell, namely, how Ai,a;i,b

should be compared with Ai,b;i+1,a, or how ϕi,a should be
compared with ϕi,b. Apparently, we have a choice to make
here. One simple choice is to demand Ai,a;i,b = 0 and ϕi,a =
ϕi,b. The continuum limit of the gauge fields (now a smooth
function of the continuum coordinate x with no explicit de-
pendence on the sublattice index) will be A(x = i) = Ai,b;i+1,a

and ϕ(x = i) = ϕi,a. This is equivalent to viewing the entire
unit cell as a single point in space. The polarization defined
via the response to such field configurations effectively mea-
sures only the interunit cell entanglement and is called P̃ in
Ref. [11]. We can make a more general choice as follows: We

demand

(1 − α)Ai,a;i,b = αAi,b;i+1,a,

(1 − α)(ϕi,b − ϕi,a) = α(ϕi+1,a − ϕi,b), (A1)

for some constant α. The continuum limit is then

A(x = i) ≡ αAi,a;i,b + (1 − α)Ai,b;i+1,a,

ϕ(x = i) ≡ ϕi,a. (A2)

The physical meaning is also clear: Wwe interpret the two
sublattices a, b as separated by a distance α in real space
(with lattice unit normalized to unity). If the lattice system
originates from a continuum with the two sites separated
physically by a distance α, then this choice corresponds to
a physically uniform electric field, and therefore produces
the polarization P for a uniform electric field. To obtain the
polarization difference P − P̃, consider the lattice-scale action
difference S[Aμ

P ] − S[Aμ

P̃
], where Aμ

P , Aμ

P̃
are the correspond-

ing lattice gauge field distributions with the same continuum
limit Aμ(x, t ). Using the definition of Aμ

P in Eqs. (A1) and
(A3) and the fact that ji,a;i,b − ji,b;i+1,a = ∂t ni,b, where j is the
lattice current operator that couples to the A field, one can
see that

S
[
Aμ

P

] − S
[
Aμ

P̃

] =
∑

i

∫
dt αni,b[∂t A(x = i)

− (ϕ(x = i + 1) − ϕ(x = i))], (A3)

which simply means that P − P̃ = α〈ni,b〉, and can be inter-
preted as a classical contribution, namely a charge qb sitting
at site b contributes a dipole moment αqb. Different choices
of the intracell gauge field distribution also lead to different
definitions of charge density (per unit cell) in the continuum
limit. In the continuum limit, we define charge density as
ρ(x) = δS/δϕ(x) where ϕ(x) is in the continuum limit as dis-
cussed above. This is easy for the gauge field probing P̃, where
ϕ is unique within a unit cell, and we simply get ρi = 〈ni,a +
ni,b〉 + qion. However, with nontrivial α (as for the standard P),
there is a correction from the nonuniformity of ϕ within the
unit cell. A simple calculation gives δρi = −α∇〈ni,b〉, which
is nonzero only at the boundary. The relation ρ = −P (mod
1) at the boundary (an insulating boundary in d > 1) holds
for both P and P̃ as long as the corresponding definitions for
charge density are used. A similar difference between current
operators from j(x) = δS/δA(x) in different continuum limits
was also discussed in the literature [11].

The above discussion implies that when one considers
small momentum (long wavelength) components of dA, e.g.,
a uniform electric field induced by monopole translation,
Eq. (8) gives a response controlled by the conventional po-
larization P; while dA around higher momenta niGi(ni ∈ Z)
probes sites inside a unit cell with different weights. In one
extreme case, where one concentrates inductive electric field
on only the intercell bond, the response term gives P̃.

APPENDIX B: DETAILS OF 2D CALCULATION

1. Recipes for calculation

Consider a square lattice with Lx × Ly unit cells, and as-
sume a unique gapped GS. We put a total magnetic flux of
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2π uniformly on the entire surface. To be concrete, let us take
the following gauge (analogue of Landau gauge on a discrete
torus):

Ai,i+x̂ = −2πy

Ly
δx,Lx−1,

Ai,i+ŷ = 2πx

LxLy
,

i = (x, y), x ∈ {0, ...Lx − 1}, y ∈ {0, ...Ly − 1}. (B1)

In this gauge, a unit translation in x̂ (denoted Tx) should be
followed by a gauge transform that acts nontrivially only on
the x = 0 strip,

Gx = exp

(
−i

∑
i

2πy

Ly
δx,0q̂i

)
, (B2)

where q̂i is the charge density operator on site i. The ŷ trans-
lation (denoted Ty), in contrast, does not need an additional
gauge transform.

Strictly speaking, however, on a finite torus neither GxTx

nor Ty is a true symmetry since the Wilson loop along the
nontrivial ŷ and x̂ cycles cannot be translationally invariant
under Tx and Ty, respectively. As we can see explicitly from
Eq. (B1), the Wilson loops change by

∫
dyδAy = −2π/Lx on

every ŷ cycle and
∫

dxδAx = 2π/Ly after Tx and Ty, respec-
tively. This noninvariance of Wilson loops cannot be cured by
a gauge transform. To overcome this issue, we consider modi-
fied translations T̃x = FyGxTx and T̃y = FxTy, where Fy, Fx are
adiabatic evolutions that modify the A fields by δA at the end
of the evolutions, where

Fy : δAx = 0, δAy = 2π

LxLy
,

Fx : δAx = −2π

Ly
δx,Lx−1, δAy = 0. (B3)

The composite operations T̃x, T̃y preserve the Hamiltonian,
and therefore produce well-defined Berry phases φx, φy which
we identify with ke = −kM = 2π (Py,−Px ).

The connection between the monopole momentum and po-
larization can also be understood from the structure of T̃x, T̃y.

Consider the operations T̃ Lx
x and T̃

Ly
y . Using T Lx

x = T
Ly

y = 1,
one can see that the two operations become the familiar
adiabatic 2π flux threading in the ŷ and −x̂ directions, re-
spectively. The corresponding Berry phases are (�x,�y) =
2π (LxPy,−LyPx ), in agreement with our previous result. No-
tice that since T̃ Li

i �= 1, the translation Berry phase defined
above is not quantized on a finite system—this is consistent
with the fact that polarization can take continuous value in a
finite system.

In practice, since Fx, Fy only threads a small flux of order
O(1/L), one would expect their actual effect to be small,
especially at large L. One can then consider the simpler am-
plitudes 〈�|GxTx|�〉 and 〈�|Ty|�〉 (|�〉 being the GS in the
flux background). These will have magnitudes smaller than
one on a finite torus, but as long as it is nonvanishing (in fact,
we expect it to approach unity in the thermodynamic limit),
one can extract the phase of the amplitude, and this phase
should give the monopole momentum, which in turn gives the

polarization density. More explicitly,

〈�|GxTx|�〉 = ρxe2π iPy , 〈�|Ty|�〉 = ρye−2π iPx , (B4)

where ρx,y are magnitudes that are nonvanishing in the ther-
modynamic limit (in practice they → 1, see Sec. . Equation
(B5) is in the same spirit with Resta’s formula [17] for po-
larization in 1D, which is the phase of the (smaller than one)
amplitude 〈�| exp(ixq̂x/L)|�〉. In higher dimensions, Resta’s
amplitude vanishes in the thermodynamic limit and cannot
be used to extract polarization [11]. Our prescription using
the amplitudes 〈�|GxTx|�〉 and 〈�|Ty|�〉 can be viewed as
a proper generalization of Resta’s formula to 2D. In fact,
this prescription has been carried out in previous studies of
monopoles in 2D U(1) spin liquids [32].

Strictly speaking, our recipe gives the polarization of the
GS in the 2π -flux background |�〉, which is slightly different
from the original GS without the flux |�〉0. The two should
agree in the thermodynamic limit. To see this, let us consider
insulators with zero Hall conductance. If there is no symmetry
other than charge conservation and translations, the leading
order term in the response theory that can cause a mag-
netic flux to change the polarization is �L ∼ αiBEi for some
constants αi (i = x, y). This means that a total 2π flux will
change polarization by O(B) ∼ O(1/L2). With time-reversal
symmetry, the leading order term becomes ∼B2E and the
change of polarization in the 2π -flux background becomes
O(B2) ∼ O(1/L4). This error will likely be dominated by
other finite-size effects such as omitting the flux-threading
Fx,y in the calculation. This argument is reliable for insulators
without Hall conductance, since we expect all terms in the
response theory to be local and manifestly gauge invariant.

If the unit cell contains two neighboring sites in the x
direction, i.e., Lx even and a unit cell contains (2n, m), (2n +
1, m)(n, m ∈ Z), the above recipe only distributes a nonvan-
ishing A field on bonds between unit cells of choice, and A
vanishes within each unit cell, which corresponds to calculat-
ing P̃ in Ref. [11]. The actual unit cell structure and geometry
do not contribute to monopole translation properties, or polar-
ization, obtained in such ways. In general, the polarization and
the monopole momentum depend on the choice of unit cells.

To obtain the polarization P, with both intra(classical) and
intercell effects, we give a recipe to account for the unit cell
geometry, applicable to generic systems. To this end, we first
give a continuum function for gauge field A on the torus which
can then be used to determine the discrete gauge fields. Taking
the distance between neighboring unit cells to be 1 and the
Bravais lattice to be square, the continuum gauge field reads

Ax(x, y) =
{

0 0 � x < Lx − 1
− 2πy

Ly
Lx − 1 � x < Lx,

Ay(x, y) =
{ 2πx

LxLy
0 � x � Lx − 1

2π (Lx−1)
LxLy

(Lx − x) Lx − 1 < x < Lx.
(B5)

Note the function is not single valued but is well defined and
hence poses no problems for obtaining the gauge fields on the
discrete lattice. When put on the lattice, the gauge connection
on one bond l is given by

∫
l dx · A(x), i.e., the line integral of

continuum A along the bond.
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Once put on a lattice, the flux close to the slit at y =
Ly, Lx − 1 � x � Lx should have an O(1) deviation from
2π/(LxLy) due to the discontinuity in Eqs. (B5) (the to-
tal flux threading the unit cell at (Lx − 1, Ly − 1) is hence
2π/(LxLy) − 2π ). One could compensate for this deviation
by altering the gauge connection on bonds inside the slit,
such that the deviation is concentrated to a set of elementary
plaquettes (i.e., not containing any smaller plaquettes) that
contain the point (Lx, Ly), whose flux equals 2π/(LxLy)A −
2π (A is the area of the elementary plaquette). This fixes
the translation symmetry breaking of flux derived from the
continuum recipe. Upon translation Ty, one carefully performs
a gauge transform on sites in the slit Gy to restore the gauge
connection as much as possible, the amplitude of 〈�|GyTy|�〉
is comparable to unity; the phase converges in thermodynamic
limit to the conventional polarization P.

The two recipes have the same flux configuration on torus
and hence are connected by a gauge transform. However, this
gauge transform generally does not commute with GyTy and
will change the momentum obtained, consistent with getting
P̃ versus P for the two recipes. For example, in the above
square lattice model, we assume a unit cell at (n, m) contains
two sites at (n, m), (n + 1/2, m), respectively [in notation of
Eq. (B1), the coordinates read (2n, m), (2n + 1, m)]. Then
the two recipes built upon Eqs. (B1) and (B6) differ by a
gauge transform on sites with x = Lx − 1/2 by the operator
e−i

∑
y

πy
Ly

ρ̂(Lx−1/2,y). From the commutation relation between
this gauge transform and the GyTy operation, one can see
that the change of momentum from the gauge transform as
L → ∞ is precisely δky = −π 〈̂ρ(Lx − 1/2, y)〉, which leads
to a change in polarization Px − P̃x = 〈̂ρ(Lx − 1/2, y)〉/2, in
agreement with the intuition that the difference between P and
P̃ can be seen as a classical dipole moment within the unit cell.

2. Review of band theory calculation

For a d-dimensional lattice system with translation sym-
metries and periodic boundary conditions in all directions, the
polarization corresponds intuitively to the dipole moment in
each unit cell. For free fermions, the polarization contributed
by an occupied band is given by the integrated Berry connec-
tion (the Wilson loop) in the Brillouin zone [13],

P =
∫

BZ

dd k
(2π )d

〈uk|i∂k|uk〉 (mod 1), (B6)

where |uk〉 is the periodic part of the Bloch state at momentum
k and the integration is taken over the entire Brillouin zone.
(Here uk(r) = e−ik·rψ (r).) We also discuss P̃ [11] if we in-
stead use ũk(r) = e−ik·Rψ (r), where r = R + ri and R is the
Bravais lattice vector associated with r. [ũk(r) = ũk+Gi (r).]

In the presence of gapless Dirac cones, the band theory
polarization Eq. (B6) is not uniquely defined. This ambiguity
can also be understood from monopole momentum: In a 2π -
flux background there are fermion zero modes associated with
the Dirac fermions, and filling different zero modes gives dif-
ferent GSs, with different total momenta. We now discuss this
within the usual band theory formulation. For concreteness,
consider a system of spin-1/2 fermions forming two Dirac
valleys, say, at momenta K, K′. The Wilson loop for each spin

α in the k̂1 direction

Pα (k2) =
∫

dk1

2π
〈uα,k|i∂k1 |uα,k〉 (B7)

has a discontinuity of ±π when k2 passes through K2 and K ′
2.

The polarization

P1 =
∑

α=↑,↓

∫
dk2

2π
Pα (k2) (B8)

requires a choice of the jump in Pα (π or −π ) at each Dirac
point. For the polarization to be gauge-invariant,

∑
α Pα (k2)

should be single-valued in the entire Brillouin zone (i.e., no
net Chern number). This leads to six different choices of the
jumps in Pα at the Dirac points. Now, from the monopole mo-
mentum point of view, in a 2π -flux background there are four
zero modes (one from each Dirac cone) and gauge-invariance
requires the GS to fill half of the zero modes, which leads to
C4

2 = 6 different choices—in exact agreement with the band
theory consideration.

3. An example

Our numerical prescription for calculating polarization
density through amplitudes like 〈�|Ty|�〉 (|�〉 being the
many-body GS in the presence of a uniform 2π flux back-
ground) is well-defined for generic many-body systems. In
the special case of free fermions, we expect our prescription
to agree with the band theory results from Eq. (B6). We
demonstrate this through an example of a Dirac semimetal
(with a specific choice of zero-mode fillings). We consider a
square lattice, labeled by two orthogonal unit lattice vectors
e1,2, with two orbitals and two spin species on each site. The
Hamiltonian for our spin-1/2 fermions reads

H =
∑

〈i j〉,α,β

tiα, jβeiai j f †
jβ,s fiα,s +

∑
i,α,β

tiα,iβ f †
iβ,s fiα,s, (B9)

where s =↑,↓ labels spin indices, α, β = 1, 2 label
orbitals,〈i j〉 denotes neighboring or sites linked by a diagonal
bond, and hopping amplitudes read

t[l1,l2],[l1+1,l2] = 1,

t[l1,l2],[l1,l2+1] = (−1)l1 ,

t[l1−1,l2],[l1,l2−1] = (−1)l1t (t ∈ [0, 1]),

t[l1,l2][l3,l4] = t[l3,l4][l1,l2], (B10)

where we have relabeled subscripts iα by [l1, l2] through
l1 = 2 ∗ i1 + α, l2 = i2 (site i with coordinates (i1, i2) in e1,2

basis) and t is the tuning parameter. Hopping amplitudes on
other diagonal or neighboring bonds not covered in Eq. (B10)
vanish. The two limits t = 0, 1 correspond to a square with
C4 rotation and an effective triangular lattice with C6 rotation,
respectively. Diagonalizing this Hamiltonian in momentum
space gives gapless dispersion at half-filling. To avoid the
ambiguity for a Wilson loop operator when crossing Dirac
fermions as discussed in Appendix (B10), we stipulate the two
bands for spin up/down has Chern number ±1, respectively,
i.e., effectively open an infinitesimal quantum spin hall mass.
For the monopole momentum calculation, the gauge connec-
tion on links ai j analogous to Landau gauge in Eq. (B1) gives
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a total flux of 2π and the quantum spin hall mass indicates
that one fills only two zero modes of one spin species, giving
a monopole carrying spin 1. Figure 1 in the main text shows
a comparison of polarization P1, calculated numerically using
Eq. (B6) long the direction of reciprocal vector for e1 and the
monopole momentum k2 along the orthogonal e2 direction,
calculated as in Appendix B 1 as one tunes t from 0 to 1.
The polarization obtained from Eq. (B6) is discretized as a
summation of the Berry phase ln〈uk|uk+ε〉 for 30 000 points
in the Brillouin zone; the momentum is calculated on a lattice
of linear size L = 50. For the special cases when t = 0, 1 the
momentum k2 = π, 2π/3 agrees with results in Refs. [32,46].

APPENDIX C: POLARIZATION AND OTHER
TOPOLOGICAL QUANTITIES

In 2D, the polarization density is not invariant under large
gauge transforms if the system has a nonzero Hall conduc-
tance σxy �= 0. This is known in band theory, where Eq. (B6)
is not invariant under large gauge transforms in real space—in
fact, this is one way to define integer quantum Hall effect
within band theory. Beyond band theory, it is also easy to
understand why this is so from the monopole momentum: A
2π -flux induces an extra charge δQ = σxy in the GS, which
makes the total momentum noninvariant under large gauge
transforms. The total polarizations PxLy and PyLx are still
well-defined (gauge invariant) mod 1. Similarly, if the system
forms a quantum spin Hall insulator, with a nonzero Sz spin
trapped in a magnetic flux unit, then the polarization is not
invariant under a large Sz-gauge transform. In all such cases,
the polarization remains meaningful (unambiguisly defined)
for a given gauge if the gauge field remains nondynamical.

Contrary to the Hall conductance, a nonzero magnetoelec-
tric angle � in 3D,

�

4π2
E · B, (C1)

does not obstruct the gauge invariance of polarization density.
Within band theory, the � angle can be interpreted as the
magnetoelectric polarizability [47,48], i.e., a magnetic field
induces an extra polarization density:

�P = �

4π2
B. (C2)

The monopole point of view provides a simple understanding
of the above relation beyond band theory: When � �= 0, the
monopole traps a fractional charge q = �/2π and becomes
a dyon [49]. When a magnetic field is turned on, say, in
ẑ, the monopole also sees the field due to the fractional q.
This contributes to the noncommutativity of Tx and Ty, with
the additional phase factor given by qB = (�/2π )B. Using
Eq. (16) as the definition of polarization, we immediately
obtain Eq. (C2).

APPENDIX D: ANOMALY FROM A FERMI SURFACE

In this Appendix, we derive the anomaly term Eq. (20)
which proves the Luttinger theorem in any spatial dimen-
sion d . The logic is to partition the Fermi surface into
infinitesimally small patches in whose proximity reside chiral

fermions, that effectively live in (1 + 1)d . The chiral anomaly
from each of these fermions adds up to give Eq. (20).

Let us first write down the anomaly for a 1D chiral fermion
with the free Hamiltonian ψ†i(±∂x )ψ , where we set velocity
to unity and ± represents right (left) movers under considera-
tion. Next we couple to theory to both a U(1) electromagnetic
field A and an x-translation gauge field (elasticity tetrad) x.
The momentum of the chiral fermion kF becomes the cou-
pling constant between the translation gauge field x and the
fermion (in analogy to electric charge e as the coupling con-
stant between EM field A and a fermion, here the charge
of translation—momentum—mediates the coupling). Hence
the covariant derivative i∂x,t → i∂x,t + Ax,t + kFxx,t where the
subscript denotes the space-time component of the 1− form
gauge field, omitted hereafter. To obtain the mixed anomaly
between A, x, one goes to one higher dimension (2 + 1)d bulk
of the chiral fermion—a quantum Hall insulator with Chern
number C = ±1, with the low-energy topological quantum
field theory action:

S = ±1

4π

∫
(A + kFx) ∧ d (A + kFx). (D1)

Note that since we introduce elasticity tetrads in addition to A,
the familiar Chern-Simons term A ∧ dA is modified as such.
The mixed term in Eq. (D2) reads ± ∫ kF

2π
x ∧ dA, from which

descends a boundary term ∓ ∫ kF
2π

A ∧ x.
Now that we have the desired (1 + 1)d anomaly, consider

in a d space dimension system, compactify (d − 1) dimen-
sions and derive similar anomaly for the effective (1 + 1)d
system along the remaining ith primitive lattice vector di-
rection. We inspect a small patch on the Fermi surface with
momentum range (k1 ± δk1/2, · · · ki, · · · kd ± δkd/2) (δk j �
0,the variation of ki is neglected to zeroth order of the
anomaly). On such a patch with an area �si = ∏

j �=i δk j , there

are ( �si
(2π )d−1

∏
j �=i L j ) chiral fermions along the ith direction,

each associated with an anomaly ∓ki
2π

∫
A ∧ xi (∓ in numerator

results from right (left) movers given by the orientation of
the small patch projected onto ith reciprocal vector direction).
Adding all patches up, the self-Chern-Simons terms vanish
and the remaining anomaly reads

SFSanomaly = −
∏

j �=i L j

(2π )d

∑
FS

�siηiki

∫
A ∧ xi

→ − VF

(2π )d

∫
A ∧

∏
xi. (D2)

where
∑

FS counts all patches on the Fermi surface, ηi = ±1
denotes the orientation of each patch along/against ith re-
ciprocal lattice vector, and we use the identity on Luttinger
volume

∑
FS �siηiki = VF. The second line arises after we

introduce translation gauge fields along the other (d − 1)
directions and the numerator in the first line:

∏
j �=i L j →∫ ∧∏

j �=i x j . The final result puts all xi’s on equal footing
and hence it correctly captures the anomaly of the Fermi
surface under large gauge transforms along any spatial di-
rections. Adding the anomaly term to the Fermi surface
theory will make the full theory anomaly-free, as promised
in Eq. (21).
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APPENDIX E: LSM ANOMALY INDICATORS FOR
TOPOLOGICAL ORDERS

First, we review an important notion for a topological order
with a global U(1) symmetry in general d dimensions known
as the fluxon. Consider an instanton of the A field, which is
an operator supported on a (d − 2) dimensional submanifolds
in space, with

∫
dA = 2π on the two complementary spatial

dimensions. For d = 2, it is a point flux insertion and for
d = 3 it is a unit flux loop. Dirac quantization requires this
object to be unobservable from far away. However, in a topo-
logically ordered state, there can be nontrivial quasiparticles
that carry fractional electric charge, and moving these frac-
tional charges around the instanton will naively produce an
observable Aharanov-Bohm phase. The resolution is that the
bare instanton is attached with another nontrivial excitation,
called the fluxon, from the topological order. The property of
the fluxon is such that the combined object becomes unob-
servable from far away. For example, a fractionally charged
quasiparticle will have a nontrivial braiding phase with the
fluxon so it braids trivially with the combination of fluxon and
bare instanton. In 2D, the fluxon is an anyon excitation and in
3D it is a loop excitation.

In general, anomalies involving a U(1) global symmetry in
topological quantum field theories are encoded in the proper-
ties of fluxons. Essentially, if the fluxon carries a fractional
quantum number under other symmetries, in our case lattice
translations, then the instanton will also carry the fractional
symmetry quantum numbers since it is bound with a fluxon.
Since the instanton is supposed to be unobservable, this be-
comes an anomaly. The fluxon has space-time dimension d −
1, and crystal symmetry fractionalization can be described
using a partition function in a d space-time dimension:

Lfluxon = −nA

∫
x1 ∧ x2... ∧ xd , (E1)

for which the fluxon lives on the boundary of the d-
dimensional (space-time) manifold, and nA ∈ [0, 1) is the
LSM anomaly indicator.

At d = 2, the fluxon is an (Abelian) anyon particle, and
Eq. (E1) means that the fluxon transforms projectively under
translation symmetries:

T −1
2 T −1

1 T2T1 = e−i2πnA . (E2)

This relation has been discussed in Ref. [50]. We note
that this result is equally applicable for magnetic transla-
tion symmetries, where a nontrivial U(1) flux φ is enclosed
in each unit cell. As a simple example, consider a short-
range entangled integer quantum Hall state. The fluxon in
this case must be an integer multiple of the local elec-
tron since there is no fractional excitation. Specifically,
to make the 2π -flux unobservable, the fluxon must carry
electric charge −2πσxy, namely, it is the bound state of
−2πσxy electrons. The effective magnetic flux seen by this
fluxon is therefore −2πφσxy. To satisfy Eq. (E2), we must
therefore have

φσxy = nA (mod 1). (E3)

This relation has also been discussed in Ref. [50].

At d = 3, the fluxon is a loop excitation with finite tension.
Equation (E1) has the following interpretation. First, consider
a straight fluxon tube, say pointing in ẑ (assuming periodic
boundary condition). If we translate the entire loop in the
(x, y) plane, Tx and Ty will commute only up to a phase:
T −1

y T −1
x TyTx = exp(−2π inALz ), where Lz is the number of

layers of the entire system in ẑ. Another way to describe this
property, without relying on having a finite Lz, is to consider
a closed fluxon loop that links with a dislocation (a line
defect in 3D), say with Burgers vector ẑ. Translation symme-
tries will act on the loop projectively. More generally, for a
fluxon loop linked with a dislocation with Burgers vector B,
we have

T −1
j T −1

i TjTi = exp(−2π iεi jkBknA). (E4)

Another consequence, following similar reasoning, is a non-
Abelian three-loop braiding [51] for a fluxon loop and two
dislocations.

APPENDIX F: SQUARE MODEL NUMERICS TO VERIFY
BOUNDARY LUTTINGER THEOREM

Our square lattice model consists of spinless fermions with
nearest neighbor and diagonal hopping, detailed configuration
shown in Fig. 3(a). It’s modified from π -flux square hopping
with ε variation of vertical hopping, time-reversal breaking
imaginary diagonal hopping, and complex diagonal hopping t
further breaks remaining rotation (inversion), reflection sym-
metries to allow a generic polarization. The only symmetry
that remains preserved is translation. When put on a cylinder
geometry with x2 = 0, L boundaries and periodic along x1

direction, we can calculate boundary charge densities for, e.g.,
x2 = 0 boundary as [13]

ρbd = 1

�

∫ x0

−∞
dx2

∫ x2+a/2

x2−a/2
dx′

∫
Abd

dx1ρ(x1, x′), (F1)

where ρ(x1, x2) is the charge density including ions (for a
neutral system), x0 locates deep in the bulk, a is size of
unit cell along the x2 direction, Abd denotes any segment
covering exactly one unit cell on the boundary and � the
unit cell area. This amounts to first averaging charge den-
sity ρ̄(x2) = 1

�

∫ x2+a/2
x2−a/2 dx′ ∫

Abd
dx1ρ(x1, x′) within a window

[x2 − a/2, x2 + a/2] to smoothen any irrelevant periodic os-
cillations in the bulk [ρ̄(x) = 0 for x inside the bulk] while
retaining the extra charge accumulation [52], then integrat-
ing the averaged density. From the field-theoretic point of
view, this window function ρ̄(x) use comes naturally from
the application of the long-wavelength limit in Eq. (8) to
discrete lattices. In continuum, one identifies each unit cell
with a single point x and hence the vector potential A0(x)
couples to the average density inside the unit cell ρ̄(x). On the
other hand, the lattice-scale oscillation of bare ρ(x) renders
it incompatible with the continuum limit in long wavelength.
ρ(x) for the boundary charge density, however, matches with
P̃ (see last paragraph).

Similarly, we get boundary kF as one varies chemical po-
tential. The bulk polarization is calculated by Eq. (B6) For
simplicity, we put the positive ions at sites with integral co-
ordinates in units of Bravais lattice vectors, i.e., site (0,0)
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FIG. 3. (a) illustrates the fermion hopping parameters used. The hopping strengths on solid/dotted horizontal bonds are ±1, on normal
weight/bold vertical bonds are 1 ∓ ε(ε ∈ R) and across solid/dashed diagonal bonds are i, it (∗)(t ∈ C) (direction denoted by arrows),
respectively. The unit cell is doubled along vertical direction. (b)–(d) show typical energy spectrum on a cylinder geometry with boundaries
at x2 = 0, L and periodic in x1 direction. The in-gap red lines depict states localized at two edges. (b), (d) satisfy Eq. (18) while (c) has
nonvanishing Chern number and gauge-dependent polarization, boundary kF, so boundary Luttinger theorem applies with an appropriate Berry
connection integral rule.

and its equivalents by lattice translations. The ions don’t con-
tribute to polarization in this way; Eq. (B6) gives the entire
polarization then.

As we vary the parameters t, ε, the system enters multiple
physical regimes with a gapped bulk. For example, the system
hosts nonchiral edge states in Fig. 3(b) and when chemical
potential stays inside the bulk gap, the edge density ρ, Fermi
momentum kF, and bulk polarization P always obey Eq. (18).
(We note it’s important for the bulk to remain insulating with
the chemical potential in between the gap.) A relatively trivial
scenario in Fig. 3(d) is in the absence of edge states, the edge
density equals bulk polarization in line with previous knowl-
edge of polarization. A tricky case is when the model has a
nonzero Chern number C shown in Fig. 3(c) and edge density
ρ, kF, polarization will change upon a large gauge transform
along the orthogonal direction, i.e., gauge dependent. We find
that under a fixed gauge, Eq. (18) still holds given appropriate
recipe for bulk polarization Eq. (B6) i.e., 2πC discontinuity
of Wilson loop phase θk1 = ∫

dk2〈uk|i∂k2 |uk〉 occurs only at
k1 = 0. In all cases, the momenta of a monopole on a torus ge-
ometry satisfy (k1, k2) = 2π (−P2, P1) obtained by the method
in Appendix B 1.

Finally, we remark that all calculations above
apply also to the intercell part of polarization P̃,
when we calculate the boundary charge density as

ρ0 = ∫ na
−∞ dx2

∫
Abd

dx1ρ(x1, x2) (n ∈ Z ) instead of Eq. (F1).
The relation between these two reads [16]

ρbd = ρ0 − 1

a

∫ na+a/2

na−a/2
dx2

∫
Abd

dx1ρ(x1, x2)x2, (F2)

where we take x0 = na in Eq. (F1) and use the neutrality
condition. In passing, we remark this rewriting makes explicit
the equivalence between the window function method and the
charge density as derived in Appendix A. There the charge
density in two spatial dimensions reads

ρ(x0) =
∫

�x0

d2xρ(x) − 1

a

∫
�x0

(x − x0) · ∇�ρ(x), (F3)

where �x0 is the unit cell at x0 and ∇� denotes gradient of ρ

with respect to its value at the same sublattice in neighboring
unit cells. When there’s a boundary to vacuum, the boundary
charge

∑
x0

ρ(x0) has two parts: the first term integrates to ρ0

and the second term integrates to give the bulk electric dipole
moment. Hence it agrees with Eq. (F2).

It is now clear that ρ0 extracts the excess charge at the
boundary. The boundaries we considered preserve complete
unit cells in bulk. This extra charge accumulation part depends
solely on the inter-unit-cell structure. Hence we use the gauge
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recipe Eq. (B1) to calculate monopole momentum related to
P̃, whose A fields reside only on bonds between different unit

cells and indeed they agree with the Berry connection integral
Eq. (B6) using periodic function ũk(r).
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