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Steady-state Fano coherences in a V-type system driven by polarized incoherent light
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We explore the properties of steady-state noise-induced (Fano) coherences generated in a three-level V-system
continuously pumped by polarized incoherent light in the absence of coherent driving. By solving the nonsecular
Bloch-Redfield quantum master equation, we obtain the ratio of the stationary coherences to excited-state pop-

ulations, C = (
1 + �2

γ (r+γ )

)−1
, which quantifies the impact of steady-state coherences on excited-state dynamical

observables of the V-system. The ratio is maximized when the excited-state splitting � is small compared to
either the spontaneous decay rate γ or the incoherent pumping rate r. We demonstrate that while the detrimental
effects of a strongly decohering environment generally suppress the coherence-to-population ratio by the factor
� γd/γ , an intriguing regime exists where the C ratio displays a maximum as a function of the dephasing
rate γd . We attribute the surprising dephasing-induced enhancement of stationary Fano coherences to the
environmental suppression of destructive interference of individual incoherent excitations generated at different
times. We clarify the physical basis for the steady-state Fano coherence, whose imaginary part is identified
with the nonequilibrium flux across a pair of qubits coupled to two independent thermal baths or, equivalently,
the spontaneous emission flux from the right qubit to the right bath, unraveling a direct connection between
the seemingly unrelated phenomena of incoherent driving of multilevel quantum systems and nonequilibrium
quantum transport in qubit networks. We further establish the equivalence between the two-qubit system and a
V-system, each of whose transitions is driven simultaneously by both baths. The real part of the steady-state
Fano coherence is found to be proportional to the deviation of excited-state populations from their values
in thermodynamic equilibrium, making it possible to observe signatures of steady-state Fano coherences in
excited-state populations. Finally, we put forward an experimental proposal for observing steady-state Fano
coherences by detecting the total fluorescence signal emitted by Calcium atoms excited by polarized versus
isotropic incoherent light. Our analysis paves the way toward further theoretical and experimental studies of
nonequilibrium coherent steady states in thermally driven atomic and molecular systems and for the exploration
of their potential role in quantum thermodynamics and in biological processes.
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I. INTRODUCTION

Quantum coherence is widely regarded as an essential re-
source [1] for quantum information processing [2], quantum
sensing [3], and quantum interferometry [4]. The inevitable
interaction of quantum systems with an external environment
is generally believed to lead to the decay of quantum coher-
ence in a process known as decoherence [5]. As decoherence
upsets the unitary time evolution necessary for the successful
operation of quantum bits and sensors, understanding and
controlling decoherence mechanisms is a key research goal
of quantum science and technology.
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An additional motivation to study decoherence comes from
recent experimental and theoretical studies of quantum ef-
fects in biological processes, such as photosynthetic energy
transfer [6–8], vision [9,10], and avian magnetoreception [11].
These studies have indicated that nontrivial quantum effects
such as coherence and entanglement [6,7] can persist under
noisy conditions typical of biological environments at room
temperature. In all of the experimental studies performed to
date, quantum coherence was introduced into the system by
means of coherent (ultrashort) laser pulses [6–8]. However,
biologically relevant photosynthetic light-harvesting is driven
by natural sunlight, which is an incoherent mixture of num-
ber states, raising an important question: can excitation by
incoherent light alone (i.e., in the absence of coherent laser
driving) generate coherence in multilevel quantum systems
[8,12–18]

Surprisingly, the answer to this question is “yes,” al-
though the coherences are distinctly different from coherent
light-induced effects [8–10]. Incoherent radiative transitions
between manifolds of closely spaced energy levels can
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FIG. 1. (a) Energy level diagram of the V-system composed of
a single ground state g and two nearly degenerate excited levels a
and b. In our proposed experimental realization of the V-system, the
ground state corresponds to the 1S0 level of atomic Ca and the excited
states corresponds to the 1S1 levels of atomic Ca with the total elec-
tron orbital angular momentum J = 1 and its projection mJ = ±1
on the magnetic field axis. The excited-state energy splitting � is
continuously tunable with an external magnetic field. The rates of
spontaneous decay (wavy arrows) are given by γi (i = a, b), and
those of incoherent pumping (straight arrows) by ri = γi n̄. (b) An
alternative representation of the V-system driven by polarized in-
coherent light as a pair of coherently coupled qubits interacting
with two independent thermal baths at different temperatures. (c) An
equivalent representation of the two-qubit model as a V-system, in
which the transitions g ↔ a and g ↔ b are driven simultaneously by
the left and right baths (see text for details).

interfere to produce noise-induced Fano coherences in mul-
tilevel atomic and molecular systems even in the absence
of coherent (e.g., laser) driving [13,16–26]. The interference
manifests itself through the cross terms in the quantum op-
tical (Bloch-Redfield) master equation, which correspond to
the interaction of a common incoherent light mode with the
dipole moments of the transitions from the same initial state
to different final states [13,17,18,25,26].

Initial theoretical studies of Fano coherences highlighted
their significance in the context of lasing without inver-
sion [23] and quantum jumps in trapped ions [24]. Agarwal
and Menon [27] explored the conditions under which the
three-level V-system (see Fig. 1) pumped by incoherent
light approaches thermodynamic equilibrium in the long-time
limit. They showed that in the absence of symmetry between
incoherent pumping and spontaneous decay, nontrivial steady-
state coherences can arise, leading to nonequilibrium steady
states. Kozlov, Rostovtsev, and Scully showed that incoherent
pumping of the V-system with degenerate upper levels can
create coherent population-locked states, which depend on the
initial state of the system [25]. Recent theoretical work by
Dorfman, Scully, Mukamel, and co-workers [20,21] reinvig-
orated interest in noise-induced Fano coherences by showing
that they can enhance the efficiency of quantum heat engines
by breaking the principle of detailed balance. Note, however,
that a problem has recently been discovered [28] with the
master equation approach used in Refs. [20,21] which gives
negative population dynamics at long times.

We have explored the dynamical properties of Fano co-
herences in realistic V-systems with nondegenerate excited
states, establishing the existence of two dynamical regimes
depending on the ratio of the excited-state splitting � to the
radiative decay rate γ [13,17,26]. In the underdamped regime
characterized by �/γ � 1, Fano coherence exhibit damped
oscillations that decay on the timescale τ � 1/γ [13,17]. In
the overdamped regime, where the excited-state splitting is
smaller than the radiative decay rate, we observe long-lived
quasisteady-state coherences with the lifetime τ = 2

γ
( �

γ
)−2

[13,17]. We have also explored the dynamics of the V-system
driven by polarized incoherent light [29] and proposed an
experimental scheme for observing noise-induced coherence
dynamics in calcium atoms driven by incoherent radiation.

The majority of theoretical studies of noise-induced
Fano coherences have focused on the dynamics induced by
isotropic incoherent light, whose polarization (ελ) and prop-
agation (k) vectors point randomly in all directions. The
coherence properties of isotropic incoherent light [such as
its first-order degree of coherence g(1)(τ )] are independent of
ελ and k [30]. As a consequence, the light-matter interaction
only depends on the angles between the dipole moment vec-
tors μi j and μkl for radiative transitions between the system
eigenstates |i〉 ↔ | j〉 and |k〉 ↔ |l〉 [16,31,32]. The resulting
quantum master equation treats incoherent excitation and de-
cay dynamics on an equal footing, leading to the decay of
quantum coherences in the long-time limit and the establish-
ment of the canonical equilibrium steady state [27], although
the time it takes to reach this state can be extremely long for
nearly-degenerate levels [13,17,26].

In contrast, when a quantum system is excited by polar-
ized incoherent light, only one polarization mode of the light
interacts with the transition dipole moment vectors [10,29],
whereas spontaneous emission still occurs in all directions (in
the absence of an external cavity). As a result of the imbal-
ance between incoherent pumping and spontaneous emission,
the excitation with polarized incoherent light can lead to the
emergence of nonequilibrium steady states (NESS) featuring
coherences in the energy eigenstate basis and populations
deviating significantly from their expected canonical values
[27]. By coherent NESS we mean a nonequilibrium steady
state with a system density matrix that has off-diagonal el-
ements in the system energy eigenstate basis. These steady
states are distinct from the more commonly occurring NESS
that arise due to the additional selection rules for excitation
with polarized light. For instance, the �mJ = ±1 electric
dipole selection rule implies that the |J = 1, mJ = 0〉 excited
state cannot be populated from the ground |J = 0, mJ = 0〉
state irradiated by incoherent light polarized in the x direction
[29]. While important for optical pumping, these NESS man-
ifest themselves through the appearance of dark states, and do
not feature coherences in the energy eigenstate basis of the
system, so we will not consider them further in this work.

In contrast to the case of excitation with isotropic incoher-
ent light, very little attention has been devoted to the NESS
and steady-state Fano coherences induced by polarized inco-
herent excitation of multilevel quantum systems. Agarwal and
Menon derived analytical expressions for steady-state Fano
coherences in a three-level V-system driven by broadband
incoherent radiation [27]. We have shown that the steady-state
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coherences can occur in Calcium atoms driven by polarized
incoherent light [29]. However, even the most basic properties
of steady-state Fano coherences (such as their dependence
of the system and excitation parameters, and their sensitiv-
ity to decoherence) remain unexplored, despite widespread
occurrence of polarized sunlight in nature [33,34], and the
resultant possibility of noise-induced coherences playing a
role in biological excitation processes.

Here, we present a theoretical analysis of steady-state
Fano coherences in a three-level V-system driven by polar-
ized incoherent light in the absence of coherent laser-induced
excitation. The V-system serves as a minimal model, in which
to study the quantum dynamics of noise-induced coherence
generation [13,15] and energy transfer [15,35–38]. We obtain
analytic results for the steady-state coherences and explore
their dependence on the system parameters. Our results sug-
gest that the coherences are maximized when the excited-state
splitting is small compared to the radiative decay rate (i.e., in
the large-molecule limit [13]). We clarify the physical origin
of the coherences by establishing an equivalence between
the quantum master equation describing the V-system excited
by polarized incoherent radiation and that describing the dy-
namics of nonequilibrium energy transport across a pair of
quantum two-level systems (qubits) coupled to two indepen-
dent thermal baths [39]. Finally, we present an experimental
scenario for observing the signatures of steady-state Fano co-
herences in the fluorescence signal emitted by calcium atoms
excited by polarized incoherent light. Our analysis paves the
way toward further theoretical and experimental studies of
NESS and steady-state Fano coherences in thermally driven
atomic and molecular systems, and for the exploration of their
potential role in natural processes induced and sustained by
solar light.

In the rest of this paper, we will present the details of
our theoretical calculations based on the nonsecular Bloch-
Redfield (BR) quantum master equation (Sec. II). In Sec. III,
we report the results for steady-state Fano coherences as a
function of the system and excitation parameters. In Sec. III A,
we establish the physical basis for steady-state Fano co-
herences using a two-bath transport model. The effects of
relaxation and decoherence are examined in Sec. III B. An
experimental proposal for observing Fano coherences in cal-
cium atoms in put forward in Sec. IV. Section V summarizes
and discusses the main results of this work.

II. THEORY AND METHODS: ANALYTICAL SOLUTIONS
TO BLOCH-REDFIELD EQUATIONS IN THE

STEADY STATE

To model the quantum dynamics of the V-system driven
by polarized incoherent radiation, we use the Bloch-Redfield
(BR) quantum master equation for the system’s density matrix
[13,17,18,27,40], which can be derived from the Liouville-
von Neumann equation for the density operator of the system
+ bath complex [40,41], where the role of the bath is played
by the incoherent radiation. The derivation assumes that (1)
the system-bath interaction is weak compared to the system
energy scales (Born approximation) so that the system-bath
density matrix can be factorized into the system and bath
parts, and (2) the surrounding bath fluctuations are much

faster than the system’s evolution (Markov approximation).
Importantly, we do not assume the validity of the secular
approximation, which neglects the elements of the relaxation
(Redfield) tensor responsible for the coupling between pop-
ulations and coherences [13,40]. This approximation is only
justified in the absence of Liouvillian degeneracies [42] in
the energy level spectrum of the system, which is clearly not
the case for the V-system shown in Fig. 1(a), where levels a
and b are nearly degenerate. Unlike in the optical Bloch equa-
tions, which describe a quantum system driven by a coherent
laser source, the coupling between the populations and coher-
ences comes from the nonsecular terms in the BR equation,
which are due to the interference of two incoherent transition
pathways g ↔ a and g ↔ b. Note that in the absence of the
population-to-coherence coupling, the Bloch-Redfield equa-
tions reduce to the standard Pauli rate equations commonly
used to describe thermal driving [13,20,27].

Expressed in the system eigenstate basis, the BR equations
take the form [13,17,18,27]

ρ̇ii = −(ri + γi + �i )ρii + riρgg − √
rarbρ

R
ab,

ρ̇ab = − 1
2 (ra + rb + γa + γb + 2γd )ρab

− i�ρab + √
rarbρgg − 1

2

√
rarb(ρaa + ρbb), (1)

where ρab = ρR
ab + iρI

ab is the coherence between the excited
eigenstates |a〉 and |b〉 [see Fig. 1(a)], γi is the spontaneous
decay rate of the i-th excited-state level, ri = n̄γi is the inco-
herent pumping rate, and n̄ = [eh̄ωag/kBT − 1]−1 is the average
photon occupation number of the incoherent radiation field at
the temperature T , which we assume to be polarized in the x
direction of the space-fixed coordinate frame [29]. Equations
(1) correspond to case I (a = 1, b = 0) defined by Agarwal
and Menon [27], where interference is present only in ab-
sorption (due to the anisotropy of the x-polarized incoherent
light) but not in spontaneous emission, since we consider the
V-system with orthogonal transition dipole moments (such as
the Ca atom in Sec. IV).

We further note that Eq. (1) neglects the one-photon coher-
ences between the ground and each of the excited levels of the
V-system. This is justified because the splitting between these
levels (�1015 Hz) is much larger than the inverse timescale of
interest for the system evolution (10−10–10−6 s). Thus, on this
timescale, the one-photon coherences oscillate much more
rapidly than their two-photon counterparts, and their time
evolutions decouple under the partial secular approximation
[16].

The environmental relaxation and decoherence channels
(to be considered in Sec. III B) are described by the phe-
nomenological rates �i and γd . Note that Eq. (1) assumes
that nonradiative coupling with an external environment (e.g.,
phonons) cannot generate coherence between the eigenstates
of the V-system [43], i.e., that Fano coherence can only
be generated by the light-matter interaction through the√

rarbρgg term in Eq. (1). Isotropic incoherent excitation in the
presence of coherence-generating system-phonon interactions
have been considered elsewhere [10,16,19,36].

We will consider the case of a symmetric V-system with
γa = γb = γ , ra = rb = r, and �a = �b = � which contains
all of the essential physics while drastically simplifying the
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analytical solution of the BR equations (1). The symmetry im-
plies that ρaa(t ) = ρbb(t ) at all times [13,26], a consequence
of the symmetric initial condition ρgg(0) = 1. Note that the
relation ρaa = ρbb will hold in the steady state irrespective
of the initial conditions because the solution of Eq. (5) is
uniquely defined for � > 0 (see below).

Combining this with the requirement that the density ma-
trix must have unit trace [ρaa(t ) + ρbb(t ) + ρgg(t ) = 1], we
get 2ρaa(t ) + ρgg(t ) = 1, which allows us to eliminate ρbb

and ρgg from Eqs. (1). The resulting BR equations for the
symmetric V-system may be written as

ρ̇aa = −(3r + γ + �)ρaa − rρR
ab + r,

ρ̇R
ab = −3rρaa − (r + γ + γd )ρR

ab + �ρI
ab + r, (2)

ρ̇I
ab = −�ρR

ab − (r + γ + γd )ρI
ab.

Here, as above, the phenomenological parameters � and γd

account for the effects of relaxation and decoherence between
the excited states of the V-system due to, e.g., nonradiative
processes. These effects will be explored in Sec. III B below.
In Sec. III, we will begin by considering only the radiative
processes, setting � = γd = 0.

The BR quantum master equations (2) can be rewritten in
matrix-vector notation as [17]

ẋ(t ) = Ax(t ) + d, (3)

where x(t ) = [ρaa(t ), ρR
ab(t ), ρI

ab(t )]T is the state vector in
the Liouville representation [17], d = [r, r, 0]T is the driving
vector corresponding to the V-system being initially in the
ground state [ρgg(t = 0) = 1], and the coefficient matrix A is
given by

A =
⎡
⎣−(3r + γ ) −r 0

−3r −(r + γ ) �

0 −� −(r + γ )

⎤
⎦. (4)

In this work, we are primarily interested in the steady-state be-
havior of the V-system irradiated by incoherent light. Setting
ẋ(t ) = 0 in Eq. (3) we obtain the steady-state solution

xs = −A−1d. (5)

The steady-state solution is unique only if the coefficient
matrix A is nonsingular, i.e., det(A) = 3r2(r + γ ) − (3r +
γ )[�2 + (r + γ )2] �= 0. The determinant is nonzero in gen-
eral but it tends to zero as � → 0 and r/γ → ∞, leading
to initial condition-dependent population-locked steady states
similar to those explored in Ref. [25]. However, due to, e.g.,
differential level shifts experienced by the excited levels in-
teracting with the pumping field, most real-world V-systems
will have � > 0. As a result, det(A) �= 0 and the steady-state
solution (5) is uniquely defined. We note that the steady-
state solution (5) is, by definition, not sensitive to short-time
transient dynamics. Therefore, unlike the transient Fano co-
herences explored in our previous work [13,17,18,26], the
steady-state coherences are independent of how rapidly the
system-radiation interaction is turned on [18].

III. STEADY-STATE FANO COHERENCES:
RESULTS AND DISCUSSION

Substituting the inverse of matrix A into Eq. (5), we find
analytical expressions for excited-state populations and the
real part of Fano coherence in the steady state [44]

ρaa = r[�2 + (r + γ )2 − r(r + γ )]

(3r + γ )[�2 + (r + γ )2] − 3r2(r + γ )
,

ρR
ab = rγ (r + γ )

(3r + γ )[�2 + (r + γ )2] − 3r2(r + γ )
(6)

with the imaginary part of the coherence ρI
ab = − �

(r+γ )ρ
R
ab, in

agreement with the results of Ref. [27]. Below we analyze
the remarkable properties of steady-state Fano coherences
not explored in Ref. [27], and study their dependence on
the excited-state splitting �/γ and the incoherent pumping
rate r = n̄γ . The effects of relaxation and decoherence are
considered in the following section.

First, we observe that neither the real nor imaginary part
of the Fano coherence vanishes in the steady state, in contrast
to the previously explored cases of incoherent driving with
isotropic (unpolarized) light [13,17,26]. Figure 2 shows the
time evolution of excited-state populations and coherences
in the V-system driven by polarized incoherent light. The
results are obtained by numerical integration of Eq. (2). The
equilibration timescale depends on the dynamical regimes of
the V-system classified in our previous work [29,44], which
are determined by the value of excited-state splitting �/γ and
the incoherent pumping rate r = n̄γ . Regardless of the tran-
sient dynamics, the V-system eventually reaches a steady state
characterized by nonzero values of Fano coherences shown by
the dashed lines in Fig. 2, which are in excellent agreement
with the analytical expressions (6).

It may seem surprising that incoherent driving excites a
coherent superposition rather than an incoherent mixture of
energy eigenstates. The presence of coherences seems incon-
gruent with an incoherent nature of the light source, which is
thought of as having an entirely random phase at every instant.
For such a source excitations generated at different times
will pick up a different phase from the fluctuating light field,
yielding a random phase that vanishes upon averaging over
the realizations of the incoherent source. However, this phase
averaging argument does not hold for excitations generated at
the same instant, provided the corresponding transition dipole
moment vectors are nonorthogonal [13,16,17]. In this case,
both excitations will accrue the same (randomly selected)
phase from the incoherent drive, resulting in an in-phase su-
perposition of the two eigenstates. That is, while the relative
phase between excitations generated at different times is un-
correlated, the relative phase of simultaneous excitations is
deterministic since both arise by interacting with the same
state of the light field [10].

To further understand the counterintuitive emergence of
the coherent steady-state, we consider the dynamics of the
contributing coherent excitations. As noted earlier in this sec-
tion, an incoherent light source generates a coherent drive due
to the presence of simultaneous excitations from the ground
state to two different excited states. This process generates an
in-phase superposition of two energy eigenstates. Once this
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FIG. 2. Time evolution of excited-state populations and Fano coherences in the V-system weakly [(a) and (b)] and strongly [(c) and (d)]
driven by x-polarized incoherent light. (a) Overdamped regime with n̄ = 10−3 and �/γ = 10−1. (b) Underdamped regime with n̄ = 10−3

and �/γ = 10; (c) n̄ = 103 and �/γ = 102, and (d) n̄ = 102 and �/γ = 2 × 102. The steady-state values of Fano coherences are shown by
horizontal dashed lines. Note that the excited-level populations shown in (a) and (b) grow monotonically, whereas the real and imaginary Fano
coherences in (b) and (d) display underdamped coherent oscillations.

excitation is generated, it undergoes unitary evolution, accru-
ing a periodic relative phase with frequency �. Moreover, it
will slowly dephase with rate γd and relax to the ground state
with rate γ + r + � [see Eq. (1)]. The timescales and effects
of these contributions on the dynamics of a single excitation
are shown schematically in Fig. 3(a).

In incoherent driving, the source is assumed to be contin-
uously acting on the system, generating new excitations at
every instant in time. At each instant, therefore, a new in-

phase superposition is generated and undergoes the dynamics
described above. The resulting ensemble dynamics are then
obtained by summing over the contributions of all of these
different excitations, as shown in Fig. 3(b). If the system
frequency � is much larger than the excitation decay rate
(∼γ ), then excitations generated at earlier times will have
accrued some phase due to unitary evolution in the excited
state manifold while new excitations will always produce
an in-phase superposition. Summing over these contributions

FIG. 3. Schematic depiction of the unitary time evolution and decay of a single incoherent excitation (a) and of an ensemble of incoherent
excitations (b). The incoherent excitations in (b) are assumed undamped for simplicity.
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then leads to an integral over different phases, producing an
ensemble dephasing with excitations generated at different
times carrying different phase that eventually averages to near
zero. However, when the frequency is much slower than the
excitation lifetime, nearly all excitations will decay before
accruing an appreciable phase. As a result, nearly all excita-
tions will be in the initially prepared in-phase superposition,
leading to the previously reported quasi-stationary coherences
[13,17]. Generally, the interplay of these different processes
need not result in an incoherent steady state, as new coherent
superposition may be refreshed quickly enough to maintain
coherence in the long-time limit.

In the case of unpolarized excitation that obeys the
fluctuation-dissipation constraint r = n̄γ , the rate of gener-
ating new excitations r and their decay rate ∼γ are directly
related. This bound ensures that the delicate interplay of
generating new excitations, their coherent evolution and sub-
sequent decay are balanced to yield an incoherent thermal
steady-state. However, if these rates are allowed to vary inde-
pendently, it becomes possible to generate residual coherences
as the balance between these different processes is broken.
As discussed in the framework of the thermal transport model
in Sec. III A below, polarized driving breaks this constraint
by involving field modes at different temperatures, the high
temperature x-polarization and the low-temperature isotropic
vacuum. In this case, the rates are no longer balanced resulting
in a coherent NESS.

The second important observation apparent from Eq. (6)
and Fig. 2 is that the values of excited-state populations in
the steady state deviate from those expected in canonical
thermodynamic equilibrium

ρ (eq)
aa = r

(3r + γ )
= n̄

3n̄ + 1
, (7)

since r = n̄γ . The deviation of the population of the excited
state |a〉 from canonical equilibrium then follows from Eq. (6)

ρR
ab = ρ

(eq)
aa − ρaa

ρ
(eq)
aa

, (8)

ρI
ab = − �

(r + γ )
ρR

ab (9)

These expressions are a central result of this work. They
establish that polarized incoherent driving leads to the for-
mation of a coherent NESS characterized by substantial Fano
coherences in the energy eigenstate basis of the V-system.

Significantly, Eq. (8) suggests that the relative deviation
of excited-state populations in the NESS from their values in
canonical thermodynamic equilibrium (7) is equal to the real
part of the Fano coherence. In other words, the real part of the
steady-state coherence is directly proportional to the difference
in the populations of the excited state |a〉 with and without Fano
coherence.

Equation (8) thus provides a direct connection between
steady-state Fano coherences and excited-state populations of
the V-system continuously driven by a polarized incoherent
radiation field. As such, Eq. (8) enables direct experimen-
tal detection of the steady-state Fano coherences through
measuring the deviation of excited-state populations from
their canonical equilibrium values (7), as shown in Sec. IV.

Because it is typically much easier to detect eigenstate pop-
ulations than coherences, steady-state Fano coherences may
be significantly easier to observe experimentally than their
transient counterparts [29].

The physical origin of the nonequilibrium coherences (to
be further clarified in Sec. III A below) can be traced back
to Fano interference between the electric dipole transitions
induced by the interaction with a common incoherent light
field mode. This interference is manifested in the population-
to-coherence coupling terms in the BR equation (2), which
show that the presence of a positive real part of the coherence
ρR

ab(t ), suppresses the excited state populations.
We now turn to the study of the dependence of steady-state

Fano coherences on the dimensionless parameters n̄ and �/γ

that control the dynamics of the incoherently driven V-system
in the absence of relaxation and decoherence. Figure 4(a)
shows the dependence of steady-state Fano coherences on
the average occupation number of thermal photons n̄ = r/γ
in the pumping field. The coherences increase gradually with
the pumping intensity and approach a common limit that does
not depend on �/γ . As shown in Fig. 4(b) the steady-state
coherence are nearly independent of the excited-state splitting
�/γ in the weak pumping limit n̄ � 1. At higher pumping in-
tensities, the coherences begin to decline monotonically with
increasing �/γ .

To determine whether the real part of steady-state Fano
coherence can reach a maximum as a function of �/γ and
n̄, we calculate the first derivatives of Eq. (9) with respect to
these parameters

∂

∂ n̄
ρR

ab = (3n̄2 + 2n̄ + 1)(�/γ )2 + (n̄2 + 2n̄ + 1)

[(3n̄ + 1)(�/γ )2 + (4n̄2 + 5n̄ + 1)]2
,

∂

∂ (�/γ )
ρR

ab = − 2n̄(n̄ + 1)(�/γ )

[(3n̄ + 1)(�/γ )2 + (4n̄2 + 5n̄ + 1)]2
.

(10)

The derivatives do not vanish for n̄ > 0 and �/γ > 0, and
therefore steady-state Fano coherences do not display maxima
or minima. This behavior is illustrated in Fig. 4(c), which plots
the real part of steady-state Fano coherence as a function of n̄
and �/γ . The magnitude of the steady-state Fano coherence
is therefore maximal at a boundary of the two-dimensional
region depicted in Fig. 4(c). More specifically, the maximum
is achieved in the small excited-state splitting regime �/γ �
1 regardless of the value of n̄. As the pumping rate increases,
the region of maximum coherence is shifted to higher values
of �/γ .

As an alternative coherence measure, consider the ratio
[13,17]

C = ρR
ab

ρaa
, (11)

which quantifies the relative magnitude of coherences versus
excited-state populations. A substantial value of C � 1 indi-
cates the possibility of a significant coherent contribution to
excited-state dynamics, affecting the values of observables
such as fluorescence emission intensities (see Sec. IV below).
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FIG. 4. (a) Steady-state Fano coherence plotted as a function of the average number of thermal photons n̄ at fixed values of the excited-state
splitting �/γ . (b) Same as in panel (a) plotted vs �/γ at fixed values of n̄ corresponding to the weak, intermediate, and strong pumping
regimes. (c) Two-dimensional contour plot of steady-state Fano coherence as a function of �/γ and n̄.

From Eq. (6), we obtain

C = 1

1 + �2

γ (r+γ )

, (12)

which is less than unity as expected from the Cauchy-Swartz
inequality, |ρab|2 � ρaaρbb. The ratio (12) tends to unity for

�2

γ (r+γ ) � 1, i.e., in the regime of small excited-state splitting

� compared to
√

γ (r + γ ). In the weak-pumping limit (r �
γ ), this condition simplifies to � � γ . In the strong-pumping
limit (r � γ ), steady-state Fano coherences are maximized
relative to excited-state populations when � � √

rγ , which
is a less restrictive condition than in the weak-pumping limit.

A. Physical origin of steady-state Fano coherence: the two-bath
nonequilibrium transport model

Previous theoretical work has shown that Fano coherences
induced in the V-system irradiated by isotropic incoherent
radiation are transient and eventually decay back to zero
[16,17,27]. In contrast, when the V-system is driven by po-
larized incoherent radiation, Fano coherences remain nonzero
in the steady state, suggesting the presence of a dynamic
equilibrium [27,29]. In our previous work, we suggested an
analogy between the latter situation and one of the V-system
interacting with two independent thermal baths [29], result-
ing in nonequilibrium transport of radiative energy across
the V-system and steady-state coherences associated with it
[43,45,46]. This kind of coherence can significantly affect the
energy transfer pathways through flux networks in photosyn-
thetic light-harvesting complexes [38,47]. Here, we make this
analogy more precise by showing that the BR equations of
motion for the V-system driven by polarized incoherent radia-
tion are equivalent to those describing quantum transport in a
system consisting of two coupled two-level systems (qubits).
We identify the imaginary part of steady-state Fano coher-
ence with the nonequilibrium flux across the dimer system.
This result unravels a direct connection between the seem-
ingly unrelated phenomena of incoherent driving of multilevel
quantum systems and nonequilibrium transport.

Consider a system of two qubits coherently coupled by
an exchange or dipolar interaction quantified by the hopping
parameter J as shown in Fig. 1(b). In the weak-pumping limit

only the ground |g〉 = |gLgR〉 and singly excited eigenstates

|a〉 = cos
θ

2
|eLgR〉 + sin

θ

2
|gLeR〉,

|b〉 = − sin
θ

2
|eLgR〉 + cos

θ

2
|gLeR〉 (13)

of the two-qubit system are appreciably populated, leading to
an effective V-system description [see the Appendix] illus-
trated in Fig. 1(a). Here, |gα〉 and |eα〉 stand for the ground
and excited computational basis states of the left and right
qubit (α = L, R) (also known as site basis states) and θ is the
mixing angle obtained by diagonalizing the two-qubit Hamil-
tonian (14) in the basis {|eLgR〉, |gLeR〉}. Note that state |a〉 is
higher in energy than state |b〉, which is consistent with the
definitions used by Sun et al. [39] and Jung and Brumer [37].
In addition, each qubit is coupled to a thermal bath maintained
at different temperatures TL and TR as shown in Fig. 1(b).

The Hamiltonian of the two-qubit system

ĤS = 1
2ωLσ̂ z

L + 1
2ωRσ̂ z

R + J (σ̂+
L σ̂−

R + σ̂−
L σ̂+

R ) (14)

is expressed via the jump operators σ̂±
i defined as σ̂−

i =
|gi〉〈ei|, σ̂+

i = |ei〉〈gi|, σ̂ z
i = |ei〉〈ei| − |gi〉〈gi|. The connec-

tion between the coupled qubit model and the V-system can be
established by diagonalizing the Hamiltonian ĤS in Eq. (14) in
the site basis to give Eg = − 1

2 ̄, Ea,b = ± 1
2

√
�̃2 + 4J2, and

ED = 1
2 ̄. Here, Ei and |Ei〉, i = g, a, b are the eigenvalues

and eigenstates of the V-system (HV = ∑
i=g,a,b Ei|Ei〉〈Ei|),

Ei are arranged in the order of increasing energy, with Eg

being the ground-state energy), ̄ = 1
2 (ω1 + ω2), and �̃ =

ω1 − ω2. The V-system parameters, such as the excited-state
energy splitting �, and the energy difference between the
ground and excited states ω0 are obtained as

� = Ea − Eb =
√

�̃2 + 4J2 =
√

(ω1 − ω2)2 + 4J2,

ω0 = Ea − Eg = 1
2

√
�̃2 + 4J2 + 1

2 ̄

= 1
2

√
(ω1 − ω2)2 + 4J2 + 1

4 (ω1 + ω2). (15)

For a symmetric V-system, we have ω1 = ω2 = ω, ̄ = ω,
and �̃ = 0, and these equations are further simplified as

� = Ea − Eb = 2J,

ω0 = Ea − Eg = J + 1
2ω. (16)
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Consider now the two-qubit system coupled to two inde-
pendent thermal baths maintained at different temperatures,
as shown in Fig. 1(b). The system-bath coupling is given by

ĤSB =
∑
kL,λL

gkLλL σ̂
+
L b̂kLλL +

∑
kR,λR

gkRλR σ̂
+
R b̂kRλR + H.c. (17)

This Hamiltonian describes the setup, where the left qubit
(denoted L) is coupled only to the left bath BL and the right
qubit R only to the right bath BR. A hot bath with TL = 5800 K
is responsible for the incoherent pumping of the left qubit
coupled to it.

A cold bath with TR = 0 accounts for spontaneous emis-
sion due to the coupling of the right qubit to the vacuum
modes of the electromagnetic field. As shown in the Ap-
pendix, the nonequilibrium transport of radiative energy
through the two-qubit system can be described by the BR
master equations, which are equivalent to those describing
the V-system, where the transitions g → a and g → b are
driven simultaneously by the left and right baths. (The only
assumption made in the derivation is that the population of
the doubly excited state |eReL〉 can be neglected). The BR
equations take the following form in the eigenstate basis of
the system {|a〉, |b〉, |g〉} [see Appendix A 2]:

ρ̇aa = 2�+
aa(εa)ρgg − 2�−

aa(εa)ρaa − �−
ab(εb)ρab − �−

ba(εb)ρba,

ρ̇bb = 2�+
bb(εb)ρgg − 2�−

bb(εb)ρbb − �−
ab(εa)ρab − �−

ba(εa)ρba,

ρ̇ab = [�+
ba(εa)ρgg − �−

ba(εa)ρaa] + [�+
ba(εb)ρgg − �−

ba(εb)ρbb]

− i�ρab − [�−
aa(εa) + �−

bb(εb)]ρab, (18)

where εi = Ei − Eg is the energy difference between the ex-
cited state |i〉 and the ground state |g〉, and � = Ea − Eb is the
excited state splitting.

For the V-system with orthogonal transition dipole mo-
ment vectors (μga ⊥ μgb) such as atomic Ca [29] discussed
in Sec. IV, the dissipation rates �±

i j can be evaluated as de-
scribed in Appendix A 3 in terms of the incoherent driving
and spontaneous decay rates γ α

i j and rα
i j (i = a, b) induced by

the αth bath.

ρ̇aa = rL
aaρgg − (

rL
aa + γ L

aa + γ R
aa

)
ρaa − 1

2

√
rL

aarL
bb(ρab + ρba),

ρ̇bb = rL
bbρgg − (

rL
bb + γ L

bb + γ R
bb

)
ρbb − 1

2

√
rL

aarL
bb(ρab + ρba),

ρ̇ab =
√

rL
aarL

bbρgg − 1
2

√
rL

aarL
bb(ρaa + ρbb) − i�ρab

− 1
2

(
rL

aa + rL
bb + γ L

aa + γ L
bb + γ R

aa + γ R
bb

)
ρab, (19)

where γ α
ii are the spontaneous decay rates of excited level |i〉

into the α-th bath (α = L, R) and rα
ii = n̄Lγ α

ii are the corre-
sponding incoherent pumping rates (note that rR

ii = 0 because
TR = 0 by construction).

Importantly, Eqs. (19) are identical to the BR equations (1)
with γi = γ L

ii + γ R
ii and ri = rL

ii = n̄Lγ L
ii (see Appendix A 5).

This shows that the overall spontaneous emission rate from
the excited state |i〉 (i = a, b) of the V-system is composed
of the contributions due to the left and right baths. While
the same is generally true for the absorption rates ri, in
our specific case, these rates only contain the contribution
due to the left bath because the right bath is maintained at
zero temperature (n̄R = 0) and thus cannot induce stimulated

absorption. Figures 1(b) and 1(c) illustrate the equivalence
between the two-qubit system and a V-system, in which each
of the transitions g ↔ a and g ↔ b is driven simultaneously
by the left and right baths. Note that because the baths are
uncorrelated, their contributions to the overall transition rates
in the V-system are additive (see Appendix).

The transport model gives the ratio of incoherent driving
and spontaneous decay rates ri/γi = rL

ii/(γ L
ii + γ R

ii ) at odds
with the equilibrium fluctuation-dissipation theorem, based on
which one would expect ri/γi = rL

ii/γ
L
ii = n̄L. As discussed

above and in Refs. [10,27], it is this imbalance between
incoherent driving and spontaneous decay that leads to the
formation of coherent NESS.

To further characterize nonequilibrium transport in our
model two-qubit system, we calculate the energy flux from
the “hot” left qubit L to the “cold” right qubit R [37,39,46]

JL−R = −i
〈[
σ̂ z

L, ĤS
]〉 = −i2JTr[ρ(|a〉〈b| − |b〉〈a|)]

= 4JIm{〈a|ρ|b〉}, (20)

where ĤS is given by Eq. (14), J is the inter-qubit coupling and
the trace is taken over the bath degrees of freedom. Equation
(20) establishes that the energy flux from qubit L to qubit R
is proportional to the imaginary part of Fano coherence in the
energy eigenstate basis (13) of the dimer [37,38]. This clarifies
the physical significance of steady-state Fano coherences as
being responsible for radiative energy transfer from sunlight-
driven qubit L to qubit R that is coupled to the vacuum modes
of the electromagnetic field. Note that Jung and Brumer [37]
define the interqubit flux in a slightly different way using the
time evolution of the operator |eL〉〈eL| instead of σ̂ z

L , which re-
sults in their expression being two times smaller than Eq. (20).

We note that while the two-qubit system shown in Fig. 1
acts as a mediator of the thermal energy transfer between the
two baths, it cannot be thought of as a quantum heat engine.
Indeed, for a quantum system to act like one, there should be a
third “work” bath coupled to the system in addition to the hot
and cold baths [48], and the system-bath interaction Hamilto-
nian must be nonlinear. The work extracted from the hot bath
is usually described in terms of a time-dependent external field
[48]. This situation is different from that considered in this
work, where there is no external coherent field, and thus no
external work done by the V-system.

To further illustrate this point, consider two coupled iden-
tical qubits in the site basis, where the energy flux transferred
between the qubits is given by JL−R. The relation between the
energy transfer rates JL−R, JL−BL (from the hot bath to the left
qubit) and JR−BR (from the right qubit to the cold bath), can
be obtained from the master equations for the excited-state
populations of the two qubits in the Heisenberg picture [39]

ρ̇eLeL = JL−R + JL−BL , (21)

ρ̇eReR = JL−R + JR−BR . (22)

In the steady state, the rates of change of the excited-state
populations vanish (ρ̇eLeL = ρ̇eReR = 0), and Eqs. (21) and (22)
give

|JL−BL | = |JL−R| = |JR−BR |. (23)
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The above equation shows that the energy transfer rates be-
tween the thermal baths and the two qubits are equal in
magnitude, which is consistent with the principle of conser-
vation of energy. This implies that the two-qubit system acts
as a “mediator” of nonequilibrium energy transfer between the
two baths, rather than as a quantum heat engine.

As shown above [Eq. (20)], the energy flux from qubit L
to qubit R is proportional to the imaginary part of Fano coher-
ence in the energy eigenstate basis Im[ρab]. By inspecting the
BR equations (1), we note that Im[ρab] can only be generated
from Re[ρab] via unitary evolution under the system Hamilto-
nian [caused by the term −i�ρab] provided that � > 0.

It also follows from the BR equations (1) that the real part
of Fano coherence is generated by the term

√
rarbρgg, which

can be written as

Iab =
√
IaIb, (24)

where Ia = raρgg and Ib = rbρgg are the incoherent absorp-
tion fluxes corresponding to the g → a and g → b transitions
in the V-system driven by the left bath.

Thus, the physical significance of the imaginary part of
Fano coherence Im[ρab] is that it represents a relative phase
between the eigenstates |a〉 and |b〉 created via quantum inter-
ference of incoherent absorption fluxes Ia and Ib followed
by coherent evolution of the V-system with � > 0, which
interconverts Re[ρab] and Im[ρab] [26]. Significantly, the gen-
eration of Im[ρab] is a two-step process, and both of the
steps are essential. For example, in the degenerate V-system
(� = J = 0), no interconversion occurs between Re[ρab] and
Im[ρab], and the imaginary part of Fano coherence vanishes
at all times [25]. This is consistent with Eq. (20), which
predicts zero energy flux between the left and right qubits in
the absence of coherent coupling (J = 0).

Equation (23) suggests that the magnitude of the steady-
state energy flux across the two-qubit system JL−R is equal to
that of the spontaneous emission flux from the right qubit to
the right bath JR−BR . Using the relation between the real and
imaginary parts of Fano coherence in the steady state ρI

ab =
− �

r+γ
ρR

ab [see the discussion below Eq. (6)], we obtain

|JL−R| = 4J�

r + γ

∣∣ρR
ab

∣∣ = 8J2

r + γ

∣∣ρR
ab

∣∣. (25)

Thus the steady-state flux only depends on the real part of
Fano coherence. This is consistent with the physical inter-
pretation developed above, which attributes the flux to the
interference between incoherent excitations g → a and g →
b generated at the same time. These excitations create an
in-phase superposition |φ+〉 = 1√

2
(|a〉 + |b〉) characterized by

ρR
ab �= 0, which then evolves and decays in time [17]. Trans-

port in the localized (site) basis can then be interpreted as an
interplay between the formation and decay of the delocalized
coherent superposition |φ+〉 via incoherent pumping from the
ground state.

Finally, we note that it is possible to express the flux (25)
via the deviation of excited-state populations from thermody-
namic equilibrium using Eq. (8)

|JL−R| = 8J2

r + γ

∣∣ρ (eq)
aa − ρaa

∣∣
ρ

(eq)
aa

. (26)

This result shows that the nonequilibrium flux vanishes under
isotropic excitation, where ρaa = ρ

(eq)
aa , as expected in thermo-

dynamic equilibrium [39].

B. Effect of excited-state relaxation and decoherence

Realistic quantum systems are always subject to environ-
mental perturbations causing relaxation and decoherence. In
this section, we explore the robustness of steady-state Fano
coherences against these detrimental effects. To this end, we
follow previous theoretical work [36,49,50] and introduce
phenomenological relaxation and decoherence channels rep-
resented by the terms �ρaa and γdρab in Eq. (2). Following
the analysis presented above, we obtain steady-state solutions
as a function of relaxation and decoherence rates � and γd :

ρaa = r[�2+(γ+γd )(r + γ + γd )]

(3r + γ + �)[�2 + (r + γ + γd )2]−3r2(r + γ + γd )
,

ρR
ab = r(γ + �)(r + γ + γd )

(3r + γ + �)[�2+(r + γ + γd )2]−3r2(r + γ + γd )
,

ρI
ab = − �

(r + γ + γd )
ρR

ab. (27)

These equations suggest that both the real and imaginary
steady-state coherences can survive in the presence of relax-
ation and decoherence. Increasing the relaxation rate does not
significantly affect the steady-state coherence in the typical
limit � � r + γ , where the dependence ρR

ab(�) � γ+�

3r+γ+�
is

weak (Ref. [44] considers the effect of relaxation is more
detail). We therefore focus on the case of pure decoherence
(or dephasing) assuming � = 0.

In Fig. 5, we plot the dependence of the steady-state Fano
coherence on the excited-state splitting and the reduced de-
coherence rate γd/γ (27). We observe that, regardless of the
pumping intensity, the steady-state coherences are maximized
for small excited-state splittings �/γ � 1. In the weak pump-
ing limit illustrated in Fig. 5(a) the coherences also decrease
rapidly with the decoherence rate, falling below one part in
103 for γd/γ > 6. Similar trends are observed in the case
of intermediate pumping (n̄ = 1), even though the absolute
magnitude of the steady-state coherence in this regime is
larger by two orders of magnitude. The coherences in the
strong pumping limit (n̄ � 1) are large and while they they
do not fall off as strongly with �/γ they do get significantly
suppressed by decoherence. The extent of this suppression
appears insensitive to the pumping rate.

Remarkably, as shown in Figs. 5(a)–5(c), the presence of
decoherence can enhance the magnitude of steady-state Fano
coherences. For instance, at �/γd = 2 the value of ρR

ab passes
through a maximum near γd = 2 and then decreases again at
higher γd . This enhancement is particularly pronounced for
large �/γ in the weak-pumping limit, where we observe up
to fivefold coherence enhancements [44]. To further explore
this counterintuitive effect, we rewrite Eq. (27) in terms of the
dimensionless parameters γ̃d = γd/γ and �̃ = �/γ

ρR
ab = n̄(n̄ + 1 + γ̃d )

(3n̄ + 1)[�̃2 + (n̄ + 1 + γ̃d )2] − 3n̄2(n̄ + 1 + γ̃d )
.

(28)
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FIG. 5. Contour plots of steady-state Fano coherence as a function of the excited-state splitting �/γ and of the decoherence rate γd/γ

under weak (a) and strong (b) x-polarized incoherent pumping. The values of the average photon number used are n̄ = 0.01 (a) and n̄ = 100
(c). (c) shows the steady-state Fano coherence as a function the decoherence rate and n̄ at a fixed �/γ = 10.

The roots of the equation d
d γ̃d

ρR
ab = 0 are given by γ̃d = ±�̃ −

n̄ − 1 [44]. Picking the physical root corresponding to �̃ > 0,
we obtain the optimal decoherence rate

γd = � − r − γ (29)

that maximizes the value of the steady-state Fano coherence.
In the weak pumping regime, Eq. (29) simplifies to γd ≈ �

which defines the diagonal “line of optimal decoherence” in
Figs. 5(a) and 5(b), along which the steady-state Fano coher-
ence takes a maximum value.

Importantly, the maximum of the steady-state Fano co-
herence as a function of γd only appears when the optimal
decoherence rate in Eq. (29) is positive (� � r + γ ), which
corresponds to the underdamped regime of V-system dynam-
ics [13,17,26,29]. This is illustrated in Fig. 5(c), which shows
that the maximum of ρR

ab is located along the vertical line
of constant γd/γ = 10. Thus the expression γd ≈ � is to be
interpreted as the limiting case of Eq. (29) in the underdamped
regime, outside of which the steady-state coherence shows no
maximum as a function of γd , and Eq. (29) does not apply.

The population-to-coherence ratio (11) in the presence of
dephasing can be obtained from Eq. (27)

C = 1

1 + γd

γ
+ �2

γ (r+γ+γd )

. (30)

The ratio takes the maximum value Cmax = 1
1+γd /γ+(r+γ+γd )/γ

when the sum in the denominator is a minimum, which occurs
when γd = � − r − γ . This is the same condition as required
for the maximization of the real part of steady-state Fano
coherence (29).

Under typical molecular excitation conditions, nonradia-
tive dephasing is fast compared with radiative processes
(γd � γ , r) and we obtain C � 1

1+γd /γ+�2/(γ γd ) � 1. In the
limit of small � � √

γ γd the last term in the denominator can
be neglected, giving C � 1

1+γd /γ
� γ /γd � 1. Thus, the ratio

of steady-state Fano coherences to excited-state populations
will be suppressed by the factor γd/γ in the presence of
environmental dephasing, as long as the system-environment
coupling responsible for the dephasing does not generate any
steady-state coherence (as assumed here, see Sec. III).

Figure 6 shows the steady-state coherence-to-population
ratio as a function of dephasing. In accordance with the

analytic result obtained above (29), we observe the emer-
gence of a maximum at the optimal decoherence rate γd =
� − r − γ . The maximum is only present at sufficiently large
excited-state splittings � such that � − r − γ > 0 (under-
damped regime of V-system dynamics [13,18,26]) as shown
in Figs. 6(a) and 6(b). Decreasing the value of � brings the V-
system into the overdamped regime [13,18,26] characterized
by �/γ < 1. As shown in Figs. 6(c) and 6(d), this leads to the
disappearance of the maximum and the expected monotonic
decrease of the C-ratio with increasing decoherence rate.

While the ability of dephasing to enhance steady-state
coherence in the underdamped regime is surprising, the de-
phasing enhanced steady-state coherence can be understood
by considering the individual contributing excitations. In the
underdamped regime, one mechanism of coherence loss arises
due to the cancellation of excitations at different times that
carry different phases due to their unitary evolution in the
excited state manifold [see Fig. 3(b)]. By introducing an ex-
plicit dephasing channel, excitations generated at earlier times
lose more coherences than those generated later. As a result,

FIG. 6. Steady-state coherence-to-population ratio C plotted as
a function of dimensionless decoherence rate γd/γ in the weak-
pumping limit [(a) and (c)] and in the strong-pumping limit [(b) and
(d)]. The values of the �/γ are indicated in each panel.
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these excitations do not destructively interfere as much as
they could in the absence of dephasing. The dephasing then
weights the phase average towards a narrower window of
excitation times, decreasing the ensemble-induced dephasing
process. However, dephasing leads to coherence loss at the
level of individual excitations. Consequently, this trade-off
leads to a competition between the two effects of increased
dephasing, allowing for dephasing-enhanced steady-state co-
herences in certain regimes when the decreased ensemble
dephasing outweighs the increased excitation level dephasing.

We conclude that in the underdamped (or large-�) regime
of V-system dynamics, steady-state Fano coherence are max-
imized when the decoherence rate is equal to the energy
splitting between the excited states. The physical origin
of the maximization can be interpreted at the level of in-
dividual incoherent excitations, whose unitary evolution is
accompanied by environmental decoherence. The competi-
tion of these mechanisms can result in an enhancement of
steady-state coherence through minimization of destructive
interference caused by coherent evolution. A similar mech-
anism is at play in environment-assisted quantum transport,
whereby the addition of a moderate amount of noise positively
affects the energy flux in multichromophoric reaction com-
plexes [46,47,49–51]. The decoherence-induced enhancement
of Fano coherences could be used to facilitate their experi-
mental observation via measuring excited-state populations,
as discussed in the following section.

IV. EXPERIMENTAL DETECTION OF STEADY-STATE
FANO COHERENCE

In our previous work [29], we proposed a scheme for
the experimental observation of transient Fano coherences
by detecting the fluorescence signal emitted by incoherently
pumped Calcium atoms. This scheme suffers from two diffi-
culties: First, the transient nature of noise-induced coherent
dynamics makes it sensitive to the turn-on time of the radia-
tion. In particular, Fano coherences are known to vanish in the
limit where the turn-on time is much longer than that of spon-
taneous emission [18]. Second, because the total fluorescence
intensity is independent of Fano coherence [29], it required
the detection of the fluorescence emitted into a specific range
of solid angles.

In this section, we eliminate these difficulties by arguing
that steady-state Fano coherences can be observed by mea-
suring the total steady-state fluorescence signal emitted by
Calcium atoms irradiated by polarized versus isotropic inco-
herent light. Unlike the method proposed in Ref. [29], the new
detection scheme requires neither rapid turn-on of the radia-
tion field nor spatially resolved detection of the fluorescence
signal.

Our proposed experimental setup is similar to that de-
scribed in our previous work (see Fig. 1(a) and Fig. 1 of
Ref. [29]) and consists of a beam of Ca atoms initially
prepared in the ground 1S0 electronic state. The atoms are
continuously irradiated with spectrally broadened light polar-
ized in the x-direction, inducing the electric dipole transition
1S0 → 1PmJ from the J = 0 ground state to J = 1 excited
states with mJ = ±1. The excited states are split by an exter-
nal magnetic field pointing in the z direction, forming a nearly

perfect V-system with tunable excited-state splitting � [29].
Following initial turn-on of incoherent excitation, a fraction
of Ca atoms in the beam will be excited to the 1PmJ states.
The excited atoms will decay to the ground state emitting
fluorescence photons.

The average intensity of the radiation emitted by Ca atoms
in the direction (θ, φ) at a distance R away from the source is
[29]

〈I (R, t )〉 = nrω
4
0

32π2ε0c3R2

[
1 + cos2θ

2
(ρaa(t ′) + ρbb(t ′))

+ sin2θ
(
cos2φρR

ab(t ′) − sin2φρR
ab(t ′)

)]
, (31)

where t ′ = t + R/c is the retarded time, nr is the refractive
index of the medium, c is the speed of light in free space.
Integrating Eq. (31) over all spatial directions (θ, φ) we obtain
the total emitted intensity I = 8π

3 I0(ρaa + ρbb), where I0 =
nrω

4
0/(32π2ε0c3R2). For a symmetric V-system ρaa = ρbb,

this expression further simplifies to

I = 16π

3
I0ρaa. (32)

Importantly, unlike its spatially resolved counterpart (31) the
integrated fluorescence intensity depends only on the excited
state population and not on the Fano coherence. Therefore,
in order to directly observe transient Fano coherences, it is
necessary to measure the intensity emitted into specific do-
mains of space [29] in such a way that the partially integrated
fluorescence intensity is made to explicitly depend of Fano
coherence terms ρab.

Here, we show that it is not necessary to implement
spatially resolved fluorescence detection [29] to observe
steady-state Fano coherences in a V-system excited by po-
larized incoherent light. As shown in Sec. III above, the
magnitude of the real part of steady-state Fano coherence is
directly related to the deviation of excited-state populations
from their values in thermodynamic equilibrium via Eq. (9).
As such, observing these deviations could be used to directly
probe steady-state Fano coherences.

More specifically, let the intensity of the emitted light in
the absence of Fano coherence be I (0). This intensity cor-
responds to the excited-state population in the absence of
Fano coherence given by Eq. (7). From Eqs. (8) and (32),
the relative difference of the emitted light intensity with and
without steady-state Fano coherence is

�I

I0
= ρ

(eq)
aa − ρaa

ρ
(eq)
aa

= ρR
ab (33)

We see that in the coherent NESS induced by x-polarized
incoherent driving of the Calcium V-system, excited-state
populations are suppressed compared to the canonical Boltz-
mann distribution. The intensity of the light emitted by the
Calcium atoms driven into the NESS is therefore diminished
compared to the intensity that would be emitted by the atoms
in coherence-free canonical thermal equilibrium (attainable
by isotropic incoherent driving [13,17,29]). The relative dif-
ference in the fluorescence signals emitted by the atoms driven
by x-polarized versus isotropic incoherent light can therefore
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FIG. 7. (a) The ratio of fluorescence intensities calculated for Ca
atoms driven by x-polarized vs isotropic incoherent light in different
regimes: (a) n̄ = 10−2 and �/γ = 10−1; (b) n̄ = 10−2 and �/γ =
10; (c) n̄ = 103 and �/γ = 10; (d) n̄ = 10 and �/γ = 102. The
spontaneous decay lifetime used in the calculations is τs = 1/γ =
10−9 s.

be interpreted as an experimental signature of steady-state
Fano coherences.

Figure 7 shows the experimentally relevant fluorescence
difference signals calculated by numerical integration of the
BR equations. We observe rich transient dynamics, after
which the signals reach their nonequilibrium steady-state val-
ues consistent with Eq. (33). The observable relative intensity
difference remains fairly small (<1%) in the weak-pumping
limit but grows significantly with the pumping intensity,
reaching 23% for n̄ = 103 and �/γ = 10. As pointed out
in Sec. III B above, it might be possible to further enhance
the steady-state Fano coherence (and hence the fluorescence
difference signal) by inducing moderate decoherence between
the excited states of the calcium atoms. This could be achieved
experimentally by, e.g., adding magnetic field noise or isolat-
ing the atoms in a rare-gas host matrix [52–54].

V. SUMMARY AND CONCLUSIONS

We have presented closed-form analytical solutions to the
BR quantum master equations for a three-level V-system
driven by polarized incoherent radiation, which reveal the
presence of NESS featuring substantial Fano coherences in
the energy eigenstate basis. As pointed out in [27], the co-
herent NESS emerge as a result of an imbalance between
polarized incoherent excitation and spontaneous emission.
The imbalance occurs due to the directional nature of po-
larized incoherent pumping [29], whereby only a single
polarization mode of the radiation field interacts with the V-
system [10]. As a result, polarized absorption rates are smaller
by the factor of 16π/3 than their isotropic counterparts
(see Appendix A 4), while the rates of spontaneous emission
remain the same as in the case of unpolarized (isotropic) inco-
herent pumping, where both polarization modes participate in

the emission process. The rates of isotropic incoherent pump-
ing r and spontaneous emission γ are balanced, i.e., related by
the equilibrium fluctuation-dissipation theorem r = n̄γ , and
thus no steady-state Fano coherences survive in the V-system
driven by unpolarized incoherent light [27].

The imbalance between absorption and spontaneous emis-
sion that leads to the emergence of steady-state Fano
coherences can be thought of as originating from an addi-
tional, symmetry-breaking bath, leading to a formal analogy
between the V-system driven by polarized incoherent light
and a nonequilibrium transport problem involving a system of
two qubits coupled to two thermal baths, one at T = 5800 K
responsible for incoherent solar excitation [see Fig. 1(b)] and
the other at zero temperature representing spontaneous emis-
sion. We provide a detailed derivation of the master equation
for the open two-qubit system [see the Appendix], which es-
tablishes its equivalence to the BR equation for the V-system
[Eqs. (18) and (19)], whose transitions are driven simultane-
ously by linearly polarized incoherent light (left bath) and
a zero-temperature thermal field (right bath). The derivation
is valid in the weak-coupling limit, where the population of
the doubly excited eigenstate of the two-qubit system can be
neglected. We further show that in this two-bath model, the
imaginary part of the coherence between the quasi-degenerate
excited states in the V-system has a special significance: it is
proportional to the nonequilibrium flux between the two-level
systems coupled to hot and cold baths.

We note that our results could be relevant to quantum
thermodynamics of heat transport between two reservoirs via
coupled intermediary systems, which has been considered in
several recent papers [55–57]. While the case of two coupled
qubits (sometimes referred to as a “quantum entangler” [57])
is not the main focus of these papers, they address issues that
are very close to those considered here.

Our steady-state analysis demonstrates a remarkable re-
lation between steady-state Fano coherences and the devia-
tion of excited-state populations from thermal equilibrium:
�ρaa/ρ

(c)
aa = ρR

ab. This relation suggests that signatures of
steady-state Fano coherences could be observed through
measuring excited-state populations. We further extend our
steady-state analysis to include environmental decoherence
and relaxation effects, finding that steady-state Fano co-
herences persist in the V-system illuminated by polarized
incoherent radiation even in the presence of decoherence and
relaxation effects.

While steady-state Fano coherences are generally sup-
pressed by environmental relaxation and decoherence (see
Sec. III B), we find that the effect of decoherence can be
more subtle. In particular, the real part of the steady-state
Fano coherence can be enhanced by a moderate amount of
excited-state decoherence, as shown in Fig. 5. The magnitude
of the steady-state Fano coherence is maximized when the
decoherence rate is equal to the excited energy splitting minus
the combined rates of radiative pumping and spontaneous
decay (γd = � − r − γ ). We suggest that this counterintuitive
enhancement of steady-state Fano coherence occurs due to a
suppression of destructive interference of incoherent excita-
tions generated at different times.

Finally, we offer an improved method for the detec-
tion of steady-state Fano coherences using Calcium atoms
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irradiated by polarized incoherent light. Specifically, we pro-
pose to detect the signatures of Fano coherences by measuring
the deviations of excited-state populations in the NESS from
their equilibrium values (obtained by pumping the atoms with
isotropic incoherent light). Unlike the scheme proposed in
our previous work [29], this detection scenario only relies on
the total fluorescence intensity measurements, and requires
neither spatially resolved fluorescence detection nor rapid
turn-on of the incoherent light.
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APPENDIX

In this Appendix, we will derive the Bloch-Redfield (BR)
quantum master equations for the system of two coupled
qubits interacting with two independent thermal baths, one
of which represents a beam of incoherent radiation field at
a finite temperature polarized in the x direction, and another
is responsible for (isotropic) spontaneous emission. We show
that the resulting BR master equations [Eqs. (18) of the main
text] are equivalent to those describing the V-system driven
by x-polarized incoherent light [Eq. (19) of the main text]
under the assumption that transitions to and from the doubly
excited state of the two-qubit system can be neglected. As
shown in Appendix A 1 below and illustrated in Fig. 1(c) of
the main text, each of the transitions in the V-system (g ↔ a
and g ↔ b) is driven simultaneously by both the left and right
baths. Finally, we present the expressions for the incoherent
pumping and spontaneous emission rates of the V-system in
terms of the corresponding rates due to the left and right baths,
thereby completing the derivation of Eqs. (19) of the main
text.

1. Interaction Hamiltonian and system-bath couplings

To derive the BR equations [Eq. (18) of the main text] in the
eigenstate basis for a system of two coupled qubits interacting
with two independent thermal baths, we begin with the two-
qubit Hamiltonian

ĤS = 1
2ωLσ̂ z

L + 1
2ωRσ̂ z

R + J (σ̂+
L σ̂−

R + σ̂−
L σ̂+

R ), (A1)

where |eα〉, |gα〉 (α = L, R for left and right) are the excited
and ground basis states of the individual qubit α (also known

as the site or bare basis states), σ̂+
α = |eα〉〈gα|, σ̂−

α = |gα〉〈eα|
are the raising and lowering operators, J is the coupling be-
tween the qubits and σ̂ z

α = |eα〉〈eα| − |gα〉〈gα|.
The interaction of the two-qubit system with independent

heat baths is described by the Hamiltonian expressed in the
site basis

ĤSB =
∑
kL,λL

gkLλL σ̂
+
L b̂kLλL +

∑
kR,λR

gkRλR σ̂
+
R b̂kRλR + H.c., (A2)

where gkαλα
are the system-bath coupling coefficients (α =

L, R). We assume that qubit α interacts only with the α-th
bath. In this section, we will leave the coupling coefficients
gkαλα

unspecified to keep the discussion general. Below, we
will specialize to the case of incoherent radiation field.

Our goal is to transform the interaction Hamiltonian (A2)
from the site basis to the energy eigenstate basis and to show
how it maps onto the interaction Hamiltonian for the V-system
in the weak coupling limit. We start by expressing the bare
state basis in Eq. (A2) in the full 4-dimensional Hilbert space.
The two coupled qubits interacting with two independent heat
baths can be represented in this space by the bare states |eLeR〉,
|eLgR〉, |gLeR〉, and |gLgR〉.

Diagonalization of the system Hamiltonian given by
Eq. (A1) gives the eigenstates of the two-qubit system, which
are related to the bare states as

|D〉 = |eLeR〉, (A3)

|a〉 = cos
θ

2
|eLgR〉 + sin

θ

2
|gLeR〉, (A4)

|b〉 = − sin
θ

2
|eLgR〉 + cos

θ

2
|gLeR〉, (A5)

|g〉 = |gLgR〉, (A6)

where θ is the mixing angle [36,58] (θ = π/2 for the sym-
metric dimer).

From Eqs. (A4) and (A5), we obtain for |eLgR〉 and |gLeR〉

|eLgR〉 = cos
θ

2
|a〉 − sin

θ

2
|b〉, (A7)

|gLeR〉 = sin
θ

2
|a〉 + cos

θ

2
|b〉. (A8)

Using Eqs. (A3), (A6), (A7), and (A8), we transform the
qubit jump operators in the site basis to the energy eigenstate
basis

σ+
L ⊗ IR = |eL〉〈gL| ⊗ IR = |eL〉〈gL| ⊗ (|gR〉〈gR| + |eR〉〈eR|) = |eLgR〉〈gLgR| + |eLeR〉〈gLeR|

=
[

cos
θ

2
|a〉 − sin

θ

2
|b〉

]
〈g| + |D〉

[
sin

θ

2
〈a| + cos

θ

2
〈b|

]

= cos
θ

2
|a〉〈g| − sin

θ

2
|b〉〈g| + sin

θ

2
|D〉〈a| + cos

θ

2
|D〉〈b|, (A9)

IL ⊗ σ+
R = IL ⊗ |eR〉〈gR| = (|eL〉〈eL| + |gL〉〈gL|) ⊗ |eR〉〈gR|

= |eLeR〉〈eLgR| + |gLeR〉〈gLgR|
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= |D〉
[

cos
θ

2
〈a| − sin

θ

2
〈b|

]
+

[
sin

θ

2
|a〉 + cos

θ

2
|b〉

]
〈g|

= cos
θ

2
|D〉〈a| − sin

θ

2
|D〉〈b| + sin

θ

2
|a〉〈g| + cos

θ

2
|b〉〈g|, (A10)

where Iα is the unit operator in the Hilbert space of the αth qubit.
On substituting Eqs. (A9) and (A10) to Eq. (A2), we find the system-bath interaction Hamiltonian of two coupled qubits in

the energy eigenstate basis

ĤSB =
∑
kL,λL

gkLλL σ̂
+
L ⊗ IRb̂kLλL +

∑
kR,λR

gkRλR IR ⊗ σ̂+
R b̂kRλR + H.c.

= |a〉〈g|
{ ∑

kL,λL

gkLλL b̂kLλL cos
θ

2
+

∑
kR,λR

gkRλR b̂kRλR sin
θ

2

}
+ |b〉〈g|

{
−

∑
kL,λL

gkLλL b̂kLλL sin
θ

2

+
∑
kR,λR

gkRλR b̂kRλR cos
θ

2

}
+ |D〉〈a|

{ ∑
kL,λL

gkLλL b̂kLλL sin
θ

2
+

∑
kR,λR

gkRλR b̂kRλR cos
θ

2

}

+ |D〉〈b|
{ ∑

kL,λL

gkLλL b̂kLλL cos
θ

2
−

∑
kR,λR

gkRλR b̂kRλR sin
θ

2

}
+ H.c. (A11)

In the weak-coupling limit, the population of the doubly excited state |D〉 will be small compared to that of the singly excited
states |a〉 and |b〉. We can thus neglect the last two terms in Eq. (A11) to obtain

ĤSB = |a〉〈g|
{ ∑

kL,λL

gkLλL b̂kLλL cos
θ

2
+

∑
kR,λR

gkRλR b̂kRλR sin
θ

2

}
+ |b〉〈g|

{
−

∑
kL,λL

gkLλL b̂kLλL sin
θ

2
+

∑
kR,λR

gkRλR b̂kRλR cos
θ

2

}
+ H.c.

= |a〉〈g|
{ ∑

kL,λL

ga,kLλL b̂kLλL +
∑
kR,λR

ga,kRλR b̂kRλR

}
+ |b〉〈g|

{
−

∑
kL,λL

gb,kLλL b̂kLλL +
∑
kR,λR

gb,kRλR b̂kRλR

}
+ H.c. (A12)

with the new system-bath coupling parameters gi,kαλα
(i =

a, b; α = L, R) that describe the coupling between the ground
and excited eigenstates of the V-system (g ↔ a and g ↔ b)
due to the left and right baths

ga,kLλL = gkLλL cos
θ

2
, (A13)

ga,kRλR = gkRλR sin
θ

2
, (A14)

gb,kLλL = −gkLλL sin
θ

2
, (A15)

gb,kRλR = gkRλR cos
θ

2
. (A16)

The above equations show that the system-bath coupling of
the two-qubit system weakly driven by the left and right baths
(A2) is equivalent to that of the three-level V-system, whose
two transitions (g ↔ a and g ↔ b) are driven simultaneously
by the two baths.

We now introduce new bath operators B̂i,α , which describe
the driving of the V-system transitions g ↔ i (i = a, b) by the
αth bath

B̂i,α =
∑
kα,λα

gi,kαλα
b̂kαλα

, (A17)

where α = L, R. The system-bath coupling Hamiltonian can
now be rewritten as

ĤSB = ϕ̂+
a · (B̂a,L + B̂a,R) + ϕ̂+

b · (B̂b,L + B̂b,R) + H.c.,
(A18)

where the V-system jump operators are defined as ϕ̂+
i =

|i〉〈g| i = a, b. Note that Eq. (A18) is identical to Eq. (3) of
Sun et al. [39].

To further simplify Eq. (A18) we define the “cumulative”
bath operators

B̂i =
∑

α=L,R

B̂i,α, (A19)

which induce the transitions |g〉 ↔ |i〉 (i = a, b) between the
ground and excited eigenstates of the V-system due to the
combined action of both the left and right baths. In terms
of the cumulative bath operators, the system-bath interaction
Hamiltonian can be expressed in a compact form

ĤSB = ϕ̂+
a · B̂a + ϕ̂+

b · B̂b + H.c. =
∑
i=a,b

{ϕ̂+
i · B̂i + ϕ̂−

i · B̂†
i },

(A20)

where ϕ̂−
i = (ϕ̂+

i )†. This expression will serve as a starting
point for deriving the BR master equations in Appendix A 2.

System-bath interaction Hamiltonian for two qubits interacting
with incoherent radiation fields

Thus far, our treatment of the system-bath coupling has
been completely general. In this section, we specialize this
treatment to the case of light-matter coupling in the electric
dipole approximation as necessary to describe quantum sys-
tems driven by incoherent light [16,29]. At this point, the
left (hot) bath will be identified with x-polarized incoherent
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light at TL = 5 800 K pumping the left qubit, whereas the right
(cold) bath will represent isotropic incoherent electromagnetic
vacuum modes (TR = 0 K) coupled to the right qubit, causing
spontaneous emission (see Fig. 1 of the main text). The in-
teraction Hamiltonian of the two-qubit system driven by the
incoherent radiation baths defined above is

Ĥdip
SB = −μL · EL − μR · ER, (A21)

where

Eα = i
∑
kαλα

√
ωkα

2ε0Vα

εkαλα
b̂kαλα

+ H.c. (α = L, R) (A22)

is the electric field vector of the αth radiation bath with the
polarization vector εkαλα

and frequency ωkα
, and Vα is the

photon volume.
Note that because the transition dipole moment operators

μα in Eq. (A21) have only off-diagonal matrix elements in

the individual qubit (or site) basis, i.e., μL = μeLgL
|eL〉〈gL| =

μeLgL
σ+

L and μR = μeRgR
|eR〉〈gR| = μeRgR

σ+
R , we can rewrite

Eq. (A21) in a form identical to Eq. (A2)

Ĥdip
SB =

∑
kL,λL

gkLλL σ̂
+
L b̂kLλL +

∑
kR,λR

gkRλR σ̂
+
R b̂kRλR + H.c.

(A23)

with the system-bath coupling coefficients identified as

gkαλα
= −i

√
ωkα

2ε0Vα

{
μeαgα

· εkαλα

}
, (A24)

where μeαgα
is the transition dipole moment vector for the

|gα〉 ↔ |eα〉 transition in the α-th qubit.

Using the results derived in the previous section, the matter-field coupling Hamiltonian (A21) takes the form

Ĥdip
SB = |a〉〈g|

{ ∑
kL,λL

ga,kLλL b̂kLλL +
∑
kR,λR

ga,kRλR b̂kRλR

}
+ |b〉〈g|

{
−

∑
kL,λL

gb,kLλL b̂kLλL +
∑
kR,λR

gb,kRλR b̂kRλR

}
+ H.c.

=
∑
i=a,b

{ϕ̂+
i · B̂i + ϕ̂−

i · B̂†}, (A25)

where we will henceforth assume that the cumulative bath operators [Eqs. (A19) and (A17)] are defined with the system-bath
coupling coefficients given by Eq. (A24).

The light-matter coupling coefficients gi,kαλα
that parametrize the system-radiation field interaction Hamiltonian (A25) in the

energy eigenstate basis can be expressed as

gi,kαλα
= −i

√
ωkL

2ε0VL
{μig · εkαλα

} (A26)

where μig are the matrix elements of the transition dipole moment of the V-system in the energy eigenstate basis

μ =
∑
i=a,b

μig|i〉〈g| (A27)

To see this, we will show that Eq. (A26) is equivalent to Eqs. (A13)–(A16) under the assumption that the total transition
dipole moment of the two-qubit system is equal to the sum of the individual qubit’s transition dipoles

μ = μeLgL
|eL〉〈gL| + μeRgR

|eR〉〈gR| + H.c. (A28)

Using Eqs. (A9) and (A10) in Eq. (A28) and neglecting the transitions to and from the doubly excited state |D〉, we find

μ = μeLgL

{
cos

θ

2
|a〉〈g| − sin

θ

2
|b〉〈g|

}
+ μeRgR

{
sin

θ

2
|a〉〈g| + cos

θ

2
|b〉〈g|

}
+ H.c.

=
{
μeLgL

cos
θ

2
+ μeRgR

sin
θ

2

}
|a〉〈g| +

{
− μeLgL

sin
θ

2
+ μeRgR

cos
θ

2

}
|b〉〈g| + H.c. (A29)

Comparing this result with Eq. (A27), we find the transition dipole matrix elements between the ground and excited states of
the V-system as

μag =
{
μeLgL

cos
θ

2
+ μeRgR

sin
θ

2

}
, (A30)

μbg =
{

− μeLgL
sin

θ

2
+ μeRgR

cos
θ

2

}
. (A31)

Solving for μeLgL
and μeRgR

, we obtain

μeLgL
=

{
μag cos

θ

2
− μbg sin

θ

2

}
, (A32)

μeRgR
=

{
μag sin

θ

2
+ μbg cos

θ

2

}
. (A33)
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The light-matter coupling coefficients in the energy eigenbasis are therefore related to those in the site basis as

gkLλL = −i

√
ωkL

2ε0VL

{
μeLgL

· εkLλL

} = −i

√
ωkL

2ε0VL

{
μag cos

θ

2
− μbg sin

θ

2

}
· εkLλL

= −i

√
ωkL

2ε0VL

{
μag · εkLλL

}
cos

θ

2
+ i

√
ωkL

2ε0VL

{
μbg · εkLλL

}
sin

θ

2
= ga,kLλL cos

θ

2
− gb,kLλL sin

θ

2
, (A34)

gkRλR = −i

√
ωkR

2ε0VR

{
μeRgR

· εkRλR

} = −i

√
ωkR

2ε0VR

{
μag sin

θ

2
+ μbg cos

θ

2

}
· εkRλR

= −i

√
ωkR

2ε0VR

{
μag · εkRλR

}
sin

θ

2
− i

√
ωkR

2ε0VR

{
μbg · εkRλR

}
cos

θ

2

= ga,kRλR sin
θ

2
+ gb,kRλR cos

θ

2
. (A35)

Equations (A34) and (A35) are identical to those obtained by inverting Eqs. (A13)–(A16). They establish a connection between
the light-matter coupling coefficients in the site basis and those in the energy eigenstate basis.

2. Quantum master equations in the energy eigenbasis

In the previous sections, we have shown that the two-qubit
system coupled to two independent thermal baths is equivalent
to a three-level V-system, whose g ↔ i transitions (i = a, b)
are coupled simultaneously to the left and right baths [see
Eq. (A25)]. In this Appendix, we derive the BR quantum
master equations for the V-system in the energy eigenbasis,
and show that they can be mapped to those of the V-system
driven by x-polarized incoherent radiation [Eq. (1) of the main
text]. We also establish the relationship between the various
parameters of these BR equations.

We begin by expressing the system, bath and system-
bath interaction Hamiltonians in the energy eigenbasis. The
V-system Hamiltonian is obtained by diagonalizing the two-
qubit Hamiltonian (A1) and neglecting the doubly excited
state as described above

ĤS =
∑

i=g,a,b

Ei|Ei〉〈Ei|, (A36)

where the two quasidegenerate excited states are denoted by
|Ei〉 = |i〉, i = a, b and |Eg〉 = |g〉 is the ground state.

The Hamiltonians of the thermal baths representing inco-
herent radiation fields are given by

ĤB = ĤL
B + ĤR

B =
∑
kL,λL

ωkL b̂†
kLλL

b̂kLλL +
∑
kR,λR

ωkR b̂†
kRλR

b̂kRλR ,

(A37)

where Ĥα
B = ∑

kα,λα
ωkα

b̂†
kαλα

b̂kαλα
; α = L, R, and the opera-

tors b̂†
kLλL

b̂kLλL create and annihilate incoherent photons with
wave vectors kα and polarizations λα .

We have shown in the previous Appendix that the Hamil-
tonian of the two-qubit system interacting with two thermal
baths in the site basis (A21)–(A23) can be transformed to
in the eigenstate basis of the related V-system (A25). The
system-bath interaction (A20) in the interaction picture can
be written as

ĤSB(t ) =
∑

i

{ϕ̂+
i (t ) · B̂i(t ) + ϕ̂−

i (t ) · B̂†
i (t )} = V̂ +(t ) + V̂ −(t ),

(A38)
where the cumulative bath operators B̂i are defined by
Eqs. (A19) and (A17) with the system-bath (light-matter)
coupling coefficients given by Eq. (A26).

We now proceed to derive the BR master equations for
the reduced density operator ρ of the V-system coupled to
two independent radiation baths in the interaction picture.
The Liouville-von Neumann equation for the reduced density
operator is [41]

ρ̇ = −
∫ ∞

0
dt ′TrB[ĤSB(t ), [ĤSB(t − t ′), ρ(t ) ⊗ ρB]], (A39)

where TrB denotes the trace over the bath modes. Substituting
Eq. (A38) into Eq. (A39), the master equation in the Born-
Markov approximation can be written as

ρ̇ = −
∫ ∞

0
dt ′TrB{[V̂ +(t ), [V̂ −(t − t ′), ρ(t ) ⊗ ρB]] + [V̂ −(t ), [V̂ +(t − t ′), ρ(t ) ⊗ ρB]]}

= −
∫ ∞

0
dt ′

b∑
i, j=a

{
ei(εi−ε j )t (ϕ̂+

i ϕ̂−
j ρ)eiε j t ′

TrB(B̂i(t )B̂†
j (t − t ′)ρB) − ei(εi−ε j )t (ϕ̂+

i ρϕ̂−
j )eiε j t ′

× TrB(B̂i(t )ρBB̂†
j (t − t ′)) − ei(εi−ε j )t (ϕ̂−

j ρϕ̂+
i )eiε j t ′

TrB(B̂†
j (t − t ′)ρBB̂i(t ))

+ ei(εi−ε j )t (ρϕ̂−
j ϕ̂+

i )eiε j t ′
TrB(ρBB̂†

j (t − t ′)B̂i(t )) + e−i(εi−ε j )t (ϕ̂−
i ϕ̂+

j ρ)e−iε j t ′

× TrB(B̂†
i (t )B̂ j (t − t ′)ρB) − e−i(εi−ε j )t (ϕ̂−

i ρϕ̂+
j )e−iε j t ′

TrB(B̂†
i (t )ρBB̂ j (t − t ′))

− e−i(εi−ε j )t (ϕ̂+
j ρϕ̂−

i )e−iε j t ′
TrB(B̂ j (t − t ′)ρBB̂†

i (t )) + e−i(εi−ε j )t (ρϕ̂+
j ϕ̂−

i )e−iε j t ′
TrB(ρBB̂ j (t − t ′)B̂†

i (t ))
}
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= −
∫ ∞

0
dt ′

b∑
i, j=a

{
ei(εi−ε j )t (ϕ̂+

i ϕ̂−
j ρ)eiε j t ′ 〈B̂i(t )B̂†

j (t − t ′)〉 − ei(εi−ε j )t (ϕ̂+
i ρϕ̂−

j )eiε j t ′ 〈B̂†
j (t − t ′)B̂i(t )〉

− ei(εi−ε j )t (ϕ̂−
j ρϕ̂+

i )eiε j t ′ 〈B̂i(t )B̂†
j (t − t ′)〉 + ei(εi−ε j )t (ρϕ̂−

j ϕ̂+
i )eiε j t ′ 〈B̂†

j (t − t ′)B̂i(t )〉
+ e−i(εi−ε j )t (ϕ̂−

i ϕ̂+
j ρ)e−iε j t ′ 〈B̂†

i (t )B̂ j (t − t ′)〉 − e−i(εi−ε j )t (ϕ̂−
i ρϕ̂+

j )e−iε j t ′ 〈B̂ j (t − t ′)B̂†
i (t )〉

− e−i(εi−ε j )t (ϕ̂+
j ρϕ̂−

i )e−iε j t ′ 〈B̂†
i (t )B̂ j (t − t ′)〉 + e−i(εi−ε j )t (ρϕ̂+

j ϕ̂−
i )e−iε j t ′ 〈B̂ j (t − t ′)B̂†

i (t )〉}
= −

b∑
i, j=a

{
ei(εi−ε j )t (ϕ̂+

i ϕ̂−
j ρ)�−

ji (ε j ) − ei(εi−ε j )t (ϕ̂+
i ρϕ̂−

j )�+
ji (ε j ) − ei(εi−ε j )t (ϕ̂−

j ρϕ̂+
i )�−

ji (ε j )

+ ei(εi−ε j )t (ρϕ̂−
j ϕ̂+

i )�+
ji (ε j ) + e−i(εi−ε j )t (ϕ̂−

i ϕ̂+
j ρ)�+

i j (ε j ) − e−i(εi−ε j )t (ϕ̂−
i ρϕ̂+

j )�−
i j (ε j )

− e−i(εi−ε j )t (ϕ̂+
j ρϕ̂−

i )�+
i j (ε j ) + e−i(εi−ε j )t (ρϕ̂+

j ϕ̂−
i )�−

i j (ε j )
}
, (A40)

where εi = Ei − Eg is the energy difference between the excited state i = |a〉, |b〉 and the ground state |g〉, ρ(t ), and ρB =
ρL

th ⊗ ρR
th are the density operators of the system and the baths. Here, we assume that the thermal baths are in thermal equilibrium

described by the density operator ρα
th = exp(−βαĤα

B )/Zα with the partition function Zα = TrBα
[exp(−βαĤα

B )], where βα = 1/Tα

is the inverse temperature of the αth bath (α = L, R).
Defining the dissipation rates as one-sided Fourier transforms of bath correlation functions

�−
i j =

∫ ∞

0
dt ′eiε j t ′ 〈B̂ j (t )B̂†

i (t − t ′)〉, (A41)

�+
i j =

∫ ∞

0
dt ′eiε j t ′ 〈B̂†

i (t )B̂ j (t − t ′)〉 (A42)

and transforming Eq. (A40) from the interaction picture back to the Schrödinger picture, we obtain

ρ̇ = i[ρ, ĤS] −
b∑

i, j=a

{
(ϕ̂+

i ϕ̂−
j ρ)�−

ji (ε j ) − (ϕ̂+
i ρϕ̂−

j )�+
ji (ε j ) − (ϕ̂−

j ρϕ̂+
i )�−

ji (ε j ) + (ρϕ̂−
j ϕ̂+

i )�+
ji (ε j )

+ (ϕ̂−
i ϕ̂+

j ρ)�+
i j (ε j ) − (ϕ̂−

i ρϕ̂+
j )�−

i j (ε j ) − (ϕ̂+
j ρϕ̂−

i )�+
i j (ε j ) + (ρϕ̂+

j ϕ̂−
i )�−

i j (ε j )
}
. (A43)

Having derived the BR equation in operator form (A43), we now project it onto the eigenstates of the V-system to obtain the
BR equations for the individual density matrix elements (i.e., populations and coherences in the eigenstate basis). Specifically,
we obtain

ρ̇aa = 〈a|ρ̇|a〉 = i〈a|[ρ, ĤS]|a〉 −
b∑

i, j=a

{〈a|ϕ̂+
i ϕ̂−

j ρ|a〉�−
ji (ε j ) − 〈a|ϕ̂+

i ρϕ̂−
j |a〉�+

ji (ε j )

− 〈a|ϕ̂−
j ρϕ̂+

i |a〉�−
ji (ε j ) + 〈a|ρϕ̂−

j ϕ̂+
i |a〉�−

ji (ε j ) + 〈a|ϕ̂−
i ϕ̂+

j ρ|a〉�+
i j (ε j )

− 〈a|ϕ̂−
i ρϕ̂+

j |a〉�−
i j (ε j ) − 〈a|ϕ̂+

j ρϕ̂−
i |a〉�+

i j (ε j ) + 〈a|ρϕ̂+
j ϕ̂−

i |a〉�−
i j (ε j )

}
. (A44)

Next, we simplify the remaining nonzero terms in Eq. (A44)

b∑
i, j=a

〈a|ϕ̂+
i ϕ̂−

j ρ|a〉�−
ji (ε j ) =

b∑
i, j=a

〈a|i〉〈g|g〉〈 j|ρ|a〉�−
ji (ε j ) =

b∑
j=a

〈 j|ρ|a〉�−
ja(ε j )

= 〈a|ρ|a〉�−
aa(εa) + 〈b|ρ|a〉�−

ba(εb) = �−
aa(εa)ρaa + �−

ba(εb)ρba,

b∑
i, j=a

〈a|ϕ̂+
i ρϕ̂−

j |a〉�+
ji (ε j ) =

b∑
i, j=a

〈a|i〉〈g|ρ|g〉〈 j|a〉�+
ji (ε j ) = �+

aa(εa)ρgg,

b∑
i, j=a

〈a|ϕ̂+
j ρϕ̂−

i |a〉�+
i j (ε j ) =

b∑
i, j=a

〈a| j〉〈g|ρ|g〉〈i|a〉�+
i j (ε j ) = �+

aa(εa)ρgg,

b∑
i, j=a

〈a|ρϕ̂+
j ϕ̂−

i |a〉�−
i j (ε j ) =

b∑
i, j=a

〈a|ρ| j〉〈g|g〉〈i|a〉�−
i j (ε j ) =

b∑
j=a

〈a|ρ| j〉�−
a j (ε j )

= 〈a|ρ|a〉�−
aa(εa) + 〈a|ρ|b〉�−

ab(εb) = �−
aa(εa)ρaa + �−

ab(εb)ρab.
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Substituting these results into Eq. (A44), we obtain the quantum master equation for the excited-state population

ρ̇aa = −{(�−
aa(εa)ρaa + �−

ba(εb)ρba) − �+
aa(εa)ρgg − �+

aa(εa)ρgg + (�−
aa(εa)ρaa + �−

ab(εb)ρab)}
= 2�+

aa(εa)ρgg − 2�−
aa(εa)ρaa − �−

ab(εb)ρab − �−
ba(εb)ρba. (A45)

Similarly, the quantum master equation for ρbb is shown to be

ρ̇bb = 2�+
bb(εb)ρgg − 2�−

bb(εb)ρbb − �−
ab(εa)ρab − �−

ba(εa)ρba. (A46)

The BR master equation for the coherence term ρab becomes

ρ̇ab = 〈a|ρ̇|b〉 = i〈a|[ρ, ĤS]|b〉 −
b∑

i, j=a

{〈a|ϕ̂+
i ϕ̂−

j ρ|b〉�−
ji (ε j ) − 〈a|ϕ̂+

i ρϕ̂−
j |b〉�+

ji (ε j )

− 〈a|ϕ̂−
j ρϕ̂+

i |b〉�−
ji (ε j ) + 〈a|ρϕ̂−

j ϕ̂+
i |b〉�−

ji (ε j ) + 〈a|ϕ̂−
i ϕ̂+

j ρ|b〉�+
i j (ε j )

− 〈a|ϕ̂−
i ρϕ̂+

j |b〉�−
i j (ε j ) − 〈a|ϕ̂+

j ρϕ̂−
i |b〉�+

i j (ε j ) + 〈a|ρϕ̂+
j ϕ̂−

i |b〉�−
i j (ε j )

}
. (A47)

The nonzero terms in Eq. (A47) include 〈a|[ρ, ĤS]|b〉 = −�ρab as well as the following terms:

b∑
i, j=a

〈a|ϕ̂+
i ϕ̂−

j ρ|b〉�−
ji (ε j ) =

b∑
i, j=a

〈a|i〉〈g|g〉〈 j|ρ|b〉�−
ji (ε j ) =

b∑
j=a

〈 j|ρ|b〉�−
ja(ε j )

= 〈a|ρ|b〉�−
aa(εa) + 〈b|ρ|b〉�−

ba(εb) = �−
aa(εa)ρab + �−

ba(εb)ρbb,

b∑
i, j=a

〈a|ϕ̂+
i ρϕ̂−

j |b〉�+
ji (ε j ) =

b∑
i, j=a

〈a|i〉〈g|ρ|g〉〈 j|b〉�+
ji (ε j ) = �+

ba(εb)ρgg,

b∑
i, j=a

〈a|ϕ̂+
j ρϕ̂−

i |b〉�+
i j (ε j ) =

b∑
i, j=a

〈a| j〉〈g|ρ|g〉〈i|b〉�+
i j (ε j ) = �+

ba(εa)ρgg,

b∑
i, j=a

〈a|ρϕ̂+
j ϕ̂−

i |b〉�−
i j (ε j ) =

b∑
i, j=a

〈a|ρ| j〉〈g|g〉〈i|b〉�−
i j (ε j ) =

b∑
j=a

〈a|ρ| j〉�−
b j (ε j )

= 〈a|ρ|a〉�−
ba(εa) + 〈a|ρ|b〉�−

bb(εb) = �−
ba(εa)ρaa + �−

bb(εb)ρab.

We now substitute all the nonzero terms in Eq. (A47) to obtain the BR master equation for ρab

ρ̇ab = [�+
ba(εa)ρgg − �−

ba(εa)ρaa] + [�+
ba(εb)ρgg − �−

ba(εb)ρbb] − i�ρab − [�−
aa(εa) + �−

bb(εb)]ρab. (A48)

From Eqs. (A45), (A46), and (A48), the quantum master equations for the V-system in the energy eigenbasis are

ρ̇aa = 2�+
aa(εa)ρgg − 2�−

aa(εa)ρaa − �−
ab(εb)ρab − �−

ba(εb)ρba,

ρ̇bb = 2�+
bb(εb)ρgg − 2�−

bb(εb)ρbb − �−
ab(εa)ρab − �−

ba(εa)ρba,

ρ̇ab = [�+
ba(εa)ρgg − �−

ba(εa)ρaa] + [�+
ba(εb)ρgg − �−

ba(εb)ρbb] − i�ρab − [�−
aa(εa) + �−

bb(εb)]ρab, (A49)

where εi = Ei − Eg is the energy difference between the ex-
cited state i = |a〉, |b〉 and the ground state |g〉, and � =
Ea − Eb is the excited-state splitting. Equations (A49) are
identical to Eqs. (18) of the main text, thereby completing our
derivation.

3. Incoherent driving and spontaneous emission rates of the
V-system: left and right baths contributions

Here, we derive the expressions for the incoherent driving
and spontaneous decay rates of the V-system [encoded in the
dissipation rates �±

i j in Eq. (A49)] in terms of the correspond-
ing rates induced by the left and right baths. This completes
the derivation of Eq. (19) of the main text and quantifies the

left and right baths’s contributions to the radiative dynamics
of the incoherently driven V-system.

Here, we focus on the experimental realization of the
V-system formed by the electric-dipole allowed transitions
between the ground and excited states of atomic calcium (see
main text and Ref. [29]). Note that the dipole moment vectors
of these two transitions are orthogonal. The diagonal rates �±

ii
account for incoherent pumping, stimulated, and spontaneous
decay of the excited level |i〉, i = a, b of the V-system. The
off-diagonal rates �+

i j are responsible for Fano interference be-
tween the transitions |g〉 ↔ |i〉 and |g〉 ↔ | j〉. These quantities
will be considered separately below.

To find the dissipation rates �−
i j we evaluate the one-

sided Fourier transform of the bath correlation functions
〈B̂i(0)B̂†

j (−t ′)〉. The evaluation of one-sided Fourier transform
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of the bath correlation function is simplified with the standard
integral of the form∫ ∞

0
dt ′e±iεt ′ = πδ(ε) ± iP 1

ε
, (A50)

where P is the Cauchy principal value. The real part of the
above integral describes the dissipative dynamics of the sys-
tem, while the imaginary part represents a small bath-induced
contribution to the Lamb shift, which will be neglected.

a. Diagonal dissipation rates: Incoherent pumping and
spontaneous decay

Here, we evaluate the diagonal dissipation rates �±
ii in

Eq. (A49), which incorporate incoherent driving (i.e. incoher-
ent pumping and stimulated emission) as well as spontaneous
decay rates of the i-th excited state of the V-system (i =
a, b). We first evaluate the dissipation rate of the transition
|a〉 ↔ |g〉 by taking the Fourier transform (A41) of the cor-
relation function of the cumulative bath operator defined by
Eq. (A19). The assumption that the left and right baths are
uncorrelated allows us to drop the cross terms of the form
〈B̂a,R(0)B̂†

a,L(−t ′)〉 in the correlation function 〈B̂a(0)B̂†
b(−t ′)〉,

and we find

�−
aa =

∫ ∞

0
dt ′eiεat ′ 〈B̂a(0)B̂†

a(−t ′)〉

=
∫ ∞

0
dt ′eiεat ′ 〈[B̂a,L(0)+B̂a,R(0)][B̂†

a,L(−t ′)+B̂†
a,R(−t ′)]〉

=
∫ ∞

0
dt ′eiεat ′

[〈B̂a,L(0)B̂†
a,L(−t ′)〉 + 〈B̂a,R(0)B̂†

a,R(−t ′)〉]

=
∫ ∞

0
dt ′eiεat ′

[ ∑
kL,λL

∣∣ga,kLλL

∣∣2(〈
b̂†

kLλL
b̂kLλL

〉 + 1
)

+
∑
kR,λR

|ga,kRλR |2
(〈

b̂†
kRλR

b̂kRλR

〉 + 1
)]

= I1 + I2 + I3 + I4. (A51)

This equation has four terms that describe incoherent driv-
ing and spontaneous emission processes induced by the left
and right baths involving the excited eigenstate |a〉 of the
V-system. Below we will consider these terms in turn.

As noted above, the left bath is identified with a beam of
x-polarized incoherent light directed along the ẑ axis, which
drives the V-system and has directional dependence. The right
bath is maintained at zero temperature and it is isotropic.

The average photon number in the left bath is given by

n̄Pol
L = 〈

b̂†
kLλL

b̂kLλL

〉 = 〈
nkLλL

〉 = δk̂L ẑδεkLλL x̂ n̄L, (A52)

where n̄L = (eωL/kBTL − 1)−1 is the average photon number of
the isotropic blackbody radiation field at TL = 5 800 K. The
expression (A52) contains only the modes propagating in the
direction of the wave vector k̂L and polarized along the x axis
(according to the definition of polarized incoherent light). In
contrast, isotropic incoherent radiation contains modes with
all possible k̂L and λL.

The term I1 in Eq. (A51) corresponds to incoherent driving
of the g ↔ a transition by the left bath. To calculate this term,

we first evaluate the sum over kL and λL∑
kL,λL

∣∣ga,kLλL

∣∣2〈
b̂†

kLλL
b̂kLλL

〉

=
∑
kLλL

∣∣CL
(
μag · εkLλL

)∣∣2
δk̂L ẑδεkλL x̂ n̄L

=
∑
kL,λL

∣∣CLμag
(
μ̂ag · εkLλL

)∣∣2
δk̂L ẑδεkLλL x̂ n̄L

=
∑

kL

|CLμag(μ̂ag · x̂)|2n̄L = 1

2

∑
kL

|g′
a,kL

|2n̄L. (A53)

In Eq. (A53), μ̂ag = μag/μag is the unit vector in the di-
rection of μag, g′

a,kL
= CLμag is a polarization-independent

light-matter coupling coefficient, and CL = [ωkL /2ε0VL]1/2.
The scalar products μ̂ag · x̂ and μ̂bg · x̂ are both equal to 1/

√
2

[29].
The integral I1 is evaluated as shown in Appendix A 4 [see

Eq. (A87)]

I1 =
∫ ∞

0
dt ′eiεat ′ ∑

kL,λL

∣∣ga,kLλL

∣∣2〈
b̂†

kLλL
b̂kLλL

〉

= 1

2
2π

∑
kL,λL

∣∣ga,kLλL

∣∣2
δ(εa)n̄Pol

L

= 1

2

(
3

16π
γ L

aan̄L

)
= 1

2
rL

aa (A54)

with

γ L
aa = 2π

∑
kL,λL

∣∣ga,kLλL

∣∣2
δ(εa) = ω3

ag|μag|2
3πε0c3

(A55)

being the spontaneous decay rate of the excited state |a〉
(a → g) induced by the left bath. The incoherent pumping
rate for the g → a transition by the left bath is given by rL

aa =
3

16π
γ L

aan̄L. The factor of 3/16π is included because, as pointed
out in Appendix A 4, polarized driving rates are attenuated by
a factor of 16π/3 with respect to those for isotropic driving.

The term I3 in Eq. (A51) corresponds to incoherent driving
of the g ↔ a transition by the right bath:∫ ∞

0
dt ′e−iεat ′ ∑

kR,λR

∣∣ga,kRλR

∣∣2〈
b̂†

kRλR
b̂kRλR

〉

=
∑
kR,λR

|ga,kRλR |2πδ(εa)n̄R = 1

2
γ R

aan̄R = 0, (A56)

because the right bath is maintained at zero temperature,
and hence does not drive the system (n̄R = 0). Here, γ R

aa =
2π

∑
kR,λR

|ga,kRλR |2δ(εa) is the spontaneous decay rate of
state |a〉 induced by the right bath (see below).

Having calculated the contributions to the dissipation rate
�−

aa (A51) due to incoherent driving, we now proceed to eval-
uate the rate of the spontaneous decay transition a → g due to
the left bath (the term I2 in Eq. (A51))∫ ∞

0
dt ′eiεat ′ ∑

kL,λL

∣∣ga,kLλL

∣∣2 =
∑
kL,λL

∣∣ga,kLλL

∣∣2
πδ(εa) = 1

2
γ L

aa.

(A57)
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Finally, the spontaneous decay rate of state |a〉 due to
the right bath is given by the fourth term in the last line of
Eq. (A51)∫ ∞

0
dt ′eiεat ′ ∑

kR,λR

∣∣ga,kRλR

∣∣2 =
∑
kR,λR

∣∣ga,kRλR

∣∣2
πδ(εa) = 1

2
γ R

aa.

(A58)

Substituting Eqs. (A54)–(A58) into Eq. (A51), we find the
diagonal dissipation rate for the transition |a〉 ↔ |g〉

�−
aa = 1

2

(
rL

aa + γ L
aa

) + 1
2

(
rR

aa + γ R
aa

) = 1
2

(
rL

aa + γ L
aa + γ R

aa

)
.

(A59)
Proceeding in a similar way, we find the dissipation rate in

Eq. (A42) as

�+
aa =

∫ ∞

0
dt ′eiεat ′ 〈B̂†

a(0)B̂a(−t ′)〉 = 1

2
rL

aa + 1

2
rR

aa = 1

2
rL

aa.

(A60)

Following the same procedure as outlined above,
we evaluate the dissipation rates for the transition
|g〉 ↔ |b〉:

�−
bb = 1

2

(
rL

bb + γ L
bb

) + 1
2

(
rR

bb + γ R
bb

) = 1
2

(
rL

bb + γ L
bb + γ R

bb

)
,

(A61)

�+
bb = 1

2 rL
bb + 1

2 rR
bb = 1

2 rL
bb, (A62)

where γ α
bb = 2π

∑
kα,λα

|gb,kαλα
|2δ(εb) is the spontaneous de-

cay rate of the excited state |b〉 induced by the α-th bath,
and rα

bb = n̄αγ α
bb are the corresponding incoherent pumping

rates.

b. Off-diagonal dissipation rates: Fano interference

Having calculated the diagonal dissipation rates, which
pertain to the individual transitions |g〉 ↔ |i〉; i = a, b, we
now turn to the off-diagonal dissipation rates due to Fano
interference between the transitions |g〉 ↔ |a〉 and |g〉 ↔ |b〉.
From Eq. (A41), we obtain

�−
ab = �−

ba =
∫ ∞

0
dt ′eiεat ′ 〈B̂a(0)B̂†

b(−t ′)〉

=
∫ ∞

0
dt ′eiεat ′ 〈[B̂a,L(0) + B̂a,R(0)][B̂†

b,L(−t ′) + B̂†
b,R(−t ′)]〉

=
∫ ∞

0
dt ′eiεat ′

[〈B̂a,L(0)B̂†
b,L(−t ′)〉 + 〈B̂a,R(0)B̂†

b,R(−t ′)〉]

=
∫ ∞

0
dt ′eiεat ′

[ ∑
kL,λL

ga,kLλL g∗
b,kLλL

〈
b̂kLλL b̂†

kLλL

〉 + ∑
kR,λR

ga,kRλR g∗
b,kRλR

〈
b̂kRλR b̂†

kRλR

〉]

=
∫ ∞

0
dt ′eiεat ′

[ ∑
kL,λL

ga,kLλL g∗
b,kLλL

(〈
b̂†

kLλL
b̂kLλL

〉 + 1
) +

∑
kR,λR

ga,kRλR g∗
b,kRλR

(〈
b̂†

kRλR
b̂kRλR

〉 + 1
)]

= I1 + I2 + I3 + I4. (A63)

Here, as before, we have used the assumption that the left
and right baths are uncorrelated to drop the interference terms
of the kind 〈B̂a,L(0)B̂†

b,R(−t ′)〉, which arise in the correlation

function 〈B̂a(0)B̂†
b(−t ′)〉 involving two cumulative bath oper-

ators.
The first term in Eq. (A63) describes Fano interference of

incoherent driving processes a ↔ g and b ↔ g induced by the
left bath. Evaluating this term, we obtain∑

kL,λL

ga,kL g∗
b,kL

〈
b̂†

kLλL
b̂kLλL

〉

=
∑
kL,λL

CL
(
μag · εkLλL

)
CL

(
μbg · εkLλL

)〈
b̂†

kLλL
b̂kLλL

〉
, (A64)

where CL is a constant defined below Eq. (A53). Substituting
Eq. (A52) into the first term of Eq. (A64) we obtain, following
the steps used in deriving Eq. (A53):∑

kL,λL

ga,kLλL g∗
b,kLλL

〈
b̂†

kLλL
b̂kLλL

〉

=
∑
kL,λL

CL
(
μag · εkλ

)
CL

(
μbg · εkλ

)〈
nkLλ

〉

=
∑
kL,λL

CLμagCLμbg
(
μ̂ag · εkL,λ

)(
μ̂bg · εkL,λ

)
δk̂,ẑδεkL ,λ x̂ n̄L

=
∑

kL

CLμagCLμbg(μ̂ag · x̂)(μ̂bg · x̂)n̄L

=
∑

kL

1

2
CLμagCLμbgn̄L =

∑
kL

1

2
g′

a,kL
g′

b,kL
n̄L, (A65)

where g′
i,kα

are polarization-independent light-matter coupling
coefficients defined below Eq. (A53).

The one-sided Fourier transform of the above term is given
by

I1 =
∫ ∞

0
dt ′eiεat ′ ∑

kL

1

2
g′

a,kL
g′

b,kL
n̄L

= 1

2

∑
kL

g′
a,kL

g′
b,kL

πδ(εa)n̄L

= π

2

VL

(2π )3

∫ ∞

0

ωkL

2ε0VL
(μagμbg)k2

LdkLδ(εa)n̄L
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= μagμbg

32πε0c3

∫ ∞

0
dkLω3

kL
δ
(
ωkL − ωag

)
n̄L = μagμbg

32πε0c3
ω3

agn̄L

= 3

32π

√
ω3

ag|μag|2
3πε0c3

√
ω3

bg|μbg|2
3πε0c3

n̄L = 3

32π

√
γ L

aa

√
γ L

bbn̄L,

(A66)

where we have used the definitions of spontaneous emission
rates induced by the left bath [Eqs. (A55)] and set ωbg = ωag,
which is an accurate approximation since |�| � |ωig|.

The linear orientation of the polarized driving by the left
bath attenuates the incoherent pumping rate by the factor
16π/3 (see Appendix A 4)

I1 = 1

2

{
3

16π

√
γ L

aan̄L

√
γ L

bbn̄L

}
. (A67)

In terms of the incoherent driving rates due to the left bath
defined by Eq. (A53) we find

I1 = 1

2

√
rL

aarL
bb, (A68)

where we have defined the incoherent pumping rates due
to the left bath rL

ii = 3
16π

γ L
ii n̄L. These rates are the same as

defined by Eq. (A54).
The second term in Eq. (A63) describes Fano interference

of spontaneous decay processes a → g and b → g induced by
the left bath [see Appendix A 4, Eq. (A84)] [31]:

I2 =
∫ ∞

0
dt ′eiεat ′ ∑

kL,λL

ga,kLλL g∗
b,kLλL

= π
∑
kLλL

ga,kLλL g∗
b,kLλL

δ(εa)

= 1

2
γ L

ab = 1

2
p
√

γ L
aaγ

L
bb = 0, (A69)

where p = μ̂ag · μ̂bg is the transition dipole alignment factor,
As the V-system composed of Ca atoms (see main text)

has orthogonal transition dipole moments (μag ⊥ μbg), there
is no interference between the spontaneous decay processes
induced by the left bath (I2 = 0) [31].

The third term in Eq. (A63) describes Fano interference of
incoherent driving processes a ↔ g and b ↔ g due to the right
bath:

I3 =
∫ ∞

0
dt ′eiεat ′ ∑

kR,λR

ga,kRλR g∗
b,kRλR

〈
b̂†

kRλR
b̂kRλR

〉

=
∫ ∞

0
dt ′eiεat ′ ∑

kR,λR

ga,kRλR g∗
b,kRλR

n̄R = 0 (A70)

as the right bath does not drive the system (n̄R = 0).
Finally, the fourth term in Eq. (A63) describes Fano in-

terference of spontaneous decay processes a → g and b → g
induced by the right bath. Following the same approach as
used above to evaluate the second term, we find [31]:

I4 =
∫ ∞

0
dt ′eiεat ′ ∑

kR,λR

ga,kRλR g∗
b,kRλR

= 1

2
p
√

γ R
aaγ

R
bb = 0

(A71)

since p = 0 for the V-system of interest here (atomic calcium)
as noted above.

Collecting all the terms in Eq. (A63), we find

�−
ab = �−

ba = 1

2

√
rL

aarL
bb (A72)

and

�+
ab = 1

2

√
rL

aarL
bb (A73)

Thus the off-diagonal dissipation rates are determined by Fano
interference between the incoherent driving processes g ↔ a
and g ↔ b induced by the left bath.

4. Incoherent pumping rates: comparison between isotropic and
polarized radiation driving of the V-system

Here, we establish the relation between the pumping rates
of the V-system driven by isotropic and polarized radiation
baths. To calculate the pumping rates, we first evaluate the
spontaneous decay rate of the excited state |i〉 due to the left
bath

γ L
ii = 2π

∑
kL,λL

∣∣gi,kLλL

∣∣2
δ(εi )

= 2π
∑
kL,λL

∣∣gi,kL

∣∣2(
μ̂ig · εkLλL

)2
δ(εi ), (A74)

where gi,kL =
√

ωkL
2ε0VL

μig is the polarization-independent cou-

pling strength defined above.
We begin by evaluating a more general expression for the

cross transition rate [32] due to the interference between the
transitions |i〉 ↔ |g〉 (of which Eq. (A74) is a particular case
corresponding to i = j)

γ L
ab = 2π

∑
kL,λL

ga,kLλL g∗
b,kLλL

δ(εa)

= 2π
∑
kL,λL

ga,kL g∗
b,kL

(
μ̂ag · εkLλL

)(
μ̂bg · εkLλL

)
δ(εa).

(A75)

To evaluate Eq. (A75), we take the continuum limit∑
kL

→ VL

(2π )3

∫ ∞

0
k2

LdkL

∫ π

0
sin θdθ

∫ 2π

0
dφ, (A76)

where θ is the angle between the wave vector kL and the z axis
of the Cartesian coordinates, and φ is the azimuthal angle. In
the spherical polar coordinates, we can write the wave vector
as [32]

kL = |kL|[sin θ cos φ, sin θ sin φ, cos θ ]. (A77)

The polarization vectors εkLλL ; λL = 1, 2 and the wave
vector are orthogonal to each other. This property allows us
to express the polarization vectors as

εkL1 = [− cos θ cos φ,− cos θ sin φ, sin θ ],

εkL2 = [sin φ,− cos φ, 0]. (A78)

The atomic dipole moments of the V-system for the transi-
tions |i〉 ↔ |g〉; i = a, b in the xy plane can be represented in
the following form:

μag = |μag|[cos φa, sin φa, 0],

μbg = |μbg|[cos φb, sin φb, 0], (A79)
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where φi is the angle formed by the dipole moment vector
μig and the x axis. Here, we limit our discussion of the dipole
moment orientation to the case of �m = 0 atomic transitions.

However, it is important to note that we obtain the same
spontaneous decay rates for the case �m = ±1.

We now substitute Eqs. (A76)–(A79) into Eq. (A75) to obtain

γ L
ab = VL

(2π )2

∫ ∞

0

ωkL

2ε0VL
μagμbgk2

LdkL

∫ π

0

∫ 2π

0
dθdφ sin θ [cos φa cos φb(cos2 θ cos2 φ + sin2 φ)

+ sin φa sin φb(cos2 θ sin2 φ + cos2 φ) − sin(φa + φb) sin2 θ sin φ cos φ]δ(εa). (A80)

Evaluating the integrals over the spherical polar angles θ and φ∫ 2π

0
dφ cos2 φ =

∫ 2π

0
dφ sin2 φ = π ;

∫ 2π

0
dφ sin φ cos φ = 0;

∫ π

0
dθ sin θ (cos2 θ + 1) = 8

3
, (A81)

we find the cross transition rate as

γ L
ab = μagμbg

8π2ε0

∫ ∞

0
ωkL k2

LdkLδ(εa)
8π

3
(cos φa cos φb + sin φa sin φb)

= μagμbg

3πε0c3
cos(φa − φb)

∫ ∞

0
dωkL ω

3
kL

δ
(
ωkL − ωag

) = μagμbgω
3
ag

3πε0c3
cos(φa − φb). (A82)

where (φa − φb) is the angle between the dipole moment vectors μag and μbg and p = cos(φa − φb) = μ̂ag · μ̂bg is the transition
dipole alignment factor.

To find the expression for the spontaneous decay rate of the excited state |i〉 we set a = b = i in Eq. (A82) to obtain

γ L
ii = 2π

∑
kL,λL

∣∣gi,kLλL

∣∣2
δ(εi ) = |μig|2ω3

ig

3πε0c3
. (A83)

Setting ωag ≈ ωbg (which is a valid approximation since |�| � |ωag|), we express the cross transition rate (A82) in terms of
the spontaneous decay rates of the excited eigenstates |a〉 and |b〉

γ L
ab = μagμbgω

3
ag

3πε0c3
cos(φa − φb) = p

√
|μag|2ω3

ag

3πε0c3

√
|μbg|2ω3

bg

3πε0c3
= p

√
γ L

aaγ
L
bb. (A84)

The corresponding isotropic incoherent pumping rate is

rL(Iso)
ii = n̄Lγ L

ii , (A85)

where n̄L = (eωkL /kBTL − 1)−1 is the average photon number of the isotropic radiation field due to the left bath.
The left bath represents a beam of x̂-polarized incoherent light which propagates along the ẑ direction with the average

occupation number

n̄(Pol)
L = δk̂L ẑδεkLλL x̂ n̄L. (A86)

Using this relation, we derive the expression for the (anisotropic) pumping rate due to x-polarized incoherent radiation

rL(Pol)
ii = γ L

ii n̄(Pol)
L = 2π

∑
kL,λL

∣∣gi,kL

∣∣2(
μ̂ig · εkLλL

)2
δ(εi )n̄

(Pol)
L

= 2π
∑
kL,λL

∣∣gi,kL

∣∣2(
μ̂ig · εkLλL

)2
δ(εi ) δk̂L ẑδεkLλL x̂ n̄L = 2π

∑
kL

|gi,kL |2(μ̂ig · x̂)2δ(εi ) δk̂L ẑn̄L

= 2π
V

(2π )3

∫ ∞

0

ωkL

2ε0V
|μig|2(μ̂ig · x̂)2k2

LdkL δ(εi )n̄L

= |μig|2
8π2ε0

∫ ∞

0
ωkL

(
1√
2

)2

k2
LdkL δ

(
ωkL − ωig

)
n̄L

= |μig|2
16π2ε0c3

∫ ∞

0
dωkL ω

3
kL

δ(ωkL − ωig) n̄L = ω3
ig|μig|2

16π2ε0c3
n̄L = 3

16π

(
ω3

ig|μig|2
3πε0c3

)
n̄L = 3

16π
rL(Iso)

ii . (A87)
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From Eqs. (A85) and (A87), we see the anisotropic pumping
rate is smaller by the factor of 16π/3 than the isotropic pump-
ing rate. The polarized incoherent pumping rate due to the left
bath can thus be expressed as rL

ii = 3
16π

rL(Iso)
ii .

5. Bloch-Redfield master equations for the V-system

To obtain the BR equations describing the two-qubit
system coupled to two incoherent radiation baths (or, equiva-
lently, the V-system with each of the transitions g ↔ i driven
simultaneously by both baths) we substitute the expressions
of the dissipation rates �±

i j derived above into Eqs. (A49) to
obtain

ρ̇aa = rL
aaρgg − (

rL
aa + γ L

aa + γ R
aa

)
ρaa − 1

2

√
rL

aarL
bb(ρab + ρba),

ρ̇bb = rL
bbρgg − (

rL
bb + γ L

bb + γ R
bb

)
ρbb − 1

2

√
rL

aarL
bb(ρab + ρba),

ρ̇ab = −i�ρab +
√

rL
aarL

bbρgg − 1

2

√
rL

aarL
bb(ρaa + ρbb)

− 1

2

(
rL

aa + rL
bb + γ L

aa + γ L
bb + γ R

aa + γ R
bb

)
ρab, (A88)

where γ α
ii is the spontaneous decay rate of the excited state

|i〉 induced by the α-th bath (α = L, R, i = a, b) given by

Eq. (A74), and r̄L
ii = n̄Lγ L

ii is the incoherent pumping rate
due to the left bath. Equation (A88) can be recast as the BR
quantum master equation describing the V-system driven by
polarized incoherent light [Eq. (1) of the main text]

ρ̇ii = riρgg − (ri + γi )ρii − 1

2

√
rarb(ρab + ρba),

ρ̇ab = √
rarbρgg − 1

2

√
rarb(ρaa + ρbb) − i�ρab

−1

2
(ra + rb + γa + γb)ρab (A89)

with γi = γ L
ii + γ R

ii (i = a, b) and ri = rL
ii = n̄Lγ L

ii . We ob-
serve that the rates of radiative transitions in the V-system are
composed of the contributions due to both the left and right
baths. For example, the decay rate of the excited state |a〉 can
be written as γa = γ L

aa + γ R
aa, as expected for an eigenstate |a〉

coupled simultaneously to both of the baths via the system-
coupling Hamiltonian (A25). The interference term

√
rarbρgg

is responsible for the generation of Fano coherence (see Ap-
pendix A 3 above), which is due to the simultaneous driving
of the transitions g → a and g → b by a single polarization
mode of the left radiation bath.
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