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Transconductance quantization in a topological Josephson tunnel junction circuit
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Superconducting circuits incorporating Josephson tunnel junctions are widely used for fundamental research
as well as for applications in fields such as quantum information and magnetometry. The quantum coherent
nature of Josephson junctions makes them especially suitable for metrology applications. Josephson junctions
suffice to form two sides of the quantum metrology triangle, relating frequency to either voltage or current, but
not its base, which directly links voltage to current. We propose a five Josephson tunnel junction circuit in which
simultaneous pumping of flux and charge results in quantized transconductance in units 4e2/h = 2e/�0, the
ratio between the Cooper pair charge and the flux quantum. The Josephson quantized Hall conductance device
(JHD) is explained in terms of intertwined Cooper pair pumps driven by the AC Josephson effect. We describe
an experimental implementation of the device and discuss the optimal configuration of external parameters and
possible sources of error. The JHD has a rich topological structure and demonstrates that Josephson tunnel
junctions are universal, capable of interrelating frequency, voltage, and current via fundamental constants.
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I. INTRODUCTION

Among quantum coherent electronic components, the most
prominent are Josephson junctions and quantum Hall sys-
tems. The physics describing electrons in both systems is
rich and has yielded numerous applications in sensing, quan-
tum information, and metrology. Josephson junctions, due
to their nonlinearity, serve as the qubit building blocks of
superconducting quantum computers [1] and sensitive mag-
netometers [2]. In metrology, this nonlinearity, the Josephson
relation, allows employing such junctions to define the volt-
age standard, with an accuracy much better than parts per
billion [3,4]. Such junctions can also be used to obtain quan-
tized currents, albeit with less accuracy than the Josephson
voltage standard [5,6]. Both metrological standards work by
pumping Josephson junction circuits at a precise frequency
f , obtaining either the quantized voltage V = n�0 f or the
quantized current I = 2en f , where n is an integer and the fun-
damental constants are the magnetic flux quantum �0 = h/2e
and electron charge e. In principle, two sides of the quantum
metrology triangle [7] (Fig. 1), which link frequency, voltage,
and current, can be completed using Josephson junctions only.
Given that the two noncommuting observables in a quan-
tum circuit are number (charge) N̂ and phase (flux) δ̂, it is
not surprising that current and voltage, their respective time
derivatives, can be quantized and used for metrology.
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What is surprising, however, is that it has not been pos-
sible to use Josephson tunnel junctions to close the base of
the metrology triangle, directly relating voltage to current.
Transconductance quantization is defined as a transverse or
Hall voltage VY , which is related to a longitudinal current IX

by a resistance which depends only on fundamental constants.
Typical experimental implementations of transconductance
quantization rely on semiconducting systems such as two-
dimensional (2D) electron gases in which there is a robust
quantum Hall effect upon application of relatively large mag-
netic fields [8]. With recent graphene-based standards, it is
possible to reduce the required magnetic field to several tesla
and increase the operating temperature up to 10 k [9]. In these
semiconducting systems, the relevant resistance is the von
Klitzing constant RK = h/e2, and is quantized on the order of
parts per billion. For superconducting systems, the constant of
proportionality between voltage and current would be the su-
perconducting resistance quantum RQ = h/4e2, which is more
suggestively written as the ratio of the flux quantum to the
Cooper pair charge RQ = �0/2e. This evocative relationship
motivates the search for a Josephson junction circuit in which
flux quanta and charge quanta are pumped simultaneously,
producing a quantized resistance.

A circuit incorporating a Josephson tunnel junction and
an LC resonator was proposed to quantize transconductance,
but requires an impractical quantum phase-slip element [10].
Nontrivial topology was identified in the Andreev bound-state
spectrum of multiterminal superconducting devices [11–13]
and it was shown that such systems could also exhibit a
quantized Hall conductance [14–17]. Although these multi-
terminal weak link systems have motivated several experi-
ments [18–20], topological effects depend on the existence
of highly transmitting microscopic Andreev states and de-
vice synthesis is challenging. We propose a circuit containing
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FIG. 1. Completing the metrology triangle with only Joseph-
son tunnel junctions. Circuits containing Josephson tunnel junctions
(black crosses) can be used to form the metrology triangle re-
lating voltage V , current I , and a pump signal at frequency
f via the fundamental constants 2e, �0 = h/2e, and their ratio
RQ = �0/2e = h/4e2. In the AC Josephson effect (upper left),
a microwave drive pumps flux quanta across a Josephson junc-
tion at a rate f yielding the quantized voltage V = �0 f . In
a Cooper pair pump (upper right), the microwave drive pumps
Cooper pairs (charge 2e) at a rate f yielding a quantized current
I = 2e f . A circuit with five Josephson junctions, the Josephson
quantized Hall conductance device (bottom), combines both Cooper
pair and flux pumping to yield a quantized Hall voltage VY = RQIX

as in the quantum Hall effect.

only five Josephson tunnel junctions, the Josephson quan-
tized Hall conductance device (JHD), which quantizes VY at
sub-tesla magnetic fields while requiring only conventional
fabrication techniques. Not only is the Hamiltonian for our
device completely different from that of Andreev-based sys-
tems, engineering the circuit is relatively easy as the required
technology is mature, there are less constraints on the circuit
dimensions, no junction requires more than two terminals, and
the junction transparencies may be small.

II. FLUX AND CHARGE QUANTIZATION

The upper sides of the quantum metrology triangle (Fig. 1)
correspond to flux and charge pumping, processes which
occur simultaneously in the JHD. Flux pumping can be under-
stood by considering the phase evolution in the AC Josephson
effect. A single Josephson junction [Fig. 1 (upper left)] biased
at a voltage VJ will have a superconducting phase δ which
evolves linearly in time at the Josephson frequency ωJ = δ̇ =
VJ/ϕ0, where ϕ0 = �0/2π is the reduced flux quantum. A 2π

change in δ corresponds to pumping one fluxoid and occurs
at a rate fJ = ωJ/2π . In Josephson voltage standards, a mi-
crowave signal at frequency f is used to synchronize fluxoid
pumping so that fJ = n f and the voltage VJ is determined
with a precision limited only by the microwave reference
clock and not by thermal noise in the DC voltage supply [3].
The topological nature of fluxoid quantization as well as
charge quantization and the quantum Hall effect is highlighted
by Thouless [21,22].

To relate frequency to current [Fig. 1 (upper right)], the rel-
evant superconducting circuit is the Cooper pair pump (CPP)
[Fig. 2(a)], consisting of three Josephson tunnel junctions
(red boxed crosses) in series, forming two superconducting
islands with canonical quantum variables n̂1,2 and δ̂1,2 [24,25].
For simplicity, we consider identical junctions. We define
the charging energy as EC = (2e)2/2C, where C is the junc-
tion capacitance. Charge offsets ng1, ng2 have DC components
n0

g1, n0
g2 determined by static gate biases (not shown) and AC

components n1
g1, n1

g2 determined by a microwave pump of am-
plitude V 1

g and radial frequency ω. A θ -phase shifter (green)
allows dephasing the oscillating parts on each island.

Ignoring the Josephson part of the Hamiltonian, the CPP
has stable charge states on hexagonal plaquettes shown in
the bottom plane of Fig. 2(b), delineated by gray lines de-
noting charge degeneracies. The AC modulation of both gate
voltages around a plaquette vertex, a point of triple de-
generacy, can be used to cycle between charge states and
drive exactly one Cooper pair across the device per cycle.
The Josephson coupling terms hybridize the charge states
with strength EJ , the Josephson energy. The characteristic
energy scale is now h̄ωp = √

2EJEC , where ωp = 1/
√

LJC
is the plasma frequency, and the dimensionless impedance
α = ZJ/RQ = 1/2π

√
2EC/EJ characterizes the ratio between

charging energy and Josephson energy. The Josephson induc-
tance is defined by EJ = ϕ2

0/LJ and is related to the critical
current I0 = ϕ0/LJ . The reduced magnetic flux ϕX = BX A/ϕ0,
determined by an external magnetic field BX threading the
three-junction loop of area A, can be used to change the
Josephson coupling between islands. Nontrivial topological
effects can arise when the energy spectrum has degenera-
cies at certain points in the parameter space. At ϕX = π

the Josephson coupling is effectively turned off, so there are
two degeneracies, Fig. 2(c), and modulating the gate voltages
pumps exactly one Cooper pair each time the trajectory winds
around a degeneracy. But for any other value of ϕX , the de-
generacies are lifted and a gate voltage cycle no longer results
in quantized charge transfer.

This error in pumped charge can in principle be averaged
out by covering a closed surface around the degeneracy with
a helical trajectory as shown in Fig. 2(b) [25,26]. The he-
lix maps out a cylinderlike surface centered at charge offset
n0

g1, n0
g2. The radial profile is determined by the AC amplitude

V 1
g and phase shift θ whereas the upward velocity is given

by ϕ̇X . Taking into account the 2π periodicity of ϕX , the
cylinder shown in Fig. 2(b) (θ = π/2) is actually a torus T 2

in parameter space. The pumped charge is proportional to the
integral of the Berry curvature over T 2 which is equal to 2π

times the Chern number C(T 2). The average current across
the CPP is then given by I = 2e f C(T 2), where the microwave
pump frequency f = ω/2π is also the winding rate in the
ng1, ng2 plane. It is interesting to note that this current does not
depend on the value nor on the sign of ϕ̇X as long as ϕ̇X �= 0
and is incommensurate with ω [26]. The phase ramp ϕ̇X can
be applied by inductively coupling to the CPP loop [26] or
inserting a voltage source [24].

Current quantization is insensitive to small variations in
junction critical currents and capacitances as the resulting
modifications to EJi, ECi only move the degeneracies in the
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FIG. 2. Topological Cooper pair pumping. (a) The Cooper pair pump (CPP) consists of three Josephson tunnel junctions in series (red boxed
crosses), forming two superconducting islands with canonical quantum variables n̂1,2 and δ̂1,2. Gate voltages applied via a microwave pump and
additional DC sources (not shown) determine the charge offsets ng1, ng2 on the islands. An external magnetic field tunes the reduced magnetic
flux ϕX . (b) The three periodic parameters ng1, ng2 and ϕX form a parameter space analogous to a three-dimensional (3D) Brillouin zone [23].
Degeneracies in the spectrum are indicated by blue dots on the ϕX = π plane and are associated with topological charges ±1. The current
flowing through the CPP, I = 2e f , is quantized on a cyclic trajectory in parameter space which encloses a degeneracy ( f = ω/2π ). (c) The
two lowest-energy bands of the circuit are plotted for equal DC charge offset n0

g1 = n0
g2 and EJ/EC = 1. There are two degeneracies in the

spectrum for ϕX = π (blue) and none for other values (e.g., ϕX = 0.99π , red). Energy is plotted in units of plasma frequency h̄ωp = √
2EJ EC

and all junctions are identical.

ϕX = π plane but do not destroy them. The first experiments
employing topological pumping of CPPs had low currents and
significant error [24], but optimization can mitigate factors
such as nonadiabaticity and supercurrent leakage [26], result-
ing in improved performance [25]. Significant amelioration is
still necessary before they can serve as current standards for
metrology [6], and larger currents are obtained by combining
the conventional QHE and Josephson voltage standard [27].

III. TRANSCONDUCTANCE QUANTIZATION

A circuit exploiting the AC Josephson effect to replace
both microwave pumps of the CPP by voltage-biased Joseph-
son junctions allows combining flux and charge pumping
to directly link voltage and current via a quantized conduc-
tance. The key point is that the microwave pump frequency
f can be associated with a Josephson frequency ωJ = 2π f
and the pump amplitude V 1

g with the critical current. The
five-junction circuit shown in Fig. 3 is one realization of a
Josephson quantized Hall conductance device which closely
resembles the CPP circuit in Fig. 2(a). Due to the Josephson
effects, the green Josephson junctions convert the input DC
voltage VL into oscillating currents at frequency ωJL and am-
plitude proportional to their critical currents I0. We assume
that the critical currents of the other junctions (red) are large
enough such that the DC voltage VL drops only across the
green junctions. Although this assumption is not essential for
transconductance quantization, it helps establish the analogy
with the CPP microwave driving circuit in Fig. 2(a). The
oscillating Josephson currents result in oscillating voltages V1

and V2 which drive the charge nodes of the CPP formed by

the three red junctions on the right. Due to the topologically
nontrivial nature of the CPP spectrum, current quantization
holds for a large range of amplitudes for V1,V2 determined
by the junction impedances ZJi = √

LJi/CJi. The phase differ-
ence γ (ϕB) between the two leftmost green junctions can be

FIG. 3. Driving a Cooper pair pump with the AC Josephson ef-
fect. The constant voltage bias VL is converted by the green Josephson
junctions (boxed crosses) into oscillating currents IL ≈ I0 sin(ωJLt ),
where I0 is their critical current. These currents generate oscillating
voltages V1 and V2 at the charge nodes of a Cooper pair pump (CPP)
formed by the three red junctions. The reduced magnetic flux ϕB =
�B/ϕ0 threading the central loop introduces a phase offset γ (ϕB )
between these oscillating voltages (ϕB = �0/2π ). An additional
ramp of the flux ϕR results in a quantized current IR = 2eωJL/2π =
VL4e2/h = VL/RQ flowing through the red CPP.
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FIG. 4. Topological properties of the Josephson quantized Hall conductance device. (a) The circuit consists of five Josephson tunnel
junctions (boxed crosses) forming two superconducting islands (circled) and three loops. Gate voltages applied to each island (not shown)
determine the global offset charge ng and along with the loop fluxes ϕL,B,R tune the energy spectrum of the system. The constant voltage
sources VL and VR allow linearly ramping ϕL and ϕR and supply currents IL,R. (b) The two lowest-energy bands containing degeneracies are
plotted for ng ≈ 0.25 along cuts indicated in the bottom ϕL, ϕR planes of (c) and (d) (dashed lines). As ϕB is tuned away from zero (top, orange)
one of the degeneracies is lifted (bottom, blue). Degeneracies with topological charge +1 (−1) are indicated by filled (unfilled) circles. (c) The
positions of degeneracies are indicated in the 3D parameter space ϕL , ϕR, ng. For ϕB = 0 pairs of degeneracies with opposite signs are located
on planes of constant ng, resulting in a Chern number of zero. (d) For nonzero ϕB the +1 degeneracies (filled circles) split off the planes in
(c) and shift toward ng = 0.5. The Chern number, plotted on the right, is ±1 for ng lying between two opposite charge degeneracies and zero
elsewhere. Details of the Hamiltonian, parameters, and positions of the degeneracies are provided in Fig. 6

tuned with the reduced magnetic flux ϕB, with the function
γ accounting for the current-phase dependence of the three-
junction loop [28,29]. Compared to the microwave gate drives
of the CPP of Fig. 1(a), the amplitudes V1,2 correspond to V 1

g
and γ (ϕB) to the phase shift θ . With additional DC gate bias-
ing to obtain the proper charge offsets on the superconducting
islands and a series voltage source VR in the red CPP loop
to ramp ϕR, we completely reproduce the pumping protocol
of Fig. 2. The current pumped in the right CPP is quantized
and given by IR = 2eωJL/2π = VL4e2/h = VL/RQ. Although
the JHD shown in Fig. 3 is conceptually closest to the CPP
of Fig. 2(a), the symmetric circuit of Fig. 4(a) also quantizes
transconductance and more clearly demonstrates that there are
actually two intertwined Cooper pair pumps, indicated in blue
and red. One JHD circuit can be transformed into another by
shifting the sources and rotating the branches (see Appendix).
In the following, we show by topological arguments that each
time a flux quantum is pumped in one CPP loop of the sym-
metric JHD, a Cooper pair is pumped in the other CPP loop,
resulting in transconductance quantization.

For the numerically computed spectra and degeneracies
in Figs. 4(b)–4(d) we assume for simplicity that the charge

offset on both islands is ng. To show that symmetry is not
necessary for transconductance quantization we treat the ex-
perimentally relevant situation in which the plasma frequency
of all junctions is identical but not their surface areas. The full
Hamiltonian, junction parameters, positions, and topological
charges of the degeneracies, as well as a description of nu-
merical methods, are provided in the Appendix.

The Josephson quantized Hall conductance device, which
realizes the quantum Hall effect with only Josephson tunnel
junctions, can be understood by examining the topological
properties of the circuit. Transconductance quantization can
be linked to the system’s Hamiltonian and eigenstates via a
Chern number (see Appendix). As with the degeneracies in
the energy spectrum of the CPP, those of the JHD [Fig. 4(b)]
are also associated with topological charges ±1 (filled and
unfilled circles, respectively). The Brillouin zone ϕL, ϕR, ng

and positions of degeneracies are shown in Figs. 4(c) and 4(d).
As in the Andreev-state-based topologically nontrivial sys-
tems [14–16] to encompass a degeneracy the ϕL, ϕR plane is
swept by applying constant incommensurate voltages VL =
ϕ0ϕ̇L and VR = ϕ0ϕ̇R. Unlike the multiterminal Andreev de-
vices which have a different Hamiltonian, the JHD has charge
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offset parameters ng in addition to fluxes ϕB,L,R. When a
plane crosses a degeneracy, the corresponding Chern number
C(ng, ϕB) changes by the value of the topological charge. We
take the convention that topological charges are added to the
Chern number in the direction of increasing ng. For ϕB = 0,
shown in orange in Figs. 4(b) and 4(c), pairs of degeneracies
with opposite topological charges are located on the same
ng plane and the Chern number is always zero. On the con-
trary, for nonzero values such as ϕB = 0.9, shown in blue in
Figs. 4(b) and 4(d), single degeneracies exist in the ϕL, ϕR

plane for certain values of ng and the Chern number can be
±1.

For a given eigenstate the associated instantaneous current
through one of the loops has a contribution from the junction
supercurrents, but this dynamical term averages out to zero
for an adiabatic sweep of the entire ϕL, ϕR plane. The second
contribution comes from the Berry curvature which when
integrated over this plane is proportional to the Chern number.
This geometric contribution gives rise to DC currents IL (IR)
which are quantized [14,30]

IL,R(ng, ϕB) = 4e2

h
C(ng, ϕB)VR,L, (1)

and depend on the voltage VR (VL) applied to the opposite
loop (see Appendix). Referring to the circuit Fig. 4(a), this
transconductance is interpreted as two Cooper pair pumps
(red and blue loops) acting as AC Josephson drives for one
another such that the pumped current through one depends on
the Josephson frequency of the other. The current circulating
in the middle loop threaded by ϕB, unlike IL and IR, is not
quantized. Although the eigenstates of the multiterminal An-
dreev systems are not the same as for the JHD, since Eq. (1)
is independent of the basis, transconductance is quantized in
both systems.

IV. DISCUSSION

The topology of the JHD and isolated CPP can be com-
pared to understand why flux and charge are pumped in the
JHD and only charge is pumped in the CPP. The cylinder of
Fig. 2(b) and the plane of Figs. 4(c) and 4(d) both correspond
to tori covering only one degeneracy and imply charge pump-
ing. The CPP trajectory in the ng1, ng2 plane does not reach
the Brillouin zone boundaries, unlike the vertical component
(ϕX ). On the contrary, the JHD bias voltages VL,R result in
both parameters ϕL, ϕR crossing the Brillouin zone boundary.
These crossings correspond to pumping of two fluxoids in the
JHD circuit loops.

The value of the Chern number C(ng, ϕB) = ±1 as well as
the minimum energy gap in the ϕL, ϕR plane is plotted in the
phase diagram, Fig. 5, as a function of ng and ϕB for the same
junction configuration EJi, ECi as in Fig. 4. The black lines
where the gap vanishes demarcate the different topological
regions. The Chern number in the central and exterior trivial
regions is equal to zero and its label is omitted. The relative
placement of Chern numbers can be explained by general
symmetry arguments for Josephson junction circuits [31].
Overall inversion symmetry of the Hamiltonian implies that
the Chern number is conserved when all parameters are in-
verted. This results in the configuration of Fig. 5, where

inverting both ng and ϕB, and implicitly ϕL and ϕR, maintains
the sign of the Chern number. Time-reversal symmetry on the
other hand corresponds to inverting either all charge param-
eters or all flux parameters, changing the sign of the Chern
number. As a result, the topologically nontrivial region has
a quadrupolelike distribution which occupies a large fraction
of the phase space. The size of this region will shrink as
junction disorder increases, but as long as the operating point
for the JHD remains in a region of nonzero Chern number, the
pumped current will be quantized.

In addition to labels for the Chern number, Fig. 5 has
blue and orange circles which correspond to the degeneracies
of Figs. 4(b)–4(d). For a charge of a given sign (filled or
unfilled circle), continuity implies that it follows the dark
blue degeneracy lines as ng and ϕB are varied. For example,
the −1 charge at ng ≈ 1

4 ; ϕB = 0 (bottom unfilled orange
circle) moves horizontally to the right whereas the +1 charge
(bottom filled orange circle) moves upward toward ng = 1

2 ,
flanking the nontrivial region in the lower right with Chern
number −1. The two +1 charges (filled blue circles) join at
the line ng = 0.5 as ϕB increases, eventually followed by the
two −1 charges (unfilled blue circles) as ϕB approaches π .
When all junctions are identical, the outer corners of the four
non-trivial regions extend out to ng ≈ 1

4 , 3
4 ; ϕB = ±π and the

size of the central trivial region shrinks as the ratio EJ/EC

increases (Fig. 8).
Transconductance quantization only holds in the adiabatic

limit, so it is important that the pump frequencies, deter-
mined by VL and VR, are small compared to the plasma
frequency [23]. This limitation was studied in detail for
Andreev multiterminal devices in which the correspond-
ing energy scale, the superconducting gap, is several times
larger [14,15]. A typical value for the plasma frequency of
aluminum Josephson junctions is 20 GHz, corresponding to
ϕ0ωp = 40 μV. Applied voltages must be much smaller than
ϕ0ωp to avoid inducing Landau-Zener transitions (LZT) from
the ground state to excited states. As the LZT probability
scales inversely with the square of the energy gap, the JHD
should be operated at values of ng, ϕB that maximize the
smallest gap along the trajectory, the ϕL, ϕR plane. From Fig. 5
this optimum is near ng = 1

3 and ϕB = π/2, where the mini-
mum gap is roughly equal to 0.1ωp or 2 GHz (4 μV). For
good quantization the applied voltages must be smaller than
this value, resulting in pumped currents which are smaller than
150 pA.

In the case of identical junctions, the choice of the scaled
junction impedance α = ZJ/RQ, requiring careful device de-
sign and junction fabrication, is also important to minimize
noise. The parameter α is an effective fine-structure constant
and is inversely proportional to the junction surface area. By
making small junctions one can obtain much larger values
than α0 = Z0/8RQ ≈ 1

137 , where Z0 is the vacuum impedance,
greatly modifying the phase diagram of Fig. 5. Comparison
is made for different values of α in Fig. 8. We find that
the minimum gap is largest for α � 1

2 , allowing increased
pump currents while remaining adiabatic. Optimizing the
value of α for transconductance quantization is analogous to
impedance matching ZJ , in this case to approximately RQ/2.
Although deviating from the optimum will decrease the gap,
reducing α also comes at the cost of enhanced supercurrent
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leakage, as noise in ϕB and ng prevents the dynamical con-
tribution of the current from averaging to zero during the
ϕL, ϕR sweep. Other sources of error which have already
been analyzed in depth for Cooper pair pumps [25,26] are
the effect of the external biasing circuit, thermal population
of excited states, co-tunneling, and quasiparticle poisoning.
Although some proposed error mitigation techniques can
be directly applied to our circuit, implementing other tech-
niques such as shortcut-to-adiabaticity [32] would be more
difficult.

Fabricating the Josephson quantized Hall conductance
device, given current technology for superconducting cir-
cuits containing hundreds of Josephson tunnel junctions, is
straightforward. This is in contrast to quantized Hall transcon-
ductance devices based on phase-slip or high-transparency
multiterminal weak links. Using niobium, with a higher criti-
cal current density than aluminum, is desirable for increasing
the plasma frequency and extending the range for adiabatic
operation. Static control of loop fluxes can be accomplished
with inductive coupling and charge offsets can be adjusted
with local gates.

As with conventional quantum Hall resistance standards,
and unlike Josephson current or voltage standards, the Joseph-
son quantized Hall conductance device does not require an
external microwave pump. Applying voltages VL and VR could
exploit strategies from CPP experiments such as inserting
small resistances into the left and right loops which are
biased by external current sources [33]. A more clever strat-
egy would directly apply a voltage difference across these
two resistances. To preserve phase coherence over timescales
comparable to the pump frequency, the resistances r should
be small enough such that I0r � VL,R [34]. Although noise
of the external sources should be minimized in principle, the
pumped current will follow fluctuations in VL and VR such
that the transconductance remains quantized. Measurement
of the pumped currents IL and IR can be made by borrowing
techniques from CPP experiments [25,35]. One possibility is
using a SQUID current amplifier, possibly combined with a
cryogenic current comparator, which would have high sensi-
tivity but requires inserting an inductor in the CPP loops [27].
A more detailed error analysis, including the impact of the
biasing and measurement scheme, as well as consideration
of niobium Josephson junctions for larger pump currents, is
needed for a complete evaluation of the circuit for a possible
resistance standard.

While the Josephson quantized Hall conductance device
is unlikely to compete with existing metrological resis-
tance standards, establishing experimentally that it quantizes
transconductance is of immediate interest. The first step
would be to verify the degeneracy structure with microwave
spectroscopy in a superconducting circuit QED geometry
and obtain an experimental equivalent of Fig. 5. Such
spectroscopy measurements have been performed for super-
conducting qubits with drive-induced topology [36–38]. It
may be possible to directly measure the local topological
properties with such experiments [39–41]. If direct measure-
ment of the transconductance encounters problems due to
noise from the biasing circuit, techniques which avoid DC
connections may be possible [42]. On the other hand, one
could keep the DC connections and use microwave pumps to

FIG. 5. Optimizing external parameters of the Josephson quan-
tized Hall conductance device. The minimum energy gap for the
symmetric Josephson quantized Hall conductance device is plotted
as a function of global charge offset ng and loop flux ϕB. Energies are
scaled to the plasma frequency h̄ωp, with a lower cutoff at 10−3, and
determined by minimizing the energy gap as a function of ϕL, ϕR for
each value of ng and ϕB. The topological charge of degeneracies is
indicated by filled (+1) and unfilled (−1) circles and correspond to
the degeneracies in Figs. 4(b)–4(d). The Chern number C(ng, ϕB ) =
±1 is indicated in four topologically nontrivial regions delineated
by black lines where the gap vanishes. Elsewhere, the system is
topologically trivial (zero Chern number, gray regions). Fixing ng

and ϕB to have a large energy gap in a topologically nontrivial region
results in transconductance quantization with minimal error due to
nonadiabatic transitions.

synchronize the DC voltages VL and VR, significantly reducing
noise.

We have observed that a circuit with an additional
Josephson junction, giving it tetrahedral symmetry, also
quantizes transconductance. This tetrahedron was consid-
ered previously as a candidate for a protected qubit [43].
It also has a rich topological structure and is part of
the class of Weyl Josephson circuits [31]. From heuristic
arguments and numerical calculations we conjecture that
Josephson circuits with fewer than five tunnel junctions
cannot quantize transconductance. However, such circuits
may still display topologically nontrivial phenomena in
their spectra, including the possibility of merging Dirac
points [44–46]. Another variant five-junction circuit is the
dual of the JHD [Fig. 7], a diamond-shaped circuit with
three charge nodes and two loops which may also quantize
transconductance.

Many other theoretical questions remain including a rig-
orous validation of the simultaneous fluxoid-charge pumping
mechanism, determining the precise relationship between
transconductance in JHD and the Andreev multitermi-
nal systems, and computing additional topological invari-
ants [47–50]. Establishing the theoretical optimum values for
parameters such as α so as to maximize the energy gap and
minimize errors is necessary and implies a deeper understand-
ing of the behavior of the phase diagram [Fig. 5]. Investigating
the topological properties of arbitrary Josephson Hamiltoni-
ans [31] may lead to their general classification and open
possibilities for novel applications of quantum circuits. Our
work shows that Josephson tunnel junctions are universal in
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the sense that they can connect the three sides of the quantum
metrology triangle relating f , V , and I . A major question
remains as to whether such circuits can exhibit topological
effects which go beyond this triangle.
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APPENDIX

The Hamiltonian HJ + HC for the symmetric JHD circuit
of the main text, reproduced in Fig. 6 with all parameters
identified, is

HJ = − EJ1 cos δ̂1 − EJ2 cos δ̂2 − EJ3 cos(δ̂2 − δ̂1 − ϕB)

− EJ4 cos(δ̂1 − ϕL ) − EJ5 cos(δ̂2 + ϕR),

HC = 2e2(n̂ − ng)T C−1(n̂ − ng),

where the charge operators are n̂ = (n̂1, n̂2), the charge offsets
are ng = (ng1, ng2), and the capacitance matrix C is given by

C =
(

CJ1 + CJ3 + CJ4 −CJ3

−CJ3 CJ2 + CJ3 + CJ5

)
.

The gate capacitances, in general small compared to CJi, are
neglected in C. The individual charging energies are ECi =
2e2/CJi.

The Chern number associated to a two-dimensional (2D)
plane spanning parameters X and Y can be computed from

the Berry curvature of the ground state |ψ〉:

BX,Y = −2 Im

〈
∂ψ

∂X

∣∣∣∣ ∂ψ

∂Y

〉
.

For a ϕL, ϕR sweep and a given set of equal charge offsets
ng and reduced flux ϕB, we define the Chern number as the
integral of BϕR,ϕL over the whole ϕL, ϕR plane:

C(ng, ϕB) = 1

2π

∫ 2π

0

∫ 2π

0
dϕLdϕRBϕR,ϕL .

Following [14,30] we obtain Eq. (1), where we have a plus
sign for both IL and IR since positive voltage VR corresponds
to negative ϕ̇R given the circuit conventions of Fig. 6.

For numerical calculations, circuit Hamiltonians are di-
rectly written in the charge basis with typically 10 charge
states for each island. Eigenvalues and eigenstates are
obtained by direct diagonalization of the sparse Hamilto-
nian matrix via the Lanczos algorithm as implemented in
SCIPY [51]. To determine the Berry curvature, the gradi-
ent of the Hamiltonian with respect to external parameters
is calculated analytically and then converted to the charge
basis. Chern numbers are obtained by numerical integra-
tion of the Berry curvature over the desired 2D surface
in parameter space. The precise locations of degeneracies
are obtained with minimization techniques such as simpli-
cial homology global optimization in SCIPY [52]. Parameters
used to obtain the spectra and degeneracies in Fig. 4
are EJ1 = 1.0, EJ2 = 0.8, EJ3 = 1.1, EJ4 = 0.9, EJ5 = 1.2
and we keep the plasma energy constant h̄ωp = √

2EJiECi =
1 such that ECi = 1/EJi. This corresponds to the experimen-
tally relevant situation where the surface area of the Josephson
junctions may be different, but since the oxidation process for
the tunnel barriers is common, the plasma frequencies are the
same.

For the spectra of Fig. 4(b) the cuts are made in the ϕL, ϕR

plane at fixed φB, ng along the diagonals shown in the bottom
planes of Figs. 4(c) and 4(d) and given by the following
equations:

ϕR = 0.7195ϕL + 0.8811 (ϕB = 0, ng = 0.2598, orange),

ϕR = 0.7195ϕL + 0.7092 (ϕB = 0.9, ng = 0.2541, blue).

FIG. 6. Full circuit of symmetric Josephson quantized Hall conductance device.
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FIG. 7. Correspondence between the symmetric and asymmetric
Josephson quantized Hall conductance devices, the dual JHD circuit,
and the tetrahedron circuit. The elementary five-junction JHD circuit
shown in Fig. 1 (center) can be mapped to the circuit of Fig. 4 (upper
left) by adding voltage sources (red and green circles). To obtain the
circuit of Fig. 3, the green source is inserted as shown in the upper
right and the remaining circuit is folded upward. The tetrahedron
circuit (lower left) requires an additional junction. The JHD dual
circuit (lower right) is constructed from the dual graph of the central
circuit after connecting grounds. Whereas the JHD has two islands
(unfilled circles) and three loops, the dual circuit has three islands
and two loops. Although transconductance is quantized in the JHD
and tetrahedron, we have not verified that this is true for the dual JHD
circuit.

The positions and topological charges of degeneracies in
Figs. 4(c) and 4(d) are given in Table I. The source code is
available on Zenodo [53].

FIG. 8. Optimizing internal parameters of the Josephson quan-
tized Hall conductance device. The minimum energy gap diagram
of Fig. 5 is reproduced for identical junctions and with each quad-
rant corresponding to a different value of the normalized junction
impedance α = ZJ/RQ = 1/2π

√
2EC/EJ or energy ratio ε = EJ/EC .

For a given value of α, the quadrants not shown are related by
symmetry. Energy is plotted in units of the plasma frequency h̄ωp =√

2EJ EC which is constant so that the gap can be compared for
different values of α, and gap values beyond the color scale are
capped. The upper left corresponds to the deep charging regime
EC � EJ and the Chern number is zero everywhere except in the
top left pocket. The degeneracies are located almost entirely on the
horizontal line at ng ≈ 5

8 (and ng ≈ 3
8 by symmetry) as expected for

a Cooper pair pump in which the exterior capacitances are doubled.
As the Josephson energy is increased clockwise, the topologically
nontrivial region grows out from the corner pockets where these
horizontal lines reach ϕB = ±π . An additional horizontal degener-
acy line appears at ng = 1

2 and the ones at ng = 2
3 (ng = 1

3 ) move
out toward ng = 3

4 (ng = 1
4 ). From the color scale, the minimum

energy gap is maximized near α = 0.5 (upper right). By designing
the junction area S ∝ 1/α for the optimal impedance, the energy gap
in the topologically nontrivial region is maximized, reducing error in
transconductance quantization due to Landau-Zener transitions. The
bottom right quadrant (ε = 1) can be compared to Fig. 5, where the
junctions are not identical but the average EJi/ECi is approximately
one. As junction uniformity is reduced, the corners of the nontrivial
region are pulled back.

TABLE I. Positions in parameter space ϕL, ϕR, ng and topological charges χ of degeneracies in Fig. 4.

Fig. 4(c) ϕB = 0 Fig. 4(d) ϕB = 0.9

ϕL ϕR ng χ ϕL ϕR ng χ

3.7806 3.6014 0.2598 −1 3.5632 3.2152 0.2541 −1
2.5026 2.6818 0.2598 +1 1.9204 2.0659 0.4211 +1
2.5026 2.6818 0.7403 +1 1.9204 2.0659 0.5789 +1
3.7806 3.6014 0.7403 −1 3.5632 3.2152 0.7459 −1
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