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We introduce Weyl Josephson circuits: small Josephson junction circuits that simulate Weyl band structures.
We first formulate a general approach to design circuits that are analogous to Bloch Hamiltonians of a desired
dimensionality and symmetry class. We then construct and analyze a six-junction device that produces a three-
dimensional (3D) Weyl Hamiltonian with broken inversion symmetry and in which topological phase transitions
can be triggered in situ. We argue that currently available superconducting circuit technology allows experiments
that probe topological properties inaccessible in condensed matter systems.
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I. INTRODUCTION

Topological classification is a building block in our un-
derstanding of condensed matter systems [1–3]. Electronic
matter that may exhibit topologically nontrivial ground states
includes insulators, semimetals, and superconductors. These
ideas have been rapidly introduced to many other physical sys-
tems, such as quantum circuits [4–6] and metamaterials [7].
We now understand that materials are just one platform in
which to explore the physics and potential applications of
topologically nontrivial systems.

Topologically protected degeneracies are particular points
of interest. Three-dimensional (3D) Weyl bands are an exam-
ple in which pairs of nodes in the spectrum (e.g., degeneracies
of two bands) with opposite topological charges persist over
an extended region of Hamiltonian parameter space: A full
band gap may open only when nodes of opposite charge have
merged or by direct internode scattering. When a material
exhibits these bands, it is called a Weyl semimetal [8,9]. The
peculiar topology of Weyl semimetals results in a host of un-
usual physical observables, including surface dispersion arcs,
strong Berry curvature effects, and responses under interband
excitation [10–13]. A menagerie of connected topological
band structures with nodal manifolds protected by symmetry
have since been proposed and investigated [14–16].
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However, known Weyl semimetal materials often have ad-
ditional physics that can obscure phenomena associated with
the Weyl nodes (see Ref. [17] for a discussion), and as a
result these topological Hamiltonians are being sought out
on different platforms [18–22]. In particular, superconductor-
based devices and circuits have shown promise for realizing
topological states [23], including investigation of topological
concepts more generally [4,5,20,24,25] and for the protection
of quantum information [26–29]. In 2015, high-transmission
multi-terminal superconductor-normal-superconductor (SNS)
devices were proposed as a path to emulate Weyl Hamiltoni-
ans in the control parameters of fermionic eigenstates [30–35].
Such proposals, however, require nanoscopic control of elec-
tronic wave functions within complex nanostructures based
on low-dimensional conductors, at the limit of modern
technology. Indeed, despite multiple attempts [36–39], no
multiterminal SNS structures have exhibited the topological
physics of these proposals. Altogether this raises a question: Is
an experiment-ready platform well suited to emulate the same
physics?

We affirmatively answer this question by expanding
the concept to the bosonic collective modes of nonlinear
microwave-frequency circuits. For this, we draw on circuits
based on linear elements [18,40,41] and standard Josephson
tunnel junctions, which are both well developed—the de-
sign, fabrication, and measurement of the circuit’s nonlinear
collective modes are all reliable, standard processes for exper-
imental groups. The robustness of these building-block circuit
elements has provided a foundation for the development of
ever more complicated qubits and quantum information sys-
tems in the past decades. In essence, such circuits offer great
flexibility for designing in situ tunable Hamiltonians [42]
based on their collective modes.
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Here, we describe an approach to construct small Joseph-
son junction circuits that simulate single-particle Hamiltoni-
ans with designable dimensionality and in situ controllable
symmetry classes. We describe specific applications that sim-
ulate Weyl band structures, including ones that can be tuned
through a topological phase transition. We thus dub these
Weyl Josephson circuits. The proposed circuits exhibit all the
features of Weyl band structures: protected energy degenera-
cies, divergent Berry curvature near those degeneracies, and
the quantized topological invariant. We argue the topolog-
ically nontrivial nature of the circuits can be measured in
experiments that are unavailable to real materials.

II. BUILDING THE CIRCUITS

A. General circuit considerations

The circuits we consider contain Josephson tunnel junc-
tions as nonlinear inductive elements as well as linear
capacitances such as those associated to the tunnel junctions.
These circuits have the Hamiltonian [42]

Ĥ = (2e)2

2
(n̂ − ng)T C−1(n̂ − ng)

−
∑
i, j

EJi j cos(ϕ̂i − ϕ̂ j − γi j (ϕm)). (1)

Here the capacitive part depends on the number operators
n̂i counting the Cooper pairs on each circuit node i. The
gate voltages offset each charge operator in the capacitive
energy by an offset charge ngi. For compactness, we use vector
notations n̂, ng, and an inverse capacitance matrix C−1 that en-
compasses details of the circuit. The Josephson energy of each
junction is EJi j , and ϕ̂i are the phase operators canonically
conjugate to n̂i. The phase offsets γi j (ϕm) depend only on the
magnetic fluxes ϕm up to a gauge choice. For convenience, we
measure fluxes in units of the superconducting flux quantum
h̄/2e.

Similar to a Bloch Hamiltonian H(k), the Hamiltonian
H(ng,ϕm) of Eq. (1) is periodic in the continuous offset vari-
ables, ϕm and ng (for ng this is true up to an integer translation
in n̂). Regardless of the device geometry, H(ng,ϕm) satisfies
the following symmetry constraints. First, it has a charge in-
version symmetry IH(ng,ϕm)I−1 = H(−ng,−ϕm), with the
inversion operator I = δn,−n′ in the charge basis, and δn,m is
the Kronecker delta. Additionally, the time-reversal symmetry
T reads T H(ng,ϕm)T −1 = H(ng,−ϕm), with the antiunitary
operator T being complex conjugation in the charge basis.
Circuits with equal elements may have other unitary symme-
tries [43] that we leave for later work.

We utilize these symmetry relations to set the symmetry
properties of our simulated Hamiltonian. A selection of offset
parameters comprise effective crystal momenta k that span
the Brillouin zone of the simulated Hamiltonian, with the re-
mainder being control parameters. To emulate a time-reversal
symmetric dispersion relation, we choose to vary all mag-
netic fluxes, while keeping the offset charges constant. Unless
ng ∈ {0, 1/2}, this results in a dispersion relation that lacks
inversion symmetry. A dual way to realize a time-reversal
symmetric dispersion relation is to vary ng while keeping
ϕm constant. Varying all magnetic fluxes and offset charges
(a mixed set of parameters [44,45]) at once corresponds to

0

FIG. 1. Diagram of a Weyl Josephson circuit that simulates an
inversion-symmetry-breaking Weyl semimetal. Six Josephson tunnel
junctions Ji j (which include both a capacitance and a Josephson
energy) connect nodes i and j, where i = 0 is the reference node.
The active nodes i ∈ {1, 2, 3} are labeled with their gate charge
parameter ngi, and the three loops are threaded by the reduced mag-
netic fluxes ϕm = (ϕx, ϕy, ϕz ), expressed in units of the reduced flux
quantum h̄/2e.

an inversion-symmetric dispersion relation that lacks time-
reversal symmetry. Finally, fixing a mixed set of fluxes and
offset charges at a value not equal to 0 or 1/2 results in a fully
asymmetric dispersion relation.

B. Constructing a time-reversal symmetric Weyl
Josephson circuit

We focus now on the case of a time-reversal symmetric
Weyl circuit. Other circuits, with different symmetry classes
and dimensions, are discussed in Sec. V. According to the
symmetry properties of Josephson circuits, a dispersion re-
lation with Weyl points and a time-reversal symmetry may
manifest only in a circuit with at least three independent
magnetic fluxes or three offset charges. For convenience, we
choose a circuit that satisfies both these requirements in a
symmetric way, shown in Fig. 1 [46]. We now choose k =
ϕm = (ϕx, ϕy, ϕz ) ∈ [0, 2π ]3 and utilize ng = (ng1, ng2, ng3) ∈
[0, 1]3 as control parameters.

We derive the Hamiltonian of this circuit in Appendix A.
To obtain its spectrum and eigenstates, we truncate the Hilbert
space to contain several lowest energy charge states and
numerically diagonalize the Hamiltonian projected on this
subspace. To present the generic physics more transparently,
we take all Josephson energies as well as capacitive ener-
gies to be equal and consider the charge-dominated regime,
EC � EJ , with EC = (2e)2/2C being the charging energy
of a single junction. In this situation, the minimal config-
uration of interest is in the vicinity of four charge states
tuned to similar energy via the gate charges ng. For example,
choosing the globally uncharged state |n1n2n3〉 = |000〉 (all
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active nodes have zero net charge) and all the singly charged
states {|100〉, |010〉, |001〉} (a single Cooper pair on any one

of the three islands), we obtain the following simplified
Hamiltonian:

Ĥ(ϕm, ng) = −EJ

2

⎛
⎜⎜⎝

−λ(ng1 + ng2 + ng3) 1 1 1
1 −λ(1 − ng1) eiϕx e−iϕz

1 e−iϕx −λ(1 − ng2) eiϕy

1 eiϕz e−iϕy −λ(1 − ng3)

⎞
⎟⎟⎠, (2)

where λ = EC/EJ � 1. All four charge states are approxi-
mately degenerate at ng0 = 1

4 1, where 1 = (1, 1, 1) is the unit
diagonal vector. Thus, when λ‖ng − ng0‖ < 1, flux bias has
a significant effect on the system. With this Hamiltonian in
hand, we now turn to an inspection of its physics.

III. TOPOLOGICAL SPECTRUM AND INVARIANTS

A. Energy spectrum

We first inspect the dispersion relation of the Hamil-
tonian (2). When the charge states are electrostatically
degenerate (ng = ng0), the ground state is doubly degenerate
at two points ϕm = π

2 1, 3π
2 1, with 1 = (1, 1, 1), and triply

degenerate at the point ϕm = π1, as shown in Fig. 2(a) [47].
These nodes lie along the major diagonal of the Brillouin zone
ϕm = ϕdiag1 due to the spatial symmetry of the circuit.

Varying the gate charge induces a topological phase tran-
sition. We consider uniform gating, ng = ng0 + ndiag1 with
0 < ndiag < 0.25, which retains the symmetry that leaves all
nodes on the major diagonal of the Brillouin zone. As shown
in Figs. 2(b)–2(e), the triply degenerate point splits into two
doubly degenerate points while still lying along the major
diagonal of flux. At a certain point, ndiag − 1/4 ≈ −0.13λ−1,
the Weyl nodes converge and annihilate each other, signaling
the topological phase transition. Beyond this point, the ground

state is gapped from the higher energy manifold for all flux
configurations.

The Weyl nodes also survive asymmetric tuning of ng

and nonuniformity of the Josephson energies. This can, for
example, induce the Weyl nodes to shift off of the major flux
diagonal. Figure 3(a) shows these effects for a configuration
with no particular symmetry except the time-reversal symme-
try guaranteed by the choice of effective crystal momenta. The
Weyl node locations are indicated by the spheres (the meaning
of the color, the topological charge, will be described in the
next subsection). While offset charge detuning can generally
induce the topological transition, the necessary amount of
such detuning depends on the particular parameters of the
device, particularly EJ/EC (see Appendix B 1).

B. Quantum geometry and topological invariants

We now investigate topological aspects of the ground-state
wave function, which is accomplished by inspecting its Berry
curvature �. The Berry curvature relates the overlap between
derivatives of the wave function |�〉 with respect to different
Hamiltonian parameters, as in Eq. (3):

� = Im
∑
i, j,k

〈
∂ϕi�

∣∣∣∣∂ϕ j �
〉
εi jkek, (3)

C[S(ϕm)] = 1

2π

∮
S

dS · �, (4)
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FIG. 2. (a) Energy spectrum in the charge-dominated regime from (2) at ng = ng0 as a function of flux along the main diagonal ϕdiag. Line
color is determined from wave-function continuity [48]. (b) Excitation gap from the ground state to the first excited state (Eg) as a function of
symmetric gate charge ng − ng0 = ndiag1 and ϕdiag. [(c)–(e)] Line cuts of the excitation gap Eg (pink) and the Berry curvature 
 (black) along
ϕdiag for the indicated gate charge values.
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FIG. 3. (a) Location of the Weyl points in flux space for λndiag = 0.08 and EJ12 = 1.7EJ . Like-charged nodes exist at opposite momenta, as
in an inversion-symmetry broken Weyl semimetal. The gray plane indicates the integration area that determines the Chern number Cxy for ϕz =
0.7 × 2π . (b) Chern number as a function of ϕz, Cxy(ϕz ), for the same parameters as in panel (a). (c) Broken-open circuit for transconductance
measurements. The upper leads are biased by dc voltages Vx and Vy referenced to the grounded lower lead, and the loop is threaded by a flux
ϕext . Measurement of quantized dc transconductance would reveal the Chern number [32].

where εi jk is the Levi-Civita symbol and ek is the unit vector in
direction k. Because of its closeness to a second derivative of
the wave function, it is referred to as a curvature and described
as a quantum geometry. Its integral over a surface S(ϕm)
enclosing a Weyl point [Eq. (4)] is a Chern number C ∈ Z that
determines the topological charge of the Weyl point. Nonzero
Berry curvature and Chern number both are associated with
physical observables, which will be described in Sec. IV.

The Berry curvature of the ground state is plotted alongside
the energy gap in Figs. 2(c)–2(e). In the topological phase
[Figs. 2(c) and 2(d)], the Berry curvature diverges where
the ground and excited states are degenerate. Integrating the
Berry curvature around each node [Eq. (4)], we determine
the topological charges indicated in Figs. 2(c) and 2(d). The
topological phase transition occurs when nodes of opposite
charge converge and annihilate each other, as can be seen in
the transition from Figs. 2(d) to 2(e).

There are four distinct Weyl points in most of the topologi-
cally nontrivial situations described here, which we calculated
to have integer Chern numbers indicated in Figs. 2(c)
and 2(d). Doubly charged points may also exist, such as in
Figs. 2(a) and 2(c). Crucially, like-charged nodes exist at
opposite crystal momenta C[S(ϕm)] = C[S(−ϕm)]. This ob-
servation remains true in circuits with nonuniform Josephson
elements, such as that shown in Fig. 3(a), where the posi-
tion and charge of the four nodes are indicated by colored
spheres. This establishes that this circuit is a simulator of a
broken-inversion-symmetry Weyl semimetal with preserved
time-reversal symmetry [49], as expected from the symmetry-
based design.

IV. EXPERIMENTAL OBSERVABLES

In the previous sections, we outlined the principles of
construction, the resulting spectrum, and abstract topologi-
cal aspects of a Weyl Josephson circuit. In this section, we
describe three experimental observables to probe the topo-
logically nontrivial character: transition spectra, adiabatic

responses measuring Chern number, and nonadiabatic re-
sponses measuring Berry curvature. The latter two both rely
on the consequences of Berry curvature on the system re-
sponse function [50]. In regards to circuit parameters and
noise robustness, all these experiments are accessible using
modern nanofabrication and measurement techniques (see
Appendix B for details). Some of these experiments are
not possible to perform on a real material, highlighting the
complementary nature of parametric simulation with super-
conducting quantum circuits.

A. Microwave spectroscopy of topological phase transitions

The simplest experiment is microwave spectroscopy of
the circuit under otherwise static conditions. The goal is to
measure the energy spectrum as a function of k and detect
degenerate points. The smoking gun is to observe that these
Weyl nodes survive when varying the gate charges over a
finite range and finally annihilate following a topological
phase transition. In practice, one needs to perform such spec-
troscopy within ≈ [0, 50] GHz (the exact range will depend
on the particular circuit parameters chosen). One possibility
is to perform the standard two-tone spectroscopy used in
circuit QED by coupling the circuit to a superconducting res-
onator [51–54]. Another approach is Josephson spectroscopy,
which uses a voltage-biased Josephson tunnel junction as an
on-chip microwave spectrometer [55–59]. These two methods
are complementary since Josephson spectroscopy is better
suited for high frequencies (typically within [2,100] GHz)
while two-tone spectroscopy works better at lower frequen-
cies (typically within [0.1,30] GHz).

B. Transconductance to measure Chern number

A direct measurement of topological invariants is a
stronger indication of a topologically nontrivial state. The
Chern number may be accessed by measuring the response
due to adiabatic variation of Hamiltonian parameters, which
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can be accomplished by transconductance measurements [32].
The periodicity of the Hamiltonian means two-dimensional
(2D) planes in flux space bounded by the effective Brillouin
zone constitute closed manifolds and therefore have a Chern
number. Figure 3(b) shows the Chern number Cxy(ϕz ) for the
(ϕx, ϕy) plane as a function of ϕz (now treated as a control
knob), for the circuit in a topological phase. Whenever a Weyl
node is crossed by tuning ϕz [see Fig. 3(a)], the Chern number
changes by an integer amount corresponding to the charge of
that node. After a topological phase transition into a trivial
phase, the Chern number is zero for any value of ϕz. These
Chern numbers can be probed by performing transconduc-
tance measurements, as proposed by Riwar and collaborators
for the case of multiterminal high-transmission Josephson
junctions [32]. Similarly, here one may break open two of the
loops of the Weyl circuit and apply dc voltages [see Fig. 3(c)].
Using the ac Josephson effect, two of the fluxes can be varied
adiabatically and linearly with time while keeping the third
flux static. If the rate of change of these two fluxes is incom-
mensurate, then one can sample a complete 2D plane within
the Brillouin zone. This will lead to a dc current that is directly
proportional to the Chern number, and therefore to a quan-
tized transconductance [32,60] without the complications of a
nearby continuum [33,61]. We note that this transconductance
has a close relationship with Cooper pair pumps [4,62,63] and
may be useful for metrological applications [63,64].

C. Direct Berry curvature measurements

Going further, the Berry curvature can be directly mea-
sured as a function of the quasimomenta. Then, by simple
integration, one could extract the Weyl nodes’ topological
charge. This approach is based on a theoretical breakthrough
describing how Berry curvature can be observed from the
nonadiabatic response of physical observables to the rate of
change of an external parameter [50,65]. This method was
recently implemented in the field of quantum circuits using
a basic system, a driven qubit, to observe topological phase
transitions [5,66]. Therefore, our proposed experiment is fea-
sible albeit more involved than the ones discussed before.
Indeed, a direct Berry curvature measurement involves coher-
ent manipulation of the circuit’s quantum states (superposition
of ground and excited states) and therefore requires that the
circuit exhibits sufficiently long coherence times (�1 μs).
A related approach is to use carefully designed absorption
spectroscopy measurements relying on the same underlying
physics [35].

V. ADDITIONAL TOPOLOGICAL JOSEPHSON CIRCUITS

Finally, we demonstrate the extensibility of our platform
by briefly describing three additional circuits that simulate
topological band structures in different symmetry classes and
dimensions.

A. Minimal inversion symmetric Weyl circuits

An inversion symmetric Weyl semimetal requires three off-
set variables, with both types present, to comprise k. Minimal
configurations satisfying this are drawn in Figs. 4(a) and 4(b).
Both have exactly three available offset parameters: The flux

0

π

-π
0 π-π

(a) (b)

(c) (d)0 2.1

π
π

-π-π

0.5

-0.5

FIG. 4. Minimal inversion-symmetric Weyl Josephson circuits.
(a) Flux qubit circuit diagram. (b) Gradiometric-SQUID Cooper
pair box circuit diagram. (c) Excitation gap Eg of the gradiometric-
SQUID Cooper pair box as a function of the two fluxes. Here,
ng1 = 0.5 and EJ = EC (all junctions identical). (d) Location and
charge (purple: +1, orange: −1) of the Weyl nodes. Note: the pairs of
nodes located at the top and bottom are the same due to periodicity.

qubit has (ng1, ng2, ϕx ) and the gradiometric-superconducting
quantum interference device (SQUID) Cooper pair box has
(ng1, ϕx, ϕy). We focus on the gradiometric-SQUID Cooper
pair box, as degeneracies in the flux qubit case have been
predicted previously [4]. In Fig. 4(c), we plot the energy
gap as a function of the two fluxes for ng1 = 0.5, where the
location of the two nodes in the spectrum are apparent. The
nodes have opposite topological charge, as shown in Fig. 4(d).
Note that ng1 = ±0.5 is the Brillouin zone boundary and so
only two nodes are present, one of each charge. Nodes of
opposite charge are located at opposite quasimomenta, con-
firming that the circuit simulates an inversion symmetric Weyl
band structure [49].

The simplicity of these circuits is attractive for initial
experiments. Indeed, the microwave spectroscopy and Berry
curvature experiments proposed in Sec. IV are relatively
straightforward to consider. An equivalent to the transconduc-
tance experiment, however, would require linear variation of
ng (e.g., a dc current across a capacitor) in order to span a
plane with a finite Chern number.

B. Nodal line circuits in 3D and 4D

We present here nodal line circuits of two flavors. The
first, shown in Fig. 5(a), emulates a nodal-line semimetal
of the codimension type, which requires both inversion and
time-reversal symmetry (see Ref. [17] for an overview). Here,
k = (ϕx, ϕy, ϕz ), while ng1 is a control parameter, which
means the circuit generally satisfies the time-reversal symme-
try condition. When charge inversion symmetry is restored at
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2π0
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φ z

φ z
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(a)

FIG. 5. Nodal line circuits (both calculations EJ � EC). (a) Cir-
cuit that simulates a nodal line semimetal for k = (ϕx, ϕy, ϕz ) and
ng1 = 0.5. (b) The loop-shaped nodal line encircling k = (π, π, π )
(one junction has double the Josephson energy of each of the other
three). In blue, we depict an example trajectory with a π Berry
phase. (c) Circuit that emulates a 4D Weyl band structure k =
(ϕx, ϕy, ϕz, ϕa) with 1D Weyl lines. (d) Signatures of the 1D Weyl
lines are exhibited by the Chern number in the ϕz, ϕa plane as a
function of ϕx and ϕy (identical junctions).

ng1 = 0.5, nodal lines may be observed. In Fig. 5(b), we show
the momenta of the loop-shaped line degeneracy between the
ground and first excited states. Although Berry curvature is
zero due to symmetry, a Berry phase of π exists for closed
trajectories that pass through the nodal loop.

The general approach to circuit construction in Sec. II may
be applied to create band structures of higher dimensionality
than is possible with actual crystals. Here, we describe a gen-
eralization of time-reversal symmetric Weyl band structure in
four dimensions [32], where line degeneracies (rather than
point degeneracies) are sources of Berry curvature. We choose
a circuit with four nodes and four loops, shown in Fig. 5(c),
where the choice k = ϕm ensures time-reversal symmetry. We
fix the offset charges so that all five charge states (in the deep
charging regime) are degenerate prior to introduction of the
Josephson energies, breaking inversion symmetry. To visual-
ize the topological characteristics of this band structure, we
compute the Chern number in a 2D plane (ϕz, ϕa) as a function
of the two remaining phases, as shown in Fig. 5(d). Note that
expanding to N dimensions in this structure is straightforward
by adding additional “wedges” to the circuit.

VI. CONCLUDING REMARKS

In this paper, we have described a proposal for Weyl
Josephson circuits: small Josephson tunnel junction circuits
that exhibit topological band structures in the parametric
dependence of their collective modes, including in situ trig-
gerable topological phase transitions. We have also described

several experiments that probe the topological nature of the
circuit. All the necessary ingredients for an experimental im-
plementation are in reach with modern nanofabrication and
experimental techniques.

This work leaves open questions on how far these ideas
can be developed. An immediate step is the classification of
the available symmetry classes, including point group sym-
metries beyond inversion. An important question to this end is
whether we can create robust analogies to spins and spin-orbit
coupling in order to create analogs to quantum spin Hall insu-
lators [67]. What may be gained by replacing tunnel junctions
with different two-terminal Josephson elements, such as those
with high transparency or Majorana junctions? Can small
Josephson circuits simulate topological boundaries and their
unique surface dispersions? Finally, applying strong driving
or dissipation, a standard tool in superconducting circuits,
extends the system to symmetry classes that are hard to access
in condensed matter systems [68,69]. The interplay of Floquet
physics with topological ground states [70] and circuit Hamil-
tonians [71] are active areas of study that can be combined in
circuits like the one presented here.

These circuits exhibit clear parallels with theoretical pro-
posals based on microscopic fermionic Andreev states in a
scattering region contacted by multiple trivial superconduct-
ing leads [31–33,35,60,61] or topological superconducting
leads [45,72–75], including cases with nodal lines [76]. It will
be interesting to inspect whether such proposals generically
have a suitable Josephson circuit analog, particularly when
restricting to the even-parity sector and without spin-orbit
coupling.

We are convinced that Weyl Josephson circuits offer a
versatile, tunable, and complementary platform to probe the
physics of topologically nontrivial systems. We hope that this
work will stimulate mutually beneficial contact between the
fields of superconducting quantum circuits and topological
condensed matter physics.
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APPENDIX A: SIX-JUNCTION CIRCUIT HAMILTONIAN

1. Derivation

Here we derive the Hamiltonian of the circuit in Fig. 1 via
network analysis in the usual way by starting in the nodal
flux basis [42]. Using the reduced flux quantum φ0 = h̄/2e
to rescale into a phase basis, the Lagrangian is L = LC − UJ ,
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where the Josephson part can be written

−UJ (ϕ,ϕm) = EJ10 cos ϕ1 + EJ20 cos ϕ2 + EJ30 cos ϕ3

+ EJ12 cos(ϕ1 − ϕ2 − ϕx )

+ EJ23 cos(ϕ2 − ϕ3 − ϕy)

+ EJ31 cos(ϕ3 − ϕ1 − ϕz ) (A1)

with ϕ = (ϕ1, ϕ2, ϕ3) and ϕm = (ϕx, ϕy, ϕz ). The charging
part of the Lagrangian reads

LC = φ2
0

2

(
C10ϕ̇

2
1 + C20ϕ̇

2
2 + C30ϕ̇

2
3 + C12(ϕ̇1 − ϕ̇2)2

+C23(ϕ̇2 − ϕ̇3)2 + C31(ϕ̇3 − ϕ̇1)2
)

= φ2
0

2
ϕ̇T Cϕ̇, (A2)

where we introduce a convenient 3 × 3 capacitance matrix C.
For compactness, we ignore constant terms in the Lagrangian
and leave off the reference phase defined at the central
node ϕ0.

We next account for offset charge on each node (which may
be controlled by capacitive gates that are formally defined
here to have sufficiently small capacitance so as not to impact
the circuit modes) and define canonically conjugate momenta
in the usual way in order to come to a Hamiltonian:

Ĥ = 4e2

2
(n̂ − ng)T C−1(n̂ − ng) + UJ , (A3)

where n̂ = (n̂1, n̂2, n̂3), ng = (ng1, ng2, ng3), and ϕ̂ =
(ϕ̂1, ϕ̂2, ϕ̂3). Finally, it is convenient to choose a characteristic
scale for the capacitances in order to write the charge term
with a prefactor with units of energy. For simplicity, we
choose the average junction capacitance C̄, which defines
both the characteristic charging energy EC = (2e)2/2C̄ and
the dimensionless inverse capacitance matrix c−1 = C̄C−1:

Ĥ = EC (n̂ − ng)T c−1(n̂ − ng) + UJ (A4)

2. Tight-binding model

We now take advantage of the fact that the individual
Josephson terms are equivalently represented as a sum of
single-Cooper-pair translation operators:

EJi j cos[ϕ̂i − ϕ̂ j + γi j (ϕm)]

= 1
2 EJi j e

iγi j (ϕm )|ni, n j + 1〉〈ni + 1, n j | + H.c. (A5)

These become the hopping terms of the tight-binding model.
In the charge-dominated regime, EC � EJi j , the case of inter-
est studied in the main text is in the vicinity of a four-fold
charge degeneracy point, which is in principle analytically
soluble. After assuming all EJi j = EJ , we have the 4 × 4
Hamiltonian matrix in Eq. (2). When more than four charge
states must be considered, or outside the deep charging
regime, the model must be solved numerically with more
charge basis states. For this, we employ the Kwant tight bind-
ing package [79].

APPENDIX B: EXPERIMENTAL CONSIDERATIONS

Here we investigate three crucial experimental considera-
tions, focusing on the time-reversal symmetric Weyl circuit
that is the focus of the main text.

1. Beyond deep charging limit

In the main text, for illustrative purposes, we focus on a
simplified Hamiltonian that provides a good approximation
of the circuit in the deep charging regime (EJ/EC � 1) near
ng = ng0 = 1

4 1, with 1 = (1, 1, 1). However, the regimes in
which Josephson energies EJ are comparable to or larger than
the charging energies EC are important because they are easily
accessible in experiment [80,81]. The limit EJ � EC addi-
tionally provides exponentially suppressed sensitivity to offset
charge noise in simple circuits like the transmon [81]. We
cannot strictly retain this feature in Weyl Josephson circuits
due to the topological phase transitions that can be triggered
by offset charge tuning.

Nonetheless, choosing EJ comparable to EC provides sev-
eral experimental advantages for topological physics. First,
for EJ ≈ EC/2 the volume fraction of the ng parameter space
in which the circuit exhibits ground-state degeneracies in the
Brillouin zone is maximized to about 0.27 [Fig. 6(a)]. Maxi-
mizing this quantity is advantageous for experiments that must
search for the topological regime by varying gate voltages
on the islands. Second, the positions of the Weyl nodes be-
come less sensitive to offset charge offsets [Figs. 6(b)–6(e)],
an advantage for experiments that may have moderate offset
charge drift (see Appendix B 3 for more on this point). Note
that for EJ � EC the system is dominated by wells in the
classical Josephson potential—thus, degeneracy points indi-
cate transitions to a new global minimum in which the lowest
energy states of the two wells have no avoided crossing. Third,
the characteristic energy scale in the topological regime be-
comes sensitive to EC , as indicated in Figs. 6(b)–6(e). This is
convenient as EC can lowered by geometric circuit features
independent of the junction’s intrinsic capacitance. All of
these features make the moderate EJ/EC regime attractive for
experiments. Curiously, as is visible in Figs. 6(b)–6(e), the
energy gap along contours connecting Weyl nodes varies with
offset charge detuning despite the fact that the position of the
nodes changes quite slowly. When this gap approaches zero,
the nodes rapidly converge and annihilate. We note that a
previous work on Cooper pair pumps [equivalent circuit to
Fig. 1(a)] investigated the effect of noise on pumping pro-
cesses and found that EJ ∼ EC was optimal for that circuit
for different reasons than these [82].

2. Junction disorder

Fabrication of Josephson tunnel junctions with aluminum
electrodes and AlOx tunnel barriers is a relatively mature pro-
cess. Junctions that are fabricated simultaneously and placed
in the same region of a wafer can be made identical to within
about 2% accuracy [83]. While the topological nature of the
Weyl points implies a general robustness to variations in
Hamiltonian parameters, it is reasonable to specifically ask
whether a Weyl circuit is robust to the experimental degree
of uncertainty. To this end, we model the six-junction circuit
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FIG. 6. (a) Topological volume fraction of the ng parameter space as a function of EJ/EC . This is estimated by finding ground-state
degeneracies in ϕm space on a 50 × 50 × 50 grid spanning the ng cube. The dashed black line indicates a cubic trend. (b) Excitation gap from
the ground state to the first excited state (�Eg) as a function of symmetric gate charge ng − ng0 = ndiag1 and ϕdiag for EJ/EC = 1.0. Note that
the characteristic scale is now set by EC rather than EJ . [(c)–(e)] Line cuts of Eg (pink) and the Berry curvature 
 (black) along ϕdiag for the
indicated gate charge values. For presentation purposes, the Berry curvature for each plot is normalized by 
0.4 = 10|
(0.4 × 2π )|.

from the main text, targeting EJ = EC/2 with all junctions
identical. To simulate disorder, we add random deviations
in the junction area A, sampling from a Gaussian distribu-
tion with a conservative standard deviation of 10%. Note
that errors in the junction area affect both EJ ∝ A and EC ∝
A−1. For each instance, we conduct a numerical search for
spectral nodes in flux space, fixing the gate charge value
ng = ng0. We find the topological phase in all 1000 tested
instances signaling robustness to experimental fabrication
uncertainty.

3. Noise considerations

Both flux and charge noise are important to consider
in any experimental proposal [84]. For each type, it is
convenient to separately consider high-frequency (�kHz)
and low-frequency (� Hz, also known as “drift”) parts.
High-frequency noise introduces measurable spectroscopic
linewidth and reduces phase coherence. For the spectroscopy
experiment proposed in Sec. IV, linewidths limit the resolu-
tion with which any degeneracies can be determined. The third
experiment (direct Berry curvature measurements) will be
limited by the relationship between phase coherence time and

the measurement time, the determination of which is beyond
the scope of our work. Very high frequency noise, at the value
of Eg, will introduce a finite excited-state population. The rate
of these unintended transitions sets a lower bound for the
speed of the transconductance measurements. In transmons,
this rate has been lowered to the 100-Hz range [85], which is
five to eight orders of magnitude below anticipated Eg scales
for the Weyl circuit.

Low-frequency noise, or drift, is a significant problem if it
interferes with the typical time-scale of experimental scans.
Flux drift is generally insignificant. Charge drift, however,
can be large and has typical timescales are of order tens of
minutes or more for transmons [85,86]. For this reason, it may
be sensible to choose k = ng rather than ϕm for simulation
of broken-inversion-symmetry systems, as it may be more
convenient to fix the Hamiltonian control parameters for long
periods of time. In either case, a solution will be needed if the
necessary multidimensional measurement scans are slower
than these timescales. This motivates the use of a cQED setup,
which can take advantage of fast individual measurements to
implement active feedback routines to correct for charge drift
(see Ref. [87] for an example of active feedback improving
spin qubit coherence).
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