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Local signatures of electron-electron scattering in an electronic cavity

Carolin Gold ,1,* Beat A. Bräm ,1 Richard Steinacher,1 Tobias Krähenmann ,1 Andrea Hofmann,1 Christian Reichl,1

Werner Wegscheider ,1 Mansour Shayegan ,2 Klaus Ensslin ,1 and Thomas Ihn1

1Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland
2Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA

(Received 14 January 2021; revised 11 February 2021; accepted 12 February 2021; published 29 March 2021)

We image equilibrium and nonequilibrium transport through a two-dimensional electronic cavity using scan-
ning gate microscopy. Injecting electrons into the cavity through a quantum point contact close to equilibrium,
we raster scan a weakly invasive tip above the cavity region and measure the modulated conductance through the
cavity. Varying the electron injection energy between ±2 meV, we observe that conductance minima turn into
maxima beyond an energy threshold of ±0.6 meV. This observation bears similarity to previous measurements
by Jura et al. [Phys. Rev. B 82, 155328 (2010)], who used a strongly invasive tip potential to study electron
injection into an open two-dimensional electron gas. This resemblance suggests a similar microscopic origin
based on electron-electron interactions.
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I. INTRODUCTION

Electron-electron (e-e) interactions and their role in elec-
tron transport are a topic of continuing interest in mesoscopic
physics. Thanks to momentum conservation in e-e scattering
processes, the latter do not influence the electron mobility
unless paired with another scattering mechanism [1]. Inter-
actions have been found to impact, e.g., the conductivity of
disordered systems via Friedel oscillations around screened
impurities [2,3], and are the key low-temperature decoherence
mechanism in quantum transport experiments [4] such as the
Aharonov-Bohm effect [5–7] or weak localization [8]. Re-
cently, renewed interest has arisen in viscous effects observed
in electron liquids at elevated temperatures [9,10].

The rich variety of existing experiments includes attempts
to probe e-e scattering by injecting nonequilibrium electrons
into an equilibrium Fermi sea [11,12]. Among them is the
work by Jura et al. [13], which inspired the experiments
we present here. In Ref. [13], the flow of electrons injected
through a quantum point contact is imaged at energies above
the thermal smearing of the Fermi-Dirac distribution. Raster
scanning a locally depleting scanning gate tip above the open
electron gas downstream of the injection point, the authors
observed a contrast inversion of the branched electron flow
signal at elevated source-drain bias voltages. They interpreted
this contrast inversion as a manifestation of e-e scattering in
the electron gas.
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Our experiments aim at exploring this effect for the so-
called weakly invasive tip potentials induced by the scanning
gate. In general, most scanning gate experiments (including
branched electron flow measurements behind a point contact
[14–16]) require a tip-induced potential which depletes the
electron gas locally (strongly invasive regime). However, we
recently found a method to significantly enhance the sensi-
tivity at nondepleting voltages (weakly invasive regime) [17],
thus reducing the influence of the tip on the unperturbed
system. This method utilizes a gate defined, open cavity struc-
ture [18–20], which concentrates the scattering density of
states behind the quantum point contact and thereby enables
scanning gate experiments at strongly reduced voltages ap-
plied to the scanning gate. In this paper, we operate such
a structure in the nonlinear bias regime and, in this modi-
fied setting, find the interaction effects previously observed
for electron injection into an open two-dimensional electron
gas. Our finding may help unravel the microscopic details of
this effect by theoretical means beyond the explanation given
in Ref. [13].

II. SAMPLE AND EXPERIMENTAL SETUP

Our measurements are performed on the open resonator
structure depicted in Fig. 1(a) at temperature T = 270 mK.
The sample is based on a Ga(Al)As heterostructure [dark grey
in Fig. 1(a)] in which a two-dimensional electron gas (2DEG)
with electron density n = 1.9 × 1011 cm−2 and mobility μ =
4.4 × 106 cm2/Vs is formed 90 nm below the surface. Neg-
ative gate voltages, applied to the 300 nm wide quantum
point contact (QPC) and arc-shaped cavity gate [light grey in
Fig. 1(a)], form a 2 μm long resonator with an opening angle
of 90◦ centered around the QPC.

Applying a bias voltage Vsd = Vsd,ac + Vsd,dc between the
source (S) and grounded drain (D) contacts, we perform
both equilibrium and nonequilibrium measurements of the
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FIG. 1. (a) Scanning electron micrograph of the open resonator structure with Schottky gates (light gray) on a GaAs-surface (dark gray).
The cavity area is depicted by the blue standing wave. The black squares denote the source (S) and drain (D) ohmic contacts. This micrograph
has also been published in Ref. [17] and the Supplementary Materials of Ref. [21]. (b) Numerical derivative dG/dVqpc of the differential
conductance G as a function of Vsd,dc and Vqpc. Red arrows mark the cavity modes. The dashed orange line corresponds to the QPC voltage used
for all following measurements. The data for |Vsd,dc| > 1 mV are obtained with lower resolution in bias voltage and are numerically smoothened
to increase the visibility of the diamond-shaped pattern. An excerpt from this data has also been published in the Supplementary Material of
Ref. [21]. (c) Spatial image of the conductance G(x, y) in the cavity as a function of the tip position for Vtip = −1 V and Vcav = −400 mV.
Dotted lines outline the position of the Schottky gates. The data presented in Fig. 2 are obtained along the red dashed line.

differential conductance G = Isd,ac/Vsd,ac through the sample.
Here, Isd,ac is the measured source-drain current, Vsd,ac =
50 μVrms for all measurements, and the dc voltage is varied
between Vsd,dc ∈ [−2 mV, 2 mV].

To explore the local properties of electron transport
through the open resonator, we perform scanning gate mi-
croscopy (SGM) measurements. To this end, we raster scan
a voltage-biased metallic tip approximately 65 nm above the
open resonator structure while measuring the differential con-
ductance G(x, y) as a function of the tip position (x, y). Unless
stated otherwise, the tip is biased at a voltage Vtip = −1 V,
which induces a tip potential with an amplitude much smaller
than the Fermi energy EF [17]. Electrons interacting with this
weakly invasive, tip-induced potential are not backscattered
by a hard-wall potential [14,15,22], but rather experience gen-
tle electron deflection.

III. CHARACTERIZATION OF THE CAVITY

A. Characterization of the cavity in absence of the SGM tip

We first characterize the open resonator in absence of the
tip by measuring the differential conductance G(Vsd,dc,Vqpc).
The numerical derivative dG/dVqpc of the latter is depicted
in Fig. 1(b) and exhibits the diamond pattern characteristic
for nonequilibrium electron transport through QPCs. The dark
rhombi with dG/dVqpc ≈ 0 correspond to regions with con-
stant differential conductance on a conductance plateau, their
extent in bias direction yielding the subband spacing �sb =
1.5 meV. All the following measurements are performed at
Vqpc = −570 mV [cf. the orange dashed line in Fig. 1(b)], for
which the QPC conductance is tuned to the third conductance
plateau in absence of the cavity. In addition to the diamond-
shaped pattern, we observe parallel and equally spaced lines in
the differential conductance in the region of the QPC plateaus
[cf. the red arrows in Fig. 1(b)]. These lines are observed
for nonzero cavity gate voltages only and are a manifestation

of cavity modes with an average energy spacing �Ecav =
236 ± (19) μeV [23,24].

B. Characterization of the cavity in presence of the SGM tip

To study the conductance through the cavity on a local
scale, we raster scan the SGM tip above the whole resonator
area formed between the QPC and cavity gate. The differential
conductance G(x, y) measured at different tip positions (x, y)
within this area is depicted in Fig. 1(c). In agreement with
previous work on the same sample [17], it exhibits a distinct
spatial structure of fine conductance modulations which em-
anate from the QPC radially. These conductance modulations
arise from the influence of the tip-induced potential on the
local density of scattering states, which emanate from the
QPC into the cavity and are concentrated in the latter [21].

The average conductance G(x, y) in Fig. 1(c) is reduced
with respect to the conductance of G = 3 × 2e2/h on the third
QPC plateau due to the capacitive action of the cavity gate
and the tip on the QPC channel (see Appendix A for further
details). The observed asymmetry of the conductance modula-
tions with respect to the mirror axis of the cavity (x ≈ 1.5 μm)
originates from slight asymmetries in the cavity design or the
background potential. The latter induce an asymmetry in the
local density of scattering states in the cavity which results
in the observed asymmetry in the tip-induced conductance
modulations [cf. Fig. 1(c)]. While this asymmetry is important
for the exact tip position at which a minimum (maximum)
occurs, we do not expect it to influence the observation of the
minima-to-maxima transition discussed in the following.

IV. FINITE BIAS MEASUREMENTS

A. Finite bias measurements in presence of the SGM tip

Based on previous measurements on an open 2DEG be-
hind a QPC [13], we perform SGM measurements at finite
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FIG. 2. Differential conductance G(x,Vsd,dc) along the dashed
red line in Fig. 1(c). (a) Raw data. (b) Linewise conductance dif-
ference �G(x) as a function of the tip position x along the red
line in (a) for small steps in Vsd,dc. The red curve denotes the con-
ductance at Vsd,dc = 0 mV and the lines are offset with respect to
each other. Black dashed guides to the eye denote three exemplary
minimum-to-maximum transitions. The thick line marks the conduc-
tance modulations at the transition voltage.

source-drain voltages in order to probe e-e scattering in the
open resonator on a local scale. The measured differential
conductance G(x,Vsd,dc) for tip positions x along the dashed
red line in Fig 1(c) and bias voltages Vsd,dc is depicted in
Fig. 2(a).

At zero source-drain bias we recover the conductance mod-
ulations G ∈ [2.15, 2.5] · 2e2/h already observed along the
dashed red line in the spatial cavity map [cf. Fig. 1(c)]. With
increasing source-drain bias Vsd,dc, the overall conductance G
through the sample increases while maintaining its distinct
spatial modulation. Minima (or maxima) of the conductance
occur at exactly the same tip positions x for source-drain
biases of up to approximately 0.6 mV. However, this changes
significantly for bias voltages |Vsd,dc| > 0.6 mV, at which pre-
vious maxima in the differential conductance have turned into
minima and vice versa (see also Appendix C).

To emphasize this minimum-maximum transition
in the differential conductance, we plot single lines
�G(x) = G(x) − 〈G(x)〉 at equally spaced Vsd,dc between
Vsd,dc = 0 mV and 2 mV in Fig. 2(b). Here, 〈G(x)〉 is the
conductance averaged along x for fixed dc source-drain
voltage Vsd,dc. At specific fixed tip positions x, the
differential conductance shows a transition from minima
at |Vsd,dc| < 0.6 mV to maxima at |Vsd,dc| > 0.6 mV. Three
of these transitions are marked by the black dashed lines in
Fig. 2(b). A similar behavior is also observed for strongly
invasive tip potentials, which induce a potential amplitude
larger than the Fermi energy in the 2DEG (see Appendix B
for measurements at Vtip = −6 V).

Our findings can be put into the context of available theory
and the experiment in Ref. [13], in which nonequilibrium
carriers are injected through a QPC into an open 2DEG re-
gion. In the latter, the observed contrast inversion in regions
of branched electron flow at source-drain voltages of up to
Vsd,dc = 2.5 mV is explained based on e-e scattering.

FIG. 3. Differential conductance G(Vcav,Vsd,dc) in absence of the
tip. Corresponding data for source-drain voltages of up to 2 mV can
be found in Appendix D. (a) Raw data. (b) �G(Vcav ) = G(Vcav ) −
〈G(Vcav )〉 for small steps in Vsd,dc, where 〈G(Vcav )〉 is the average
conductance in Vcav at fixed Vsd,dc. The conductance at zero dc bias
(Vsd,dc = 0 mV) is denoted in red and the lines are offset with respect
to each other.

The e-e scattering rate τ−1
ee depends on the square of the

excess energy � above the Fermi energy, at which an electron
is injected into the system (τ−1

ee ∝ �2, see discussion below).
Increasing the source-drain bias Vsd,dc from zero to 2 mV, e-e
scattering in the cavity thus becomes particularly relevant for
electrons injected at the highest energies.

As reported in Ref. [13], other inelastic scattering mech-
anisms for hot electrons in 2DEGs (among which the most
important ones are plasmon emission [25] and the excitation
of acoustic phonons [26]) are irrelevant at the injection en-
ergies under investigation (see Appendix A in Ref. [13] for
details).

B. Finite bias measurements in absence of the SGM tip

Signatures of e-e scattering have been shown to be present
in many transport experiments in absence of a scanning tip,
ranging, e.g., from hydrodynamic flow experiments [27–29]
to Young’s double-slit [30] and beam splitter [31] experi-
ments. Even though the tip-induced potential in our SGM
measurements is smaller than the Fermi energy, it does in-
fluence the scattering states in the cavity [cf. Fig. 1(c)].
This raises the question of whether the observed minimum-
maximum transition is observable only in the presence of the
SGM tip or if it is an intrinsic signature of e-e scattering in the
cavity also present in the absence of the tip.

In an attempt to resolve this question, we measure the
differential conductance G(Vcav,Vsd,dc) in absence of the tip
for a fully formed cavity [Vcav below the pinch-off voltage].
As the conductance modulations observed in Figs. 1(c) and
2 originate from the local density of states in the cavity, they
can be influenced by both the cavity-gate voltage as well as
the tip position. The changing cavity gate voltage Vcav thus re-
places the varying tip position. Figure 3(a) shows the resulting
differential conductance. Again, we observe a clear transition
between regions with maximal and minimal conductance, but
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at a slightly different dc voltage of approximately 200 μV.
The shift of the position of the minima and maxima in Vcav

arises from the gating of the cavity modes by the bias voltage.
This gating effect is even more obvious in Fig. 3(b), which
is obtained by the same analysis that was done to obtain
Fig. 2(b) (here, the average was taken along Vcav). Due to this
gating effect, it is impossible to identify whether minima in
the conductance turn into maxima at higher bias. Figure 3(b)
also shows that the shift of the minima/maxima is not linear
and therefore cannot be accounted for easily. Therefore, a
minimum-to-maximum transition could not be conclusively
observed in the absence of the tip.

V. DISCUSSION

The e-e scattering length lee in the system is given as lee =
vFτee, where vF is the electron velocity at the Fermi energy
and τee is the e-e scattering time. The latter can be estimated
to be [25,28]

1

τee
= EF

h

(
�

EF

)2[
ln

(EF

�

)
+ ln

(
2qTF

kF

)
+ 1

]
, (1)

in open two-dimensional electron gases [25] and high-
mobility quantum wires [28]. Here, � is the excess energy
with respect to the Fermi energy EF, kF is the Fermi
wave vector, and qTF is the two-dimensional Thomas-
Fermi screening wave vector. Taking the excess energy � =
−|e|Vsd,dc = ±0.6 meV at the minimum-maximum transitions
[see Fig. 2(b)], we find an e-e scattering length on the order of
lee ≈ 3 μm in the cavity (cf. Appendix E for further details).
This length is on the same order of magnitude as the path
length of the round trip between QPC and cavity gate. The
lifetime broadening of the cavity modes in the open resonator
thus becomes significant with respect to the cavity mode spac-
ing at these injection energies. This may be the reason for
the decreasing amplitude of the conductance modulations in
Fig. 2(a) with increasing Vsd,dc.

Our measurements differ from those in Ref. [13] in two
aspects. First, our sample consists of an open resonator formed
between a QPC and an arc-shaped cavity gate instead of an
open 2DEG behind a QPC. Second, our measurements are
obtained with tip-induced potentials lower than EF instead of
the strongly invasive tip potential used in the experiments by
Jura et al. [13]. The tip-induced potential in our experiments
thus does not backscatter electrons but rather gently deflects
their propagation. Surprisingly, despite these differences, our
data yield a minimum-to-maximum transition at finite bias
voltage, similar to the measurements in Ref. [13].

Because of the complex scattering dynamics in the cavity,
the exact microscopic origin of the minimum-to-maximum
transition remains elusive. However, the qualitatively similar
phenomenology of our data with the results in Ref. [13], as
well as the estimates of lee given above, suggest the relevance
of e-e interactions in the cavity involving the injected nonequi-
librium electrons.

VI. CONCLUSIONS

In conclusion, we measure nonequilibrium transport
through an electronic cavity with scanning gate microscopy.

We observe a minimum-to-maximum transition as a function
of the source-drain bias Vsd,dc in the differential conductance
modulation caused by the tip-induced potential. Our measure-
ments show that gentle electron deflection due to a tip-induced
potential below the Fermi energy [17] is sufficient to observe
this transition. However, data taken in the absence of the
tip show the relevance of the tip-induced potential for the
observation of the transition. Despite significant experimental
differences, our observations are phenomenologically similar
to strongly invasive scanning gate measurements on electrons
injected through a point contact into an open two-dimensional
electron gas [13]. This suggests a similar microscopic origin
of the minimum-to-maximum transition in both experiments,
which is based on electron-electron scattering. The detailed
microscopic mechanisms of the elaborate scattering processes
of electrons in the electronic cavity remain interesting open
questions that will require further theoretical and experimental
work.
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APPENDIX A: INFLUENCE OF THE QPC, CAVITY, AND
TIP VOLTAGES ON THE CONDUCTANCE THROUGH THE

CAVITY

To characterize the influence of the QPC and cavity-gate
voltages on the conductance through the cavity, we first evalu-
ate the conductance through the QPC in absence of the cavity.
The data in Fig. 4(a) shows the conductance quantization
characteristic for transport through a quantum point contact.

FIG. 4. (a) Conductance quantization of the quantum point con-
tact in absence of the cavity. The blue arrow marks the QPC voltage
Vqpc at which the trace in (b) is taken. (b) Conductance through the
cavity as a function of the cavity gate voltage for the QPC voltage
marked by the blue arrow in (a) (third conductance plateau). The
dashed line marks the pinch-off voltage of the cavity gate.
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Setting the QPC to the third conductance plateau [cf. the
blue arrow in Fig. 4(a)], we then study the influence of the
cavity-gate voltage on the conductance through the sample.
The data in Fig. 4(b) shows that small cavity-gate voltages do
not influence the conductance significantly. Thus, the conduc-
tance remains similar to the conductance plateau in absence
of the cavity for cavity-gate voltages more positive than the
pinch-off voltage [cf. the black dashed line in Fig. 4(b)]. For
cavity-gate voltages more negative than the pinch-off voltage,
the cavity gate depletes the 2DEG below the gate and the
cavity forms. As the capacitive coupling between the cavity
gate and the QPC reduces the conductance through the QPC,
we observe a reduced conductance of G ≈ 2.4 · 2e2/h through
the fully formed cavity. The emergence of quantized modes
within the cavity furthermore yields the characteristic conduc-
tance modulations observed in Fig. 4(b). Despite the influence
of the cavity gate on the QPC, the QPC still features well-
defined conductance plateaus in the presence of the cavity [cf.
Fig. 1(b)].

While imaging the cavity with a SGM tip, the capacitive
coupling between the tip and the QPC further reduces the
conductance through the cavity. Commonly, the tip-induced
potential is described by a Lorentzian shaped potential
[32–35]. Thus, the tip couples strongest to the QPC for tip
positions in close vicinity of the QPC [cf. Fig. 1(c)]. How-
ever, the long-ranged tails of the tip potential have a small,
decreasing [for increasing tip–QPC distances], yet nonneg-
ligible influence on the QPC. The combined action of the
capacitive coupling of the cavity and tip with the QPC thus
reduces the average conductance in Fig. 1(c) with respect to
the conductance G = 3 · 2e2/h in absence of both the tip and
cavity potential.

APPENDIX B: FINITE-BIAS MEASUREMENTS WITH
STRONGLY INVASIVE TIP POTENTIALS

We evaluate the influence of a strongly invasive tip po-
tential on the observation of the minimum-to-maximum
transitions by repeating the measurements depicted in Fig. 2
for Vtip = −6 V. The data is depicted in Fig. 5. In ac-
cordance with previous experiments [17], the additional
scattering of electrons off the strongly invasive tip poten-
tial results in sharper and denser conductance modulations
in the cavity area. Nonetheless, Fig. 5 exhibits the same
minima-to-maxima transition observed in Fig. 2. Therefore,
the observation of the minima-to-maxima transitions is inde-
pendent of the strength of the tip-induced potential.

APPENDIX C: FINITE-BIAS MEASUREMENTS WITH
WEAKLY INVASIVE TIP POTENTIALS

To further highlight the minima-to-maxima transition ob-
served in Fig. 2, we calculate the conductance difference
�G(x,Vsd,dc) as discussed in Sec. IV A. The resulting data,
depicted in Fig. 6, features transitions from minima (blue) to
maxima (red).

FIG. 5. Differential conductance G(x,Vsd,dc) for a strongly inva-
sive tip potential (Vtip = −6 V) along a similar line as the red dashed
line in Fig. 1(c). (a) Raw data. (b) Conductance difference �G(x)
for tip positions x along the red line in (a) and small steps in Vsd,dc.
The red curve corresponds to zero source-drain bias and the lines
are offset with respect to each other. Black dashed guides to the eye
denote three exemplary minimum-to-maximum transitions.

APPENDIX D: FINITE-BIAS MEASUREMENTS IN
ABSENCE OF THE TIP: FULL DATA RANGE

The behavior of the conductance modulations for source-
drain voltages beyond Vsd,dc = 1 mV in absence of the tip (cf.
Fig. 3) is depicted in Fig. 7. For higher source-drain voltages,
we observe a rather stable evolution of the conductance with-
out any further minima-to-maxima transitions.

APPENDIX E: Vsd,dc-DEPENDENCE OF THE CAVITY
MODULATIONS IN PRESENCE OF THE TIP

The estimate of the e-e scattering time [cf. Eq. (1)]
in Sec. V is reported for electron transport in open two-
dimensional electron gases [25] and high-mobility quantum
wires [28]. As the number of available states determines the
prevalence of e-e scattering events, the reduced density of
states in the open resonator possibly reduces the number of

FIG. 6. Conductance difference �G(x,Vsd,dc) of the data de-
picted in Fig. 2(a).
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FIG. 7. Differential conductance G(Vcav,Vsd,dc) depicted in Fig. 3
for a larger range of Vsd,dc.

e-e interactions in the latter. To evaluate the influence of the re-
duced number of states available for scattering in the cavity on
the e-e scattering events, we revisit the data depicted in Fig. 2.
Figure 8 shows the conductance difference �G(Vsd,dc) for
small steps in the tip position x along the red line in Fig. 1(c).
At low bias voltages, the conductance modulations inside the
cavity make it impossible to observe a distinct behavior of the
conductance as a function of the source-drain bias. In contrast
to this, we observe a parabolic dependence of the conductance

FIG. 8. Conductance difference �G(Vsd,dc) for small steps in the
tip positions x along the red line in Fig. 2(a).

difference �G(Vsd,dc) on the source-drain bias at high bias
voltages. This parabolic dependence is in good agreement
with the dependence of the e-e scattering rate on the excess
energy � = −|e|Vsd,dc [cf. Eq. (1), Refs. [25,28]]. In particu-
lar, we observe that the dependence of �G on the source-drain
bias Vsd,dc is uniform for all tip positions across the cavity and
does not vary for tip positions outside (x ≈ 0 μm, x ≈ 3 μm)
and inside the cavity. This suggests that the cavity is still em-
bedded in the Fermi sea, and thus provides sufficient available
states for e-e scattering. While this observation suggests the
qualitative validity of Eq. (1), it does not allow conclusions
about the quantitative accuracy of Eq. (1) for e-e scattering in
the cavity.
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