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Numerical calculation of dipolar-quantum-droplet stationary states
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We describe and benchmark a method to accurately calculate the quantum droplet states that can be produced
from a dipolar Bose-Einstein condensate. Our approach also allows us to consider vortex states, where the atoms
circulate around the long-axis of the filament-shaped droplet. We apply our approach to determine a phase
diagram showing where self-bound droplets are stable against evaporation, and to quantify the energetics related
to the fission of a vortex droplet into two nonvortex droplets.
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I. INTRODUCTION

Dipolar condensates consist of highly magnetic atoms that
interact with a long-ranged and anisotropic dipole-dipole in-
teraction (DDI). Experiments with dipolar condensates of
dysprosium [1–3] and erbium [4] atoms prepared the system
into one or several self-bound droplets that can preserve their
form, even in the absence of any external confinement. These
droplets occur in the dipole-dominated regime, where the
short-ranged s-wave interactions are tuned to be weaker than
the DDIs [5,6]. In this regime the standard mean-field the-
ory provided by the Gross-Pitaevskii equation is inadequate,
as it predicts that the condensate is unstable to mechanical
collapse. Here (beyond mean field) quantum fluctuation cor-
rections become important [7–9] and stabilize the droplets
against collapse [10–13]. Droplets were produced with 103–
104 atoms and peak densities roughly an order of magnitude
higher than that of typical condensates. These droplets are still
well within the dilute regime (i.e., na3 � 1, where n is the
density and a is the interaction lengthscale). In this regime
the extended Gross-Pitaevskii equation (EGPE) is expected to
provide a good description, and indeed the EGPE has been
successfully used to model the equilibrium and dynamical
properties of droplets. The excitation spectrum of the droplets
has been the subject of theoretical and experimental studies
[4,6,14], and more recently the possibility of preparing a
droplet in an excited vortex state has been considered [15,16],
although these were found to be unstable.

So far little attention in the literature has been given to
the details of EGPE calculations for stationary dipolar droplet
states. The DDI needs to be treated with care since it is
singular and long-ranged. Because the droplets are small,
dense, and highly elongated (taking a filament-like shape), it
becomes more difficult to treat the DDI accurately without
taking large and dense numerical grids. Due to these techni-
cal challenges few groups outside of those already working
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on dipolar condensates have reported calculations for these
droplets. In contrast, we note that quantum droplets were
also realized in two component condensates [10,17–19]. The
absence of DDIs in these droplets makes the calculations more
straightforward, and a rather large number of theory groups
reported work on this system.

In this paper we aim to outline a numerical technique
to calculate self-bound quantum droplet states, including the
case where the droplet has a vortex. We demonstrate the
importance of using a truncated interaction potential to ac-
curately evaluate the DDI energy, and introduce a simple
gradient flow technique for obtaining the stationary solutions
of the EGPE. We present benchmark results for the energy and
chemical potential for vortex and nonvortex droplet stationary
states. As applications we calculate a phase diagram for the
stability of the droplet states, and quantify the tendency for
vortex droplets to undergo fission into a pair of nonvortex
droplets.

The outline of the paper is as follows. In Sec. II we intro-
duce the EGPE for describing quantum droplet states. We also
rewrite the formalism in cylindrical coordinates and introduce
our dimensionless units. In Sec. III we introduce the Bessel-
cosine-based method that we use to discretize the EGPE and
to enforce states to have a particular value of angular mo-
mentum. A variational approach is also presented and used
to test the accuracy of the discretization when evaluating the
various energy terms related to the EGPE. The gradient flow
(or imaginary time) method is introduced in Sec. IV to obtain
energy minimising solutions of the EGPE. The main results
are presented in Sec. V including the benchmark results for
droplet energies and chemical potentials, a phase diagram
indicating where the droplets are stable to evaporation, and
results quantifying the energetic instability of vortex droplets
to fission. We then conclude in Sec. VI.

II. FORMALISM

Extended Gross-Pitaevskii equation

1. General formulation

Several works [2–6,11–13,20–24] established that the
ground states and dynamics of a dipolar condensate in the
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droplet regime was well-described by the EGPE. In this for-
malism the time-independent stationary state wave function �

was a solution of μ� = LEGP[�] where

LEGP[�]≡
[
− h̄2∇2

2M
+Vtr+gs|�|2+gdd�(x)+γQF|�|3

]
�.

(1)

Here Vtr describes any trapping potential, μ is the chemical po-
tential, and gs = 4πash̄

2/M is the s-wave coupling constant,
with as being the s-wave scattering length. The potential

�(x) =
∫

dx′ I (x−x′)|�(x′)|2, (2)

describes the effects of the long-ranged DDIs where the kernel
is

I (r) = 3

4π

1 − 3 cos2 θ

r3
. (3)

This is written for the case of dipoles polarized along the z
axis by an external field, where θ is the angle between r and
the z axis. The dipole coupling constant is gdd = 4πadd h̄2/M,
where add = Mμ0μ

2
m/12π h̄2 is the dipole length determined

by the magnetic moment μm of the particles. The leading-
order quantum fluctuation correction to the chemical potential
for a uniform system of density n is �μ = γQFn3/2, where

γQF = 32
3 gs

√
a3

s
π

(1 + 3
2ε2

dd ) and εdd ≡ add/as [2,8,13]. The ef-
fects of quantum fluctuations are included in Eq. (1) using the
local density approximation n → |�(x)|2. Stationary EGPE
states are also local minima of the energy functional

E [�] = Ekin + Etr + Eint + EQF, (4)

where

Ekin = − h̄2

2M

∫
dx�∗∇2�, (5)

Etr =
∫

dx�∗Vtr�, (6)

Eint = 1

2

∫
dx�∗(gs|�|2 + gdd�)�, (7)

EQF = 2

5
γQF

∫
dx|�|5, (8)

represent the kinetic, trap potential, interaction, and quantum
fluctuation energies, respectively.

2. Dimensionless cylindrical formulation

We now write the problem in a form utilizing the cylin-
drical symmetry and introducing natural units. While we do
not present any results here that include a trapping potential
(we focus on self-bound states in the absence of confinement),
for generality we include a cylindrically symmetric trapping
potential in our formulation. We take this to be of the form
Vtr = 1

2 M(ω2
ρρ

2 + ω2
z z2), where ρ =

√
x2 + y2, and {ωρ, ωz}

are the trap frequencies. For this case the system is cylin-
drically symmetric (since we also chose the dipoles to be
along z) and we can choose to look for stationary solutions
of the form

�(x) = ψ (ρ, z)eisφ, (9)

where ψ is real, φ = arctan(y/x), and s is an integer spec-
ifying the z-component angular momentum of the state. By
separating variables, and introducing units of length x0 = add

and energy E0 = h̄2/Ma2
dd , we arrive at the effective cylindri-

cal GPE

μψ = L[ψ], (10)

L[ψ] ≡ hspψ + 4π
(
ε−1

dd ψ2 + �
)
ψ + γQF|ψ |3ψ. (11)

Here

hsp = −1

2

(
Ds + ∂2

∂z2

)
+ 1

2

(
ω̄2

ρρ
2 + ω̄2

z z2
)

(12)

is the single particle Hamiltonian, which features the Bessel
differential operator

Ds ≡ ∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− s2

ρ2
, (13)

and ω̄ν = h̄ων/E0, ν ={ρ, z}. We also note that for this choice
of units the nonlinear coupling constants are gs →4πε−1

dd ,
gdd → 4π , and

γQF = 4

3π2

(
4π

εdd

)5/2(
1 + 3

2
ε2

dd

)
, (14)

thus all specified in terms of εdd .
The convolution used to evaluate � is performed in three-

dimensions, but the resulting � is a cylindrically symmetric
function

�(ρ, z) ≡
∫

dx′ I (x − x′)|ψ (ρ ′, z′)|2 (15)

=
∫

dkρ dkz

(2π )2
eikzzkρJ0(kρρ)Ĩ (kρ, kz )ñ(kρ, kz ), (16)

where the Fourier-transformed density and DDI kernel are

ñ(kρ, kz ) = 2π

∫
dρ dz ρJ0(kρρ)e−ikzz|ψ (ρ, z)|2, (17)

Ĩ (kρ, kz ) = 3k2
z

k2
ρ + k2

z

− 1, (18)

respectively. We also note that here we choose the condensate
to be normalized to the number of atoms N , i.e..

2π

∫ ∞

0
dρ

∫ ∞

−∞
dz ρ|ψ |2 = N. (19)

III. BESSEL-COSINE NUMERICAL REPRESENTATION

To accurately treat the terms appearing in the EGPE op-
erator we use a different discretization for the radial and
axial dimensions, and we discuss these separately in the next
subsections.

A. Radial Bessel treatment

1. Bessel grid and quadrature

In the radial direction we consider Nρ points, that nonuni-
formly span the interval (0, R), given by

ρqi = αqi

Kq
, i = 1, . . . , Nρ, (20)
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which we refer to as the q-order Bessel grid. Here Kq =
αq Nρ+1/R, and {αqi} are the ordered nonzero roots of the
Bessel function Jq(x) of integer order q. In this work we will
need several such radial grids, each with the same number of
points and range but of different orders. For this reason we
need to adopt a notation that explicitly indicates the order. We
also introduce the reciprocal space grid of the same order

kqi = αqi

R
, i = 1, . . . , Nρ, (21)

that spans the interval (0, Kq ).
The radial grid points can be associated with a quadrature-

like integration formula [25,26]

I[g(ρ)] =
∫ ∞

0
dρ ρg(ρ) ≈

Nρ∑
i=1

wqi gqi, (22)

where wqi are the real-space quadrature weights

wqi = 2

K2
q |Jq+1(αqi )|2 , (23)

and we used the notation gqi = g(ρqi ) to denote the function
g(ρ) sampled on the q-order grid. This integration requires
that the functions of interest have limited spatial range, i.e.,
g(ρ > R) = 0.

Similarly, for the reciprocal kρ-space we have a quadrature-
like integration formula for a function g̃(kρ )

I[g̃(kρ )] =
∫ ∞

0
dkρ kρ g̃(kρ ) ≈

Nρ∑
i=1

w̃qi g̃qi, (24)

where w̃qi are the kρ-space quadrature weights

w̃qi = 2

R2|Jq+1(αqi )|2 , (25)

and g̃qi = g̃(kqi ). Result (24) is only valid on our grid if the
function is bandwidth limited, i.e., g̃(kρ > Kq) = 0.

2. Hankel transformation

The Bessel grid is useful because it allows an accurate two-
dimensional (2D) Fourier transformation of functions of the
form

F (ρ) = f (ρ)eimφ, (26)

where we used ρ to denote the planar position vector with
polar coordinates (ρ, φ). The 2D Fourier transform of F is

F̃ (kρ ) =
∫

dρ e−ikρ ·ρF (ρ) = 2π i−meimφk f̃ (kρ ), (27)

where

f̃ (kρ ) =
∫ ∞

0
dρ ρJm(kρρ) f (ρ), (28)

is the mth order Hankel transform, arising because the angular
integral of eimφ−ikρ ·ρ yields the Jm Bessel function. Here we
introduced kρ to represent the 2D k-space vector, with polar
coordinates (kρ, φk ).

For the case where the angular momentum of the function
[i.e., m from Eq. (26)] and the order of the grid used to
sample the function are the same (i.e., q = m) an accurate

discrete Hankel transform can be implemented. For this case
the transform yields f̃ sampled on the kqi grid from f sampled
on the ρqi grid (see Ref. [27]). The explicit form of this
discrete transform is obtained by evaluating Eq. (28) using the
quadrature formula (22)

f̃qi =
∑

j

Hi j fq j, (29)

where

Hi j = wq jJq(kqiρq j ) =
2Jq

( αqiαq j

αqNρ+1

)
K2

q |Jq+1(αq j )|2 , (30)

is the q-order Hankel transformation matrix and fq j = f (ρq j )
and so on.

Similarly, the inverse 2D transform

F (ρ) =
∫

dkρ

eikρ ·ρ

(2π )2
F̃ (kρ ) = i−qeiqφ

2π
f (ρ), (31)

is accomplished by the inverse Hankel transform

f (ρ) =
∫ ∞

0
dkρ kρJq(kρρ) f̃ (kρ ), (32)

with discrete form fqi = ∑
j H−1

i j f̃q j , with H−1
i j = K2

q

R2 Hi j . The
Discrete Hankel transform matrices are not exact inverses
of each other, but for typical grid sizes (Nρ ∼ 102) we have
that

∑
j Hi jH−1

jk ≈ δik + O(10−9), which is adequate for our
purposes.

3. Radial Laplacian operator

Hankel transforms are particularly useful for accurately
evaluating the kinetic energy operator in radially symmetric
cases (e.g., see Ref. [28]). To see this we note that by sep-
arating variable the 2D Laplacian ∇2

ρ acting on the function
f (ρ)eisφ is equivalent to the Bessel differential operator Ds

(13) acting on f (ρ) [cf. Eq. (12)]. Using that Js are eigenfunc-
tions of Ds, i.e., DsJs(kρρ) = −k2

ρJs(kρρ), we can utilize the
Hankel transform to act on a radial function with Ds:

[Ds f ]i ≈ −
∑

jk

H−1
i j k2

s jH jk fk. (33)

Allowing us to implement a spectrally accurate radial kinetic
energy matrix [i.e., discretized version of Tρ = − 1

2 Ds, cf.
Eq. (12)]

Tρ,i j = 1

2

∑
jk

H−1
il k2

slHl j . (34)

B. Axial cosine treatment

1. Trigonometric grids and quadrature

Our system has reflection symmetry along z so functions
of interest will be of definite parity and here we will concern
ourselves with the case of even parity. Utilizing this symmetry
we use a half-grid on the interval (0, Z ) spanned by Nz equally
spaced points

z j = (
j − 1

2

)
�z, j = 1, 2, . . . Nz, (35)
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where �z = Z/Nz. The corresponding reciprocal grid

k j = ( j − 1
2 )�k, j = 1, 2, . . . Nz, (36)

spans the interval (0, Kz ) where �k = π/Z and Kz = π/�z.
The appropriate quadrature for this grid is the rectangular rule

I[g(z)] =
∫ ∞

−∞
dz g(z) ≈

Nz∑
i=1

gi 2�z, (37)

where gi = g(zi ).

2. Cosine transformations

The one-dimensional Fourier transform for an even parity
function is given by the cosine transform

f̃ (kz ) =
∫ ∞

−∞
dz e−ikzz f (z), (38)

= 2
∫ ∞

0
dz cos(kzz) f (z). (39)

We can discretize this transform onto our chosen grid as

f̃i = �i j f j, (40)

where

�i j = 2 cos(kiz j )�z, (41)

is the transformation matrix, f j = f (z j ), and f̃i = f̃ (ki ). This
can be identified as the type-IV discrete cosine transformation
(e.g., see Ref. [29]).

The inverse Fourier transformation f (z) =
1

2π

∫ ∞
−∞ dkzeikzz f̃ (kz ) similarly can be mapped to the inverse

discrete cosine transform f j = �−1
i j f̃ j , where �−1

i j = Kz

2πZ �i j ,

with
∑

j �
−1
i j � jk = δik .

3. Axial Laplacian operator

Utilizing that the derivative operator is diagonal in kz-
space, we can implement a discrete second derivative operator
as [

d2 f

dz2

]
i

≈ −
∑

jk

�−1
i j k2

j � jk fk. (42)

This allows us to define a spectrally accurate axial ki-
netic energy matrix [i.e., discretized version of Tz = − 1

2
d2

dz2 ,
cf. Eq. (12)]

Tz,i j = 1

2

∑
jk

�−1
i j k2

l �l j . (43)

C. Treatment of EGPE operators

To find eigenstates of the effective cylindrical EGPE prob-
lem (10) we combine the radial and axial treatments described
above to define a cylindrical (2D) mesh of points ρi j ≡
(ρsi, z j ), choosing the radial order q to match the stationary
state circulation s.

1. Single particle operators

The single particle operator (12) acting on the discretized
field ψi j = ψ (ρi j ) can be evaluated as

hi j[ψ] =
∑

k

Tρ,ikψk j +
∑

k

Tz, jkψik + Vtr,i jψi j, (44)

where Vtr,i j = 1
2 (ω̄2

ρρ
2
si + ω̄2

z z2
j ), and we used the Bessel (34)

and cosine (43) derivative operators.

2. Local interaction terms

The contact interaction term in Eq. (11) is a nonlinear term
that is local in position space and is evaluated as

Ci j[ψ] ≡ 4πε−1
dd ψ3

i j, (45)

and similarly for the quantum fluctuation term

Qi j[ψ] ≡ γQF|ψi j |3ψi j . (46)

Note: We assumed that ψi j is real, but modulus sign is needed
on the quantum fluctuation term to properly deal with any case
where ψi j is negative.

3. DDI term

The DDI potential � can be evaluated using the convolu-
tion theorem in cylindrical coordinates, as given in Eq. (16).
To evaluate this expression we first need to Fourier transform
the density (17), which we obtain by applying the cosine
transform along z and the quadrature rule to evaluate the radial
transform

ñ′
i j = 2π

∑
kl

� jlwskJ0(k0iρsk )ψ2
kl . (47)

Here we use the prime to indicate that the Fourier transformed
density is evaluated on the cylindrical k-space mesh of grid
points k′

i j = (k0i, k j ), noting that the radial k-space points are
defined for the zero-order Bessel grid.1 We then evaluate the
potential � from Eq. (16) as

�i j = 1

2π

∑
kl

�−1
jl w̃0kJ0(k0kρsi )Ĩ (k′

kl )ñ
′
kl , (48)

and thus the full DDI term

Di j[ψ] ≡ 4π�i jψi j . (49)

The function Ĩ (k) is of critical importance for accurate nu-
merical calculations of the DDIs. For clarity we hereon refer
to the analytic form of this function introduced in Eq. (18) as
the bare k-space potential Ĩbare. This result is singular since
the k → 0 limit does not exist, reflecting the long-ranged
anisotropic character of the interaction. As such the quadra-
ture in Eq. (48) will converge slowly as the density of k-space
points increases, or equivalently as the spatial ranges R, Z are
made larger (also see discussion in Refs. [30,31]). This slow
convergence can be understood as the � having contributions
from periodic copies (arising from using Fourier transforms
on a finite interval) of the density distribution. These periodic
copies, separated by two times the grid range, interact with

1The radial transform in Eq. (47) is identical to Eq. (29) if s = 0.
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each other causing a shift in the interaction energy. The un-
physical influence of these copies decays with the cube of the
grid range, making it impractical to calculate accurate results
using Ĩbare.

One approach to deal with this problem is to use spherical
coordinates in which the Jacobian introduced by the coor-
dinate transform removes the singularity of Ĩbare, but this
requires the use of a nonuniform Fourier transform [31,32]
in the algorithm. An alternative approach, first proposed for
dipolar BECs in Ref. [30] (also see Refs. [33,34]), is to intro-
duce a truncation of the DDI, i.e., restrict the range of the DDI
to the physical extent of the grids used, so that interactions
between periodic copies are formally zero (also see Ref. [35],
and related treatments for the Coulomb case in Refs. [36,37]).
We choose to follow this approach here since it allows us
to work with the cylindrical grid and associated transforms
that we introduced. The issue now becomes how to obtain the
appropriate truncated DDI potential in k-space.

First let us consider a spherical truncation derived and
applied to dipolar BECs in Ref. [30] (also see Ref. [38]). Here
the truncated interaction in position space is

Isph(r) =
{

3
4πr3 (1 − 3 cos2 θ ), r � rc,

0, otherwise,
(50)

i.e., a cutoff radius rc such that the DDIs do not occur between
any two points separated by a distance of more than 2rc. In
practice choosing rc = min{R, Z} ensures that no interactions
can occur between periodic copies of the density. Fortunately
the Fourier transform of Isph can be calculated analytically

Ĩsph(k) =
[

1 + 3
cos(krc)

(krc)2
− 3

sin(krc)

(krc)3

]
Ĩbare(k), (51)

and is seen to regularize the behavior of Ĩbare(k) near k = 0.
The spherically truncated potential is most useful for situa-
tions where the condensate is nearly spherical so it is natural
to choose R ≈ Z .

For highly anisotropic cases the natural grid choice is
R � Z or R � Z for cigar- or pancake-shaped condensates,
respectively. Here the spherical truncation is impractical as
the range of the narrow dimension would have to be extended
to match the range of the other dimension, introducing many
redundant grid points. In these situations it is natural to intro-
duce a cylindrical truncation

Icyl(r) =
{

3
4πr3 (1 − 3 cos2 θ ), r ∈ {ρ < R, |z| < Z},
0, otherwise.

(52)

The Fourier transform of this truncated kernel Ĩcyl does not
have an analytic result and needs to be calculated numerically.
We refer the interested reader to Ref. [39] for details about the
numerical calculation.

In the testing we perform we evaluate the DDI term (49)
using �i j evaluated according to Eq. (48) with Ĩ set to one of
{Ĩbare, Ĩsph, Ĩcyl}. Due to our results showing that the cylindri-
cal cut off interaction generally yields the most accurate result
(see Sec. III F), if not specified otherwise, we use Ĩcyl.

D. EGPE operator and energy functional

Above, we discussed all the operators needed to evaluate
the EGPE operator, i.e.,

Li j[ψ] = hi j[ψ] + Ci j[ψ] + Di j[ψ] + Qi j[ψ]. (53)
The expectation of the EGPE operator, normalized by the field
norm gives the expected value of the chemical potential. This
is evaluated numerically as

μEGP[ψ] = 1

N[ψ]

∑
i j

ψi jLi j[ψ]dVi, (54)

where dVi = 4π�zwsi denotes the combined quadrature
weights, and N[ψ] = ∑

i j ψ
2
i j dVi is the normalization. For a

stationary state solution of the EGPE ψ with eigenvalue μ

[see Eq. (10)] we have that μEGP[ψ] = μ.
We can also evaluate the energy functional for the system

[see Eq. (4)]

E [ψ] =

EC︷ ︸︸ ︷∑
i j

ψi j

(
hi j[ψ] + 1

2
Ci j[ψ]

)
dVi

+ 1

2

∑
i j

ψi jDi j[ψ]dVi

︸ ︷︷ ︸
ED

+ 2

5

∑
i j

ψi jQi j[ψ]dVi

︸ ︷︷ ︸
EQ

,

(55)
which will be a local minimum for stationary solutions of
the EGPE. Here we introduced the labels EC , ED, and EQ

to refer to the standard GPE energy functional (including
single particle and contact interactions), the dipole interaction
energy and the quantum fluctuation energy, respectively.

E. Gaussian variational solution

It is useful to have a simple variational solution as an initial
guess for the numerically calculated stationary state solutions
and to validate the accuracy of our numerical methods. Here
we consider a Gaussian state with angular circulation of s

�G(r) = ψG(ρ, z)eisφ, (56)

where the cylindrical amplitude is

ψG(ρ, z) =
√

8N

s!π3/2σ 2
ρ σz

(
2ρ

σρ

)s

e−2(ρ2/σ 2
ρ +z2/σ 2

z ), (57)

with width parameters {σρ, σz}.
We can use this state to analytically evaluate the separate

energy terms EC , ED, and EQ, as identified in Eq. (55). We
obtain (also see Refs. [5,15])

EC[�G] = N

(
2 + 2s

σ 2
ρ

+ 1

σ 2
z

+ ω̄2
ρ

1 + s

8
σ 2

ρ + ω̄2
z

σ 2
z

16

)

+ N2

(
2

π

) 3
2 csgs

2σ 2
ρ σz

, (58)

ED[�G] = −N2

(
2

π

)3
2 csgdd

2σ 2
ρ σz

2s∑
n=0

ds
n f (n)

(
σρ

σz

)
, (59)

EQ[�G] = N
5
2

27+5s/2�(1 + 5s/2)γQF

(51+ss!)5/2π9/4σ 3
ρ σ

3/2
z

, (60)
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TABLE I. The log10 of the absolute relative errors of the numerically calculated values of ED and EQ compared to the analytic results
[Eqs. (59) and (60)] for the variational Gaussian state. For all cases considered here the EC term has an absolute relative error below 10−13 and
is not given. For the dipole energy we give results for bare, spherically truncated, and cylindrically truncated potentials.

ED (bare) ED (sph) ED (cyl) EQ

Case s (σρ, σz ) (Nρ, Nz ) (R, Z ) log10 Absolute relative error.

(a) 0 (1,10) (25,25) (3,30) −1.8 −1.3 −9.3 −15
(b) 0 (1,10) (25,25) (4,40) −2.0 −1.7 −15 −15
(c) 0 (1,10) (250,25) (40,40) −5.1 −15 −13 −15
(d) 0 (2,1) (50,25) (12,4) −1.7 −4.8 −15 −15
(e) 1 (2,1) (50,25) (12,4) −1.5 −3.3 −15 −5.5
(f) 1 (1,10) (250,25) (40,40) −4.8 −15 −13 −4.4
(g) 1 (1,10) (256,25) (6,40) −2.0 −2.0 −15 −10
(h) 1 (1,10) (600,25) (6,40) −2.0 −2.0 −15 −13
(i) 1 (1,10) (40,25) (6,40) −2.0 −2.0 −15 −4.8
(j) 2 (1,10) (40,25) (6,40) −1.9 −1.8 −15 −13

where cs = (2s)!/4s(s!)2,

f (x) = 1 + 2x2

1 − x2
− 3x2arctanh

√
1 − x2

(1 − x2)3/2
, (61)

f (n) denotes the nth derivative of f with respect to x, and

ds
n =

⎧⎪⎨
⎪⎩

1, s = 0,

1, 3
8 , 1

8 , s = 1,

1, 67
128 , 119

384 , 3
64 , 1

384 , s = 2.

(62)

We also used gs and gdd in place of their dimensionless values
introduced earlier to make it easier to transform these results
to other choices of units.

The ansatz (56) can be used to provide a variational so-
lution to the GPE. This involves minimizing the nonlinear
function

EG(σρ, σz ) = EC[�G] + ED[�G] + EQ[�G], (63)

to determine {σρ, σz}.
F. Gaussian test of numerical representation

We use the analytic results (58) to (60) to benchmark the
accuracy of our numerical evaluation of the various terms
appearing in the GPE. To do this we sample the varia-
tional Gaussian solution on a cylindrical grid and numerically
evaluate the terms corresponding to the individual energy con-
tributions as specified in Eq. (55), and compute the absolute
value of the relative error with respect to the analytic results.

We show the results in Table I for various values of s, dif-
ferent grid choices and methods for evaluating the DDI term.
For all our grid choices the single particle and contact interac-
tion term (EC) has an absolute relative error of less than 10−13,
so we do not list it in the table. Instead we focus on the DDI
and quantum fluctuation terms that tend to have larger errors.

For the DDI term we present results for the bare, spher-
ically truncated, and cylindrically truncated interactions (see
Sec. III C 3). Evaluating ED using the bare interaction is al-
ways inaccurate, and converges slowly to the exact result as
the grid range increases [cf. cases (a) and (b)]. The spherically
cutoff interaction works well when the grid has a similar radial
and axial range [cf. cases (b) and (c)], and is thus most useful
for states where the density distribution has a similar radial
and axial extent. The cylindrical cutoff allows the axial and

radial grid ranges to be chosen independently, and is thus
useful for highly anisotropic (i.e. prolate or oblate) situations.
Comparison of cases (b) and (c) shows that the cylindrical
cutoff can provide a similar accuracy to the spherical cutoff
but using an order of magnitude fewer grid points, because
the grid ranges can be chosen appropriate to the state.

The accuracy of the quantum fluctuation term is reduced in
the s = 1 case relative to the s = 0 and s = 2 cases for similar
numbers of points. This finding is consistent with the analysis
presented by Ogata [40] on the accuracy of numerical Bessel
quadrature (22). Ogata showed that q-order Bessel quadra-
ture converges exponentially for an integrand of the form
|x|2q+1h(x)dx, if h(x) is analytic on the real axis (−∞,∞).
For our Gaussian ansatz (57) the quantum fluctuation term
(46) including the Jacobian (and neglecting z-coordinates) is
of the form ρ5s+1g(ρ), where g(ρ) represents the Gaussian
part. Casting this integrand in the form Ogata analyses and
taking s = q we have |ρ|2s+1[|ρ3s|g(ρ)]. The term is square
brackets is only analytic for s even. We note that by choosing
s �= q (e.g., taking q = 1/2) this integration can be performed
more accurately, although we do not pursue this further here.

IV. GRADIENT FLOW SOLUTION OF THE GPE

Here we present a simple gradient flow solver based on
our cylindrical discretization. This is an energy minimizing
scheme for finding ground states.2 The gradient flow involves
solving the time-dependent GPE in imaginary time, i.e., solv-
ing the flow ψ̇ = −L[ψ]. However, normalization of the field
tends to decrease under this evolution, so it is necessary to
renormalize during the evolution. We follow Ref. [41] (also
see Ref. [42]) and discretize the evolution using a backward-
forward Euler scheme. Here time is advanced in time steps
�tn, as tn+1 = �tn+1 + tn, with n = 0, 1, 2, . . . and t0 = 0.
During such a step the updated wave function ψ+ is obtained

2Because we constrain our EGPE to particular s-angular momen-
tum spaces, a vortex can be regarded as a ground state of that space
even though it will not be the ground state of the full 3D problem.
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from the current wave function ψ (tn) according to

ψ+ − ψ (tn)

�tn+1
= 1

2

(
Ds + ∂2

∂z2

)
ψ+ − Veff [ψ (tn)]ψ (tn), (64)

ψ (tn+1) =
√

Nψ+√∫ |ψ+|2dr
, (65)

where Eq. (65) is the renormalization (projection), and we
introduced

Veff [ψ (tn)] ≡Vtr + 4π
{
ε−1

dd ψ (tn)2 + �[ψ (tn)]
}

+ γQF|ψ (tn)|3 − μEGP[ψ (tn)]. (66)

Notice that the term involving the kinetic energy operator
is implemented with a backward-Euler step, giving us good
stability for dense grids (where the kinetic energy operator is
large). By subtracting μEGP in the Veff term, we ensure that to
O(�t2) the field normalization is constant under the gradient
flow (e.g., see Ref. [43]), which improves the performance
of the algorithm. Hereon we suppress explicit notation of the
position indices of the wave function for notational brevity,
however, terms appearing are to be evaluated as described in
Secs. III C and III D.

The semi-implicit equation (64) is formally solved by in-
verting the spatial differential operator. This can be done using
Fourier transformation F , yielding an explicit expression for
ψ+:

ψ+ = F−1

{
F{ψ (tn) − �tn+1Veff [ψ (tn)]ψ (tn)}

1 + 1
2

(
k2
ρ + k2

z

)
�tn+1

}
. (67)

This can be efficiently implemented numerically using the
operators and transforms we introduced earlier.3

Using a forward-Euler approach for the potential and non-
linear terms in Eq. (64) has the advantage that these terms are
explicit, however, care needs to be taken with the time-step to
ensure that the algorithm is stable. In practice we choose the
time step according to

�tn+1 = a�t∥∥|Vtr| + 4πε−1
dd ψ2 + 4π |�[ψ]| + γQF|ψ |3∥∥∞

,

(68)

where || ||∞ denotes the maximum (over all spatial points)
of the absolute value of the argument evaluated with ψ (tn)
and a�t � 1 is a constant. For the results we present here
we generally take a�t = 0.5.4 Equation (68) ensures that the
time step is small compared to the largest magnitude of the
potential-like terms treated with the forward-Euler approxi-
mation (i.e. trap potential, interaction and quantum fluctuation
terms). This requirement is consistent with the usual condi-
tions for stability of the forward-Euler method.

3Note that ψ̃i j = F{ψ} can be evaluated as ψ̃i j = ∑
kl Hikψkl� jl ,

and similarly we can define the inverse transform.
4We typically find that for a�t � 1 the gradient flow becomes

unstable.

We are interested in obtaining the lowest energy stationary
state subject to the imposed angular momentum s. We can
quantify the backward error through the residual r ≡ L[ψ] −
μψ . In particular we use the measure

r∞ ≡ 1√
N

‖L[ψ] − μψ‖∞, (69)

where the N−1/2 factor is to make the measure independent of
normalization choice.5 We terminate the gradient flow once
r∞ decreases below a desired value (typically 10−15). We
mention that r∞ has to be used with care. First, it depends on
choice of units,6 scaling as x−7/2

0 . Second, because μ can be
negative (i.e., self-bound), or even zero, the sensitivity of this
measure is also dependent on the case under consideration.
In practice we can evaluate Eq. (69) for a particular solution
ψ by applying the EGPE operator (53) and using Eq. (54) to
obtain μ. Alternatively, we can approximately evaluate this as

r∞ ≈ 1√
N

∥∥∥∥ψ (tn) − ψ (tn−1)

�tn

∥∥∥∥
∞

, (70)

[see Eq. (64)].
As a second measure of solution quality we developed a

virial theorem for the EGPE (also see [44]). The virial relation
is �V = 0, where

�V = Ekin − Etr + 3
2 Eint + 9

4 EQF, (71)

with the terms being the components of energy [see Eq. (4)],
and where we assumed that any trap is harmonic in form. We
obtained this virial theorem by considering how the energy
functional transforms under a scaling of coordinates (e.g., see
Ref. [45]). The terms in Eq. (71) can be evaluated using the
techniques described in Secs. III C and III D. In general we
find that |�V | is a useful quantity to assess our numerical
solutions, as it is sensitive to the residual r∞ and the quality
of the spatial discretization.

V. RESULTS

In Table II we present results for the energy, chemical
potential, and |�V | of stationary self-bound states with s = 0
and s = 1 obtained by the gradient flow method. The density
profiles of the states are shown in Figs. 1(a) and 1(b). We also
show the gradient flow evolution for case (b) of Table II in
Figs. 1(c) to 1(f). We use the variational solution ψG as the
initial condition for the gradient flow and the time step �tn
quickly settles to a value of �tn ≈ 6.4 (for a�t = 0.5) during
the flow. The flow terminates at r∞ = 5×10−17 after 5591
steps, taking about 15 seconds to execute on a workstation
computer. For this case the flow is stable for a�t � 0.84, and
takes a proportionately shorter amount of time to execute with

5For example, choosing to unit normalize the wave function and
include the N factors in the interaction parameters leaves r∞ un-
changed.

6For example, add ≈ 6.9×10−9 m (for Dy), whereas another popu-
lar choice of units is harmonic oscillator length, with typical values
of the order of xho ≈ 10−6 m. Transforming a solution from add -units
to xho-units would increases r∞ by a factor of about 4×107.
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TABLE II. Energy and chemical potential values for ε−1
dd = 0.5 droplets with N = 104 and (a)–(c) s = 0 or (d)–(g) s = 1 on various

choices of numerical grid. All results are calculated with a cylindrically cutoff DDI, and the gradient flow is terminated when r∞ decreases
below 3×10−17.

s (Nρ, Nz ) (R, Z ) E Nμ |�V |
(a) 0 (50, 120) (250, 1200) −14.268417108 −19.347035858 4.5×10−3

(b) 0 (80, 160) (400, 1600) −14.268780733 −19.351349996 2.3×10−8

(c) 0 (500, 1000) (500, 2000) −14.268780734 −19.351350017 1.2×10−10

(d) 1 (50, 120) (250, 1200) −2.8144049587 −9.5969313711 1.8×10−6

(e) 1 (80, 160) (400, 1600) −2.8144048901 −9.5969333804 3.6×10−7

(f) 1 (200, 480) (400, 1600) −2.8144047844 −9.5969330684 1.2×10−9

(g) 1 (500, 1000) (500, 2000) −2.8144047842 −9.5969330677 3.4×10−10

a larger value of a�t , but becomes unstable and does not
converge when a�t � 0.84.

The results in Table II reveal how sensitive the energy
and chemical potential are to the choice of grid [i.e., range
(R, Z ) and number of points (Nρ, Nz )], showing that accurate
results (greater than nine significant figures) can be obtained
when the grid ranges are approximately two times the spatial
extent of this droplet and for sufficiently many points. This
grid range dependence arises because the DDI term involves a
convolution (e.g., see discussion in Ref. [46]). The s = 1 case
typically requires more spatial points to have a similar level of
accuracy as the s = 0 case. We expect that this arises from the
poorer performance of the Bessel quadrature for the quantum
fluctuation term when s = 1, as noted in Sec. III F. The results
in the table also show that the absolute virial expectation
|�V | is qualitative similar to the magnitude to the energy
error (i.e., number of converged digits in E ), suggesting that
|�V | provides a useful additional method to characterize the
solution accuracy.

We also consider the calculation of a phase diagram to
predict where s = 0 and s = 1 self-bound droplets have a
negative energy. This requirement ensures that the droplet is
energetically stable against evaporating into the trivial E = 0
state where the atoms are dispersed over all space. This con-
dition is adequate to ensure that s = 0 droplets are ground
states that are dynamically stable. For the s = 1 case this
requirement does not ensure dynamic stability as the droplet
can decay by fission. We discuss this aspect later.

Our results for the regions where the droplet states have
negative energy are shown in Fig. 2(a). Note by using coor-
dinates of N and ε−1

dd this phase diagram has no remaining
dependence on other parameters, and is in this sense universal.
In general the s = 0 and s = 1 regions have similar shapes,
although the s = 0 region is larger (extends to higher ε−1

dd ).
This is because the s = 0 droplet has a considerably lower en-
ergy for the same parameters [e.g., see Fig. 2(b) and Table II].
This difference is from the large energy cost associated with
hosting a vortex in the droplet. This arises from the kinetic
energy of the vortex, but also because the s = 1 droplet is
wider than the s = 0 droplet [cf. Figs. 1(a) and 1(b)], making
the DDI energy less negative.

The results in Fig. 2 also compare the stationary EGPE
solutions and variational Gaussian approach. For example, the
markers in Fig. 2(a) show the boundary to the negative energy

region determined by the EGPE solutions, while the boundary
of the shaded region is determined variationally. The EGPE
results are obtained using the gradient flow method to solve
for a state at an initial (low) value of ε−1

dd stating from a varia-
tional Gaussian solution. The resulting EGPE solution for that
case is then used as the starting point for the gradient flow at a
slightly higher value of ε−1

dd , and so on. This process is stopped
once the localized state disperses (unbinds and spreads out
over the range of the grid). In Fig. 2(b) we show the energy
of a sequence of states obtained this way for a particular case
of N = 104. We also indicate the point where E = 0, used
to identify the boundary. The variational results are located
as an energy minimum of the function given in Eq. (63). We
follow this minimum as ε−1

dd increases, noting that eventually
it becomes a local minimum (when E > 0) and then changes
to a saddle point (causing the branch to terminate). We also
mention that while the energy is positive near the end of the
branches, the chemical potential remains negative [Fig. 2(c)].

The phase diagram in Fig. 2(a) collates the results of many
analyses of the type in Fig. 2(b) for different atom numbers
N . In general the E = 0 boundary predicted by the variational
Gaussian theory is close to that obtained from the EGPE
solution. This is because the energies predicted by the two
approaches are similar near the transition point. However, we
note that the energy of the EGPE state tends to be significantly
lower than the variational state for smaller values of ε−1

dd where
the droplets are more deeply bound. In this regime [e.g., s = 0
state in Fig. 1(a)] the droplet density profile has a relative
flat-top axial density distribution, which is not well-captured
by a Gaussian.

In Figs. 2(d) and 2(e) we show examples of the droplet
states for cases with slightly positive energy. We can compare
these states to the more deeply bound states (differing only in
the values of ε−1

dd ) from Fig. 1. This comparison, particularly
for the s = 0 case, emphasizes how much the droplet size can
change with ε−1

dd . For example, over the range of ε−1
dd consid-

ered in Fig. 2(b) the axial length of the s = 0 state changes by
approximately a factor of 5. This necessitates careful choice of
numerical girds to ensure the states are calculated accurately
as ε−1

dd changes.
We can assess the stability of the s = 1 vortex droplet to

undergoing fission, whereby it splits into two s = 0 droplets
[see Fig. 3(a)]. This scenario was observed in dynamical simu-
lations of the s = 1 vortex droplet [15]. We can define a fission
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FIG. 1. Density profiles of (a) s = 0 and (b) s = 1 self-bound
stationary states for a system with ε−1

dd = 0.5 and N = 104 atoms.
(c)–(e) Gradient flow evolution for case (b) of Table II using a�t =
0.5, showing (c) the error r∞, (d) time step �tn, (e) energy error, and
(f) the absolute virial expectation error. In the energy error Eref is a
reference energy calculated from a state using a larger more dense
grid.

energy as

�EN = Es=1
N − 2Es=0

N
2

, (72)

FIG. 2. (a) Phase diagram of self-bound s = 0 and s = 1 droplet
solutions. Shaded regions bordered by black lines mark where
EG < 0. Lines with circle markers show where the EGPE solution
has E = 0. (b) The energy and (c) Nμ versus ε−1

dd for N = 104 for
the variational (lines) and GPE (lines with small circles) results for
s = 0 (red) and s = 1 (blue). The dotted lines indicate where E = 0.
The inset shows the data near E = 0. Subplots (d) and (e) show ex-
amples of metastable states with positive energies. (d) s = 0 droplet
with ε−1

dd = 0.75, E = 1.7634×10−2, μ = −2.1742×10−5, and
(e) s = 1, ε−1

dd = 0.56, E = 1.1746×10−1, μ = −2.6444×10−4.
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FIG. 3. Vortex droplet fission. (a) A schematic of the fission
process where a s = 1 vortex droplet (blue) decays into two s = 0
droplets (red). (b) Fission energy �EN as a function of ε−1

dd for N =
104 (black lines/markers) and N = 105 (red lines/markers). The re-
sults are calculated from the variational (lines) and EGPE (markers)
theories. The vertical dotted line indicates where the N = 104 s = 1
droplet has zero-energy.

where Es=1
N is the energy of a s = 1 vortex droplet with N

atoms and Es=0
N
2

is the energy of a s = 0 droplet with N/2

atoms. Thus �EN represents the excess energy of the vortex
droplet compared to two independent (i.e., well-separated)
s = 0 droplets. When this energy is positive, then the vortex
is potentially unstable to fission. The angular momentum of
the vortex droplet would need to be carried by the motion
of the separating s = 0 droplets, meaning that kinetic energy
will also be important in determining if fission can occur.
Thus �EN > 0 is a necessary but not sufficient condition for
fission.

In Fig. 3(b) we show some results for the fission energy
computed using the EGPE and variational solutions. For the
results with N = 104 both approaches predict that �EN > 0,
and thus the vortex droplet is potentially unstable to fission.
However, for the larger atom number of N = 105 the two pre-
dictions are different: the EGPE results predict that �EN > 0
at all values of ε−1

dd considered, while the variational results
suggest stability (i.e., �EN < 0) for ε−1

dd � 0.25. Here the
variational approximation is failing because the droplets are

not well described by the Gaussian ansatz. We note that this
problem was originally considered in a preprint by Cidrim
et al. [47], who presented EGPE results that appeared to
support the variational prediction that �EN < 0 for large N
and small ε−1

dd . Because �EN is determined by a difference in
two calculations, it can be quite sensitive to the accuracy of
the EGPE calculations. This example emphasizes the need for
high accuracy calculations of dipolar droplets.

VI. CONCLUSION

In this paper we presented a method to accurately solve for
dipolar quantum droplets in a cylindrical geometry allowing
for the inclusion of angular momentum. This work builds on
the discretization introduced by Ronen et al. [30], extending
it to include angular momentum in the stationary state, a
cylindrical cutoff (truncation) of the DDI kernel, and the quan-
tum fluctuation term. Using a simple gradient flow technique
we demonstrate that this approach is able to obtain accurate
results for the dense, highly elongated (filament shaped) quan-
tum droplets that form in dipolar BECs in the regime where
the DDIs dominate the contact interactions. We also show that
without a careful treatment of the DDI term in this regime it
may be difficult to obtain the droplet energy to better than
∼10% accuracy. Such errors would make calculations such as
the fission energy (which depends in the difference of energies
between two states) difficult to compute.

We also presented benchmark energy and chemical poten-
tial calculations for self-bound droplets. There are very few
such benchmark results in the literature and we expect these
will be important for comparisons with different approaches
that may be developed in the future. We present a generaliza-
tion of the virial theorem for dipolar EGPE and find that this
can be used to test the solution accuracy. As an application
of our method we also presented a phase diagram for the
energetic stability of self-bound s = 0 and s = 1 droplets, and
considered the stability of s = 1 droplets against fission.

There are many avenues for future development of this
work. We note that the EGPE solutions we presented were
obtained using a simple but efficient backward-forward Euler
gradient flow method. It would be of interest to consider
other more efficient solvers such as conjugate gradient solvers
(e.g., see Refs. [30,35,43]) or a fully implicit backward-
Euler method. Such solvers will be useful in situations
where efficiency becomes more important, such as fully
three-dimensional (3D) cases that cannot be reduced to
cylindrical symmetry. Typically, noncylindrically symmetric
ground states occur when the confinement is not symmetric
about the dipole polarization axis (e.g., see Ref. [48]), or when
the system favours the formation of a droplet array (including
supersolid) [49,50]. This later case is of significant interest
in the community due to the recent observation of supersolid
states [51–56]. Another area requiring attention in the fully
3D case is an efficient and accurate truncation scheme for the
DDI kernel, which is a critical tool to enable an efficient grid
choice to represent the state.
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