
PHYSICAL REVIEW RESEARCH 3, 013282 (2021)

Functional theory for Bose-Einstein condensates
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One-particle reduced density matrix functional theory would potentially be the ideal approach for describing
Bose-Einstein condensates. It namely replaces the macroscopically complex wave function by the simple
one-particle reduced density matrix, and therefore provides direct access to the degree of condensation and still
recovers quantum correlations in an exact manner. We initiate and establish this theory by deriving the respective
universal functional F for homogeneous Bose-Einstein condensates with arbitrary pair interaction. Most impor-
tantly, the successful derivation necessitates a particle-number conserving modification of Bogoliubov theory
and a solution of the common phase dilemma of functional theories. We then illustrate this approach in several
bosonic systems such as homogeneous Bose gases and the Bose-Hubbard model. Remarkably, the general form
of F reveals the existence of a universal Bose-Einstein condensation force which provides an alternative and
more fundamental explanation for quantum depletion.
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I. INTRODUCTION

Bose-Einstein condensation (BEC) is one of the most fas-
cinating quantum phenomena. While its theoretical prediction
by Einstein [1] based on Bose’s work [2] dates back to 1925,
the realization of BEC for ultracold atoms in 1995 [3–5] has
led to a renewed interest. The development of the field of
ultracold gases has opened new research avenues and revealed
new phenomena such as the crossover from BEC superfluidity
to BCS superconductivity [6–9]. The general need to describe
bosonic quantum systems within and also beyond the ordinary
BEC regime has urged us very recently to put forward a physi-
cal theory for describing interacting bosonic quantum systems
[10]. This bosonic reduced density matrix functional theory
(RDMFT) is based on a generalization of the Hohenberg-
Kohn theorem, abandons the complex N-boson wave function
but still recovers quantum correlations in an exact way. Since
it involves the one-particle reduced density matrix (1RDM)
γ̂ as the natural variable it would be particularly well suited
for the accurate description of Bose-Einstein condensates. In-
deed, according to the Penrose-Onsager criterion [11], BEC is
present whenever the largest eigenvalue of the 1RDM, nmax =
maxϕ 〈ϕ|γ̂ |ϕ〉, is proportional to the total particle number N .
As a matter of fact, nmax quantifies the number of condensed
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bosons, without requiring any preceding information about
the form of the maximally populated one-particle state |ϕmax〉.

While bosonic RDMFT would potentially be the ideal the-
ory for describing BECs (including the regime of fractional
BEC as well as quasicondensation [12]), RDMFT of course
does not trivialize the ground-state problem. Instead, it is
the fundamental challenge in RDMFT to construct reliable
approximations of the universal interaction functional F (γ̂ )
and determine its leading-order behavior in certain physical
regimes or its exact form for simplified model systems. Re-
sults along any of those lines are typically quite rare, however,
and their significance for the general development of RDMFT
could hardly be overestimated. The latter is due to the fact
that improved functional approximations do often build upon
previous ones (see, e.g., Refs. [13–15] and references therein).
In fermionic RDMFT, the elementary Hartree-Fock functional
[16] can be seen as the first level of the hierarchy of functional
approximations. It has directly led to the celebrated Müller
functional [17,18], which in turn inspired more elaborated
functional approximations [13,15]. In bosonic RDMFT, even
the analog of the Hartree-Fock functional has not been es-
tablished yet. It is therefore the main goal of our work to
initiate and establish this bosonic RDMFT by deriving such
a first-level functional in a comprehensive way. Because of
the significance of BEC, we identify systems of interacting
bosons in the BEC regime as the starting point for the hier-
archy of functional approximations. To be more specific, we
refer here to those BECs which are well described by the Bo-
goliubov theory. It is worth noticing that this regime covers a
large range of systems, including in particular the experimen-
tally realized dilute ultracold Bose gases as well as charged
bosons in the high-density regime. The respective first-level
functional may then not only serve as a starting point for
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the development of further functional approximations but its
concrete form will also reveal a remarkable physical concept.
The gradient will be found to diverge repulsively in the regime
of almost complete BEC, preventing quantum systems of in-
teracting bosons from ever reaching complete condensation.
This BEC force will thus provide an alternative explanation
for quantum depletion which is most fundamental: It emerges
from the geometry of density matrices and the properties of
the partial trace, independent of the pair interaction between
the bosons and other system-specific features.

The paper is structured as follows. In Sec. II, we discuss
the foundation of bosonic RDMFT, recall conventional Bo-
goliubov theory, and explain why the latter is incompatible
with RDMFT from a conceptual point of view. Then, in
Sec. III, we present a particle-number conserving modifica-
tion of Bogoliubov’s theory which eventually allows us to
derive the universal functional within the BEC regime. We
then illustrate in Sec. IV how bosonic RDMFT is applied
and present functionals for a number of different systems. In
Sec. V, we establish and illustrate the concept of a BEC force.
In the summary and conclusion, we provide also a general idea
for constructing higher order functional approximations based
on a perturbational theoretical generalization of Bogoliubov
theory.

II. NOTATION AND CONCEPTS

We outline in this section foundational aspects of RDMFT
and its application to homogeneous bosonic systems. We
also introduce the most relevant concepts which will be used
in subsequent sections and briefly recap conventional Bo-
goliubov theory. Since our work involves several different
concepts, some of which are not broadly known yet, this sec-
tion shall be comprehensive to make our paper self-contained.

A. RDMFT

The one-particle reduced density matrix (1RDM) γ̂ of an
N-fermion or boson quantum state �̂ is obtained by tracing
out all except one particle:

γ̂ ≡ NTrN−1[�̂]. (1)

Equivalently, it can be characterized as the mathematically
most primitive object which still determines the expectation
values of all one-particle observables ĥ,

〈ĥ〉�̂ = Tr1[ĥγ̂ ]. (2)

By exploiting the latter, Gilbert in 1975 [19] has proven for
quantum systems of identical fermions and/or bosons with
Hamiltonians

Ĥ (ĥ) ≡ ĥ + Ŵ (3)

the existence of a universal interaction functional FŴ (γ̂ ) of
the 1RDM: The energy and 1RDM of the ground state of
Ĥ (ĥ) for any one-particle Hamiltonian ĥ can be determined
by minimizing the total energy functional

E (γ̂ ) = Tr1[ĥγ̂ ] + FŴ (γ̂ ). (4)

In particular, there is even a one-to-one correspondence
between ground-state 1RDMs and (nondegenerate) ground

states [19]. In that sense, this reduced density matrix func-
tional theory (RDMFT) is an exact ground-state theory which
recovers correlations in an exact manner. The significance of
RDMFT is based on the fact that the interaction functional
FŴ (γ̂ ) does not depend on the choice of the one-particle
Hamiltonian ĥ but only on the interaction Ŵ . Since the latter
is typically fixed in each scientific field (we therefore drop the
index Ŵ in the following), RDMFT is a particularly economi-
cal approach for addressing the ground-state problem. Indeed,
any effort to approximate F (γ̂ ) contributes to the solution of
the ground-state problem of Ĥ (ĥ) for all ĥ simultaneously.
This shall be contrasted with wave-function-based methods
whose application to Ĥ (ĥ) does in general not provide any
simplifying information toward solving other systems Ĥ (ĥ′).

In Gilbert’s RDMFT, the domain of the universal func-
tional comprises exactly those 1RDMs γ̂ which follow from
ground states; i.e., there exists an ĥ with Ĥ (ĥ) �→ |�〉 �→ γ̂ .
To circumvent the problem of describing this complicated set,
the constrained search formalism has been established which
is based on the following consideration [20–22]:

(5)

In the last two lines, the expression �̂ �→ γ̂ means to mini-
mize only with respect to those N-fermion density operators
�̂ which map according to (1) to the 1RDM γ̂ . This varia-
tional minimization in (5) can refer to either pure or ensemble
N-particle quantum states �̂. Depending on that choice, the
constrained search formalism leads to the pure or ensemble
1RDM-functional F with a domain given by all pure or en-
semble N-representable 1RDMs. In the context of fermionic
quantum systems, the complexity of the pure one-body N-
representability conditions (generalized Pauli constraints) will
thus hamper the calculation of either the functional’s domain
or the functional itself [23].

B. Bosonic RDMFT for homogeneous systems

While RDMFT has been developed and applied so far
only for fermionic quantum systems, various concepts are
applicable to bosonic quantum systems as well, yet with one
crucial simplification. Since in the case of bosons any 1RDM,
γ̂ ≡ ∑

α λα|α〉〈α|, is pure N representable (e.g., to |�〉 =
1/

√
N

∑
α

√
λα|α, . . . , α〉), the respective bosonic RDMFT

is not hampered by one-body N-representability constraints.
Another crucial reason for us for putting forward bosonic
RDMFT [10] was that the 1RDM is the crucial entity for the
description and quantification of BEC [11], which is one of
the most fascinating quantum phenomena. In that respect, it is
worth noticing that the widely used density functional theory
[24–26] fails to provide a direct description of BEC since its
natural variable is the too rudimentary particle density.

Since our work is concerned with homogeneous BECs, we
consider only one-particle Hamiltonians which are diagonal
in the momentum representation, i.e., there is only a kinetic
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energy operators t̂ contributing to ĥ but no external poten-
tial, ĥ ≡ t̂ . Implementing this within the constrained search
formalism (5) identifies the momentum occupation numbers
n ≡ (np) as the natural variables and the pure functional fol-
lows as

F (n) ≡ min|�〉�→n
〈�|Ŵ |�〉. (6)

While we are focusing in the following on the pure func-
tional, it is worth recalling that the corresponding ensemble
functional would follow as the lower convex envelop of the
pure functional F [23]. Also, their two domains 	 coincide.
To describe 	, let us first use the normalization constraint to
get rid of the entry n0 = N − ∑

p
=0 np. Then the functional’s
domain follows as

	 =
{

n ≡ (np)p
=0

∣∣∣np � 0,
∑
p
=0

np � N
}
. (7)

In the case of finite lattice models, there are finitely many
momenta p (forming a discrete Brillouin zone), while in the
case of continuous systems or infinite lattices, n will have
infinitely many entries. It will be instructive to also understand
the functional’s domain 	 from a geometric point of view.
Apparently, 	 is a convex set which after all takes the form of
a simplex with vertices 0 and vp = Nep, where ep has only one
nonvanishing entry 1 at position p. In the following, we are
mainly interested in the regime of BEC which is characterized
by an occupation number n0 close to N . This corresponds in
the simplex 	 to the neighborhood of the vertex 0, which can
equivalently be characterized by the simultaneous saturation
of the constraints np � 0 for all p 
= 0.

Last but not least, we would like to stress that the parity
symmetry of common physical spaces implies the additional
symmetry np = n−p for all momenta p. This does not really
change the geometric form of the functional’s domain but just
allows us to skip in the definition (7) for every pair (p,−p)
of momenta one of the two occupation numbers n±p. In the
context of RDMFT, respecting this common symmetry would
mean restricting the kinetic energy operators t̂ ≡ ∑

p εpn̂p to
those with εp = ε−p.

C. Recap of conventional Bogoliubov theory

In this section, we recap the most important aspects of
Bogoliubov’s [27] well-known and experimentally confirmed
[28] theory to describe BEC in homogenous bosonic quantum
systems and the effect of depletion of the condensate as a
result of the interaction.

The Hamiltonian describing a homogenous system of N
interacting spinless bosons in first quantization (h̄ ≡ 1) is
given by

Ĥ = −
N∑

i=1

1

2m

i +

∑
1�i< j�N

W (xi − x j ). (8)

Its second quantized form in momentum representation for
particles in a large box of volume V = L3 and size L with
periodic boundary conditions then reads

Ĥ =
∑

p

εpâ†
pâp + 1

2V

∑
p,q,k

Wpâ†
p+qâ†

k−pâkâq, (9)

where Wp is the Fourier transform of W (·). In the case of an
isotropic pair interactions, W in Eq. (8) would depend only
on the modulus of the distance between the particles i and j,
which in turn would imply Wp ≡ W|p|.

The most crucial feature of the Hamiltonian Ĥ and the pair
interaction Ŵ is that they are conserving the particle number
as well as the total momentum. Assuming a BEC at T = 0, the
standard approach to determine the ground-state energy (and
the low-lying excited states) of the Hamiltonian (9) is the Bo-
goliubov approximation [27]. It is based on the fact that in the
regime of BEC the zero-momentum mode is macroscopically
occupied and interactions between noncondensed bosons can
be neglected due to the conservation of momentum: Since
application of a creation and annihilation operator a(†)

0 to the
BEC ground state leads to macroscopically large prefactors
of the order

√
N , terms in the expansion (9) of Ŵ involving

less than two 0 indices are dropped. The resulting quartic
interaction is further simplified by replacing the condensate
operators â0, â†

0 → √
n0 ≈ √

N by a c number. This even-
tually leads to the quadratic Bogoliubov Hamiltonian which
involves (besides the kinetic energy t̂ and some trivial con-
tributions) for each pair (p,−p) an anomalous term of the
form â†

pâ†
−p + âpâ−p. The Bogoliubov Hamiltonian can then

easily be diagonalized by a Bogoliubov transformation ÛB =
exp[ 1

2

∑
p
=0 θp(â†

pâ†
−p − H.c.)]. The respective ground state

follows as |�〉 = ÛB|N〉, where |N〉 ≡ (N!)−1/2(â†
0)N |0〉 is the

ground state of the noninteracting system and |0〉 is the vac-
uum state. The phases θp are chosen such that the anomalous
terms in the Hamiltonian, containing either two quasiparticle
annihilation (b̂p ≡ Û †

B âpÛB) or creation operators (b̂†
p), vanish

to eventually obtain a diagonal quadratic form in b̂p (see also
Ref. [29] for more details). Bogoliubov’s approach can also be
interpreted as the variational minimization of the Bogoliubov
Hamiltonian over all trial states of the form ÛB|N〉.

D. Incompatibility of RDMFT and conventional
Bogoliubov theory

As explained in the previous section, Bogoliubov’s ap-
proximation results in a Hamiltonian which is not particle
number conserving anymore. At the same time, RDMFT de-
fines a universal functional F (n) (or more generally F (γ̂ )) by
minimizing the interaction Hamiltonian according to (6) with
respect to quantum states with a fixed total particle number
N and fixed momentum occupation numbers n. Replacing in
Eq. (6) Ŵ by Bogoliubov’s approximated Hamiltonian would
therefore erroneously ignore the important anomalous terms
â†

pâ†
−p + âpâ−p. At first sight, this incompatibility of Bogoli-

ubov’s conventional approximation and RDMFT seems to be
paradoxical. Yet, it is worth recalling that the merits of the
unitary Bogoliubov transformation lie in the simple calcula-
tion of the (low-lying) energy spectrum while its violation of
particle-number conservation can lead to conceptual difficul-
ties beyond RDMFT as well. At the same time, since RDMFT
has the distinctive goal to (partly) solve the ground-state prob-
lem for Ĥ (ĥ) for all ĥ simultaneously, it requires apparently a
mathematically more rigid and well-defined framework than
the one provided by conventional Bogoliubov theory.
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Before we discuss in the following section such a well-
defined mathematical framework for realizing Bogoliubov’s
ideas within RDMFT, we briefly comment on an alternative
natural idea for circumventing the outlined difficulties. Instead
of applying the constrained search formalism to a fixed par-
ticle number sector, one could also extend (6) to the entire
Fock space. This would result in a Fock space RDMFT and the
anomalous terms would contribute to the functional. Yet, there
would be a crucial drawback. The respective functional would
namely allow one for any Hamiltonian (3) to only calculate
the overall ground state on the Fock space. For instance, for
specific kinetic energy operators or pair interactions, this over-
all minimum may lie in the sector of zero or infinitely many
bosons. Also adding a chemical potential term μN̂ for steering
the particle number to a preferred one would only work in the
case in which the Fock space functional was convex in the
total particle number.

III. DERIVATION OF THE UNIVERSAL FUNCTIONAL

A. Particle-number conserving Bogoliubov theory

As discussed in the context of Eq. (5) and motivated in
Sec. II D, the derivation of the universal functional for BECs
requires a particle-number conserving variant of conventional
Bogoliubov theory. Exactly such a modification has been
provided by Girardeau [30] (see also Refs. [31–34]) in the
context of pair theory. In the following, we will outline and
then apply this theory which in particular improves upon Bo-
goliubov theory by including more terms of the Hamiltonian.
The idea behind pair theory is that in the regime of BEC,
excitations of pairs (p,−p) from the condensate dominate
and thus the interacting ground state is well approximated
by a state with a corresponding pairing structure [30,32].
Restricting the original Hamiltonian Ĥ to the space of such
pair excitation states and assuming that the zero-momentum
state is macroscopically occupied means to effectively deal
with a modified interaction ŴP of pair excitation type [30],

ŴP ≡ N (N − 1)W0

2V
+ 1

2V

∑
p
=0

Wp[2n̂0n̂p + â†
pâ†

−pâ2
0

+ (
â†

0

)2
âpâ−p] + 1

2V

∑
p, p′ 
= 0

p 
= p′

Wpâ†
p′ â

†
−p′ âp′−pâp−p′

+ 1

2V

∑
p, p′ 
= 0

p 
= p′, p 
= 2p′

Wpn̂p′−pn̂p′ . (10)

The terms in the first line of Eq. (10) give rise to the Bogoli-
ubov Hamiltonian (after the replacement â0, â†

0 → √
N) while

those in the second line improve upon Bogoliubov theory. For
the sake of simplicity, we omit in the following derivations the
constant term N (N−1)W0

2V . To determine a variational ground-
state energy of Ĥ (ĥ), Girardeau’s idea was then to employ a
particle-number conserving analog of Bogoliubov trial state
ÛB|N〉. For this, one first introduces the operators

β̂0 ≡ (n̂0 + 1)−1/2â0, β̂
†
0 ≡ â†

0(n̂0 + 1)−1/2 (11)

which annihilate and/or create a boson in the condensate, yet
without changing the normalization of the respective quantum
state. Girardeau’s N-boson trial states

|�〉 ≡ ÛG|N〉 (12)

of pair excitation form are defined by the following operators,

ÛG = exp

{
1

2

∑
p
=0

θp
[
(β̂†

0 )2âpâ−p − β̂2
0 â†

pâ†
−p

]}
, (13)

with θp ∈ R and θp = θ−p. The operators ÛG are particle
number conserving as desired, [ÛG, N̂] = 0, which is due to
the additional operators β̂0 and β̂

†
0 . Since its exponent is anti-

Hermitian, ÛG is still unitary (as ÛB). The price one has to
pay for the more complicated exponent, however, is that no
compact exact expression can be found for the quasiparticle
operators Û †

GâpÛG anymore. Instead, the result known from
Bogoliubov theory holds only approximately,

Û †
GâpÛG ≈ 1√

1 − φ2
p

(
âp − φpβ

2
0 â†

−p

) ≡ ξ̂p, (14)

where φp ≡ tanh(θp). A careful mathematical estimate of
the difference between left and right side of (14) has been
provided in Ref. [33] (yet involving a slightly different but
conceptually similar definition of ÛG). It effectively allows us
to treat (14) and the implied Eq. (15) as exact relations for
our further derivation. The particle-number expectation value
of the momentum mode p 
= 0 in the interacting ground state
|�〉 (12) then follows as

np ≡ 〈�|â†
pâp|�〉 ≈ 〈N |ξ̂ †

p ξ̂p|N〉 = φ2
p

1 − φ2
p
. (15)

B. Calculation of the functional

Relation (15) is the crucial ingredient for our derivation
of the universal functional F in the regime of BEC. This
connection between the family of variational trial states of
fixed particle number and the momentum occupation numbers
n will drastically simplify the constrained search (6) and will
allow us eventually to determine the explicit form of F . For
this, we observe that relation (15) can be inverted up to binary
degrees of freedom σp = σ−p = ±1,

φp = σp

√
np

1 + np
. (16)

This sign ambiguity is conceptually very similar to the so-
called phase dilemma in fermionic RDMFT [35]. The latter
resembles the fact that general phase changes of the natural
orbitals (eigenstates of the 1RDM) affect 〈�|Ŵ |�〉 in (5) via
the N-fermion wave function |�〉 while keeping the 1RDM
invariant. In contrast to fermionic RDMFT, however, the min-
imizing signs {σp} can be found in our case of bosons in the
BEC regime.

We combine now various concepts and ideas to determine
the universal functional F (n) for BECs. According to the
constrained search formalism (6), we need to minimize for
any vector n the expectation value of the interaction Ŵ over all
N-boson quantum states with momentum occupation numbers
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FIG. 1. Bogoliubov functional F as a function of the relative
depletion D along the straight path s (28) and the curved path κ .
Dilute Bose gas in three dimensions (3D) for n = 10−3, W0 = m = 1,
and a1 = −0.01 (left); charged Bose gas in 3D for 2m = e2/2 = 1
and n = 100 (right).

n. Our focus on the regime of BECs then allows us to restrict
this to Girardeau’s N-boson trial states (12) with the additional
effect that Ŵ simplifies to ŴP in Eq. (10), i.e., 〈�|Ŵ |�〉 =
〈�|ŴP|�〉 = 〈N |Û †

GWPÛG|N〉. The operator Û †
GWPÛG should

then be expressed in terms of the quasiparticle operators ξ̂p

given by Eq. (14), allowing us to eventually calculate its action
on the state |N〉. Since the trial states |�〉 are almost uniquely
determined by n according to (15), we are only left with a min-
imization over all possible combinations of signs σp. Keeping
only terms which do not vanish in the thermodynamic limit
N → ∞, V → ∞, and n = N/V = cst. yields then the final
result for the Girardeau approximated functional

FG(n) = min
{σp=±1}

{ ∑
p
=0

[n0

V
Wp + 1

2
I2(p, n)

]
np

− σp

[n0

V
Wp − 1

2
I1(p, n, σ )

]√
np(np + 1)

}
, (17)

where

I1(p, n, σ ) ≡ 1

V

∑
p′ 
= 0

Wp−p′σp′
√

np′ (np′ + 1),

I2(p, n) ≡ 1

V

∑
p′ 
= 0

Wp−p′np′ . (18)

These formulas could directly be copied from Ref. [30] since
there the expectation value of the full Hamiltonian t̂ + ŴP

was calculated for the same quantum state ÛG|N〉. For general
n ∈ 	, one cannot overcome the common phase dilemma and
in particular the minimizing sign factors σp = ±1 in (17)
depend on n. This in turn leads to a partitioning of the func-
tional’s domain 	 into cells characterized by different signs
{σp}, similarly to the Ising cells corresponding to different
spin configurations (see also Fig. 2 for an illustration). As
already explained in Sec. III A, Girardeau’s approach based
on pair theory goes beyond Bogoliubov theory by including
additional terms of the original Hamiltonian [see also second
line of (10)]. Yet, since those involve fewer creation and/or
annihilation operators a(†)

0 and since the Girardeau approach
uses at the end (almost) the same trial states (12) as Bogoli-
ubov, we expect that the additional terms I1, I2 in (17) have
only a minor quantitative rather than a significant qualita-
tive effect on the description of BECs. Whether this changes

FIG. 2. Domain 	 of the universal functional is shown for L = 5
sites. Minimization of signs (σp1 , σp2 ) in (17) partitions 	 into three
cells (see text for details).

beyond the regime of BEC is not clear since one still is
restricted to the common BEC trial states (12).

In the regime of BEC, the two terms in Eq. (17) involv-
ing I1 and I2, respectively, are significantly smaller than the
term proportional to n0. Accordingly, in the regime of interest
the minimization of various σp can be executed analytically,
leading to

σp = sgn(Wp), ∀ p 
= 0. (19)

Also, the possible approximation n0 ≈ N would be of the
same order as neglecting the less significant Girardeau terms
I1 and I2. Eventually, implementing those two last approx-
imations leads to one of our key results, the Bogoliubov
approximated functional (n ≡ N/V ),

FB(n) = n
∑
p
=0

Wp
[
np − sgn(Wp)

√
np(np + 1)

]
. (20)

For the sake of completeness, we would like to empha-
size that a simplified version of (20) has already been
presented in Ref. [10]. There, by reverse engineering, we
calculated this functional as the Legendre-Fenchel transform
of the well-known result for the ground-state energy of a
Bogoliubov-approximated system. As the application of (20)
in Sec. IV A will reveal, the underlying replacement Wp �→
W0 � 0 in Ref. [10] is, however, too restrictive and also rather
problematic. The distinctive form of the Bogoliubov func-
tional FB in (20) resembles clearly the decoupling of various
momentum pairs (p,−p) from each other within Bogoliubov
theory. Remarkably, the Bogoliubov approximated functional
FB is convex, in contrast to common pure functionals in
fermionic RDMFT. The pure functional FB therefore coin-
cides with the corresponding ensemble functional since the
latter is given by the lower convex envelop of the former [23].

We also would like to reiterate that due to the general
significance of BECs, the functional (20) can be seen as the
first-level approximation of the universal functional in bosonic
RDMFT. In analogy to the Hartree-Fock [16] and the Müller
functional [17,18] in fermionic RDMFT and the local density
approximation in density functional theory [36], FB and FG

will represent a promising starting point for the construction
of more elaborated functional approximations. In that sense,
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we expect that our key results (17) and (20) will initiate
and establish eventually bosonic RDMFT. In the following,
we simplify our notation by skipping the index B, G of the
functional, also since both functionals (almost) coincide in the
relevant regime of BEC.

IV. ILLUSTRATION AND APPLICATIONS

A. Dilute Bose gas in 3D

We now apply the concepts of RDMFT to the homoge-
nous dilute Bose gas, the system for which Bogoliubov’s
theory [27] was originally developed. This will also allow
us to demonstrate how the well-known expression for the
ground-state energy of a dilute Bose gas [37] can be obtained
using RDMFT. Our derivation will be based on the s-wave
scattering approximation, involving the first two terms of the
Born series.

Let us introduce for the following considerations the de-
gree D of quantum depletion (NBEC ≡ n0)

D ≡ 1 − NBEC/N = 1

N

∑
p
=0

np. (21)

From a geometric point of view, D is nothing else than the l1
distance of n in the simplex 	 (7) to the vertex 0 correspond-
ing to complete BEC. We also recall that the ground-state
energy of Ĥ (t̂ ) = t̂ + Ŵ follows in RDMFT by minimizing
the respective energy functional over the space of occupation
number vectors n,

E (t̂ ) = min
n∈	

[ε · n + F (n)], (22)

where t̂ ≡ ∑
p εpn̂p, assuming without loss of generality

(w.l.o.g.) ε0 = 0, and ε · n ≡ ∑
p
=0 εpnp. To calculate for

the realistic dilute Bose gas the ground-state energy and the
degree of condensation, we would need to plug in for the
kinetic energy in (22) the specific dispersion relation of free
particles, i.e., εp = p2/2m (ignoring boundary effects). It is
worth reiterating that in principle systems with any kinetic en-
ergy t̂ could be considered in RDMFT. From an experimental
point of view, one could indeed imagine a modified dispersion
relation due to a specific background medium and in the case
of lattice models both the rate and range of the hopping can
be actually varied (see, e.g., Refs. [38,39]). Because of this,
we are for the moment still considering a general t̂ and ε,
respectively.

Finding the minimizer n̄ of the energy functional then
means to solve

εp = − ∂F
∂np

(n̄), ∀p. (23)

Using the explicit form of the Bogoliubov functional (20) then
leads to

n̄p = 1

2

(
εp + nWp√

εp(εp + 2nWp)
− 1

)
. (24)

This is nothing else than the well-known result for the mo-
mentum occupation numbers [29].

Considering now the specific case of a realistic dilute Bose
gas allows us to determine the ground-state energy explicitly.
For this, we first evaluate the universal functional at the mini-
mum n̄, leading to (see Appendix A)

F (n̄) = 128
√

π

3m
Na5/2

0 n3/2 + 4πNa1n

m
. (25)

It depends only on the first two terms of the Born series of the
s-wave scattering length a [37],

a0 = mW0

4π
, a1 = − 1

4πV

∑
p
=0

W 2
p m2

p2
. (26)

As shown in Appendix A, adding the kinetic energy and
reintroducing the omitted constant term W0N (N − 1)/2V ≈
W0Nn/2 leads to the well-known ground-state energy [37]:

E = 2πNn

m

(
a0 + a1 + 128

15
√

π
a0(na3

0)1/2

)
. (27)

This can be recast by using the scattering length a which
eventually leads (up to higher order terms) to the compact
expression [29] E = 2πNna

m (1 + 128
15

√
π

(na3)1/2).
Since the underlying domain 	 is infinite dimensional in

the case of a continuous system in a box it is difficult to graph-
ically illustrate the Bogoliubov functional. Yet, to visualize at
least some of its most crucial features, we define two paths
within 	, both starting at the physical point n̄ (corresponding
to εp = p2/2m) and terminating at the vertex 0 describing
complete BEC. The first one is just the straight path s between
those two points, parameterized by t ∈ [0, 1],

n(t ) = n̄ − t n̄. (28)

The l1 distance D(t ) of n(t ) to 0 follows directly as

D(t ) =
√

n

3π2
(mW0)3/2(1 − t ) (29)

and the functional’s concrete values F[n(t )] along that path
can easily be calculated by exact numerical means. As sec-
ond path κ , we consider the one experimentally realized in
Ref. [28] by continuously reducing the coupling strength κ

of the pair interaction from one to zero. Since the interaction
Hamiltonian Ŵ in RDMFT is fixed, this path has to be realized
equivalently by increasing the strength of the kinetic energy
according to p2/2mκ . The respective distance D of n(κ ) to 0
follows as

D(κ ) =
√

n

3π2
(mW0κ )3/2 (30)

and the functional F[n(κ )] along that path is given by

F[n(κ )] = 4nNW0D(κ )

+ 32/34π7/3Nn2/3a1

m2W0
D2/3(κ ).

(31)

In Eq. (31), one may replace W0 by a0 according to (26).
The result for F as a function of the fraction D of noncon-

densed bosons along the two paths s and κ is shown in Fig. 1
for the parameters n = 10−3, W0 = m = 1, and a1 = −0.01.
This choice of parameters (recall that we set several physical
constants to one) corresponds to realistic dilute Bose gases,

013282-6



FUNCTIONAL THEORY FOR BOSE-EINSTEIN … PHYSICAL REVIEW RESEARCH 3, 013282 (2021)

as our following results of the small degrees of depletion will
confirm. We observe that the Bogoliubov functional F goes
to zero for D = 0, which corresponds to complete BEC. Also,
it can be seen that the gradient of F increases for smaller
distances D. In Sec. V, we will show that the gradient of F
actually diverges in the limit D → 0 and provide a detailed
discussion of this remarkable and far-reaching observation.

A generalization of F given by Eq. (20) to dimensions
d 
= 3 within the s-wave scattering approximation is possible
if the Bogoliubov approximation for the given set of param-
eters, i.e., the interaction strength and the density, is valid.
Two-dimensional dilute systems are weakly interacting if the
condition n|a|22D � 1 [40,41] is satisfied where a2D is now
the respective two-dimensional s-wave scattering length. In
contrast to higher dimensional systems, a one-dimensional
Bose gas is weakly interacting in the limit of high densities
and the validity of the Bogoliubov approximation in that limit
was shown in Ref. [42]. Due to their distinctive role, we will
study a one-dimensional model in Sec. IV C.

B. Charged Bose gas in 3D

In contrast to the dilute Bose gas discussed in the previous
section, the scattering of charged bosons cannot be described
within the s-wave scattering approximation anymore. This is
due to the infinite range of the Coulomb interaction W (r) ∝
1/r. The respective Fourier coefficients Wp can still be de-
termined analytically though. In the case of an additional
uniform background, they follow as

W0 = 0, Wp = 4πe2

p2
∀p 
= 0. (32)

For charged bosons, the weak interaction regime corresponds
to the high density limit [43–45]. This regime to which Bo-
goliubov’s approximation refers to is characterized by a small
“gas parameter,” rs ≡ (3/4π )1/3me2n−1/3 � 1. To illustrate
again how RDMFT works, we calculate the energy and mo-
mentum occupation numbers np of the ground state for the

most realistic case of a kinetic energy given by t̂ = ∑
p

p2

2m n̂p.
For this, we add the exact kinetic energy functional Tr1[t̂ (·)]
to the universal interaction functional F with Fourier coef-
ficients Wp given by Eq. (32). Then, we minimize the total
energy functional with respect to all n ∈ 	, leading to the
minimizer n̄ which is given by Eq. (24). Evaluating then the
functional at n̄ is straightforward (in contrast to the dilute
neutral Bose gas) and one finds (recall n ≡ N/V )

F (n̄) = 2�
(− 1

4

)
�

(
7
4

)
Nn1/4e5/2m1/4

3π5/4
(33)

and the respective fraction of noncondensed bosons D = 1 −
NBEC/N follows as

D̄ ≡ D(n̄) = −�
(− 3

4

)
�

(
5
4

)
m3/4e3/2

4π7/4n1/4
. (34)

Equation (34) verifies that the depletion of the condensate
decreases with increasing density n. Adding the kinetic energy
to Eq. (33) leads to the known result for the ground-state

energy (h̄ = 4πε0 = 1) [46]:

E = −4�
[− 5

4

]
�

[
7
4

]
Nn1/4m1/4e5/2

3π5/4
. (35)

As a consistency check, this confirms the correctness of
Eq. (33).

Next, in analogy to Sec. IV A, we consider again the
straight path s and the curved path κ . The latter is again
defined as the curve n(κ ) obtained by reducing by factor
κ ∈ [0, 1] the coupling strength of the Hamiltonian above
[which led to the results Eqs. (33), (34) and (35)]. Evaluating
the distance D along the path κ yields

D(κ ) = D̄κ3/4 (36)

and the functional F takes the values

F[n(κ )] = qD1/3(κ ), (37)

q ≡ 25/3�(− 1
4 )�( 7

4 )Nn1/3e2/3[−�(− 3
4 )�( 5

4 )]
1/3

π2/3. For the
path s, we have D(t ) = (1 − t )D̄ and the concrete values of
the functional F along that path can be evaluated by exact
numerical means. The right panel of Fig. 1 shows F along
the two paths s and κ . The curves have qualitatively similar
shapes to those for the dilute neutral Bose gas shown on the
left of Fig. 1. This is not surprising because both setups corre-
spond to a weakly interacting system in which the Bogoliubov
approximated functional Eq. (20) is valid. However, we will
see in Sec. V that the momentum dependence of Wp can alter
the behavior of the gradient of F .

C. Bose-Hubbard model for five lattice sites

As a third example, we discuss in this section the one-
dimensional Bose-Hubbard model. For illustrative purposes,
we consider the specific case of just L = 5 lattice sites and
N = 100 bosons since this allows us to visualize the func-
tional and its gradient on the entire domain 	. Indeed, for
L = 5 there are only two independent momentum occupation
numbers due to the general parity symmetry np = n−p and
normalization n0 = N − ∑

p
=0 np.
We start by discussing a few conceptual aspects which

are valid for any number L of sites (assuming for simplic-
ity L odd). The one-dimensional Brillouin zone comprises
momenta p = 2πν/L, where ν takes integer values in the
interval described by |ν| � (L − 1)/2. The bosons interact via
Bose-Hubbard on-site interaction as described by the operator
U
2

∑L
j=1 n̂ j (n̂ j − 1). It is worth recalling that the universal

functional depends on the entire interaction Hamiltonian; i.e.,
it includes a priori the coupling constant U as well. Yet, due to
the linear structure of the constrained search (5) and (6), any
non-negative prefactor could be separated from the interaction
Hamiltonian Ŵ and added instead in front of the respective
universal functional,

FUŴ = |U |Fsgn(U )Ŵ . (38)

It is crucial to observe that the same does not apply to possible
sign factors since otherwise this would mean to change the
minimization in (5) and (6) to a maximization. Because of
this, we consider in the following the interaction Hamiltonian
Ŵ ≡ sgn(U )

2

∑L
j=1 n̂ j (n̂ j − 1) and add eventually the coupling
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constant |U | in front of the respective universal functional FŴ .
To proceed, it is then an elementary exercise to determine the
corresponding Fourier coefficients Wp = sgn(U ) which are in
particular independent of the (one-dimensional) momentum
p. The universal functional in the BEC regime is obtained by
plugging the concrete result for the Fourier coefficients Wp

into the general formula for the Bogoliubov functional (20)
or its extension (17) based on Girardeau’s approach. Just to
reiterate, the respective functionals are valid in the regime of
BEC, i.e., for weak interactions. In contrast to their higher
dimensional counterparts, one-dimensional systems require
high densities n = N/L � 1 to be weakly interacting [42].

From a general point of view, the context of lattice models
emphasizes very well the conceptual advantages of RDMFT
relative to wave-function based methods. After having de-
termined the universal interaction functional FŴ (or decent
approximations thereof), the ground-state energy of every
Hamiltonian Ĥ (t̂ ) = t̂ + |U |Ŵ can be calculated with rel-
atively little computational effort by minimizing the total
energy functional with respect to all n ∈ 	. In that sense,
RDMFT represents a highly economic approach for solving
simultaneously the ground-state problem for the entire class
{Ĥ (t̂ )} of Hamiltonians. For continuous systems, the benefits
of this are less obvious since there is essentially one partic-
ularly relevant choice for the kinetic energy operator t̂ . This
is quite different for lattice models since both the rate and
the range of the hopping can be varied in experiments (see,
e.g., Refs. [38,39]). Nonetheless, we focus in the following
on hopping just between neighboring sites at a rate t � 0,
i.e., we choose t̂ = −2t

∑
p (cos(p) − 1)n̂p and without loss

of generality (w.l.o.g.) fix |U | ≡ 1. In analogy to the most
realistic dilute and charged Bose gas as discussed in Secs.
IV A and IV B, respectively, we pick t = U = 1 as a reference
point for further investigations and illustrations.

To illustrate and compare the Bogoliubov- (20) and the
Girardeau-approximated functionals (17) for the specific case
of L = 5 sites, we first need to execute the minimization of
the sign factors in (17). As shown in Appendix C, this can
be done analytically due to the specific Fourier coefficients
and leads to a partitioning of the functional’s domain 	 into
three regions. Just for illustrative purposes, we present in
Fig. 2 the entire domain 	 of the functional (17) (recall its
validity refers to the regime of BEC only) and the three cells
which are characterized by different minimizing sign configu-
rations (σp1 , σp2 ) in (17). As the two independent occupation
numbers, we choose here the momenta p1 = 2π/5 and p2 =
4π/5, which can take values npj ∈ [0, 50]. The vector (0,0)
corresponds to complete BEC, i.e., NBEC ≡ n0 = N = 100
and its vicinity represents the BEC regime to which our func-
tionals refer.

In Fig. 3, we present now the Bogoliubov functional (20)
and its extension (17) based on Girardeau’s approach in the
form of a contour plot in the BEC regime of not too large
quantum depletion. The results for the two functionals are in
quite good agreement for small degrees D of depletion. The
occupation number vector n̄ = (0.91, 0.44) obtained from
minimizing the total energy functional for the reference point
(t,U ) = (1, 1) is shown in Fig. 3 as well. The correspond-
ing degree of depletion, D = 2.7%, justifies in retrospect the
treatment of the interaction Ŵ within the Bogoliubov theory

FIG. 3. Left: Contour plot of the Bogoliubov-approximated
functional (20) for the Bose-Hubbard model with N = 100 bosons
on L = 5 sites in the BEC regime of not too large depletion. Right:
Girardeau’s extension (17) for the same system.

and the usage of the functionals (20) and (17), respectively.
For stronger quantum depletion, the two functionals in Fig. 3
begin to differ also qualitatively. Their (small) deviation al-
ready in the regime of BEC with a degree of depletion around
2% emphasizes the quantitative significance of the additional
terms I1 and I2 and the usage of the exact value n0 rather than
its approximation to N in Eq. (17).

For the discussion in Sec. V of the new concept of a BEC
force, we define in Fig. 3 five qualitatively different paths
toward the polytope boundary ∂	, all starting from the point
n̄. The path denoted by s corresponds to a straight path toward
complete BEC and κ denotes the path where the interaction
strength of the model is reduced by increasing the kinetic
energy by a factor 1/κ with κ ∈ [0, 1]. The path denoted
by a runs perpendicular toward the hyperplane defined by
np1 + np2 = 0. Consequently, it corresponds to the path with
the fastest increase of the condensate fraction (yet it will not
reach complete BEC). In the cases b and c, one occupation
number is fixed while the other one is continuously decreased
to zero. In Fig. 4, we present the functional F as a function
of D = 1 − NBEC/N along those five paths. The black dots
emphasize that the value of F at the boundary ∂	 remains
finite (quite in contrast to its derivative as shown and discussed
in the subsequent section). The convexity of the curves in
Fig. 4 corresponding to the four straight paths a, b, c, s just
reflects the local convexity of the exact universal functional in
the regime of not too large quantum depletion. In this context,

FIG. 4. Universal functional F for the Bose-Hubbard model
along the five paths defined in Fig. 3.

013282-8



FUNCTIONAL THEORY FOR BOSE-EINSTEIN … PHYSICAL REVIEW RESEARCH 3, 013282 (2021)

we would like to reiterate that this convex behavior and the
repulsive character of the functional’s gradient close to the
boundary emerges from the minimization of the sign factors
in (17) leading to (19).

V. REPULSIVE BOSE-EINSTEIN CONDENSATION FORCE

In this section, we explore in more detail the behavior of
the functional and its gradient close to the boundary of their
domain 	 in the regime of BEC. This will eventually allow us
to reveal and establish the concept of a BEC force. Due to its
potentially far-reaching consequences for our understanding
of bosonic quantum systems, we will calculate and illustrate
the BEC force in Sec. V B for the three different systems
studied in Sec. IV.

A. General results

The functional (20) which is based on the Bogoliubov
approximation is convex on its entire domain 	 (7). Since this
approximate functional is exact in leading order in the regime
of BEC with not too large quantum depletion, all conclusions
drawn from it are valid for the exact universal functional of (8)
as well. The illustrations in the previous section for dilute and
charged Bose gases in 3D and the Bose-Hubbard model have
also confirmed the distinctive convex behavior of the universal
functional in the BEC regime. While the functional itself
remains finite even at the point 0 ∈ 	 of complete condensa-
tion, the same will not be true anymore for the functional’s
gradient. This can easily be deduced from the form of the
Bogoliubov functional (20). To be more specific, approaching
the vertex 0 of the simplex 	 means simultaneously sending
all momentum occupation numbers np with p 
= 0 to zero.
Taking then the derivative of (20) [or of its extension (17)]
with respect to np sufficiently close to 0 yields in leading order

∂F
∂np

(n) ∼ −n|Wp|
2

1√
np

. (39)

It is worth noticing that the divergence of this derivative
for np → 0 is always repulsive for any interaction Ŵ . This
remarkable feature follows directly from the minimization
of the sign factors in (17), leading to (19). The repulsive
nature of the diverging gradient also proves universally that
occupation numbers in interacting bosonic quantum systems
can never attain the exact mathematical value 0. Although
our work refers to homogeneous systems in their BEC regime
only, we have little doubt that this conclusion is also valid for
any generic nonhomogeneous interacting bosonic quantum
system, also beyond the BEC regime. For the sake of clarity,
we would like to emphasize that these statements do not hold
for noninteracting bosons (Wp = 0) since the corresponding
universal functional is zero, F ≡ 0.

The general result (39) implies that for interacting bosons
the point 0 of complete condensation can never be reached,
independent of the path toward 0 that is envisaged. Since the
functional F is finite, this seems to be paradoxical as far as
the energy is concerned. Yet, the reader shall note that it is the
kinetic energy which will need to diverge according (23) to
enforce such a path toward 0.

We also would like to emphasize that the divergence of
the gradient of F along a straight path is always proportional
to 1/

√
D and its prefactor depends on the direction of the

path, i.e., the angle at which 0 is approached. To confirm this
in a quantitative way, let us consider a general straight path
from a starting point n̄ in the regime of BEC to 0, linearly
parameterized by t ∈ [0, 1],

n(t ) = (1 − t ) n̄. (40)

The degree D (21) of quantum depletion along that path re-
duces according to

D(t ) = (1 − t ) D̄ ≡ (1 − t )
1

N

∑
p
=0

n̄p. (41)

The gradient of F projected onto that path is then nothing else
than the weighted sum of individual contributions (39) from
every p,

∂F
∂D

∣∣∣
path

= ∇nF · ∂n
∂D

∣∣∣
path

= ∇nF · n̄
D̄

∼ −n

2

∑
p
=0

|Wp|
√

n̄p

D̄

1√
D

. (42)

This second key result of our work establishes the concept
of a BEC force which prevents interacting bosonic quantum
systems from ever exhibiting complete BEC. This concept is
conceptually very similar to the fermionic exchange force that
we have recently revealed and established in fermionic lattice
models [47].

B. Examples

In this section, we illustrate the concept of a BEC force
(42) for various systems introduced in Sec. IV.

1. Bose gases in 3D

We revisit the 3D Bose gas for neutral atoms in the low-
density regime and for charged atoms in the high-density
regime. The aim is to calculate for those concrete systems
the explicit values of the BEC force (42). For both systems,
the derivative of F with respect to the degree D of quantum
depletion along the path s defined by (40) is given by Eq. (42).
The summation over p 
= 0 can be converted into an integral
in the thermodynamic limit where N → ∞, V → ∞, and
n = N/V = cst. This eventually allows us (see Appendix B)
to obtain a compact analytic expression for the BEC force,

dF (n̄)

dD

∣∣∣∣
s

∼ N

[
η(a0, n, m) + 2πna1

m
√

D̄

]
1√
D

, (43)

where η(a0, n, m) is a positive constant and a0 and a1 are the
first two terms in the Born series for the scattering length a.
It is worth reiterating that according to the general result (42)
the BEC force is always repulsive. Since only the second term
in Eq. (43) is negative (recall a1 < 0), this imposes in turn a
bound on the maximal valid distance D̄ of the starting point
n̄ ∈ 	 to the regime of complete BEC.

For the charged Bose gas, the last expression in the second
line in Eq. (42) can only be calculated by exact numerical
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FIG. 5. BEC force |dF/dD| along the straight path s (blue) and
the curved path κ (red) is shown for the dilute Bose gas in 3D with
n = 10−3, W0 = m = 1, and a1 = −0.01 (left) and for the charged
Bose gas in 3D with 2m = e2/2 = 1 and n = 100 (right).

means. Nonetheless, this also allows us to confirm the square-
root dependence of the divergence. In general, the functional’s
gradient diverges as 1/

√
dist(n, ∂	) along straight paths

reaching any arbitrary point on the boundary ∂	 in the regime
of BEC.

Moreover, we determine for both systems the BEC force
along the curved path n(κ ) which is defined by reducing an
additional coupling constant κ in front of Ŵ from one to zero.
Since exactly this path has been implemented in a very recent
experiment [28], this may suggest a first experimental setup
for realizing and visualizing our concept of a BEC force: The
closer n(κ ) is to the point 0 of complete condensation, the
more difficult it will get to further approach that point. This
will manifest itself in more suppressed responses of the BEC
to external perturbations. The explicit calculation of the BEC
force along the κ path follows directly from differentiation of
the expressions in (31) and (37), respectively, leading to

dFdilute

dD

∣∣∣∣
κ

∝ − 1

D1/3
(44)

and

dFcharged

dD

∣∣∣∣
κ

∝ − 1

D2/3
. (45)

Figure 5 displays the BEC force along the straight s path and
the curved κ path for both ultracold gas systems. The linear
behavior shown in this log-log plot confirms the algebraic
dependence of the BEC force on the degree D of quantum
depletion along both paths. For the dilute Bose gas, the gradi-
ent of F according to Eqs. (43) and (44) diverges faster along
the path s than along the path κ . For the charged Bose gas, we
observe the opposite behavior.

2. Bose-Hubbard model

We illustrate the BEC force and the diverging behavior
of the functional’s gradient close to the boundary ∂	 of its
domain in general for the Bose-Hubbard model. For this, we
consider again as in Sec. IV C the case of N = 100 bosons
on L = 5 sites. We then determine the directional derivative
of the functional along the five paths which were defined in
Fig. 3. Since for all five paths the distance D of the occupation
number vector n to 0 is monotonously decreasing, we can
parametrize the functional’s derivative along each path by
D. The respective results are depicted in Fig. 6. There, the
vertical solid lines correspond to the values of D at which the

FIG. 6. Gradient of the universal functional F for the Bose-
Hubbard model along the five paths defined in Fig. 3. The results
for κ and s almost coincide.

respective paths reach the boundary of 	 (see also Figs. 3
and 4). We first observe that for all five paths −∂F/∂D is
diverging at the end point of each path on the boundary ∂	.
As a rather elementary analysis reveals (not shown here), this
divergence is always proportional to 1/

√
dist(n, ∂	). As far

as the four straight paths a, b, c, s are concerned, this was
expected given the general results of Sec. V A. In contrast to
the two continuous Bose gases, however, the same applies in
the Bose-Hubbard model also for the curved κ path which is
obtained by just reducing the coupling strength.

VI. SUMMARY AND CONCLUSION

For homogeneous Bose-Einstein condensates (BECs)
which are described by the Bogoliubov theory, we suc-
ceeded in deriving the universal interaction functional F (n).
Our approach based on the constrained search formalism
necessitated, however, a distinctive particle-number conserv-
ing modification of the conventional Bogoliubov theory. The
crucial ingredient of our derivation has been the strong con-
nection (15) between the vectors n of momentum occupation
numbers and the Bogoliubov trial states. This has drasti-
cally simplified the Levy-Lieb constrained search and the
minimization (17) with respect to the remaining indepen-
dent degrees of freedom (sign factors) could be executed as
well, eventually leading to our key result (20). The universal
functional F (n) comprises separate contributions of various
momentum pairs (p,−p) (recall np = n−p). This, of course,
resembles the fact that Bogoliubov theory describes indepen-
dent pair excitations of condensed bosons, (0, 0) �→ (p,−p).

While typical experimental realizations of BEC involve
ultracold gases in their dilute regime, it is worth recalling that
the scope of Bogoliubov theory is wider. As a matter of fact,
it applies to any homogeneous system in arbitrary dimension-
ality as long as it exhibits BEC with not too large depletion.
Thus, to identify the range of applicability of our derived first-
level bosonic RDMFT functional one just needs to understand
the conditions under which different physical systems exhibit
BEC. For instance, for neutral bosons in dimensions d � 2
this would be the dilute regime (which implies effectively a
weak coupling) while for d = 1 and also for charged bosons
in d = 3 it would be the high-density regime. It will be one
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of the future challenges to determine also the functional (or at
least approximation thereof) in other physical regimes beyond
BEC. Similarly to the Hartree-Fock functional in fermionic
RDMFT [16] and the local density approximation in density
functional theory [26], the Bogoliubov functional could then
serve as a starting point for such approximations. That is
particularly promising, since in contrast to the Hartree-Fock
functional our functional already involves some quantum cor-
relations while the former always leads to occupation numbers
identical to just one and zero [16].

The second key result of our work is the emergence of a
universal BEC force which prevents general quantum systems
of interacting bosons from ever reaching complete BEC. To
be more specific, the gradient of the universal functional has
been found to repulsively diverge as 1/

√
1 − NBEC/N in the

regime of almost complete BEC. This BEC force can be seen
as a collective force since it comprises individual diverging
terms −∂F/∂np ∼ n|Wp|/2

√
np from each momentum p. It

is worth emphasizing that it has been exactly the minimiza-
tion (17) of the phase factors within the constrained search
formalism which eventually made this BEC force and more
generally ∇nF close to the boundary of its domain 	 re-
pulsive regardless of the signs of various Fourier coefficients
Wp. The BEC force provides an alternative explanation for
quantum depletion which is most fundamental in the sense
that it is merely based on the geometry of density matrices
and the properties of the partial trace. Indeed, the type of
interaction between the bosons only affects the prefactor of
the BEC force, while its diverging behavior proportional to
1/

√
1 − NBEC/N is universal. Due to this universal behavior,

one may expect that the respective prefactor could provide
important insights into system-specific properties, in some
analogy to the so-called Tan’s contact [48–50]. Moreover, the
BEC force is nothing else than the bosonic analog of the
recently discovered fermionic exchange force [47], showing
exactly the same diverging behavior close to the boundary of
the fermionic functional’s domain.

Last but not least, we comment on important follow-up
challenges besides the possible experimental realization of the
BEC force in ultracold gases and the construction of function-
als with a larger range of validity. One such direction would
be to quantify in a mathematically rigorous way the deviation
of the Bogoliubov functional from the exact functional FŴ
of the full interaction Hamiltonian Ŵ in (8). In particular,
we are wondering whether the mathematical techniques used
in Ref. [33] to estimate the accuracy of Bogoliubov’s theory
rigorously can be adapted to the context of RDMFT. In that
respect, it is worth noticing that our result (17) with phases
σp = sgn(Wp) (or any other choice of phases) represents a
universal upper bound to the functional of the full pair inter-
action Ŵ in the entire domain. This is due to the following
two reasons. First, (17) is found through a variational ansatz,
and second, this ansatz of paring states has only an overlap
with the pairing interaction Hamiltonian ŴP [recall Eq. (10)].
Proving in a mathematically rigorous way the BEC force
might be particularly challenging. Even if lower and upper
bounds can be proven for the difference between the Bogoli-
ubov and the full functional FŴ , the gradient cannot easily
be controlled since FŴ may (at least in principle) strongly
oscillated between both bounds. A more promising approach

would be to exploit the one-to-one correspondence established
through the constrained search formalism between n and the
Bogoliubov trial state, n ↔ Ûn|N〉. The idea for obtaining
higher order terms of (20) would be to conjugate in a first step
Ŵ , ÛnŴÛ †

n , and afterward apply conventional perturbation
theory with respect to the resulting small terms in ÛnŴÛ †

n
(which are dropped within Bogoliubov theory). These higher
order corrections would then allow one to prove the BEC
force in a mathematically comprehensive way by generalizing
techniques that have been developed in Ref. [10] in the context
of the Hubbard dimer.
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APPENDIX A: FUNCTIONAL AND GROUND-STATE
ENERGY FOR THE DILUTE BOSE GAS

In this section, we derive the functional F (n̄) for the dilute
Bose gas in 3D and use this result to obtain the well-known
expression for the ground-state energy.

Let us first emphasize that replacing already in Eq. (20) all
Fourier coefficients Wp by W0 would make the respective sum
divergent. Instead, we rewrite (20) as

F (n̄) = n
∑
p
=0

Wp

(
n̄p − √

n̄p(n̄p + 1) + nWpm

p2

)

−
∑
p
=0

n2W 2
p m

p2
, (A1)

since then one is allowed to replace Wp by W0 in the first term.
This yields (also replacing the sum by an integral)

F (n̄) = V

2π2
n

∫ ∞

0
d p p2W0

(
n̄p − √

n̄p(n̄p + 1) + nW0m

p2

)

−
∑
p
=0

n2W 2
p m

p2

= V

2π2
(2m)3/2 2

3

√
2(nW0)5/2 −

∑
p
=0

n2W 2
p m

p2
. (A2)

The second term can be rewritten in terms of a1 given by
Eq. (26). Including also the constant term which we neglected
so far and replacing W0 by a0 through Eq. (26) yields

F (n̄) = nN2π

m
a0 + nN

√
π

m

128

3
a0(na3

0)1/2 + 4πnN

m
a1

= 2πnN

m

(
a0 + 64

3
√

π
a0(na3

0)1/2 + 2a1

)
. (A3)

As a consistency test, we start now from Eq. (A2) and add
the kinetic energy. The second term in Eq. (A2) can be split
into two parts such that it cancels the divergence in the integral
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for the kinetic energy as follows:

E =
∑
p
=0

p2

2m
np + F (n̄)

= nNW0

2
+ V

2π2
(2m)3/2 2

3

√
2(nW0)5/2

+ V

2π2

∫ ∞

0
d p p2

(
p2

2m
np − n2W 2

0 m

2p2

)
−

∑
p
=0

n2W 2
p m

2p2

= nNW0

2
+ V

2π2
(2m)3/2 4

15

√
2(nW0)5/2 −

∑
p
=0

n2W 2
p m

2p2
.

(A4)

Inserting a0 and a1 leads to the ground-state energy

E = 4πNn

2m
(a0 + a1) + 4πNn

2m
a0

128

15
√

π
(na3

0)1/2, (A5)

which is in agreement with Ref. [37].

APPENDIX B: BEC FORCE FOR THE DILUTE BOSE GAS

We calculate the derivative of F with respect to the dis-
tance along a straight path denoted by s toward complete BEC
starting at the occupation number vector n̄. Then, n̄p(t ) =
n̄p(1 − t ) and for t ≈ 1 or equivalently D(t ) � 1 we can
approximate

dF (n̄)

dD

∣∣∣∣
s

= 1

D(t )

∑
p
=0

nWpn̄p(t )

(
1 − 2n̄p(t ) + 1

2
√

n̄p(t )[n̄p(t ) + 1]

)

≈ −
(

n

2
√

D(0)

∑
p
=0

Wp
√

n̄p

)
1√
D(t )

. (B1)

The summation in Eq. (B1) can be replaced by an integral
(
∑

p → V
(2π )3

∫
d3 p) in the thermodynamic limit where N →

∞, V → ∞, and n = N/V = cst.. To evaluate the integral
over the momentum p, we rewrite Eq. (B1) as follows:

dF (n̄)

dD

∣∣∣∣
s

≈ − n

4π2
√

D(0)

∫ ∞

0
d p p2

(
Wp

√
n̄p − (nWp)2m

p2

)

× 1√
D(t )

− 1

2
√

D(0)

∑
p
=0

(nWp)2m

p2

1√
D(t )

(B2)

such that the integral over p is converging after replacing Wp

by the constant value W0. The first two terms in the Born series
for the scattering length a for identical particles are given by
Eq. (26). Thus, the summation in the second line of Eq. (B2)
can be identified with a1 and the result of the integration in
the first line will depend on W0 which can be replaced by
a0 through Eq. (26). Since the integral can only be evaluated

numerically, we define a positive constant η(a0, n, m) for its
value and obtain for the derivative of F along the path s:

dF (n̄)

dD

∣∣∣∣
s

≈ Nη(a0, n, m)√
D(t )

+ 2πnNa1

m
√

D(0)

1√
D(t )

. (B3)

APPENDIX C: UNIVERSAL FUNCTIONAL FOR THE
BOSE-HUBBARD MODEL

In this section, we solve the minimization in Eq. (17)
for any pair of occupation numbers (n1, n2) for the Bose-
Hubbard model with N bosons on L = 5 lattice sites and U >

0. Since in that case the Fourier coefficients Wp = sgn(U )
are independent of the momentum p, they can be pulled out
of the summation over p. The four different combinations
of the signs are (σ1, σ2) = (+,+), (+,−), (−,+), (−,−)
and the four corresponding functionals are denoted by
F(σ1,σ2 ). The functional F(−,−) can be neglected in the fol-
lowing discussion since it comprises only positive terms
and thus F(σ1,σ2 ) � F(−,−) for all (σ1, σ2). The remaining
three functionals Fσ1,σ2 are then split into F(σ1,σ2 ) = 2(F (1) +
F (2)

(σ1,σ2 ) )/L where F (1) is independent of the choice of signs
(σ1, σ2). Therefore, to find the minimizing configuration for
any n ∈ 	, we only have to compare

F (2)
(+,+) = −

2∑
ν=1

(
n0 −

2∑
ν=1

√
nν (nν + 1)

)√
nν (nν + 1)

F (2)
(+,−) = − (

n0 −
√

n1(n1 + 1) +
√

n2(n2 + 1)
)

× (√
n1(n1 + 1) −

√
n2(n2 + 1)

)
(C1)

and the third functional F (2)
(−,+) follows from F (2)

(−,+) by replac-
ing everywhere 1 ↔ 2. The minimizing configuration (σ1, σ2)
can then easily be determined analytically, leading to the cells
shown in Fig. 2. There, the black point in the middle marks
the distinctive occupation number vector for which all three
functionals take the same value F(+,+) = F(−,+) = F(+,−). It
is given by

ñ ≡ n1 = n2 = 1
6

(
1 + 2N −

√
1 + N (4 + N )

)
. (C2)

The border between regions (−,+) and (+,−) is determined
by

n2 = n1 � ñ. (C3)

The border separating region (+,+) and (+,−) is obtained
from F(+,+)(n) = F(+,−)(n), leading to

n2 = 1
2

[
N − 2

(
n1 +

√
n1(n1 + 1)

)]
, n1 � ñ. (C4)

The solution for F(+,+) = F(−,+) is obtained by exchang-
ing the two occupation numbers n1 and n2 in the result for
F(+,+) = F(+,−).
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