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Design of an optomagnonic crystal: Towards optimal magnon-photon
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We put forward the concept of an optomagnonic crystal: a periodically patterned structure at the microscale
based on a magnetic dielectric, which can co-localize magnon and photon modes. The co-localization in small
volumes can result in large values of the photon-magnon coupling at the single quanta level, which opens
perspectives for quantum information processing and quantum conversion schemes with these systems. We study
theoretically a simple geometry consisting of a one-dimensional array of holes with an abrupt defect, considering
the ferrimagnet yttrium iron garnet (YIG) as the basis material. We show that both magnon and photon modes can
be localized at the defect, and use symmetry arguments to select an optimal pair of modes in order to maximize
the coupling. We show that an optomagnonic coupling in the kHz range is achievable in this geometry, and
discuss possible optimization routes in order to improve both coupling strengths and optical losses.
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I. INTRODUCTION

Progress in fundamental quantum physics has by now
established a basis for developing new technologies in the
fields of information processing, secure communication, and
quantum enhanced sensing. In order to perform these tasks,
physical systems are needed which are capable of process-
ing, storing, and communicating information in a quantum
coherent manner and with a high fidelity. Similar to the
classical realm, accomplishing this goal requires different
degrees of freedom and efficient couplings between them,
giving rise to hybrid systems. In this context, systems at the
mesoscopic scale (with dimensions ranging from nanometers
to microns) are specially interesting since their collective
degrees of freedom can be tailored [1]. An important and
successful example of these mesoscopic hybrid systems are
optomechanical systems [2], where light couples to me-
chanical motion. Seminal experiments in these systems have
demonstrated extra-sensitive optical detection of small forces
and displacements [3–10], manipulation and detection of me-
chanical motion in the quantum regime with light [11–13],
and the creation of nonclassical light and mechanical motion
states [11,14,15].
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In recent years the family of hybrid quantum systems has
been extended by incorporating magnetic materials, where
the collective spin degree of freedom can be exploited. For
example, in spintronics [16], information is carried by spins
(as opposed to electrons) in order to remove Ohmic losses
and to increase memory and processing capabilities [17,18].

FIG. 1. Investigated geometry: (a) Optomagnonic crystal with an
abrupt defect at its center for localizing an optical and a magnon
mode at the same spot in the defect area. (b) Optomagnonic crystal
from the side representing a heterostructure. (c) Mode profiles of
the localized optical and magnon mode discussed in the main text.
Note: All mode shape plots are normalized to their corresponding
maximum value.
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An ultimate form of spintronics is the new field of quantum
magnonics [19,20], where superconducting quantum circuits
couple, via microwave fields in a cavity, coherently to mag-
netic collective excitations (magnons) [21,22]. Such systems
are promising for generating and characterizing nonclassical
quantum magnon states [19,23–25], quantum thermome-
try protocols [26], and for developing microwave-to-optical
quantum transducers for quantum information processing
[27,28]. The coherent coupling of magnons to optical photons
has also been demonstrated in recent experiments [29–33],
in what have been denominated optomagnonic systems
[28,34–40].

In current experiments exploring optomagnonics, the fer-
rimagnetic dielectric yttrium iron garnet (YIG) is used as the
magnetic element, since YIG presents low absorption and a
large Faraday constant in the infrared (α = 0.069 cm−1 and
θF = 240 deg/cm @ 1.2μm [29,30,41–43]). The coupling
between spins and optical photons is a second order processes
involving spin-orbit coupling and it is generally small. This
can be enhanced using a well polished sphere that acts as an
optical cavity, trapping the photons by total internal reflection
in order to effectively enhance the spin-photon coupling. The
coupling, however, still remains too small for applications.
This is due to the large size of the used YIG spheres (the
coupling increases as the volume of the cavity decreases
[34]), with radius of the order of hundreds of microns, and,
concomitantly, the large difference between the optical and
the magnetic mode volume (Vmag � Vopt), by which most
of the magnetic mode volume does not participate in the
coupling. This can be partially mitigated by making smaller
cavities [44,45], but care has to be taken both to obtain a good
mode matching and to retain a good confinement of the optical
mode in order to minimize radiation losses. Recent proposals
have investigated one-dimensional layered structures to this
end [37,46].

In order to tackle these issues, we propose an opto-
magnonic array at the microscale, which acts simultaneously
as a photonic crystal [47], determining the optical properties
of the structure, and as a magnonic crystal [48–50] with tai-
lored magnetostatic modes. Our proposal is inspired in the
success of this approach for optomechanical crystals, which
can be designed such as to enhance the phonon-photon cou-
pling by many orders of magnitude [51–74]. In our case, we
use similar concepts in order to design the coupling between
photonic and magnonic modes. Although similar conceptu-
ally, magnetic materials present new challenges for the design,
due to the complexity of the magnon modes.

Photonic crystals are the basis for many novel applica-
tions in quantum information, and are of high interest due
to their ability to guide [75–79] and confine [80–85] light,
allowing for an example to enhance nonlinear optical inter-
actions [86–89]. In turn, magnonic crystals can be designed
to create reprogrammable magnetic band structures [90], to
act as bandpass or band-stop filters, or to create single-mode
and bend waveguides [91–94]. Additionally these crystals can
be used for spin wave computing via logical gates [95–97].
An advantage of magnonic crystals is their scalability, their
low energy consumption, and possibly faster operation rates
[49,97,98]. Together with the state of the art in optomagnon-
ics detailed above, this provides a great incentive to explore

the possibility of an optomagnonic crystal, combining both
photonic and magnetic degrees of freedom.

Specifically we consider an optomagnonic crystal consist-
ing of a dielectric magnetic slab (YIG in our simulations) with
a periodic array of holes along the slab and with an abrupt de-
fect in the middle. The repeated holes at each side of the defect
act as a Bragg mirror for both optical and magnetic modes,
localizing them in the region of the defect [see Figs. 1(a) and
1(c)]. We show that this structure can co-localize photonic and
magnonic modes, and explore how the symmetry of the modes
can be used to optimize their coupling. We find that coupling
rates in the range of kHz are achievable in these structures, and
that optimization of the geometry can lead to higher coupling
values, indicating the promise of this approach. Further op-
timization is nevertheless needed to improve the decay rates,
in particular the optical quality factor is low compared to the
state of the art in nonmagnetic structures (where silicon is
used as the dielectric).

This article is organized as follows. In Sec. II we derive
the general expression for the coupling of magnons to optical
photons and discuss the normalization of the modes required
to find the photon-magnon coupling at the single quanta level,
denominated optomagnonic coupling. The remaining sections
refer to the numerical method for evaluating this coupling. For
our simulations we choose YIG as the magnetic material, in
line with the material of choice in experiments. In Sec. III we
discuss the properties of the proposed structure as a photonic
crystal. In Sec. IV, in turn, we investigate its properties as a
magnonic crystal. Section V combines the results in order to
numerically evaluate the optomagnonic coupling for appro-
priately chosen confined modes. For concreteness we focus
on the coupling between one single magnon mode and one
single optical mode. Section VI is devoted to a discussion on
how the structure can be optimized and presents results for
an optimized geometry. The conclusions and an outlook are
presented in Sec. VII. The Appendixes contains further details
of the analytic calculations and of the simulations.

II. OPTOMAGNONIC COUPLING

In this section we derive the theoretical expression for the
coupling rate between magnons and photons. The instanta-
neous electromagnetic energy is [99]

E tot
em = 1

2

∫
dr [D(r, t ) · E (r, t ) + B(r, t ) · H(r, t )], (1)

with D the displacement field, E the electric field, B the
magnetic induction, and H the magnetic field. In complex
representation D = (D + D∗)/2 and E = (E + E∗)/2, and
similar for the magnetic induction and field. The effect of
the magnetization M is to modify the displacement field as
D(r, t ) = ε̄[M(r, t )] · E(r, t ) where the components of the
permittivity tensor ε̄ are [100,101]

εi j (M) = ε0

(
εrδi j − i fF

∑
k

εi jkMk + fCMiM j

)
, (2)

with ε0 the vacuum permittivity, εr the relative permittivity,
εi jk the Levi-Cevita tensor, and { fF, fC} material dependent
magneto-optical constants. At optical frequencies the second
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term in Eq. (1) can be neglected [101,102], being smaller than
the first by the fine structure constant squared, and the perme-
ability of the material can be set to the vacuum permeability
μ0. The magneto-optical constants can be related to the Fara-
day rotation θF and the Cotton-Mouton ellipticity θC per unit
length as θF = ω/(2c

√
εr ) fF Ms and θC = ω/(2c

√
εr ) fC M2

s ,
with c the speed of light in vacuum and Ms the saturation
magnetization.

We are interested in how light couples to the fluctuations of
the magnetization around the static ground state. We consider
norm-preserving small fluctuations,

M(r, t ) = M0(r)

√
1 −

∣∣∣∣δM(r, t )

Ms

∣∣∣∣
2

+ δM(r, t ), (3)

where the ground state satisfies M0 · M0 = M2
s and the fluc-

tuations are perpendicular to local equilibrium magnetization
δM · M0 = 0. In complex notation δM = [M + M∗]/2. The
correction to the electromagnetic energy stemming from the
interaction between the light field and the magnetization can
be rewritten as

Eem = 1

8

∫
dr [E(r, t ) · D∗(r, t ) + E∗(r, t ) · D(r, t )], (4)

ignoring E(r, t ) · D(r, t ) and E∗(r, t ) · D∗(r, t ) in the rotating
wave approximation. Inserting the relation between the dis-
placement and the electric field along with the permittivity in
Eq. (2) gives Eem = EF

em + EC
em where

EF
em = ε0 fF

8

∫
dr [i(E∗ × E ) · M + H.c.] (5)

is the Faraday contribution and

EC
em = ε0 fC

8

∫
dr [E∗ · (MM0 + M0M) · E + H.c.] (6)

is the Cotton-Mouton one. We have used the dyadic notation
and neglected all terms that represent a constant energy shift
or that are higher order in δM.

Quantizing this expression leads to the optomagnonic cou-
pling Hamiltonian. By assuming that the magnetic material
acts as an optical cavity, the electric field of the light can be
quantized by using the annihilation (creation) operator â(†)

β of
one photon

E(r, t ) → 2i
∑

α

Eα (r) âα (t ), (7)

with E (∗)
α the mode shape, and α the mode index. We note

that we identified E(r, t ) with 2 E+(r, t ) from the well known
quantization expression of the electric field [103]

E (r, t ) = E+(r, t ) + E−(r, t )

= i
∑

α

[Eα (r) âα (t ) − E∗
α (r) â†

α (t )]. (8)

In order to find the coupling per photon, we normalize the
electromagnetic field amplitude to one photon over the elec-
tromagnetic vacuum [104]

h̄ωα

2ε0
=

∫
dr εr(r)|Eα (r)|2. (9)

The spin waves can be quantized as

M(r, t ) → 2Ms

∑
γ

δmγ (r) b̂γ (t ), (10)

where b̂(†)
γ annihilates (creates) one magnon, δm(∗)

γ is the mode
shape, and γ is the mode index. We note that as in the optical
case we identified M(r, t ) with 2 M+(r, t ) from the magnetic
quantization expression

δM(r, t ) = M+(r, t ) + M−(r, t )

= Ms

∑
γ

[δmγ (r) b̂γ (t ) + δm∗
γ (r) b̂†

γ (t )]. (11)

In order to normalize the amplitude of the magnetic fluctua-
tions to one magnon, we use the following expression derived
in Appendix A:

gμB

Ms
=

∫
dr im0 · [δm∗

γ × δmγ ], (12)

with g the g factor, μB the Bohr magneton, and m0 = M0/Ms.
This expression is valid for arbitrary magnetic textures and it
is consistent with the normalization derived previously for a
uniform ground state [105].

The quantized optomagnonic energy, neglecting the con-
stant energy shifts, leads to the coupling Hamiltonian

Ĥom = h̄
∑
αβγ

[Gαβγ â†
α âβ b̂γ + H.c.], (13)

with the coupling constant Gαβγ = GF
αβγ + GC

αβγ , where

GF
αβγ = −i

ε0εr

h̄

θFλn

π

∫
dr [E∗

α × Eβ] · δmγ , (14)

GC
αβγ = ε0εr

h̄

θCλn

π

∫
dr [m0 · Eβ][E∗

α · δmγ ]

+ ε0εr

h̄

θCλn

π

∫
dr [m0 · E∗

α][Eβ · δmγ ] (15)

are, respectively, the Faraday and Cotton-Mouton components
of the optomagnonic coupling constant, being λn the light
wavelength inside the material.

The coupling between optical photons and magnons, as
can be seen from Eq. (13), involves a three-particle process
in which a magnon is created or annihilated by a two-photon
scattering process. This is an example of parametric coupling,
and reflects the frequency mismatch between the excitations.
The coupling can be enabled by a triple resonance, where the
frequency of the magnon matches the frequency difference
between two photonic modes [29–31,35], or, in the case of
scattering with a single photon mode, by an external driving
laser at the right detuning [34]. If the laser is red (blue)
detuned by the magnon frequency, implying a lower (higher)
driving frequency than the photon resonance, it will annihilate
(create) magnons. In the red detuned regime this can be used,
for example, to actively cool the magnon mode to its ground
state [2,40,106].

In this work we focus on the coupling between a given
magnon mode and a given optical mode hosted by the one-
dimensional (1D) optomagnonic crystal shown in Figs. 1(a)
and 1(b). Hence we set α = β and drop the indices in the
following. For concreteness, we focus on GF as the analysis
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for GC is analogous. GF is proportional to the overlap of the
magnon’s spatial distribution with the electric component of
the optical spin density defined as [107]

Sopt(r) = ε0

2i ωopt
[E∗ × E]. (16)

The optical spin density is finite only for fields with certain
degree of circular polarization, and points perpendicular to the
plane of polarization.

III. PHOTONIC CRYSTAL

Photonic crystals are engineered structures which, by
proper shape design, can confine light to a specific region.
These are formed by low-loss media exhibiting a periodic
dielectric function ε(r), with a discrete translational symmetry
ε(r) = ε(r + R) for any R = na with n an integer and a the
lattice constant given by the imposed periodicity.

Photonic band gaps arise at the edges of the Brillouin zone
(BZ) k = π/a due to the periodicity imposed by the suscep-
tibility of the crystal on the electric field, with wavelength
λ = 2a (corresponding to the edge of the BZ). For example, in
a 1D photonic crystal [see Fig. 2(a)] the symmetry of the unit
cell around its center implies that the nodes of the standing
light wave must be centered either at each low-ε layer or
at each high-ε layer. The latter necessarily has lower energy
than the former, resulting in a band gap. The position of the
photonic band gap is given by the mid-gap frequency at the
BZ edge. In the case of two materials with refractive indices
n1 and n2 and thicknesses d1 and d2 = a − d1, the normal
incidence gap is maximized for n1d1 = n2d2. In this case the
mid-gap frequency is given by [47]

ωmg = n1 + n2

4n1n2

2πc

a
, (17)

with n1 = √
ε1, n2 = √

ε2. The corresponding vacuum wave-
length λmg = (2πc)/ωmg thereby satisfies the relations
λmg/n1 = 4d1 and λmg/n2 = 4d2 meaning that the individual
layers are a quarter-wavelength thick.

An input at frequencies within the photonic band gap is
reflected entirely except for an exponentially decaying tail
inside the crystal. Thus, two of such crystals can be used to
create a Fabry-Perot-like cavity. More concretely, as shown in
Fig. 2(b), a defect in the form of a layer with a different width
breaking the symmetry of the crystal may permit localized
modes in the band gap by consecutive reflection on both sides.
Since the light is localized in a finite region, the modes are
quantized into discrete frequencies. We note that the degree
of localization is the largest for modes with frequencies near
the center of the gap [47].

For our purposes we consider a geometry in which the per-
mittivity can take two distinct values, attained by holes carved
into a dielectric slab [see Fig. 1(a)]. The typical material used
for photonic crystals is silicon due to its high refractive index
at optical frequencies εr = 12. We use instead YIG for our
study, which is a dielectric magnetic material transparent in
the infrared range with εr = 5 [108]. The lower dielectric
constant reduces the confinement of the optical modes along
the height of the slab, which is reflected in low optical quality
factors as discussed below. This structure is a 1D photonic

FIG. 2. General structure of a 1D photonic crystal and mode
localization at a defect: (a) 1D photonic crystal consisting of periodic
layers alternated by the lattice constant a with different dielectric
constants ε1 > ε2 and widths d1 and d2. (b) A defect breaks the
symmetry and can pull a band-edge mode into the photonic band gap.
Since a mode in the band gap cannot propagate into the structure, the
light is Bragg reflected and is thus localized (see, e.g., [47]).

crystal, periodic in one direction (chosen to be the x̂ direction),
with a band gap along this direction and which confines light
through index guiding [47] (a generalization of total internal
reflection) in the remaining directions. In order to localize an
optical mode in this structure we create a defect by increasing
the spacing between the two middle holes, which pulls a
mode into the band gap. We note that due to the (discrete)
periodicity, the crystal only possesses an incomplete band gap
and the localized mode can scatter to air modes [47].

We search for a localized mode in the infrared frequency
range where YIG is transparent and presents low absorption
[42,109]). Thus, the geometrical parameters of the crystal
need to be chosen in such a way that the band gap lies in
the desired frequency range. We choose a lattice constant of
a = 450 nm which gives a mid-gap frequency of ωmg = 2π ×
240 THz (corresponding to λ ≈ 1250 nm), using Eq. (17) with
refractive indices of YIG n1 = nYIG = √

5 and of air n2 =
nair = 1. Note that we choose a lattice constant that allows
us to work in the transparency frequency range for the optics,
and which at the same time is small enough in order to re-
duce the computational cost of the micromagnetic simulations
of the corresponding magnonic crystal in the next section.
Using the relation dairnair = dYIGnYIG for a maximized normal
incidence gap, we find the optimal radius of the air holes as

rair = nYIG

nYIG + 1

a

2
, (18)

with dair = 2rair = a − dYIG, from which we obtain rair =
155.25 nm. In order to find the mode with the least losses,
the defect width is optimized in order to localize the desired
mode most effectively to the defect. We find the optimal defect
size, defined as the center-to-center distance between the two
bounding holes [see Fig. 1(a)], to be d = 731 nm, obtained by
evaluating the transmission spectra as a function of the defect
size (we used the electromagnetic simulation tool MEEP to
this end [110]). In order to get a good quality factor of the
localized mode we need to insert as many air holes as possible.
For creating a compromise between short computational eval-
uation time (especially important for the magnetic simulations
discussed later) and a good quality factor we chose N = 12
holes at each side of the defect. Therefore the investigated
crystal is in total l = 11.75μm long. The overall width of the
wave guide is w = 600 nm and its height is h = 60 nm, again
to keep the magnetic simulations (which we detail in the next
section) feasible. Such a thin slab will not be good at confining
the optical modes along its height, since it is much smaller
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than the light wavelength in the material. In order to increase
the optical quality factor without influencing the magnetics,
we sandwich the crystal with two Si3N4 layers [see Fig. 1(b)]
with a height of hSi3N4 = 200 nm as proposed in [111]. Si3N4

has an index of refraction similar to YIG (nSi3N4 = √
4), so

that the combined structure acts approximately as a single
cavity for the light and its height is roughly half a wavelength,
enough to provide a reasonable confinement. The presented
simulations include these two extra layers.

We now turn to categorizing the photonic modes of
the crystal by using its three mirror symmetry planes [see
Fig. 3(a)]. This imposes several restrictions on the mode shape
and the mode polarization. We define the three mirror symme-
try operations

σ̂ E
z E(r) =

⎛
⎝ Ex(x, y,−z)

Ey(x, y,−z)
−Ez(x, y,−z)

⎞
⎠,

σ̂ E
y E(r) =

⎛
⎝ Ex(x,−y, z)

−Ey(x,−y, z)
Ez(x,−y, z)

⎞
⎠,

σ̂ E
x E(r) =

⎛
⎝−Ex(−x, y, z)

Ey(−x, y, z)
Ez(−x, y, z)

⎞
⎠. (19)

In the following we restrict the discussion to transverse elec-
tric modes with an in-plane electric field, which are the modes
of interest for the magnetic configuration we consider, as it
will be clear from the next section. We note that structures
made of a high-ε material with air holes favor a band gap
for transverse electric modes [47], which is advantageous for
our purposes. Unlike in two-dimensiona (2D), in three dimen-
sions (3D) we cannot generally distinguish between transverse
electric (TE) and transverse magnetic (TM) modes. However,
provided that the crystal has a mirror symmetry along its
height (under σ̂ E

z ), and that its thickness is smaller than the
mode wavelength, the fields are mostly polarized in TE-like
and TM-like modes [47] [see Fig. 3(b)]. Since a TE-like
mode has a nonzero electric field in the plane of the crystal
(xy plane), both Ex and Ey cannot be odd as a function of z
[see Fig. 3(b)]. From Eq. (19) this implies that the mode must
be even under σ̂ E

z . Similar symmetry considerations [47] show
that a TE-like mode must satisfy

σ̂ E
z E(r) = E(r),

σ̂ E
y E(r) = −E(r),

σ̂ E
x E(r) = −E(r). (20)

For evaluating the optical modes we used the two finite el-
ement tools MEEP [110] and Comsol Multiphysics [113] (see
Appendix B). The simulated band structure for TE-like modes
in the considered photonic crystal shows a broad band gap in
the infrared frequency range with a nicely pulled defect band
[see Fig. 4(a)] which is extended in frequency space resulting
from the confinement in real space. The defect mode in the
gap at the edge of the BZ has a frequency of ωopt ≈ 2π ×
246 THz (obtained by Comsol, 205 THz/λ ≈ 1550 nm ac-
cording to MEEP, note that the difference is due to a reduction

FIG. 3. Symmetries of the optical modes in a periodic waveg-
uide: (a) Symmetry planes of the investigated 1D photonic crystal
shown in Fig. 1(a). (b) Symmetry of a transverse electric (TE)-like
and a transverse magnetic (TM)-like optical mode in a thin 3D
structure. The red arrows indicate the electric field vector E which
for z = 0 (middle of the crystal along the height) lie in-plane for
TE-like modes and point out of plane for TM-like modes. For z �= 0
this is not fulfilled anymore (see, e.g., [47]).

of the simulation geometry to 2D in order to save simulation
time) with a damping factor of κopt ≈ 2π × 0.1 THz which
gives a linewidth (FWHM) of γopt = 2κopt ≈ 2π × 0.2 THz.
Using the values obtained by Comsol this gives an optical
quality factor of Q = ωopt/(4πκopt) = 1250, which is in the
expected range for this kind of geometry [114] (note that
MEEP gives a roughly three times larger value due to the 2D
simulation which effectively resembles a simulated system of
infinite height). The obtained quality factor is however small
compared to 1D crystals made of silicon with a smooth defect,
where quality factors in the order of 104–106 can be achieved
[53,55,57].

The corresponding mode shape in real space is shown in
Fig. 4(a). We see that the mode is nicely localized at the
defect. Furthermore the Ex component is even (odd) as a
function of x (y), whereas the Ey is even as a function of both x
and y fulfilling the symmetry requirements for a TE-like mode
given in Eqs. (20). Due to this symmetry we can disregard the
Ez component here since Ez ≈ 0. For the Faraday component
of the optomagnonic coupling, the relevant quantity is the
electric component of the optical spin density Sopt ∝ E∗ × E
[see Eq. (14)]. Sopt points mostly along z direction, is odd
as a function of x and y, and is even along z [see Figs. 4(b)
and 6(b)].

IV. MAGNONIC CRYSTAL

As photonic crystals control the flow of light, magnonic
crystals can be used to manipulate the spin wave dynamics in
magnetic materials. In general, a magnonic crystal is made of
a magnetic material with a periodic distribution of material
parameters. Examples include the modulation of the satu-
ration magnetization or the magnetocrystalline anisotropy, a
periodic distribution of different materials, or the modula-
tion by external parameters, such as an applied magnetic
field [48–50]. Historically, magnonic crystals precede pho-
tonic crystals [115,116]. Unlike in photonic or phononic
crystals, the band structure in magnonic crystals depends
not only on the periodicity of the crystal but also on the
spatial arrangement of the ground state magnetization, re-
sulting in an additional degree of freedom. Hence the band
structure depends on the applied external magnetic field, the
relative direction of the wave vector, the shape of the mag-
net, and the magnetocrystalline anisotropy of the material
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FIG. 4. Optical [(a) and (b)] and magnetic modes (c): (a) Band diagram (obtained with MEEP) for TE-like modes within the irreducible BZ
with a state that was pulled into the gap from the upper band-edge state by the insertion of a defect (note that the gap state was not obtained by
band diagram simulations). The bands in the green shaded area representing the light cone are leaky modes which couple with radiating states
inside the light cone [112]. From the shape of the localized defect mode (obtained with Comsol) with a frequency of ωopt = 2π × 246 THz
(middle layer in the xy plane) we see that this mode is odd with respect to x = 0 and y = 0 (and even with respect to z = 0). (b) Optical spin
density (middle layer in the xy plane) of the localized mode, fulfilling the same symmetries, see main text. (c) Band diagram of backward
volume waves within the irreducible BZ showing magnetic modes with extended k values but preferring wave vectors at the edge of the BZ.
The highest excited localized mode has a frequency of ωmag = 2π × 13.12 GHz and is odd along the mirror symmetry planes for x = 0 and
y = 0 (and additionally even with respect to the plane for z = 0). The dashed line in the middle inset shows the mode spectrum in case of no
defect. Note: All mode shape plots are normalized to their corresponding maximum value.

[48–50]. In this section we study the properties of the crys-
tal presented in Sec. III [see Fig. 3(a)], as a magnonic
crystal.

In the following we consider magnetic excitations which
are nonhomogeneous in space, and we focus only on systems
in the presence of an external magnetic field saturating the
magnetization in a chosen direction. In this case spin waves
can be divided into three classes: if all spins precess uniformly
in phase, the mode is homogeneous and denominated the Kit-
tel mode. If the dispersion is dominated by dipolar interactions
(which is usually the case for wavelengths above 100 nm) the
excitations are called dipolar spin waves. For wavelengths
below 100 nm the exchange interaction dominates instead,
giving rise to exchange spin waves. The frequencies of the
dipolar spin waves lie typically in the GHz regime, whereas
the exchange spin waves have frequencies in the THz regime.
Since the size of the structure considered in this work is in
the micrometer range, we will focus on dipolar spin waves.
For this case, the modes can be classified further by their
propagation direction with respect to the magnetization. For
an in-plane magnetic field, modes with a frequency higher
than the frequency of the uniform precession tend to localize
at the surface and have a wave vector pointing perpendicular
to the static magnetization M0 and thus the external field
k ⊥ M0 ‖ Hext [see Fig. 5(a)]. These modes are called surface
or Damon-Eshbach modes [117,118]. If the wave vector is
parallel to the external field such that k ‖ M0 ‖ Hext holds,
the waves are called backward volume waves and their fre-
quency is smaller than the frequency of the Kittel mode [see
Fig. 5(a)]. Finally, if the external field and the magnetization
are normal to the crystal’s plane and the wave vector lies
in-plane k ⊥ M0 ‖ Hext these waves are called forward volume
waves [see Fig. 5(a)] [50,119]. In the following we restrict the
discussion to external fields which are applied in the plane of
the crystal.

Similar to light modes in photonic crystals, magnon modes
can also be localized within a certain region in the magnonic
crystal. It is well known that the two-dimensional periodic
modification of a continuous film, for example by the insertion
of holes (denominated antidot arrays), can drastically change
the behavior of the spin waves [120,121]. In this case the
modes have either a localized or extended character. The
localized mode is a consequence of nonuniform demagne-
tization fields created by the antidots. These fields change
abruptly at the edges of the antidots and act as potential wells
for the spin waves [50]. Thus, the above designed crystal,
which localizes the optical mode by the insertion of a defect,
is also a good candidate for acting as a magnonic crystal lo-
calizing magnetic modes via the holes. Although the geometry
of the crystal is optimized for the optics, it should be able to
host and localize magnetic modes due to its shape and material
(YIG). Therefore, we do not change the crystal further and
use this structure as a proof of principle. This implies that we
expect considerable room of improvement with respect to the
optomagnonic coupling rates obtained in this structure. YIG
is a good choice for magnonics since it has the lowest spin
wave damping when compared to other materials commonly
used [49]. It is however difficult to pattern at the microscale,
but recent advances in fabrication show great promise in this
respect [122,123].

For concreteness, in the following we proceed to design the
Faraday part of the optomagnonic coupling GF, see Eq. (14).
Since GF is proportional to the overlap integral between the
optical spin density and the magnon mode, we search for a
magnon mode with the same symmetries as the optical spin
density, in order to get the highest possible overlap. Like in the
optical case, the magnonic crystal has three mirror symmetry
planes (z = 0, y = 0, x = 0). However, the external applied
magnetic field saturating the magnetization breaks two of
these symmetries and thus only the mirror symmetry with
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respect to the plane perpendicular to the external field remains
[see Fig. 5(b)]. Note that the magnetization is a pseudovec-
tor and its components perpendicular to the mirror does not
change. Thus, the mirror operation is inverted from Eq. (19),

σ̂ M
x δm(r) =

⎛
⎝ δmx(−x, y, z)

−δmy(−x, y, z)
−δmz(−x, y, z)

⎞
⎠ = δm(r). (21)

Since the optical spin density pointing along ẑ is odd as a func-
tion of x, we require δmz to be odd as well and consequently
δm to be even under σ̂ M

x . Additionally, a π rotation around the
x̂-axis symmetry remains unbroken:

R̂π
x δm(r) =

⎛
⎝ δmx(x,−y,−z)

−δmy(x,−y,−z)
−δmz(x,−y,−z)

⎞
⎠ = δm(r). (22)

Invoking again the symmetries of the optical spin density (odd
as a function of y and even with z) we consider modes with
even rotational symmetry. We note that due to the different
symmetries respected by the photon and magnon modes, we
choose the symmetries of the modes in such a way that they
preferably match in the xy plane, which is the most relevant
dimension for thin structures. In this case, the symmetries
of the optical and the magnetic mode along the height do
not necessarily match. For thin films however they do, see
Fig. 6(b).

Since spin waves are excited by an external magnetic pulse
which controls the direction of the wave vector k, the pulse
also breaks the mirror symmetries of the crystal. Therefore
we focus on a setup which conserves the relevant mirror
symmetry, and only excite backward volume waves where
the external saturation field and the wave vector of the mode
are parallel and lie in the plane of the crystal. We note that
this configuration is also the most favorable one from an
experimental point of view, and additionally the configuration
most likely used in magnonic devices [119].

We evaluated the magnetization dynamics numerically by
means of the finite difference tool MuMax3 [124] which
solves for the Landau-Lifshitz-Gilbert equation of motion for
the local magnetization vector (see Appendix C). In order to
excite magnon modes with the desired symmetry, we use a
2D antisymmetric sinc pulse which should moreover avoid
spurious effects in the spectrum [125]

Hpulse = Hpulse
sin2(ωct )

ωct

sin2(kcx)

kcx

sin2(kcy)

kcy
ey, (23)

pointing along the ŷdirection in order to excite backward
volume waves [119]. The cut-off frequency was chosen to
be ωc = 2π × 16 GHz and the cut-off wave vector to be
kc = π/a in order to concentrate all the excitation energy
in the first BZ. Since this pulse is centered in the middle
of the crystal, we only excite modes around the crystal’s
center. The external saturation field was set to Hext = 400 mT
(found by hysteresis) and the pulse field to Hpulse = 0.4 mT.
We note that the pulse strength should be a small perturbation
of the saturation field in order to minimize nonlinear effects.
We used the material parameters for YIG, Ms = 140 kA/m
(saturation magnetization), Aex = 2 pJ/m (exchange con-
stant), Kc1 = −610 J/m3 (anisotropy constant) with the

FIG. 5. Dipolar spin wave types and symmetries in the magnonic
crystal: (a) Dipolar spin waves can be divided into three types:
backward volume waves (BWVW) with their wave vector parallel
to the external field which both lie in the plane of the structure
(k ‖ m0 ‖ Hext). Forward volume waves (FWVW) with their wave
vector in-plane and perpendicular to the external field which lies
normal to the structure’s plane (k ⊥ m0 ‖ Hext). Surface waves are
also forward volume waves but they have their wave vector in-plane
and perpendicular to the external field which also lies in-plane of
the structure (k ⊥ m0 ‖ Hext). (b) Symmetries of the investigated 1D
magnonic crystal shown in Fig. 1(a). Since the external magnetic
field breaks two mirror symmetry planes only the mirror symmetry
plane normal to the saturation direction remains. Additionally a π -
rotation symmetry around the saturation axis is present.

anisotropy axis along ẑ [126]. In order to accelerate the sim-
ulations, we used an increased Gilbert damping parameter
γ = 0.008 (compare to γ ≈ 10−5–10−4 for YIG) [127,128].

In the following considerations we focus only on the δmz

component of the magnetization dynamics, since the opti-
cal spin density of a TE-like mode mostly points into the
ẑ direction, rendering δmx and δmy irrelevant for GF [see
Eq. (14)]. We find that the optical defect also acts as con-
finement of the magnetic mode, resulting in the defectlike
dispersion relation presented in Fig. 4(c). The obtained band
structure shows modes around the edge of the BZ with ex-
tended wave vector character, implying that the modes are
highly localized in space. The frequency of the highest excited
localized mode at the BZ edge is ωmag = 2π × 13.12 GHz
with an estimated linewidth (FWHM) of �mag = γ ωmag =
2π × 131.2 kHz where we used the real Gilbert damping of
YIG γ = 10−5. Note that the simulated linewidth shown in
Fig. 4(c) is larger due to the different choice of the Gilbert
damping in order to speed up the simulation.

As we see from its mode shape, this mode is nicely local-
ized at the holes attached to the defect and is odd with respect
to x = 0 and y = 0, and hence has the same symmetry as the
optical spin density as we aimed for [see Fig. 4(c)].

V. OPTOMAGNONIC CRYSTAL

As shown above, the crystal in Fig. 1(a) can host both
optical and magnetic modes and therefore can be consid-
ered an optomagnonic crystal. In this section we evaluate the
optomagnonic coupling GF given in Eq. (14) (GC is briefly
discussed at the end of the section) for the modes found in
Secs. III and IV shown in Fig. 4.

Numerically evaluating Eq. (14) gives a Faraday contri-
bution to the optomagnonic coupling per magnon and per
photon of |GF

num| = 2π × 0.5 kHz [the spatial distribution of
the coupling is shown in Fig. 6(a)]. In order to gauge this value
we want to compare it to the analytical estimate derived in
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FIG. 6. Spatial shape of the coupling and different symmetries of
the optical and the magnetic mode: (a) Spatial shape of the coupling
similar to the magnon mode shape. (b) Different symmetries along
the crystal’s height of the optical spin density and the magnon mode.
Due to the external magnetic field the mirror symmetry along the
height is broken and only a π -rotation symmetry remains, resulting
in different mode shapes along the height of the crystal. For thin
films this difference is rather small. Note: All mode shape plots are
normalized to their corresponding maximum value.

[39]. In the optimal case, the magnetic mode volume and the
optical mode volume coincide, Vmag ≈ Vopt. In this case we
estimate the coupling as

∣∣GF
optimal

∣∣ = θFλn

2π
ωopt

√
gμB

Ms

1√
Vmag

, (24)

which evaluates to |GF
optimal| = 2π × 0.6 MHz using the ma-

terial parameters of YIG [(θFλn)/(2π ) = 4 × 10−5, Ms =
140 kA/m] and the optical frequency found in Sec. III, ωopt =
2π × 249 THz. The magnetic mode volume is defined as the
one where the magnon intensity is above a certain thresh-
old, giving Vmag = 2.8 × 10−2 μm3 (see Appendix D). The
coupling is bounded by the magnon mode volume, since in
the investigated structure it is smaller than the optical mode
volume (see Fig. 4). In order to take the mismatch in the mode
volume into account, we introduce the following overlap mea-
sure which is also known as filling factor:

O = Voverlap

Vopt
, (25)

where Voverlap represents the volume where the magnon and
photon modes overlap. The volumes are estimated similar
to the case of magnons to be Voverlap = 9.7 × 10−3 μm3 and
Vopt = 0.7μm3 (see Appendix D). Note that for the optical
volume it was taken into account that the mode leaks out
of YIG into the Si3N4 layer and air, which is not shown in
Figs. 4(a) and 4(b). Thus the overlap measure evaluates to
O = 0.01, shrinking the optimal coupling to O|GF

optimal| ≈
2π × 6 kHz. Hence, even though the optomagnonic crystal
localizes both modes in the same region, the overlap measure
is rather small due to the much larger optical mode volume
[see Figs. 4 and 6(a)], which is detrimental for the coupling
strength. Furthermore, by looking at the fine structure of the
optical spin density and the magnon mode, we see that the
amplitude peaks of both do not coincide (see Fig. 7): the
magnonic peaks are localized nearer to the center than the
optical ones. This results in a smaller overlap volume which
would be Vmag if the peaks of the modes would be at the same
position.

Since the coupling also strongly depends on the relative
direction between the vectors of the modes, we additionally

introduce a “directionality” measure

D =
∫

dr δm(r) · [E∗(r) × E(r)]∫
dr |δm(r)| |E∗(r) × E(r)| (26)

evaluating to D = 51% using the numerical results presented
above. As we see, although the symmetries of the optical spin
density and the magnon mode match, the vectors of the modes
do not perfectly align in the defect area (see Fig. 4). Taking
also this suboptimal alignment into account, the coupling
estimate reduces to |GF

expected| = OD|GF
optimal| = 2π × 3 kHz

which coincides well with the numerically obtained value.
We conclude that the coupling in the investigated structure
is mostly affected by the large difference between the optical
and the magnetic mode volumes, shrinking the coupling value
by two orders of magnitude. We remind the reader that the
obtained values are for a proof of principle structure which
has been only partially optimized, since we started from a
fixed photonic crystal structure. In the next section we discuss
a possible optimization from the magnonics side.

We now proceed to briefly discuss the Cotton-Moutton
effect for the results found in Secs. III and IV. For YIG, the
Cotton-Moutton coefficient (θCλn)/(2π ) = −2 × 10−5 [41]
is of the same order of magnitude as the corresponding
Faraday coefficient, determined by θF. Since in the Voigt
configuration both effects are of leading order in the magne-
tization fluctuations [see Eqs. (14) and (15)], it is important
to take its contribution into account. Moreover, since the co-
efficients GF and GC are complex, it is difficult to estimate
a priori the total coupling |GF + GC|, due to the unknown
possible interference effects. Numerically evaluating Eq. (15)
gives an interaction value of |GC

num| = 2π × 1.6 kHz. This
large value can be explained by the symmetry of the inte-
grand which reduces to mx

0[ExE∗
y δmy + E∗

x Eyδmy] due to the
backward volume wave setup and the TE-like character of
the optical mode. This integrand is fully even since ExE∗

y has
the same symmetry as δmy. The full optomagnonic coupling

|Gnum| = ∣∣GF
num + GC

num

∣∣ (27)

is found to be Gnum = 2π × 1.3 kHz.

FIG. 7. Fine structure of the optical spin density and the magnon
mode along the length of the crystal for a fixed height and width.
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FIG. 8. Height dependence of the Faraday component of the
optomagnonic coupling: The coupling shows a

√
Vmag dependence

since the optical mode volume in the YIG and the Si3N4 slab is
constant. The decrease with larger height can be explained by the
shrinking directionality measure [see Eq. (26)] between the optical
and the magnetic mode.

Compared to the optomechanical coupling in similar 1D
crystals, where coupling values (per photon and phonon) up
to 2π × 950 kHz can be obtained [53–58], the optomagnonic
coupling obtained here is still rather small. However, this is
large compared to other optomagnonic systems. As we ar-
gued above, the coupling is limited by the imperfect spatial
matching of magnons and photons with overlap O = 0.01,
while it is enhanced due to small volumes Vmag ∼ 0.01μm3

and Vopt ∼ 1μm3. In the standard setups involving spheres
[29–31], typically optical volumes are very large ∼105 μm3

with low optomagnonic overlap ∼10−3, resulting in low cou-
plings ∼1 Hz. It was theoretically shown that >75% overlap
in such systems is achievable [129] but the couplings would
still be ∼2π × 500 Hz. The miniaturization of an optical
cavity to ∼100μm3 was demonstrated in [44], where the
coupling is however still small, 2π × 50 Hz, in this case due
to the large magnon volume involved.

An important prerequisite for applications in the quantum
regime such as magnon cooling, wavelength conversion, and
coherent state transfer based on optomagnonics is a high co-
operativity. The cooperativity per photon and magnon is an
important figure of merit which compares the strength of the
coupling to the lifetime of the coupled modes, and is given by

C0 = 4G2
num

γopt�mag
, (28)

where γopt is the optical linewidth (FWHM), and �mag is the
magnonic linewidth (FWHM).

To evaluate the theoretical cooperativity of the structure
proposed in this article, we use �mag = γωmag where γ =
10−5 is the Gilbert constant and ωmag = 2π × 13.12 GHz.
The optical linewidth is found from simulations to be
γopt = 2π × 0.2 THz.

Using the corresponding parameters the cooperativity per
photon and magnon of the optomagnonic crystal is Ccrystal

0 ∼
2.5 × 10−10. The single-particle cooperativity can be en-

hanced by the photon number in the cavity C = nph C0.
Experimentally there is a bound on the photon density that
can be supported by the cavity without undesired effects due
to heating, and it is empirically given by 5 × 104 photons per
μm3 [130]. In our structure, considering the effective mode
volume Vopt, this gives an enhanced cooperativity at maximum
photon density of Ccrystal ∼ 1 × 10−5, which is two orders of
magnitude larger than the current experimental state of the art
[44,130].

Since our model does not account for fabrication imper-
fections, this number is expected to be lower in a physical
implementation, indicating that optimization is needed. Re-
sults for similar 1D optomechanical crystals indicate that
optimization can lead to larger cooperativity values (at maxi-
mum photon density), e.g., ∼10 [54]. The small cooperativity
obtained in our structure is a combination of a reduced cou-
pling due to mode mismatch, plus the very modest quality
factor of the optical mode in this simple geometry.

For boosting the coupling strength we investigate briefly
in the following the influence of the optomagnonic crystal’s
height on the coupling, as proposed in Ref. [111]. Therefore
we increase the height of the YIG layer from 30 to 90 nm with-
out changing the other parameters of the geometry (including
the Si3N4 layer in the optical simulations). As we see from
the result (see Fig. 8) the coupling exhibits a

√
Vmag depen-

dence. We find that the optical mode volume does not change
substantially in the modified geometry, and therefore the ob-
served behavior is consistent with the expected

√
Vmag/Vopt

dependence for a constant optical mode volume. The slight
decrease for larger heights can be explained by the shrinking
of the directionality measure D, stemming from the difference
in symmetries obeyed by the magnetization (rotational) and
the electric field (mirror).

VI. OPTIMIZATION

So far we optimized the crystal in order to minimize optical
losses for the given geometry. In this section we investigate
how to optimize the geometry for magnonics. The optical op-
timization was achieved by fixing the hole radius and intrahole
distance, which are both along the length of the crystal. In
the following we tune instead only the parameters along the
width of the crystal (ŷ direction), in order to perturb as little
as possible the optical optimization. We found a promising
structure by increasing the width of the crystal and consider-
ing elliptical holes, see Fig. 9. From a set of trials we found
that a width of w = 900 nm and a radius of the holes along the

FIG. 9. Optimization of the geometry: Through increasing the
parameters along the width of the crystal we create more space for
the modes without touching the optical optimization of the original
crystal (dashed line). We note that we also increased the defect size,
not shown here.
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FIG. 10. Optical [(a) and (b)] and magnetic modes (c) of the optimized crystal: (a) Band diagram for TE-like modes within the irreducible
BZ with a defect mode in the photonic band gap which was pulled from the upper band-edge state into the gap by the insertion of a defect.
From the mode shape of the localized mode with a frequency of ωopt/2π = 279 THz (middle layer in the xy plane) we see that this mode is
odd with respect to x = 0 and y = 0 [and even with respect to (z = 0)]. (b) Optical spin density of the localized mode (middle layer in the xy
plane) which is odd with respect to x = 0 and y = 0 (and even with respect to z = 0). (c) Band diagram of backward volume waves within
the irreducible BZ showing magnetic modes with extended k values but preferring wave vectors at the edge of the BZ. The highest excited
localized mode has a frequency of ωmag = 2π × 13.17 GHz and is odd along the mirror symmetry planes for x = 0 and y = 0 (and additionally
even with respect to the plane for z = 0). The dashed line in the middle inset shows the mode spectrum in case of no defect. Note: All mode
shape plots are normalized to their corresponding maximum value.

width of rw = 380 nm give the highest coupling. An increased
defect size of d = 1201.5 nm is also beneficial for decreasing
the optical losses in this case, it nicely localizes the optical
defect mode in the middle of the band gap and thus does not
drastically change the localization behavior of the photonic
crystal.

For evaluating the photonic band structure and the optical
modes we use the same procedure as described in Sec. III. We
obtain a similar band structure for TE-like modes and also
a similar localized mode with a frequency of ωopt = 2π ×
279 THz (obtained by Comsol, 235 THz according to MEEP)
and a damping of κopt = 2π × 3 THz which gives an optical
linewidth (FWHM) of γopt = 2π × 6 THz [see Fig. 10(a)].
Using the values obtained by Comsol this results in a reduced
optical quality factor of Q = 93 (note that MEEP gives a
twice as large value). This rather low optical quality factor is a
trade-off for the magnetic optimization achieved by elliptical
holes. Moreover, the optical spin density compared to the
original crystal is mostly localized within the defect which
is advantageous for our purposes [see Fig. 10(b)]. Similarly,
for evaluating the magnon modes we used the parameters
and procedures presented in Sec. IV. In the following we
focus on the Faraday part of the optomagnonic coupling and
therefore consider only the δmz component of the magnon
mode due to the structure of the optical spin density. The
Cotton-Mouton term is discussed briefly at the end of the
section. The simulated band diagram for backward volume
waves again shows extended magnon modes but in this case
we obtain one broadband, most likely stemming from a fu-
sion of several bands due to the larger width of the crystal
[see Fig. 10(c)]. The frequency of the highest excited lo-
calized mode is ωmag = 2π × 13.17 GHz with an estimated
linewidth of γωmag = 2π × 131.7 kHz where we used the
Gilbert damping of YIG γ = 10−5. As in the previous case,

the simulated linewidth is larger due to the larger Gilbert
damping used in the simulations. As we see from its mode
shape, this mode is nicely localized at the holes attached to the
defect and has approximately the same shape and symmetry as
the optical spin density [see Fig. 10(c)].

Using the results discussed above, the Faraday component
of the optomagnonic coupling of Eq. (14) for the optimized
crystal evaluates to |GF

num| = 2π × 2.9 kHz. Therefore the
optimized coupling is one order of magnitude larger than in
the crystal discussed in Sec. V. As before we want to gauge
this value by comparing it to the analytical estimate given
in Eq. (24). The optimal coupling in the optimized crystal is
|GF

optimal| = 2π × 0.5 MHz. Again the magnetic mode volume
bounds the coupling due to the smaller size of the magnetic
mode compared to the optical mode which also extends to the
Si3N4 layers. This results in a overlap measure [see Eq. (25)]
of O = 0.04. Therefore the mode overlap is increased by
25% compared to the unoptimized crystal. Evaluating the
directionality measure given in Eq. (26) gives D = 53%
which is just slightly larger than in the unoptimized case.
Taking both measures into account the analytical coupling
estimate shrinks to |GF

expected| = OD|GF
optimal| ≈ 2π × 10 kHz

which lies slightly above the numerically obtained value.
Although the fine structure peaks of the optical spin density
and the magnon mode still do not coincide (see Fig. 11),
the coupling values are improved by “pulling” the optical
and magnetic modes completely into the defect area by the
insertion of elliptical holes, creating an overlap area with high
density of both modes.

The Cotton-Moutton effect in this structure evaluates
to |GC

num| = 2π × 1 kHz and results in a total coupling
of |Gnum| = |GF

num + GC
num| = 2π × 2 kHz. We can conclude

that in this case both effects interfere constructively for the
total coupling.
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FIG. 11. Fine structure of the optical spin density and the
magnon mode along the length of the optimized crystal for a fixed
height and width.

The cooperativity per photon and magnon in this case is
Cop

0 ∼ 2 × 10−11, which can be enhanced to Cop ∼ 0.5 × 10−6

by the number of photons trapped in the cavity. Thus the
cooperativity at maximum photon density is slightly lower as
in the crystal presented above, a consequence of the reduced
quality factor of the optical mode.

VII. CONCLUSION

We proposed an optomagnonic crystal consisting of a one-
dimensional array with an abrupt defect. We showed that this
structure acts as a Bragg mirror both for photon and magnon
modes, leading to co-localization of the modes at the defect.
By proper design and taking into account the required sym-
metries of the modes in order to optimize the coupling, we
showed that coupling values in the kHz range are possible
in these structures. This value is orders of magnitude larger
than the experimental state of the art in the field, but still
rather small compared to the theoretically predicted optimal
value for micron sized structures, which is in the range of
∼10−1 MHz [34].

We showed that the strength of the coupling in our pro-
posed structure is still limited largely by the suboptimal
mode overlap <5%. Further optimization in design is more-
over needed in order to boost the cooperativity value, which
is limited mainly by the optical losses. The simultaneous
optimization is challenging due to the complexity of the de-
magnetization fields in patterned geometries. Whereas it is
well known that a tapered defect (that is, a smooth defect)
can highly increase the optical quality factors, its effect on
the magnetic modes is nontrivial and is disadvantageous for
localizing the magnon modes of the kind used in this work.
Other magnon modes, however, could be explored in this
case. More complex geometries, including one-dimensional
crystals combining tapering and an abrupt defect, or two-
dimensional crystals, are good candidates to be explored in
order to improve quality factors and coupling. The first results
shown in this work point to the promise of designing the
collective excitations in optomagnonic systems via geometry,

in order to boost the coupling strength and minimize losses,
paving the way for applications in the quantum regime.
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APPENDIX A: NORMALIZATION OF MAGNON MODES

In this Appendix we discuss the normalization of magnons
over a general magnetization texture. The magnetization sat-
isfies the Landau-Lifshitz (LL) equation

dM
dt

= −gμBμ0

h̄
M × (Hex + Heff [M]), (A1)

where Hex is an external field and Heff is a linear functional
which can be interpreted as the effective field generated by
spin-spin interactions such as exchange, dipolar, etc. Let the
static solution, i.e., putting dM/dt = 0, be Msm0(r) with sat-
uration magnetization Ms and unit vector m0 · m0 = 1. This
magnetization generates an effective field of the form

Heff [Msm0(r)] = H0(r)m0(r) − Hex(r), (A2)

where the function H0(r) depends on the nature of spin-spin
interactions. The magnon modes δmγ (r)e−iωγ t are found by
the linearized LL equation

iωγ δmγ = gμBμ0

h̄
[m0 × δhγ + H0δmγ × m0], (A3)

where δhγ = Heff [δmγ ].
The LL equation can be derived from the Hamiltonian

H̄ = −μ0

∫
dV

[
M · Heff [M]

2
+ Hex · M

]
. (A4)

Up to quadratic terms in δm, we expand the magnetization

M ≈ Ms

(
1 − δm · δm

2

)
m0 + Msδm, (A5)

and the effective field

Heff [M] ≈
(

1 − δm · δm
2

)
(H0m0 − Hex) + δh, (A6)

where

δA =
∑

γ

[δAγ βγ + δA∗
γ β∗

γ ], (A7)

with A being m or h and βγ being magnon amplitudes, i.e.,
classical counterpart of b̂γ defined in Eq. (10) in the main text.
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The above form ensures M · M = M2
s up to second order in

δm. The Hamiltonian becomes (ignoring a constant term)

H̄ = −μ0Ms

2

∫
dV [−H0δm · δm + δm · δh

+ δm · Hex + m0 · δh]. (A8)

The last two terms are linear in δmγ and thus should be zero
for δmγ to correspond to a magnon mode. We can simplify the
second term by finding the component of δhγ perpendicular to
m0 using Eq. (A3),

δhγ − m0(m0 · δhγ ) = H0δmγ − ih̄ωγ

gμBμ0
m0 × δmγ . (A9)

Using this and ignoring the linear terms, the Hamiltonian
simplifies to

H̄ = μ0Ms

2

∑
μγ

ih̄ωμ

gμBμ0

∫
dV m0 · [(δmμβμ − δm∗

μβ∗
μ)

× (δmγ βγ + δm∗
γ β∗

γ )]. (A10)

As the eigenmodes should diagonalize the Hamiltonian to∑
h̄ωγ |βγ |2, we should have∫

dV m0 · (δmγ × δmμ) = 0 (A11)

and

iMs

∫
dV m0 · (δmμ × δm∗

γ ) = gμBδμγ . (A12)

For μ = γ , this gives the normalization for magnons. For
circularly polarized magnons with δmμ = δm(y + iz)/

√
2 and

m0 = x, the normalization becomes∫
dV δm2 = gμB

Ms
. (A13)

APPENDIX B: NUMERICAL SETTINGS—OPTICAL
SIMULATIONS

In the following we shortly discuss how the optical band
structure and the optical modes can be evaluated numerically.
In our work we used two different computational methods: for
calculations done in the time domain we use the electromag-
netic simulation tool MEEP [110], whereas for calculations
done in the frequency domain we use the finite element solver
Comsol [113]. We use two simulation tools since with MEEP
it is much easier to obtain the band structure of the crystal,
and with Comsol the exact mode shape.

1. MEEP

MEEP in general solves for Maxwell’s equations in the
time domain within some finite composite volume. There-
fore it essentially performs a kind of numerical experiment
[110]. We use MEEP for simulating the band structure of a
YIG crystal without defect in order to find its band gap and
its corresponding mid-gap frequency. Furthermore, we use a
transmission spectrum simulation to optimize the defect size
in order to get the least lossy localized mode. For finding the
exact frequency of the localized mode we also simulate its
spatial shape in the time domain. For simplicity we simulate

the YIG crystal in a 2D model (see [47,112]). Its material
parameters are set by the relative permittivity of ε = 5. In
order to account for the leakage of the electromagnetic field
the investigated crystal is surrounded by a finite size air re-
gion large enough so that the leaking electric field decays
before it reaches the boundaries, in order to avoid spurious
reflection effects. This is achieved by choosing the distance
between the surface of the crystal and the boundary of the
air region as dair = 3λ0 where λ0 is the vacuum wavelength
(dair = 33.6μm in our case). Furthermore, we need boundary
conditions along the outside of the air region that are trans-
parent to the leaking field such that the truncated air region
represents a reasonable approximation of free space. There-
fore we use a perfectly matched layer at the boundaries of the
air region which absorbs all outgoing waves. The thickness of
this layer should be at least a vacuum wavelength [131]. The
whole geometry is meshed by one single resolution parameter
which discretizes the structure in time and space and gives the
number of pixels per distance unit. For all band simulations
we used a resolution of 40 pixels, whereas in case of the
transmission spectrum we used a resolution of 20 pixels and a
resolution of 50 pixels in case of the mode shapes [112].

a. Band structure simulations

For obtaining the band structure we use a YIG crystal
without defect (d = a) and therefore we can simulate only
one single unit cell with a side length of a containing one
air hole, and apply an infinite repetition of this cell at each
side in x̂ direction. Since we expect the mid-gap frequency
of the crystal with defect to be around 240 THz, we excite
the crystal with a Gaussian pulse with a center frequency of
225 THz and a width of 450 THz to cover all modes around
the band gap. We center the pulse peak at an arbitrary position
(x = 0.00123, y = 0) in order to couple the pulse to an arbi-
trary mode. Since we want to simulate only TE-like modes,
in order to save computational time the pulse only has a Hz

component. For decreasing the computation time even more,
we apply an odd mirror symmetry plane for y = 0. The mirror
symmetry for x = 0 is broken by a boundary condition for
0 < kx < π [112].

b. Transmission spectrum simulations

For optimizing the defect size we simulate a transmission
spectrum for frequencies at the band gap by measuring the
flux at the end of the waveguide stemming from a source at
the other end. The measured flux then is normalized to the
flux of a waveguide without holes. We therefore simulate the
transmission spectrum as a function of different defect sizes
and use the defect size which gives the highest transmission.
In order to consider only TE-like modes where the electric
field lies in-plane, we need to excite the system with a Jy-
current source transverse to the propagation direction which
is achieved by a Gaussian pulse with only a Ey component.
Its center frequency thereby is 222 THz (simulated mid-gap
frequency) and its width is 90 THz (>bandwidth). Also in this
case we apply an odd mirror symmetry for y = 0 for decreas-
ing the simulation time. We note that the mirror symmetry for
x = 0 is broken by the source since it is located at the edge of
the waveguide [112].
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c. Mode shape simulations

For evaluating the mode frequency of the localized mode
within the band gap we simulate the time evolution of this
single mode by exciting it by a Gaussian pulse with a center
frequency of 203 THz (frequency of the peak in the transmis-
sion spectrum) and a width of 15 THz. Since in this simulation
no symmetry is broken we also apply an odd mirror symmetry
for x = 0 and y = 0 for obtaining only a TE-like mode [112].

2. Comsol

We use Comsol to find the spatial mode shape. There-
fore we use the “Electromagnetic waves, Frequency domain”
package of COMSOL’s “RF module” which solves for the
Helmholtz equation of the form

∇ × 1

μr
(∇ × E ) − k2

0

(
εr − iσ

ωε

)
E = 0, (B1)

where k0 indicates the vacuum wave number, ω is the an-
gular frequency, μr is the relative permeability, and ε0 is
the vacuum permittivity. Contrary to the MEEP simulations
above, we simulate the full geometry composite of a YIG
layer sandwiched by two Si3N4 layers. The used material
parameters thereby are εYIG = 5, εSi = 4, μYIG = μSi = 0,
and σYIG = σSi = 0 with μ the relative permeability and σ

the conductivity. Again we also need to simulate an truncated
air region around the crystal which is able to absorb the out-
going radiation. The corresponding material parameters are
εair = μair = 1 and σair = 0. Besides perfectly matched layers
we also can use second order scattering boundary conditions
at the air surfaces given by the expression [131]

n · ∇Ez + ik0Ez − i

2k0
∇2

t Ez = 0, (B2)

with n the normal vector to the considered plane. For large
enough air regions both approaches are almost equivalent as
long as the leaking field is propagating normal to the air
surfaces. In order to account for a large enough air region we
choose the distance between the surfaces of the crystal and the
air boundaries as 4.5μm. For reducing the simulation time we
use the symmetry requirements of a TE-like mode. Therefore
we cut the geometry into an eighth of the whole structure
and apply perfect electric conductor boundary conditions (n ×
E = 0) at the cut surfaces along x = 0 and y = 0 and a perfect
magnetic conductor boundary condition (n × H = 0) at the
cut surface along z = 0. The full solution is then obtained
by using the symmetry requirements of a TE-like mode. The
whole geometry is meshed by a physics-controlled tetrahedral
mesh with a maximum element size of λ0/5 ≈ 0.3μm [132].
We note that in case of a physics-controlled mesh Comsol
automatically meshes the material areas of interest with a finer
mesh and uses a coarser mesh, e.g., for the air regions.

APPENDIX C: NUMERICAL SETTINGS—MAGNETIC
SIMULATIONS

In this Appendix we briefly discuss how the magnetic band
structure and magnetic mode shape is obtained numerically.
For evaluating the magnetization dynamics we use the finite
difference tool MuMax3 [124] which solves for the Landau-

Lifshitz-Gilbert equation of the form

∂m
∂t

= g
1

1 + α2
{m × Beff + α[m × (m × Beff )]}, (C1)

with m = M/Ms the local reduced magnetization of one sim-
ulation cell, g is the gyromagnetic ratio, α is the damping pa-
rameter, and Beff is an effective field which contributions can
be found in [124]. As material parameters we used the param-
eters for YIG, Ms = 140 kA/m (saturation magnetization),
Aex = 2 pJ/m (exchange constant), and Kc1 = −610 J/m3

(anisotropy constant) with the anisotropy axis along ẑ. In order
to accelerate the simulations, we used an increased Gilbert
Damping parameter α = 0.008 (compare to α ≈ 10−5 for
YIG) [126]. The used mesh grid had (1024, 50, 5) cells in
the (x̂, ŷ, ẑ) direction which guarantees to take the exchange
interaction into account (lex ≈ 13 nm for YIG).

In general, in all our simulations the spin wave dynamics
is excited via an external pulse field and the time evolution
is recorded for all three magnetization components. For post
processing the output of the form mi(x, y, z) with i = (x, y, z)
saved for all simulated time steps separately we create for each
magnetization component i = (x, y, z) a 4D array of the form
mi(t, x, y, z).

1. Band structure simulations

In order to obtain the band structure along a specific di-
rection j with j = (x, y, z), e.g., chosen to be the x̂ direction,
we reduce the four-dimensional array to a two-dimensional
array of the form mi(t, x) = ∑ny

m

∑nz
n δmi(t, x, ym, zn) and

perform a 2D Fourier transform on this array δmi( f , kx ) =
FT 2d [mi(t, x)] resulting in the band diagram along the cho-
sen direction. For increasing the resolution in the band
diagram we plot the quantity

√|δmi(t, x)|/max[|δmi(t, x)|].

2. Mode shape simulations

In order to obtain the mode shape we perform a space-
dependent Fourier transform in time on each array entry
separately δmi( f , x, y, z) = FT 1D[mi(t, x, y, z)].

APPENDIX D: EVALUATION OF THE MODE VOLUMES

For evaluating the mode volume numerically we first, due
to numerical errors, need to identify all cells of the simulated
array [either containing δm(r) in case of the magnetic mode
volume or E(r) in case of the optical mode volume] which
contribute to the volume by a high enough mode density. This
means we need to define a threshold which determines if a cell
should contribute to the mode volume or not. We define this
threshold by

T = max(|x|) − min(|x|)
5

, (D1)

where x is the content of the cell (either x = δm or x = E).
For being able to count the cells which contribute to the
volume, we create an additional array matching the simulated
arrays in size. This array then contains ones if the absolute
value of the cell (|x|) in the original array is larger than the
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threshold given in Eq. (D1) and zeros if |x| is smaller. The
mode volume is then obtained by summing over this array
(giving the number of cells contributing to the volume) and
by multiplying this such calculated number by the volume of
one cell sx · sy · sz.

For evaluating the overlap volume between the magnetic
mode (x = δm) and in this case the optical spin density
(E∗ × E) we create the same additional arrays as above iden-
tifying the cells which contribute to their corresponding mode

volume. For identifying the cells where the magnon mode and
the optical spin density overlap, we create a third array again
matching the size of the original array. But this array now con-
tains ones if the corresponding cells of the “threshold arrays”
both in the magnetic and optical case contain a one, otherwise
we set the cell value to zero. The overlap volume is then
obtained by summing over this third array (giving the number
of cells contributing to the overlap) and by multiplying this
such calculated number by the volume of one cell sx · sy · sz.
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M. Lončar, Diamond optomechanical crystals, Optica 3, 1404
(2016).

[60] M. H. Matheny, Enhanced photon-phonon coupling via dimer-
ization in one-dimensional optomechanical crystals, Appl.
Phys. Lett. 112, 253104 (2018).

[61] A. H. Safavi-Naeini and O. Painter, Design of optomechanical
cavities and waveguides on a simultaneous bandgap phononic-
photonic crystal slab, Opt. Express 18, 14926 (2010).

[62] A. H. Safavi-Naeini, T. P. M. Alegre, M. Winger, and O.
Painter, Optomechanics in an ultrahigh-q two-dimensional
photonic crystal cavity, Appl. Phys. Lett. 97, 181106 (2010).

[63] D. E. Chang, A. H. Safavi-Naeini, M. Hafezi, and O. Painter,
Slowing and stopping light using an optomechanical crystal
array, New J. Phys. 13, 023003 (2011).

[64] T. P. M. Alegre, A. Safavi-Naeini, M. Winger, and O. Painter,
Quasi-two-dimensional optomechanical crystals with a com-
plete phononic bandgap, Opt. Express 19, 5658 (2011).

[65] A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, J. Chan,
S. Gröblacher, and O. Painter, Two-Dimensional Phononic-
Photonic Band Gap Optomechanical Crystal Cavity, Phys.
Rev. Lett. 112, 153603 (2014).

[66] H. Ren, M. H. Matheny, G. S. MacCabe, J. Luo, H. Pfeifer, M.
Mirhosseini, and O. Painter, Two-dimensional optomechanical

013277-15

https://doi.org/10.1103/PhysRevLett.116.223601
https://doi.org/10.1103/PhysRevLett.117.123605
https://doi.org/10.1103/PhysRevLett.120.133602
https://doi.org/10.1103/PhysRevB.97.214423
https://doi.org/10.1103/PhysRevA.94.033821
https://doi.org/10.1103/PhysRevB.94.060405
https://doi.org/10.1103/PhysRevB.96.094412
https://doi.org/10.1103/PhysRevB.96.104425
https://doi.org/10.1088/1367-2630/aae4b1
http://arxiv.org/abs/arXiv:1911.11104
https://doi.org/10.1103/PhysRevA.100.013810
https://doi.org/10.1007/BF00607387
https://doi.org/10.1103/PhysRevB.9.2134
https://doi.org/10.1103/PhysRevApplied.14.044005
https://doi.org/10.1103/PhysRevB.101.054412
https://doi.org/10.1088/2040-8986/aaf2c1
https://doi.org/10.1088/0953-8984/26/12/123202
https://doi.org/10.1016/j.physrep.2011.06.003
https://doi.org/10.1038/nature08524
https://doi.org/10.1364/OE.17.020078
https://doi.org/10.1038/nature10461
https://doi.org/10.1038/nature09933
https://doi.org/10.1063/1.4747726
https://doi.org/10.1038/ncomms2201
https://doi.org/10.1088/1367-2630/15/3/035007
https://doi.org/10.1103/PhysRevLett.115.233601
https://doi.org/10.1364/OPTICA.3.001404
https://doi.org/10.1063/1.5030659
https://doi.org/10.1364/OE.18.014926
https://doi.org/10.1063/1.3507288
https://doi.org/10.1088/1367-2630/13/2/023003
https://doi.org/10.1364/OE.19.005658
https://doi.org/10.1103/PhysRevLett.112.153603


GRAF, SHARMA, HUEBL, AND KUSMINSKIY PHYSICAL REVIEW RESEARCH 3, 013277 (2021)

crystal cavity with high quantum cooperativity, Nat. Commun.
11, 3373 (2020).

[67] M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and
O. Painter, A picogram- and nanometre-scale photonic-
crystaloptomechanical cavity, Nature (London) 459, 550
(2009).

[68] J. Chan, M. Eichenfield, R. Camacho, and O. Painter, Optical
and mechanical design of a “zipper” photonic crystal optome-
chanical cavity, Opt. Express 17, 3802 (2009).

[69] A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M.
Aspelmeyer, and O. Painter, Squeezed light from a silicon
micromechanical resonator, Nature (London) 500, 185 (2013).

[70] S. M. Meenehan, J. D. Cohen, S. Gröblacher, J. T. Hill,
A. H. Safavi-Naeini, M. Aspelmeyer, and O. Painter, Silicon
optomechanical crystal resonator at millikelvin temperatures,
Phys. Rev. A 90, 011803(R) (2014).

[71] A. G. Krause, T. D. Blasius, and O. Painter, Optical read out
and feedback cooling of a nanostring optomechanical cavity,
arXiv:1506.01249.

[72] T. K. Paraïso, M. Kalaee, L. Zang, H. Pfeifer, F. Marquardt,
and O. Painter, Position-Squared Coupling in a Tunable Pho-
tonic Crystal Optomechanical Cavity, Phys. Rev. X 5, 041024
(2015).

[73] H. Pfeifer, T. Paraïso, L. Zang, and O. Painter, Design of tun-
able GHz-frequency optomechanical crystal resonators, Opt.
Express 24, 11407 (2016).

[74] G. S. MacCabe, H. Ren, J. Luo, J. D. Cohen, H. Zhou,
A. Sipahigil, M. Mirhosseini, and O. Painter, Nano-acoustic
resonator with ultralong phonon lifetime, Science 370, 840
(2020).

[75] J. Joannopoulos, P. Villeneuve, and S. Fan, Photonic crystals:
Putting a new twist on light, Nature (London) 386, 143 (1997).

[76] S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D.
Joannopoulos, Experimental demonstration of guiding and
bending of electromagnetic waves in a photonic crystal,
Science 282, 274 (1998).

[77] R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J.
Russell, P. J. Roberts, and D. C. Allan, Single-mode photonic
band gap guidance of light in air, Science 285, 1537 (1999).
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