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Numerical calculations of the finite key rate for general quantum key distribution protocols
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Finite key analysis of quantum key distribution (QKD) is an important tool for any QKD implementation.
While much work has been done on the framework of finite key analysis, the application to individual
protocols often relies on the specific protocol being simple or highly symmetric as well as represented in
small finite-dimensional Hilbert spaces. In this work, we extend our pre-existing reliable, efficient, tight, and
generic numerical method for calculating the asymptotic key rate of device-dependent QKD protocols in
finite-dimensional Hilbert spaces to the finite key regime using the security analysis framework of Renner. We
explain how this extension preserves the reliability, efficiency, and tightness of the asymptotic method. We then
explore examples which illustrate both the generality of our method as well as the importance of parameter
estimation and data processing within the framework.
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I. INTRODUCTION

As large-scale quantum computers become an actuality,
we need to change our cryptographic infrastructure to be
safe against attacks which involve adversaries who have such
computers at their disposal [1]. One of the cryptographic tools
for this change in infrastructure is quantum key distribution
(QKD), the security of which will not be threatened by future
technological or algorithmic developments [2–5]. See Ref. [6]
for a review of QKD and Refs. [7,8] for recent progress.

A main task of the security analysis is to calculate the
secret key rates that can be securely achieved with a given
protocol. In analyzing QKD protocols, security proofs are
often done first in the asymptotic regime, that is, in the limit
of an infinite amount of quantum signals being exchanged
between a sender and a receiver (traditionally known as Al-
ice and Bob). However, in any realistic implementation of a
QKD protocol, Alice and Bob can only have a finite amount
of data for characterizing their channel and for performing
classical postprocessing. It is of practical relevance to prove
composable security in the finite regime [9] so that the key
generated by QKD with properly evaluated security param-
eters can be used safely in other cryptographic applications
such as encryption using one-time pad. Toward this goal,
several protocols [10–17] have been proved to be secure in
the finite regime using the ε-security framework expounded
in Refs. [9,11].

However, analytical methods for calculating the secret
key rates are highly technical in both asymptotic and finite
regimes, and they are often restricted to certain protocols with
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symmetry. To aid the study of more QKD protocols (espe-
cially those without symmetry) and also to study side-channel
imperfections of protocols, numerical methods [18–21] based
on convex optimization and specifically semidefinite program
(SDP) have been developed. In particular, numerical methods
in Ref. [19] provide tight and reliable key rates for gen-
eral finite-dimensional QKD protocols. Nevertheless, all these
methods are currently restricted to the asymptotic regime.
Thus, it is important to extend numerical methods to the
finite regime in order to preserve the advantages of numerical
methods.

In this work, we extend the numerical asymptotic key
rate calculation method in Ref. [19] to the finite regime. For
the finite key analysis, we adopt Renner’s framework [9].
Our method retains the advantages of the previous numerical
method [19]; that is, it provides a reliable lower bound on
the key rate for general finite-dimensional QKD and the key
rate is tight within the framework [9]. Unlike other works
[12,22,23], our method does not make an approximation that
leads to a loose bound in the parameter estimation subprotocol
for certain cases. Specifically, our method remains tight when
the positive-operator valued measure (POVM) used in the
protocol has more than two outcomes. This makes our solver
applicable for general QKD protocols. Furthermore, we show
that, without changing the security parameter of the parameter
estimation step, one can decrease the set of states over which
one must minimize the key rate in many practical cases. We
implement this improvement to the analysis of parameter esti-
mation in our numerical method. Our numerical method also
can calculate the finite key rate for protocols that accept a set
of observed statistics in the parameter estimation subprotocol.
This presents an opportunity that is commonly overlooked,
though it is of practical relevance for actual implementations.
These results differ even from a recent numerical approach
to finite key analysis [23], which was designed only for these
protocols which can only achieve tight key rate for QKD pro-
tocols which use a single two-outcome POVM in parameter
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estimation and accept on a single observed frequency distribu-
tion, which is a restrictive case. In summary, we improve the
analysis of the parameter estimation subprotocol in finite key
analysis and present a reliable generic numerical method for
calculating the finite key rate of QKD protocols represented
in finite Hilbert spaces for the first time.

This paper is organized as follows. In Sec. II, we review
background related to finite key analysis including a review of
the finite key analysis framework from Ref. [9]. We then dis-
cuss our extension of the numerical method from Ref. [19] to
the finite regime in Sec. III. To exemplify the key ideas in our
finite key analysis, we apply our method to analyze different
variations of the Bennett-Brassard 1984 (BB84) [24] pro-
tocol including the single-photon prepare-and-measure [24],
measurement-device-independent (MDI) [25] and discrete-
phase-randomized [26] variants in Sec. IV. Finally we make
concluding remarks in Sec. V. We leave technical details in
the Appendixes, including the derivations of the numerical
method and certain improved terms in the bound on the key
length.

II. BACKGROUND

A. General QKD protocol in the finite regime

We start by reviewing the ε-security framework of QKD
[9]. QKD is a cryptographic protocol for secret key distri-
bution in which Alice and Bob establish a shared secret key
by generating a pair of keys SA and SB such that the keys
agree (correctness) and are completely unknown to an eaves-
dropper (secrecy). Neither of these properties can be achieved
perfectly, so we instead talk of a QKD protocol which is
ε = ε′ + ε′′ secure as it is ε′ correct and ε′′ secret where the
ε’s quantify the amount the protocol deviates from the ideal
property. A QKD protocol is ε secure if a distinguisher, which
is either given the real or the ideal protocol as a block box
to test, can guess correctly which protocol it was given with
probability of at most (1/2 + ε) [27,28]. Formally, a QKD
protocol is ε secure if

1
2‖ρSASBE − πSASB ⊗ ρE‖1 � ε,

where πSASB = ∑
s∈S

1
|S| |s〉〈s| ⊗ |s〉〈s|, S is the set of secret

keys the protocol could generate, and ‖ · ‖1 is the trace norm
defined as ‖A‖1 = Tr(

√
A†A). The output secret key of a

ε-secure QKD protocol has composable security under the
abstract cryptography framework [27,28].

In an entanglement-based QKD protocol, Alice (or Eve)
constructs an entangled state ρAB. Alice and Bob then measure
their respective halves of ρAB. In the case that Alice prepares
the state, we refer to the half of the state sent from Alice
to Bob as a signal. We note that the entanglement-based
description of QKD we use in this section is without loss
of generality as prepare-and-measure protocols are equiva-
lent via the source-replacement scheme [29,30], as will be
reviewed in Sec. III.

When Alice sends signals to Bob, the eavesdropper, tradi-
tionally known as Eve, has the chance to perform her attack.
There are two classes of attacks generally considered in se-
curity analysis—collective and coherent. In both cases, one
assumes Eve has an unbounded quantum memory, so she can

FIG. 1. General QKD protocol.

store all her systems indefinitely. Collective attacks assume
Eve uses a new ancillary system to interact with each signal
sent by Alice as it is sent across the channel, after which she
can measure her ancillary systems collectively whenever she
should choose (even after Alice and Bob have completed their
protocol). Coherent attacks assume Eve interacts with all of
the signals as one large state after which she can measure
whenever she pleases. As Eve interacts with all of the signals
as one large state, the signals may be entangled in some arbi-
trary manner. As coherent attacks are the most general form of
attack permitted by quantum mechanics, one ultimately needs
to prove security against coherent attacks.

With the security and attack models in mind, we can con-
sider what subprotocols of a QKD protocol contribute to the
its overall ε security. To aid our discussion, we now describe
steps in a general QKD protocol. Following Fig. 1, without
loss of generality, the general QKD protocol can be described
as follows:

(1) State preparation and transmission: Alice prepares an
entangled quantum state ρAB and sends half of it to Bob. Alice
does this N times.

(2) Measurement and data partitioning: Alice and Bob
measure each of the N entangled quantum states ρAB and store
the data pertaining to each measurement. In view of future
communication, they partition their respective data from each
measurement, indexed by i, into private information, Ai, Bi,
and public information Ãi, B̃i which they later announce
publicly.

(3) Parameter estimation: Alice and Bob announce their
fine-grained data about some random subset of the N sig-
nals of size m to construct the frequency distribution f (a, b).
If f (a, b) is in a set of previously agreed upon accepted
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statistics, Q, Alice and Bob proceed. Otherwise, they abort
the protocol.

(4) Announcements and general sifting: Alice and Bob
announce the public information that they prepared in step 2
and throw out results of some subset of the N − m signals
based on this public information. The remaining private in-
formation forms their raw keys x̃ ∈ {0, . . . , kA − 1}n and ỹ ∈
{0, . . . , kB − 1}n, where kA and kB are the number of possible
outcomes for Alice’s and Bob’s measurements respectively.

(5) Key map: Alice computes the key map [31], a function
of their private data as well as the public data of both parties
to obtain a key, x ∈ {0, 1, . . . , d − 1}n, where d is the size of
the alphabet for the key.

(6) Error correction: Alice and Bob publicly communi-
cate to try and get ỹ and x to agree and thus Bob obtains
x′ ∈ {0, 1, . . . , d − 1}n.

(7) Privacy amplification: Alice and Bob produce their
final keys by using a two-universal hash function on the
key map result x (Theorem 5.5.1 of Ref. [9]). Privacy am-
plification ends with Alice and Bob having keys SA and SB

respectively.
The subprotocols which contribute to the security param-

eter ε are parameter estimation, error correction, and privacy
amplification. There is also one more source of uncertainty
based on how much one “smooths” the min entropy, ε̄. There-
fore, using the standard security proof [9,10], we wind up
with an ε = εPE + ε̄ + εEC + εPA secure protocol which is εEC

correct and εPA + εPE + ε̄ secure. Each term may be viewed in
the following manner:

(1) εPE is the probability of the parameter estimation pro-
tocol not aborting and the state which Alice and Bob tested m
times not being included in the security analysis.

(2) ε̄ is the probability of Eve knowing the key because
for each state feasible according to parameter estimation, ρAB,
Alice and Bob a priori consider the min entropy of the state
ρAB that maximizes the min entropy over the set of states ε̄

similar to ρAB.
(3) εEC is the probability that Alice and Bob do not abort

the protocol and obtain outputs that differ, i.e., x 	= x′.
(4) εPA is the probability that Alice and Bob do not abort

the protocol and that the key is known to Eve because the
privacy amplification failed.

We note each ε term puts a bound on the security of Eve
knowing anything about the key, which one treats as if Eve
learned everything about the key. While this interpretation
of the bound may seem pessimistic, depending on the data
being encrypted with the key, only one bit of the original
message being known may be a security threat, and so this
is the appropriate security [32,33].

With the protocol described and the ε terms accounted for,
we can define the calculation for determining the upper bound
on the length of a secret key generated by a ε-secure QKD
protocol. We begin by defining the set of density matrices
which one must minimize the key rate over given the choice
that Q is a set of frequency distributions within some distance
t from a preferred, fixed frequency distribution F ,

Sμ = {ρ ∈ D(HA ⊗ HB)|∃F ∈ P (�) such that

× ‖�P (ρ) − N (F )‖1 � μ‖F − F‖1 � t}. (1)

Throughout this work, D(HA ⊗ HB) denotes the set of den-
sity matrices on Hilbert space HA ⊗ HB. The map �P (X ) ≡∑

j∈� Tr(X �̃ j )| j〉〈 j| maps density matrices to a register of
the corresponding probability distribution under the POVM,
{�̃ j} j∈� . In other words, �P : D(HA ⊗ HB) → P (�) where
P (�) denotes the set of probability distributions over the
finite set � which we refer to as an alphabet. We re-
fer to �P as the probability map. The map N (X ) =∑

x∈�,y∈� p(y|x)〈x|X |x〉|y〉〈y| is a map N : P (�) → P (�)
according to the conditional probability distribution p(y|x).
This is the quantum channel representation of a classical-to-
classical channel [34]. By the data processing inequality, one
knows that processing data with a map like N can be viewed
as throwing out some information. We therefore refer to N
as a “coarse-graining channel” within this work, as will be
elaborated in the next subsection. The frequency distributions
are denoted by F, F ∈ P (�). Throughout this paper, we de-
note POVM elements pertaining to frequency distributions
we hold as being susceptible to statistical fluctuations with �̃

and observables pertaining to expectations or probabilities we
hold certain with �. Furthermore, throughout the rest of the
paper, when talking about ‖P − F‖1 or ‖F − F‖1, we will
refer to these as the variational distance as P, F , and F are
probability distributions. For this reason, we refer to μ as the
variation bound and t as the variation threshold.

With the notation in Eq. (1) accounted for, we see that Q
is represented by a set of frequency distributions that have
variational distance from a preferred frequency distribution
F within the variation threshold, t , in Eq. (1). The other
inequality in Eq. (1) determines a limit to the variational
distance between the probability distribution induced by ρ ∈
D(HA ⊗ HB) under the probability map �P and the coarse
graining of some F ∈ Q. In other words, Eq. (1) determines
the set of σ which, under the map �P , there exists an F ∈ Q
such that the distance between �P and N (F ) is less than the
variation bound. An in-depth explanation of why this set is
what one optimizes over is given in Sec. II B, but the idea is
that this includes all states which lead to observations which
Alice and Bob would accept with non-negligibile probability.

We note that the ‖F − F‖1 � t constraint in Eq. (1) is a
choice in formalizing the set of accepted distributions during
parameter estimation, Q. While fundamentally Q may be any
set, this threshold from some specific statistics F is a practical
choice without much loss in generality, as normally one would
accept any probability distribution within some distance from
an ideal probability distribution (such as the perfectly corre-
lated statistics, or low phase error).

We can now present the key rate under the assumption of
identically and independently distributed (i.i.d.) collective at-
tack. We will explain how to lift the collective attack analysis
to coherent attacks in Sec. III E.

Adaptation of Theorem 6.5.1 of Ref. [9] for collective
attacks: Assuming i.i.d. collective attack, the QKD protocol is
ε = εPE + ε̄ + εEC + εPA secure given that, when the protocol
does not abort, the output key is of length 
 where


 � n(Hμ(X |E ) − δ(ε̄)) − leakεEC − 2 log2(2/εPA) (2)
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with the following definitions:

Hμ(X |E ) = min
ρ∈Sμ

H (X |E )ρ,

leakεEC = n fECH (X |Y ) + log2

(
2

εEC

)
, (3)

δ(ε̄) = 2 log2(d + 3)

√
log2(2/ε̄)

n
,

μ =
√

2

√
ln(1/εPE) + |�| ln(m + 1)

m
, (4)

and d is the size of the alphabet for Alice and Bob’s output
key.

We note that the variation bound μ is different from exist-
ing literature as we are not using an entry-wise approximation,
but rather are bounding the entire variational distance and
the previous statements of bounding the variational distance
in general had typographical errors. Our δ(ε̄) term is smaller
than any other reported work that we know of as we use the
tightest bound in Ref. [9] and using the correction noted in
footnote 27 of Ref. [10]. We note that leakεEC as defined is an
upper bound on the amount of information leaked during the
error-correction step, taking into account the inefficiency in
the error correction for realistic block lengths using the param-
eter fEC � 1. In an actual QKD experiment, the information
leaked is an experimentally known parameter. We derive all
terms which differ from other works in Appendix B.

B. Parameter estimation

It is important to consider the parameter estimation’s role
in the security proof in greater detail as it is deceivingly
simple and is the primary focus of this work’s examples. In
this section, we clarify its role, review how it has been used
in previous works, and present a theorem which resolves a
standing conceptual issue.

As stated in the previous section, in parameter estimation
as presented in the Renner framework [9], Alice and Bob sac-
rifice m of the signals to get a sequence, z = (z1, z2, . . . , zm) ∈
�m. From this sequence, Alice and Bob construct their fre-
quency distribution F over �. If F is in a preagreed set of
distributions, Q, Alice and Bob continue the protocol. Other-
wise, they abort.

The εPE term in the security statement arises from disre-
garding any state that would lead to an accepted frequency
distribution with a probability less than εPE. Formally, one
could say a state σ is εPE filtered for a given set of mea-
surements by Alice and Bob, {�̃ j}, and set of accepted
probabilities, Q, if Pr[AT |σ ] � εPE. Here Pr[AT |σ ] is the
probability that Alice and Bob accept a frequency distribution
which is produced by sampling from σ with the POVM de-
fined in the protocol. A state which is ignored for this reason is
referred to as being εPE filtered. This disregarding is necessary
as otherwise Alice and Bob would always have to consider the
maximally mixed state and be unable to generate a key.

One may note that the security statement in parameter
estimation is therefore about all statistics which Alice and Bob
would accept, as can be formally seen in Eq. (1). This has been
obfuscated in many of the works on finite key analysis where

the security is always implicitly presented for a protocol in
which only one frequency distribution is accepted. We refer
to such a protocol as a protocol with unique acceptance as
there is a unique frequency distribution which Alice and Bob
will accept. While rigorous, we believe the security analysis
of protocols with unique acceptance to not be the complete
picture, as a protocol which only accepts a single frequency
distribution will abort an impractical amount of the time.

1. Coarse graining

There remains a further conceptual issue in parameter
estimation. In parameter estimation’s most straightforward
implementation, Alice and Bob simply take the outcomes of
their joint measurements for some subset of the N signals
to get their sequence z and thus their probability distribution
F . We refer to the sequence z as fine-grained data as it per-
tains to the most detailed information one can acquire via the
measurements permitted by the protocol. However, Alice and
Bob could also construct a variety of alternative distributions
by coarse graining the fine-grained probability distribution
F over the alphabet � to a probability distribution FC over
a smaller alphabet �. Formally, coarse graining is simply
data processing of the statistics F using a conditional prob-
ability distribution p�|� which is represented in the language
of quantum channels as the classical-to-classical channel N .
Therefore, one can construct the coarse-grained statistics FC

and corresponding effective POVM {�̃C
i }i∈� for constructing

the probability map using the conditional probability distribu-
tion p�|� by the following two equations:

FC = N (F ), �̃C
i =

∑
j∈�

p�|� (i| j)�̃ j .

As an example, consider the case of BB84. Alice and
Bob both have four possible outcomes for their measurements
“0”, “1”, “+”, and “−”, which results in 16 possible joint
outcomes, which would be our alphabet �. However, it is
often sufficient to look at a statistic known as the phase error
for determining the calculation of the entropy term Hμ(X |E ).
There is a phase error if Alice and Bob’s joint outcome is
in the set �err := {(“ + ”, “ − ” ), (“ − ” , “ + ” )}. Then the
phase error can be seen as the coarse graining from applying
the conditional probability distribution p�|� , defined as

p�|� (“error”| j) =
{

1 j ∈ �err

0 otherwise ,

p�|� (“no error”| j) =
{

0 j ∈ �err

1 otherwise .

2. Security with multiple coarse grainings

Given the proof method for constructing the set in Eq. (1),
coarse graining may lead to a better a key rate than using just
the fine-grained data, as will be shown in Sec. IV. This would
imply that, within the proof method, throwing out information
can make one more secure against Eve, which is counterintu-
itive. However, in an actual protocol, even when Alice and
Bob coarse grain their statistics, they still have access to the
fine-grained data. We would expect therefore that one can
construct a set which considers the fine-grained data and the
coarse-grained data and maintains the same security statement
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[35]. Such a set could only improve the key rate and would
resolve the idea that throwing out information can help within
this proof method. Here we prove such a set exists by taking
the intersection of sets constructed via different coarse grain-
ings but with the same security promise under the assumption
of i.i.d. collective attacks. That is to say, we prove that if one
fixes a parameter estimation security parameter εPE > 0 and
consider a finite number of coarse grainings, indexed with an
alphabet �, then if one defines the set of states Sμk which must
be optimized over for each coarse graining given the security
parameter, then optimizing over the intersection of these sets
will guarantee the same security parameter. A generalization
of this theorem for considering the intersection of any set of
sets, {Sk}, such that ∀k the set’s complement, Sk , includes only
states ξ such that Pr[AT |ξ ] � εPE is straightforward.

Theorem 1 (security with multiple coarse grainings). Fix
εPE > 0. Let � be a finite alphabet indexing these multiple
coarse grainings. For each k ∈ �, let

Sμk = {
ρ ∈ D(HA ⊗ HB) | ∃Fk ∈ P (�) :∥∥�Pk (ρ) − Nk (Fk )

∥∥
1

� μk& ‖N (Fk ) − N (F )‖1 � t
}
,

where F ∈ P (�) is used to define the set of statistics
accepted, �Pk (ρ) = ∑

i∈�k
Tr(ρ�̃

Ck
i )|i〉〈i| is the correspond-

ing probability map, Nk (X ) = ∑
i, j p�k |� ( j|i)〈i|X |i〉| j〉〈 j| is

the corresponding coarse-graining channel, N is a coarse-
graining channel used so that one can abort on statistics that
differ from the ones considered for the variation bounds μk ,
and μk is determined using Eq. (4) so that, by Theorem 8,
∀σ 	∈ Sμk , Pr[AT |σ⊗m] � εPE. Define Smulti = ⋂

k Sμk . If σ 	∈
Smulti, then Pr[AT |σ⊗m] � εPE.

Proof. For any set X ⊆ D(HA ⊗ HB), let X ≡ {x ∈
D(HA ⊗ HB)|x 	∈ X }. We know by the construction of the
sets Sμk [Eq. (4) and Theorem (8)] that ∀k ∈ �, ∀σ ∈
Sμk , Pr[AT |σ⊗m] � εPE. It immediately follows that ∀σ ∈⋃

k Sμk , Pr[AT |σ⊗m] � εPE. Note that
⋂

k Sμk = ⋃
k Sμk .

Therefore, ∀σ 	∈ ⋂
k Sμk , Pr[AT |σ⊗m] � εPE. �

With the preceding theorem, we can define the general set
to optimize over

SεPE = {
ρ ∈ D(HA ⊗ HB) | ∀k ∈ �, ∃Fk ∈ P (�) :∥∥�Pk (ρ) − Nk (Fk )

∥∥
1

� μk &‖N (Fk ) − N (F )‖1 � t
}
, (5)

where � is an alphabet for indexing the number of coarse
grainings. Note that F is fixed.

There are two important observations to be made. The first
is that for ρ ∈ SεPE one does not need a single F ∈ Q which
satisfies all k variation bounds with respect to ρ but rather
(F1, . . . , F|�|) ∈ Q×|�| so that Fk satisfies the kth variation
bound with respect to ρ. This is a property of the proof method
we have used as we intersect the sets. An alternative proof
method that only considers one F that satisfies all constraints
at the same time remains an open problem. The second obser-
vation is that to define SεPE each Sμk being intersected must
be defined using a coarse graining which acts on fine-grained
statistics over the same alphabet �. Otherwise, more testing

FIG. 2. Parameter estimation visualized: Here we consider pa-
rameter estimation for two coarse grainings. For clarity, we consider
a protocol with unique acceptance which only accepts F . Each coarse
graining of F has its own set Sμk which would correspond to Eq. (1)
for that given coarse graining. One can see that the POVM and the
variational bound μk determines the set Sμk . Furthermore, we now
visually see how by considering both coarse grainings, SεPE , one
can decrease the set of density matrices optimized over for the same
security parameter and therefore possibly increase the key rate.

would be necessary which would relate to a different set and a
different security claim. To visualize Eq. (5), see Fig. 2, which
presents Eq. (5) for a protocol with unique acceptance.

C. Asymptotic analysis

Lastly, we review how the asymptotic analysis arises from
finite key analysis since the general numerical framework for
finite key analysis is an extension of the asymptotic method.
This can be seen as follows. Define the asymptotic key rate as
R∞ = limN→∞ 
(N )/N . As the total number of signals sent,
N , goes to infinity, the number of signals used for parameter
estimation, m, will grow (although an increasingly smaller
fraction of the total signals sent will be consumed for pa-
rameter estimation). Given Eq. (4), as the number of signals
m increases to infinity, the variation bound μ will go to 0.
The fundamental limit for n/N will be the probability that any
signal can actually be used for key generation, which we refer
to as ppass. It is then clear that the asymptotic key rate is

R∞ = ppass
(
min
ρ∈S

H (X |E ) − fECH (X |Y )
)
, (6)

where

S ≡ {ρ ∈ D(HA ⊗ HB)|Tr(ρ�i ) = γi, ∀i ∈ �}
and � is an alphabet for indexing the constraints.

This statement is equivalent to the famed Devetak-Winter
bound [36], which in this case has been derived from the finite
key analysis. Furthermore, as we will see in Sec. III E, the
finite key analysis can be extended to take into account coher-
ent attacks and still achieve this bound in the limit. We can
therefore conclude asymptotic analysis pertains to coherent
attacks. In the expression for asymptotic key rates, {�i} is no
longer need to form a POVM, but rather can be any observ-
ables that are in the space spanned by the original POVM. This
is the case, as in the asymptotic limit there are no fluctuations,
so one can calculate the expectation value of any observable
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from a linear combination of the probabilities determined
by the POVM. Lastly, there exists a numerical method for
calculating this key rate using semidefinite programming for
general QKD protocols [18,19]. In what follows, we show
how to extend this numerical method to finite key so that we
can then investigate examples to better understand parameter
estimation.

III. NUMERICAL METHOD

To be able to determine the key rate for an arbitrary
device-dependent QKD protocol using a unified numerical
method, it is important to be able to represent all protocols
in the same manner. All QKD protocols can be formulated as
entanglement-based protocols using the source-replacement
scheme. This means that as our numerical framework can
handle entanglement-based protocols, it can also handle
prepare-and-measure protocols. First, we review the source-
replacement scheme. We then review the numerical method
for asymptotic analysis under this representation. Lastly, we
show how to extend the numerical analysis to consider the
finite key regime.

A. Source-replacement scheme

The source replacement scheme is a formulation of the pre-
pare and measure protocol in the language of entanglement-
based protocols. It was first made use of in the analysis of
BB84 [37] and Gaussian CV-QKD [38]. The general method
for the equivalence was then expounded in Refs. [29,30]. By
formulating the prepare-and-measure protocol in language of
entanglement-based protocols, whatever the key rate is for
the entanglement-based protocol is also the key rate for the
original prepare-and-measure protocol.

Imagine a prepare-and-measure protocol in which Al-
ice sends the ensemble {px, |ϕx〉} where px is the a priori
probability of sending the signal state |ϕx〉. By the source-
replacement scheme, it is equivalent for Alice to prepare the
entangled state:

|�〉AS =
∑

x

√
px|x〉A|ϕx〉S.

Alice first sends Bob’s portion of the state, the signal space S,
to Bob through a quantum channel E , leading to the resulting
joint state:

ρAB = (IA ⊗ ES→B)(|�〉〈�|AS ),

where IA is the identity channel on the A space. After Alice
performs a local projective measurement on the A space, she
effectively sends |ϕx〉 to Bob with probability px just like in
the prepare-and-measure scheme. Consequently, Bob receives
the conditional state

ρx
B = 1

px
TrA[ρAB(|x〉〈x| ⊗ 1B)].

Assume that in the original prepare-and-measure protocol
Alice and Bob ended up with a joint probability distribu-
tion p(x, b), where b ∈ � and |�| is the number of POVM
elements for Bob’s POVM {�B

b }b∈� . It follows by the source-
replacement scheme that asymptotically it is equivalent for us

to constrain ρAB by

Tr
(
ρAB

(|x〉〈x| ⊗ �B
b

)) = p(x, b) ∀x, b

when minimizing H (X |E ) over the set S of compatible states.

B. Asymptotic numerics

To calculate secret key rates, we have to minimize H (X |E )
with the given constraints on the underlying state. This is often
difficult when there are not sufficient symmetries to simplify
the problem. To address this issue, a two-step method to
produce a tight, efficient, and reliable lower bound on H (X |E )
has been created [19]. In this work, there are a few key ideas
which will be of particular import in our extension to include
finite-size effects. The first is that H (X |E ) can be represented
by the relative entropy as X is classical information [39]. This
is done using the following function:

f (ρ) = D(G(ρ)‖Z (G(ρ))), (7)

where D(·||·) is the quantum relative entropy, G is a com-
pletely positive trace nonincreasing map that describes the
postprocessing steps of the protocol, and Z is a quantum
pinching channel which is related to obtaining the results of
key map (see Appendix A of Ref. [40] for further detail). By
the joint convexity of quantum relative entropy, the function
f (ρ) is a convex function in ρ and thus can be used as the
objective function for a semidefinite program for our mini-
mization of the conditional entropy. Therefore, we define

α ≡ min
ρ∈S

f (ρ). (8)

However, as we want a lower bound that also holds if
our numerical optimization routines return before reaching
the true mathematical minimum, we need to acquire the dual
problem of the SDP so that we have a maximization problem.
This would guarantee the computer always returns an answer
approaching from below the true minimum of the conditional
entropy so that we can always guarantee that our answer
provides a reliable lower bound on the key rate. Unfortunately,
the quantum relative entropy is a highly nonlinear function
and so determining the dual of this problem is difficult in
general. For this reason, we linearize the function about a
given density matrix. We can then acquire the dual of the
linearization of the original problem SDP, max�y∈S∗(σ ) �γ · �y,
where

S∗(σ ) ≡
{

�y ∈ R|�|∣∣∑
i

yi�i � ∇ f (σ )

}
, (9)

where �γ is just the vector of the set of expectation values
{γi}i∈�.

Then the lower bound for any optimal or suboptimal attack
σ can be calculated as

β(σ ) ≡ f (σ ) − Tr(σ∇ f (σ )) + max
�y∈S∗ �γ · �y (10)

because it can be shown that for all ρ ∈ S, α � β(ρ) so long
as ∇ f (ρ) exists (Theorem 1 of [19]). Here we have defined
the gradient of f at point ρ represented in the standard basis
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Algorithm 1. Asymptotic key rate lower bound.

Result: lower bound on min
ρ∈S

H (X |E ) [19]

1. Let ε > 0, ρ0 ∈ S, maxIter ∈ N, and i = 0.

Step 1

2. Compute �ρ := arg minδρ Tr[(δρ )∇ f (ρi )]
subject to �ρ + ρi ∈ S.

3. If Tr[(�ρ )∇ f (ρi )] < ε, then proceed to step 2.

4. Find λ ∈ (0, 1) that minimizes f (ρi + λ�ρ ).

5. Set ρi+1 = ρi + λ�ρ, i → i + 1.

6. If i > maxIter, proceed to step 2.

Step 2

7. Let ρ be the result of step 1. Let ζ � 0 be the
maximum constraint violation of ρ from the
original set S constraints which satisfy this.

8. Calculate ∇ f (ρ ) to use for constructing S∗.

9. Expand S∗ such that states which violated the
original constraints by ζ are included.

10. Calculate β using the SDP defined above Eq. (9).

{|k〉} as [41]

∇ f (ρ) ≡
∑

j,k

d jk|k〉〈 j|, with d jk ≡ ∂ f (σ )

∂σ jk

∣∣∣∣
σ=ρ

and σ jk ≡ 〈 j|σ |k〉. Moreover, we can write the gradient of
f (ρ) as

∇ f (ρ) ≡ G†(log2 G(ρ)) − G†(log2 Z (G(ρ))). (11)

Lastly, one can guarantee ∇ f (ρ) exists via perturbing the state
sufficiently by mixing the output of G(ρ) with the maximally
mixed state such that all eigenvalues are nonzero.

The expression of β(σ ) in Eq. (10) gives a valid lower
bound for the key rate for any σ , but the bound will be tighter
the closer σ is to the true optimum. We thus use a near-optimal
evaluation of the primal problem [Eq. (8)]. This is referred
to as step 1 (see Algorithm 1). For further information on
the specifics of this method, we refer to Appendix A and
Ref. [19].

C. Extension to finite key

1. Tight, reliable, and efficient lower bound

We now extend the previous numerical framework to the
finite regime and show rigorously that this extension preserves
the advantages of previous numerical method; that is, it pro-
vides tight, efficient, and reliable key rates. For clarity, we will
begin by proving the tightness in the case where there are no
numerical errors and a single coarse graining. Here tightness
is defined as the property that if one acquires the optimal
solution in step 1 of the algorithm, then step 2 will obtain
the same answer. We then generalize to the case for handling
issues due to numerics and multiple POVMs in Appendix A.

The primary steps in extending our method to the finite
key regime are changing the sets over which we optimize

and changing how we perform item 9 in Algorithm 1. In the
case of prepare-and-measure protocols, we first modify Sμ

as defined in Eq. (1) as Alice knows her portion of the state
ρA perfectly under the source-replacement scheme. Therefore,
while the parameter estimation is handled in the original
definition, it must take into account Alice’s certainty on ρA.
Thus we define a variation of Eq. (1) for prepare-and-measure
protocols:

SPM
μ ≡ {ρ ∈ Pos(HA ⊗ HB) | ∃F ∈ P (�) :

‖�P (ρ) − N (F )‖1 � μ, ‖N (F ) − N (F )‖1 � t,

Tr(ρ�i ) = γi, ∀i ∈ �}, (12)

where we use � for indexing constraints which are certain. We
note ρ is a density matrix by setting �1 = 1HA⊗HB , γ1 = 1.
Furthermore, the use of N and N is so that one might abort on
some set of coarse-grained or fine-grained data which differs
from the data used in relation to the variation bound. We
stress that as F and N are fixed, N (F ) is a fixed frequency
distribution. From this, we can define the primal problem of
the linearized SDP at the density matrix ρ as

minimize 〈∇ f (ρ), σ 〉
subject to Tr(�iσ ) = γi ∀i ∈ �,

‖�P (σ ) − N (F )‖1 � μ,

‖N (F ) − N (F )‖1 � t,

Tr(F ) = 1,

σ, F � 0. (13)

However, it is not obvious from this form that this is an SDP.
The trick is then to consider how to handle the trace norm.
The trace norm of a Hermitian matrix A has a well-known
semidefinite program [42]:

minimize Tr(Q) + Tr(R)

subject to Q � A,

R � −A,

Q, R � 0.

It is known that the trace norm SDP always achieves the
optimal value in both the primal and dual, which is a property
known as strong duality. This is important as we need our SDP
to have strong duality for tightness (see Appendix A for more
details). With this knowledge, we can express our SDP:

minimize 〈∇ f (ρ), σ 〉
subject to Tr(�iσ ) = γi ∀i ∈ �,

Tr(�+) + Tr(�−) � μ,

�+ � �P (σ ) − N (F ),

�− � −[�P (σ ) − N (F )],

Tr(�
+

) + Tr(�
−

) � t,

�
+ � N (F ) − N (F ),

�
− � N (F ) − N (F ),

Tr(F ) = 1,

σ, F,�+,�−,�
+
,�

− � 0. (14)
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The dual of this problem is

maximize �γ · �y + f · �z − aμ − at − b

subject to
∑

i

yi�i +
∑

j

z j�̃ j � ∇ f (ρ),

−→
N

†
(�z) −

−→
N†(�z) � b �1,

− a�1 � �z � a �1,

− a�1 � �z � a �1,

a, a � 0, �y ∈ R|�|, (15)

where f is the vector version of N (F ) and
−→
N † is the action

as the adjoint of the map N , N †, on the diagonal entries of a

matrix. It is sufficient to consider
−→
N † on the diagonal entries

of a matrix because N † only acts on the diagonal entries of

a matrix, and so it is easy to see that the
−→
N † map applied to

the vector formed by the diagonal entries of a matrix gives the
equivalent action as N† on the matrix.

One may note that the objective function of the finite key
SDP is similar to the asymptotic case but with reductions asso-
ciated with the finite-size effects due to the variational bound
μ and the threshold t as the variables a, a are non-negative.
However, this is somewhat obfuscated when first presented
in this general form. We therefore explain this in relation to
the simplified SDP of a protocol with unique acceptance in
the following section. We denote the set of (a, a, b, �y, �z, �z),
which satisfy the constraints as S∗

μ(ρ) for a primal solution ρ

to mirror the asymptotic notation.
With the SDP for finite key analysis determined, it is cru-

cial to prove that we have preserved the old properties of
tightness, robustness to perturbation to make ∇ f (ρ) exist,
and reliability in the face of finite computational precision.
As we have not changed the function f , all of the theorems
pertaining to perturbing the channel to guarantee ∇ f (ρ) exist
are unchanged from asymptotic case, and we direct readers
to Ref. [19] for those proofs. However, the proof of tightness
is not identical to that in Ref. [19] and so we state this result
here.

Theorem 2 (Equality of α = β(ρ∗)). If ρ∗ is the minimizer
that achieves α, then α = β(ρ∗) where

α ≡ min
ρ∈Sμ

f (ρ)

and
β(σ ) ≡ f (σ ) − Tr(σ∇ f (σ ))

+ max
(a,a,b,�y,�z,�z)∈S∗

μ(σ )
�γ · �y + f · �z − aμ − at − b.

This guarantees our numerical method obtains the optimal
value when the solver works ideally.

Proof. See Appendix A. �
Note this is not obvious as α is the optimal of the primal

using the original function f (ρ), and β includes the dual of
the linearization of f (ρ).

Lastly, we are concerned with the numerical precision of
the computer which cannot perfectly represent the POVM ele-
ments or statistics and sometimes may return an answer in the
first step that slightly violates some constraint. In other words,
the computer has not optimized over Sμ, but rather over some

different set S̃μ. Without handling this, our solver could be
unreliable; i.e., it could allow for the solution of step 1 to
obtain a value greater than step 2 in some cases. To guarantee
this does not happen, one must expand the set for the dual
S∗

μ(σ ) to S̃∗
μ(σ ). The proper method for doing this is to find the

largest constraint violation of the certainty constraints, which
we denote by ζ ′ [43]. Then one must allow every certainty
constraint to vary within that distance as was done in the
asymptotic case: |Tr(ρ�i ) − γi| � ζ ′. Furthermore, one ex-
pands μ to μ′ = max(μ + nε′, ‖�P (ρ f ) − F‖1 + nε′) where
n = |�| and ρ is the solution to the first step. We leave the
proof of this statement to Appendix A. This then guarantees
to include the state considered in the first step. Therefore, we
have an SDP to do finite key analysis which is tight, efficient,
and reliable for general QKD protocols.

D. SDP for protocol with unique acceptance

Many of our examples pertain to protocols with unique
acceptance for clarity in relation to previous work as well as
for clarity of ideas. As in the case of unique acceptance that
the problem simplifies, we derive the SDP for a QKD protocol
with unique acceptance from the general version above. Most
generally, a protocol with unique acceptance may be viewed
as picking N (F ) to be the only distribution Alice and Bob
accept on. Then the constraint pertaining to Q in Eq. (12)
vanishes, as it must be the case N (F ) = N (F ). It follows
F could be allowed to vary over all F ∈ P (�) such that
N (F ) = N (F ). However, in previous works [10,11,22,23],
this nuance is lost as only one coarse graining is considered,
and so the authors instead define the frequency distribution
on the coarse-grained outcomes by defining F := N (F ). For
consistency in the literature, we also make this assumption in
defining a protocol with unique acceptance. We denote N (F )
by FN to make it clear it is fixed rather than a variable. Using
this notation, we can define the following set:

SUA
εPE

≡ {ρ ∈ Pos(HA ⊗ HB) |
‖�P (ρ) − N (FN )‖1 � μ, Tr(ρ�i ) = γi, ∀i ∈ �},

where it must be the case that N coarse grains data from the
alphabet of FN as otherwise it would not be well defined.
From this definition, we get the following primal problem:

minimize 〈∇ f (ρ), σ 〉
subject to Tr(�iσ ) = γi ∀i ∈ �,

Tr(�+) + Tr(�−) � μ,

�+ � �P (σ ) − N (FN ),

�− � −[�P (σ ) − N (FN )],

σ,�+,�− � 0. (16)
The dual of this problem is

maximize �γ · �y + f · �z − aμ

subject to
∑

i

yi�i +
∑

j

z j�̃ j � ∇ f (ρ),

− a�1 � �z � a�1,

a � 0, �y ∈ R|�|, (17)

where f is the vector version of N (FN ).
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The SDP is nearly identical to the asymptotic case as the
first constraint of Eq. (15) is in effect identical to the single
constraint of Eq. (9). Similarly, the objective function is nearly
identical, though one can see that there is some reduction to
the key rate associated with the finite-size effects, represented
by variational bound μ, as the variable a is constrained to be
non-negative. The constraint on �z is simply the dual problem
of the trace norm simplified using the specific structure of our
problem (see Appendix A for derivation).

E. Coherent attacks

As one important aspect of finite key analysis is the ability
to analyze the key rate using coherent attacks, it is important to
understand how the numerics can handle the coherent attack
analysis. Extending the numerical approach in this work to
coherent attacks using the finite quantum de Finetti theorem
[9] can be done by changing how one defines the variation
bound μ and by adding some extra parameters, as we explain
in Appendix C. However, the finite quantum de Finetti ap-
proach provides pessimistic key rates for realistic block sizes.
An alternative method to the finite quantum de Finetti theorem
which provides better, but still pessimistic, bounds on the key
rate is the postselection technique [44]. This method effec-
tively states that given ε security for convex combinations of
i.i.d. states, σ⊗N , which follows from the security of i.i.d.
collective attacks, then the protocol is ε′ = (N + 1)d2

AB+1ε

secure for coherent attacks, where dAB is the dimension of
the Hilbert space that Alice and Bob’s joint state lives in.
However, to rigorously use this method, this either requires
the initial protocol to be permutation invariant or a way found
to bound the portion of the protocol after parameter estimation
by a permutation invariant version which introduces more ε

terms (Sec. 3.4.3 of Ref. [45]). Another technique that handles
coherent attacks is the entropy accumulation theorem [46].
However, this method is not immediately applicable to our
numerical method since it requires a specific property for
the protocol. We leave it as future work to investigate how
to combine the entropy accumulation theorem with our nu-
merical method. As such, the currently applicable coherent
attack proof methods—the finite quantum de Finetti method
and the postselection technique—while implementable, are
pessimistic and we expect them to be improved to be sig-
nificantly closer to the collective attack results we present
in this work. Moreover, this uplift is independent of our
work here, so we concentrate on the collective attack. In
Appendix C, we explain how to lift our results to coherent
attacks using the finite quantum de Finetti method. Lastly, to
the best of our knowledge, the postselection technique has
not been rigorously applied to protocols using the source-
replacement scheme. This is because the source replacement
scheme only proves protocol security on states with a fixed
reduced density matrix, but the postselection technique proof
requires security on arbitrary i.i.d states. A simple solution is
to treat the marginal constraints as uncertain and introduce
extra testing in the protocol on the marginal, but this will
come at some extra cost in the small block-size regime. This
issue does not arise for the finite quantum de Finetti security
proof as one can introduce an extra ε term to handle the fixed
marginal (see Remark 4.3.3 of Ref. [9]).

IV. EXAMPLES

In this section, we present variations of the BB84 protocol
[24] to investigate the properties of finite key analysis as well
as our method. In doing so, we show our method works for
any protocol which can be represented in a finite-dimensional
Hilbert space. This includes single-photon protocols including
single-photon MDI protocols and any optical implementation
of a protocol which admits a squashing map [47–49]. Further-
more, we show the power and generality of our method in
being able to consider multiple coarse grainings where each
frequency distribution can be of any length. This is in contrast
to previous works [12,22,23], which could only do multiple
two-outcome probability distributions without adding loose-
ness to their calculation of Hμ(X |E ) as their bound on the
variation bound μ loosened beyond two-outcome POVMs.
Lastly, in addition to examples of protocols with unique ac-
ceptance, we also present an example where Q is not a single
distribution and discuss when using our method to calculate
key rates of general protocols may be needed in the practical
development of QKD hardware.

In all examples in this section, we let εPE = ε̄ = εEC =
εPA = 1

4 × 10−8 as we found no general asymmetric choice
consistently improved the key rate substantially. We note that
our method will work for significantly smaller ε values. The
only limitation is numerical precision, which will not be a
problem for any realistic ε term given the equations always
depend on the logarithm of the ε term.

For completeness, we present the postprocessing maps, G,
for each protocol in Appendix D which are not difficult to
derive following the discussion in Appendix A of Ref. [40].

A. BB84 with phase error parameter estimation

As a simple case where the analytic answer is known, we
consider the BB84 protocol where signals are sent in the Z
basis with probability pz and the key map is only done on the
Z basis so that all other events are removed during generalized
sifting [50]. In other words, the states |0〉, |1〉 are sent with
probability pz

2 and the states |+〉, |−〉 are sent with probability
1−pz

2 . We assume that Alice and Bob perform parameter esti-
mation in which they only check the phase error, ex, using the
POVM {

�ex , 1 − �ex

}
, (18)

where �ex ≡ (1A ⊗ 1B − σX ⊗ σX )/2 and σX is the Pauli X
operator. An analytic key length in finite size for a protocol
with unique acceptance has been given for this scenario in
Refs. [10,51]:


BB84,ex = n

[
1 − h

(
ex + μ

2

)
− fECh(ez ) − δ(ε̄)

]
− log2

(
2

εEC

)
− 2 log2

(
2

εPA

)
, (19)

where Hμ(X |E ) = 1 − h(ex + μ

2 ), H (X |Y ) = h(ez ), h(p) =
−p log2(p) − (1 − p) log2(1 − p), and all other terms are as
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FIG. 3. Numerical key rate vs analytic key rate for BB84 for four
error rates with εPE = ε̄ = εEC = εPA = 1

4 × 10−8 so that ε = 10−8.
The lines are the theory curves, and the dots are the corresponding
solutions by our numerical method. We let ez = ex and pz = 0.9. We
assume here that the sample size is still larger than the block length
of error correction, which then gives fEC =1.20.

defined in Sec. II. The specific form of Hμ(X |E ) follows from
the fact that asymptotically the conditional entropy between
the key and Eve for this protocol is of the form 1 − h(ex )
and so the worst-case scenario in the finite regime is that half
of the variation bound μ increases the phase error. The error
correction term H (X |Y ) is the binary entropy of the quantum
bit error rate ez because the number of bits that needed to be
corrected when doing the key map from the Z basis is the error
rate in the Z basis.

To show that our approach works, we consider it against the
analytical curve in Fig. 3. Following Ref. [10], to determine
the value of μ, we assume Alice and Bob sacrifice (1 − pz )2N
of the signals to parameter estimation. This is a good choice
since because as N goes to infinity, pz can approach zero, and
so one will need to spend a continuously smaller fraction on
parameter estimation, which this a priori decision takes into
account. Furthermore, in the simulation we assume that our
observations yield that the error rates satisfy ez = ex to let
H (X |Y ) = h(ex ). As can be seen in Fig. 3, for this protocol
our solver produces a lower bound that matches the analytical
result perfectly. Furthermore, in this example, we let fEC =
1.2 as this is a realistic model of the inefficiency of error
correction in current experiments [10,11,52].

B. Rotated BB84 and POVM choice

In this section, we explore the effect of fine-grained data
versus coarse-grained data on the key rate and the increased
importance of the difference in the finite regime. Furthermore,
we show the advantage of considering multiple coarse grain-
ings [Eq. (5)] rather than only one [Eq. (1)]. This in turn shows
that a major advantage of our numerical method is the ability
to consider multiple coarse grainings to achieve tight key rates
which analytically is not manageable.

In the case of constraining the set of density matrices using
a single frequency distribution F , there are two competing
effects—the rate at which the variation bound μ goes to 0

and the value of the asymptotic key rate. As one can see from
Eq. (4), the number of POVM outcomes effects the size of the
variation bound μ. This means that more coarse-grained data
FCk has a variation bound μk that converges to 0 faster than
that of the fine-grained data. It follows that for a case such
as in the first example where an element of a coarse-grained
probability distribution (ex) determines the key rate [Eq. (19)],
the coarse-grained data will lead to a better or equal key rate
to the fine-grained data for any amount of signals.

However, we know that if one applies a unitary rotation
about the Y axis on the Bloch sphere to each signal sent
to Bob, then the fine-grained statistics will detect the ro-
tation, thereby leaving the key rate unchanged. In contrast,
the phase error coarse-grained statistics cannot determine the
rotation, thereby decreasing the coarse-grained key rate. As
asymptotically the fine-grained key rate is better than the
coarse-grained key rate in the event of such a rotation, even
with the coarse-grained statistic variation bound converging
to zero more quickly, the fine-grained key rate must be better
than the coarse-grained key rate for some number of signals.

Independent of finite size effects, the idea that some
POVMs being robust to rotations has already been recognized
in the literature by the invention of the “reference frame in-
dependent” and “six-state four-state” protocols [53,54]. The
idea is that the information extracted by the POVM determines
how robust the protocol is to differences in Alice’s and Bob’s
reference frames. This is because the signals sacrificed for
the parameter estimation step allow them to in effect align
their relevant reference frames [55]. For example, if we had
rotated the states about the X axis of the Bloch sphere, not
even the fine-grained data of the BB84 protocol would help,
but the six-state protocol, which is tomographically complete,
would be robust to this. In this section, we present an example
of this misalignment in reference frames in BB84 to explore
its relation to finite size effects and the advantage of doing
parameter estimation with multiple coarse grainings.

We consider BB84 where we constrain with one or more
of the following three conditional probability distributions,
where for intelligibility we write the corresponding POVM
rather than the conditional probability distribution:

(1) The fine-grained joint POVM constructed by both Al-
ice and Bob having the local POVM:

{pz|0〉〈0|, pz|1〉〈1|, (1 − pz )|+〉〈+|, (1 − pz )|−〉〈−|}. (20)

This corresponds to applying the identity conditional proba-
bility distribution to the fine-grained statistics.

(2) The phase error POVM defined in Eq. (18). This cor-
responds to mapping the frequencies corresponding to Alice
and Bob both using the X -basis POVM and getting different
results to a single outcome and all other fine-grained outcomes
to a second.

(3) The agreement POVM which simply checks how often
Alice and Bob agree:{

p2
z�0, p2

z�1,
(1 − pz )2

2
�+,

(1 − pz )2

2
�−,�else

}
,

where �a = |a〉〈a| ⊗ |a〉〈a| and �else is the POVM element
that completes the POVM. This corresponds to a conditional
probability distribution that retains the statistics pertaining to
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FIG. 4. We consider four different parameter estimation con-
straints for BB84 transmitted through a depolarizing channel with
q = 0.02 when the signal states have been rotated by 12◦ about the
Y axis on the Bloch sphere. Each point has pz numerically optimized
for maximum key rate. The error bars are from checking the key
rate for 20 trials of sampling the distribution whenever the number
of signals used for parameter estimation was less than 108 and
calculating the standard deviation. Note that the phase error curve
is what is achievable using previous methods for finite key analysis
which have restrictive assumptions, whereas the other curves which
can improve the key rate significantly in certain regimes are achieved
through our numerical method’s ability to consider multiple coarse
grainings and POVMs with more than two outcomes. For all curves,
we let εPE = ε̄ = εEC = εPA = 1

4 × 10−8.

Alice and Bob getting the same outcome and mapping all
other fine-grained outcomes to a single outcome.

To evaluate the resulting key rates, we need to work with
simulated observations, as we do not work from actual experi-
mental data. To simulate the observed statistics, we consider a
simple noise model for a qubit channel. Alice sends half of the
ideal state |�+〉 ≡ 1√

2
(|00〉 + |11〉) through a channel. The

channel is the composition of two channels. The first channel
is the depolarizing channel with noise value q defined as

�
q
d p(X ) =

3∑
k=0

pkσk (X )σk,

where p0 = 1 − 3q
4 , p1 = p2 = p3 = q

4 and σ0 = 12, σ1 =
σX , σ2 = σY, σ3 = σZ where σX , σY, σZ are the Pauli opera-
tors. The depolarizing channel induces a qubit error rate of
q in the output state. The second channel is a unitary channel
that rotates the state about the Y axis on the Bloch sphere by an
angle θ , �U (X ) = eiθσY Xe−iθσY . Alice and Bob then perform
measurements on the state (IA ⊗ (�U ◦ �

q
d p))(|�+〉〈�+|) us-

ing one of the POVMs previously described to generate the
probabilities.

In Fig. 4, we plot the key rate for all three coarse grainings
individually as well as the key rate when we consider both the
phase-error statistics and the fine-grained statistics. To look at
this, in Fig. 4, whenever m � 108 we construct a frequency
distribution by randomly sampling the simulated probability
distribution using a pseudorandom function and then calculate
the key rate for the protocol with unique acceptance which

accepts on that frequency distribution. To see how much the
key rate fluctuates when sampling m times depending on the
frequency distribution Alice and Bob accept, we chose to re-
peat the simulation 20 times to determine the average key rate
and standard deviation of the protocol with unique acceptance
with all other parameters fixed. The standard deviation is rep-
resented by the error bars in Fig. 4. Furthermore, to make the
comparison between the different POVMs fair, we optimize
the choice of pz at each point by maximizing the average key
rate over pz given that specific value of N . As in the previous
example, we let m = (1 − pz )2N and assume they do the key
map only in the Z basis. Lastly, the (observed) error correction
cost for all four key rates is fECH (X|Y) = fECh(ēz ), where
fEC = 1.2 and ēz is the bit error frequency determined by the
fine-grained statistics in the key-generation basis Z .

Given Fig. 4, we now see how in some regime coarse
graining does better than fine-grained data in some regime
due to the coarse-grained variational bound μk converging
to zero more quickly, but is ultimately worse as N increases
because asymptotically the fine-grained data provide a better
key rate. We also see that considering both frequency distribu-
tions improves the key rate for all N . This is because whatever
density matrix satisfies both sets of constraints has the phase
error lower than just the fine-grained data and the unitary is
“undone” to a greater degree than just the phase error coarse-
grained data. For this reason, in the finite regime it will only
be beneficial to always optimize over the fine-grained data as
well as relevant coarse grainings. The ability for our solver to
do this regardless of the number of outcomes is one property
which makes our solver truly general.

C. MDI-BB84 with qubits

In this section, we show that our numerical method can
be extended to MDI-QKD protocols which are designed to
be immune to side-channel attacks on measurement devices
[25]. Specifically, we consider MDI-BB84 with perfect single-
photon sources in which Alice and Bob both send BB84 states
to an untrusted third party Charlie, who performs Bell state
measurements on the two signals. Charlie then announces on
which signals his measurement was successful as well as the
outcome. Alice and Bob then do sifting on this subset and
finally construct the key. The primary extension for finite key
is that in MDI-QKD there is a third party. This means that
there is a joint probability distribution over three alphabets
and a joint POVM over three parties. This, however, is an
immediate extension as parameter estimation can be defined
for tripartite states and the third party in MDI QKD is a
classical announcement and so does not effect Alice and Bob’s
fine-grained data.

To simulate data for the protocol, we apply source re-
placement to both Alice’s and Bob’s signal states, resulting
in a state ρABA′B′ . In our calculation, we assume the setup is
using linear optics, so Charlie can only discriminate unam-
biguously two of the Bell state measurements, �+ and �−,
where �± ≡ 1√

2
(|01〉 ± |10〉). For simulating the statistics,

we consider that the signal portions of the states, A′ and B′,
each go through a separate depolarizing channel �

q
d p as they

are sent to Charlie. Lastly, we assume Alice and Bob only do
the key map in the Z basis for simplicity. In Fig. 5, we consider
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FIG. 5. Here we see the MDI-BB84 protocol with unique accep-
tance converging to its asymptotic value as the number of signals
is increased for depolarizing channels with depolarizing parameter
values q = 0.01 and q = 0.03. For all curves, the security is defined
by εPE = ε̄ = εEC = εPA = 1

4 × 10−8.

MDI-BB84 with pz = 0.5 for two depolarizing parameter val-
ues to see the rate of converging to the asymptotic key rate as
a simple example.

D. Discrete-phase-randomized BB84

We next apply our method to optical implementation of
QKD protocols with weak coherent pulses. Since each state
that Bob receives is an optical mode and is in principle
manipulated by Eve, a full description of the POVM usu-
ally involves an infinite-dimensional Hilbert space (e.g., Fock
space). This also means that the density operator ρAB in
our optimization problem is infinite dimensional such that
no numerical optimization algorithm can solve the problem
directly. Fortunately, for many discrete-variable QKD proto-
cols, there exists a squashing model [47–49] that reduces the
apparent infinite-dimensional representation to an effective
finite-dimensional subspace representation. This shows that
our numerical method applies even for optical implementa-
tions so long as they can be represented in finite-dimensional

Hilbert spaces. Here, we present our finite key analysis for
the discrete-phase-randomized BB84 protocol [26], which is
based on phase encoding and has a squashing model [47].

We consider the following simple model for determining
the statistics.

As depicted in Fig. 6, the quantum part of the protocol is
the following:

(1) Alice sends two-mode coherent states
|√νeiθ 〉r |√νei(θ+φA )〉s to Bob, where the first mode is the
reference pulse and the second mode is the signal pulse.
The global phase θ is chosen at random from the set
{ 2πk

c : k = 0, . . . , c − 1}, where c is the number of different
global phases. The key information is encoded in the relative
phase φA chosen from the Z basis {0, π} or X basis {π

2 , 3π
2 }.

(2) After receiving states from Alice, Bob may choose to
measure in one of the two basis by applying a relative phase
φB ∈ {0, π

2 } to the reference pulse, where φB = 0 corresponds
to Z basis and φB = π

2 to X basis. This results in either one,
none, or both of Bob’s detectors clicking. In the case where
both detectors click, Bob assigns the result to either just de-
tector 1 clicking or just detector 2 clicking.

We remark that the protocol with c = 1, in which case
Alice does not randomize the global phase, is also studied in
Refs. [56,57].

For our simulation, we consider a lossy channel param-
eterized by the single-photon transmittance η = 10−αattL/10

for a distance L (in kilometers) between Alice and Bob. We
also introduce a channel noise parameterized by ζ , which
describes the relative phase drift between the signal pulse
and the reference pulse. In addition, imperfection of Bob’s
detectors is taken into account by the dark count probabil-
ity pd and the dectector efficiency ηd . To obtain simulated
statistics, we choose ηd = 0.045 and pd = 8.5 × 10−7, and
let the attenuation coefficient be αatt = 0.2 dB/km, from the
experimental parameters reported in Ref. [58]. We also set
ζ = 11◦, which produces a misalignment error of 1% at 0 km
distance and let fEC = 1.16, as was done in Ref. [57].

Under the squashing model and source-replacement
scheme, the fine-grained statistics for this protocol are gen-
erated by a 20c-outcome joint POVM constructed by Alice
and Bob’s local POVMs where Alice has 4c POVM elements
which are projectors on to her 4c possible signal states and

FIG. 6. Schematic for discrete-phase-randomized BB84. PM stands for phase modulator, PBS stands for polarizing beam splitter, BS
stands for beam splitter, PR stands for polarization rotator, and D1 and D2 are two threshold detectors.
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FIG. 7. Key rate of discrete-phase-randomized BB84 with
unique acceptance when not randomizing the global phase (c = 1)
and randomizing it over two choices (c = 2). Every point is for
optimized coherent state intensity ν. For all curves, the security is
defined by εPE = ε̄ = εEC = εPA = 1

4 × 10−8. For this protocol, we
let fEC = 1.16.

Bob has a five-outcome POVM defined as

{1/2|0〉〈0| ⊕ 0, 1/2|1〉〈1| ⊕ 0, 1/2|+〉〈+| ⊕ 0,

1/2|−〉〈−| ⊕ 0, |vac〉〈vac|}.
In other words, Bob’s local POVM is the standard fine-grained
local BB84 POVM [Eq. (20) with pz = 1/2] embedded in a
three-dimensional space plus a projector onto the third dimen-
sion where the third dimension is the vacuum state and |vac〉
denotes the basis of the third dimension.

We take L = 100 km and L = 20 km and consider both
c = 1 and c = 2 scenarios as an example to show the method
works for multiple discrete phases and loss regimes. In this
model, the dark counts are the primary source of error. In
generating this plot, to improve the key rate when less signals
are sent, we optimize the fraction of signals that would be
used for parameter estimation, which we denote gPE ≡ m/N ,
heuristically. The fraction is determined as follows:

gL=20km
PE =

{
0.99 N < 1.31 × 1011

1.1×1011

N + (0.5)log10(N )/4 else
,

gL=100km
PE =

{
0.99 N < 2.75 × 1014

2.35×1014

N + (0.5)log10(N )/5 else
.

The first term of line 2 of each gPE was determined by numer-
ically determining for how many signals the key rate could be
made positive for c = 1. The extra term was decided so as to
sacrifice a smaller fraction to parameter estimation as N grows
so that the key rate is improved.

We notice that with our simulation parameters, at L =
100 km considered in Fig. 7, a significant amount of signals
needs to be sent before the key rate becomes nonzero. The
reason is that at L = 100 km, the probability of the outcomes
that will lead to key generation is quite low, at the order 10−6

in the c = 1 case. It follows that if the variation bound μ

is of an order greater than 10−6, there exists a probability

distribution P such that ‖P − F‖1 � μ and P corresponds to
a density matrix that lacks sufficient correlation for any key to
be distilled. Therefore, one needs to sacrifice enough signals
to parameter estimation such that the variation bound μ is
sufficiently small with respect to the portion of the frequency
distribution relevant to key distillation.

E. Security of BB84 with practical acceptance probability

So far we have only presented protocols with unique
acceptance. However, protocols with unique acceptance are
impractical as the probability that an experiment yields the
exact frequency distribution of outcomes that match the
acceptance criteria is usually very low. Thus, one introduces
a range of accepted statistics, where the key rate is now to be
taken over the worst-case scenario of the accepted statistics.
Therefore, there is a trade-off between how often one aborts
and the length of the secret key generated when the protocol
does not abort. In some cases, especially where the accepted
statistics is only based on one observable, such as an error
rate, and the key rate has some monotonic behavior, it is easy
to identify the worst-case acceptable statistics. In these cases,
one can relate the case of a set of accepted statistics back to
the case of a single accepted statistics, namely the identified
worst-case statistics. However, in cases where the observed
statistics needed for determining the key rate of the protocol
are more complex, it is often not as simple to identify the
worst-case statistics. In these scenarios, our numerical method
is a powerful tool for determining a tight lower bound of the
secret key rate. Here we present an example of determining
the secure key rate for single-photon BB84 in the practical
setting where multiple frequency distributions are accepted by
Alice and Bob to show how our numerical approach may help.

We again return to the case where Alice and Bob perform
BB84 where they choose some probability pz to send signals
in the Z basis. We consider two sets of frequency distributions
to accept corresponding to whether their protocol has ideal
behavior or is suffering from misalignment due to the quan-
tum channel. Following the notation in Eq. (12), the first set,
Q1, is defined by letting N (F ) be the two-outcome frequency
distribution of “phase error” and “no phase error” with no
observed phase errors (ex = 0). We refer to Q1 as the phase
set. The second set, Q2, is defined by letting N (F ) = F be
the asymptotic results of the fine-grained statistics given the
model from Sec. IV B. We refer to Q2 as the rotated set. In
both cases, the variation threshold, t , is 2(1 − pz )2ex, where
ex is the maximum tolerated observed error from F . For this
example, we let ex = 0.02. The factor of (1 − pz )2 is so that
the variation threshold stays the same as pz is varied to opti-
mize the key rate.

Given the definition of the phase set, Q1, the key rate can
be determined analytically as one can replace ex in Eq. (19)
by ex. Furthermore, as no data more fine-grained than the
phase error are needed in this case, it is clear that the multiple
coarse grainings will not further improve the key rate. These
observations are verified numerically in Fig. 8(a). However,
in the case where the observed statistics would be contained
in Q2 rather than in Q1, an analytical tight lower bound
of the key rate is not a reasonable task as the structure of
the worst-case scenario is no longer simple. This is seen in
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(a)

(b)

FIG. 8. (a) Key rate of the BB84 protocol for accepting statistics
in Q1 where either just the phase statistics or both the phase statistics
and the fine-grained statistics are used to determine the key rate. We
see in this case the fine-grained data do not help for this protocol.
(b) Key rate of the BB84 protocol for accepting observed statistics in
Q2 where either just the phase statistics or both the phase statistics
and the fine-grained statistics are used to determine the key rate. We
see in this case the fine-grained data help for this protocol and so an
analytical key rate calculation is difficult. For both panels (a) and (b),
each point pz is optimized and the security is defined by εPE = ε̄ =
εEC = εPA = 1

4 × 10−8.

Fig. 8(b), where our numerical result shows that multiple
coarse grainings helps to obtain a tighter key rate when Q2

is used. It follows that obtaining a tight key rate analytically
would be difficult as one needs to utilize both fine-grained
statistics and multiple coarse grainings.

More generally, this tells us the optimal choice of Q in
certain implementations may be difficult due to issues such as
misalignment errors. In such cases, even in the honest imple-
mentation, the statistics one ought to accept are fine-grained
data that, because of complications, lack certain symmetries
in Alice and Bob’s results. This in turn limits one’s a priori
knowledge of what form the worst-case scenario observed
statistics will take. This is further aggravated by the tradeoff

between how often the protocol will be aborted and the length
of the secret key when the protocol does not abort. For these
reasons, constructing a good choice of Q is a nontrivial task
due to common issues in implementing QKD protocols. As
it is designed for generic protocols, our numerical method al-
lows for further exploration of these difficulties which cannot
be explored analytically.

V. CONCLUSION

In the utilization of QKD protocols for our future quantum-
safe infrastructure, it is crucial that we can analyze general
QKD protocols’ ability to generate composable secret keys
in the finite regime. Much work has already been done on
both the framework of finite key analysis [9,11,22] and its
analysis for specific protocols using both theory and numerics
[6,10,13,14,23]. However, there has not existed a tool which
can determine the finite key rate for any QKD protocol which
can be represented in finite-dimensional Hilbert spaces. The
contribution of this work has been to construct such a tool with
the further properties that it always determines a secure secret
key rate (reliability) and can in principle exactly determine the
secret key rate under the security proof method presented in
Ref. [9].

We note that the tightness property of our solver is only up
to the security proof method of Ref. [9] where the smooth min
entropy is bounded by the conditional von Neumann entropy.
However, it was shown in Ref. [22] that in some regimes
bounding the smooth min entropy by the min entropy can
improve the key rate. This method has also been implemented
for a subclass of protocols numerically in Ref. [23]. Therefore,
our claim of tightness is up to the assumption above, although
it is easy to see one can unify our general framework with the
min-entropy calculation presented in Ref. [23] and recover the
tightness property up to this alternative choice.

Furthermore, we note that it is not only easy to unify but
also necessary for the application of the numerical method to
general QKD protocols and obtain tightness within the proof
method. This is the case because our proof of being able
to consider multiple coarse grainings at no cost in security
parameter εPE and our introduction of the trace norm to handle
multiple outcome POVMs without looseness is in some cases
necessary to guarantee tight results. Furthermore, our method
derives its practicality in implementations not only from its
tightness but from the ability to consider the acceptance set,
Q. As none of these tools are presented in Ref. [23], it would
lead to loose key rates for QKD protocols with asymmetric
observations as we saw in Sec. IV B as well as not being
applicable for practical implementations as it is designed only
to consider protocols with unique acceptance. Therefore, this
unifiication is necessary for general protocols.

Beyond the construction of a generic numerical framework
for finite key analysis, we note that Theorem 1 in this paper
resolves an issue about this security framework for finite key
analysis. If one were to define the security using only one set
of statistics, as coarse graining can be better than fine-grained
data, it would follow that there exist cases in which Alice
and Bob throwing out information is an advantage against
Eve. This would be counterintuitive. However, we see that the
security definition actually would allow Alice and Bob to keep
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both versions of the data, and thus the “true” finite key rate
can be seen as constraining over all possible coarse grainings,
which utilizes all possible data from the experiment. The
consideration of the rotated BB84 case exemplifies this idea.

Having presented a general numeric framework for finite
key analysis which improves upon the pre-existing framework
[9], we note two paths of research going forward. The first
path is the application of this method to decoy state QKD pro-
tocols in the numerical framework. As previously discussed
in Ref. [18], for a discrete phase randomized source, or if
one approximates continuous phase randomization by discrete
phase randomization, one would simply consider a signal state
for each intensity. In principle, this could be immediately
implemented following the numerical method used for the
numerical analysis in Sec. IV D, but this will lead to large
demands on the memory of the computer. Therefore, a bet-
ter alternative approach for continuous phase randomization
would be to consider “tagging,” in which one fixes a photon
number cutoff and treats multiphoton components above this
cutoff as orthogonal states given to Eve. This block-diagonal
structure can improve the cost on memory, but would require
calculating the statistical fluctuations on the individual blocks.

The second path for future research follows from noting
that this generic method requires that one considers probabil-
ity distributions, but in CV-QKD one often is interested in a
form of coarse graining which leads to expectation values of
observables rather than a probability distribution. One would
hope there exists a proof method within the same security
definitions which bounds the expectation values of these spe-
cific observables, even though they are not constructed using a
conditional probability distribution applied to the initial fine-
grained statistics.

Note added. Recently, we noticed a similar work [23]
posted in the preprint server. Our ideas were conceived inde-
pendently and we have presented many of our main results in
a conference [59]. We point out that our work is different from
Ref. [23] in that it considers an entry-wise bound on the trace
norm for the variational bound and ignores the acceptance
set Q altogether. This entry-wise bound introduces looseness
when one considers fine-grained statistics and the latter limits
it primarily to impractical QKD implementations.
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APPENDIX A: NUMERICAL METHODS PROOFS

In this Appendix, we present the derivations and proofs for
the finite key numerical method in detail.

1. Notation

We begin with a brief explanation of notations used in
this Appendix. For some arbitrary finite-dimensional Hilbert
spaces X and Y , L(X ) denotes the set of linear maps from
X to itself, Herm(X ) ⊆ L(X ) denotes the set of Hermitian
operators acting on X , Pos(X ) ⊆ Herm(X ) denotes the set
of positive semidefinite operators, and T(X ,Y ) denotes the
set of linear maps that map L(X ) to L(Y ). We use uppercase
letters like A and B to denote matrices and lowercase letters
like z to denote complex (or real) numbers. For a vector
�v, its jth entry is denoted by v( j). As already used in the
main text, the inner product on L(X ) is the Hilbert-Schmidt
inner product, that is, 〈A, B〉 = Tr(A†B) for A, B ∈ L(X ). The
norm ‖·‖HS is the norm induced by the Hilbert-Schmidt inner
product. For a Hermitian matrix H , let λmin(H ) denote the
minimum eigenvalue of H .

To ease the writing of matrices in block form, we introduce
the following two shorthand notations: We write diag(A1, A2)
for the block-diagonal matrix (A1 0

0 A2
) where A1 and A2

are two square matrices (with possibly different sizes); we
write d̃iag(A1, A2) for the matrix (A1 B1

B2 A2
) whose off-diagonal

blocks are irrelevant for our discussion, where B1 and B2

are some arbitrary matrices of appropriate sizes. These two
notations are generalized to a finite number of (at least two)
square matrices.

For an arbitrary square matrix A ∈ L(X ), diag(A) denotes
the vector whose entries are given by diagonal entries of A. For
a vector �z, diag(�z) denotes the diagonal matrix whose diagonal
entries are given by �z.

For any conditional probability distribution, p�|� , which
would be applied to a probability distribution p� , there
exists a completely positive trace-preserving (CPTP) map
representation N such that diag(p�|� p� ) = N (diag(p� ))
[34]. Explicitly, N (X ) = ∑

x∈�,y∈� p(y|x)|y〉〈x|X |x〉〈y| and a
straightforward calculation determines that the adjoint map is
N †(Y ) = ∑

x∈�,y∈� p(y|x)〈y|Y |y〉|x〉〈x|. This will be useful
in defining the SDP which involves processing probability
distributions. For this reason, in what follows we never define
conditional probability distributions explicitly but simply the
corresponding CPTP map.

2. Semidefinite program background

We give a short review the standard form of a semidefinite
program and related concepts that will be useful in our proofs.

Definition [42]. Let � ∈ T(X ,Y ) be a Hermitian-
preserving map, A ∈ Herm(X ), and B ∈ Herm(Y ). A
semidefinite program is a triple (�, A, B), with the following
associated optimization problems:

minimize 〈A, X 〉
subject to �(X ) = B,

X ∈ Pos(X )

(A1)

maximize 〈B,Y 〉
subject to �†(Y ) � A,

Y ∈ Herm(Y ),

(A2)
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where �† is the adjoint map of �; that is, �† is the unique
linear map that satisfies the adjoint equation 〈Y, �(X )〉 =
〈�†(Y ), X 〉 for every X ∈ L(X ) and Y ∈ L(Y ). Equation (A1)
is referred to as the primal problem and Eq. (A2) is referred to
as the dual problem.

We define A = {X ∈ Pos(X )|�(X ) = B} and B = {Y ∈
Herm(Y )|�†(Y ) � A}. These sets are referred to as the feasi-
ble set of the primal problem and dual problem, respectively.
By weak duality, for all semidefinite programs, the optimal
value of the primal problem, denoted by α, is always greater
than or equal to the optimal value to the dual problem, denoted
by β. If a semidefinite program has that α = β, it is said
to have strong duality. A sufficient condition to show strong
duality for SDP is Slater’s condition for the standard form
presented here.

Theorem 3. (Slater’s condition). For a semidefinite pro-
gram (�, A, B), if A 	= ∅ and there exists a Hermitian
operator Y which strictly satisfies the dual problem, that is,
�†(Y ) ≺ A, then α = β and the optimal value is obtained in
the primal problem.

3. Numerical imprecision

We recall two sets of constraints defined in the main text.
The set of constraints that are not subject to statistical fluctua-
tion is denoted by {�i|i ∈ �} and we refer to these constraints
as certainty constraints. Constraints {�̃ j | j ∈ �} that are sub-
ject to statistical fluctuation are referred to as uncertainty
constraints.

As noted in Sec. III, when one acquires a solution ρ f after
the first step in Algorithm 1, the answer may not truly be
feasible; that is, ρ f is not in the correct set Sμ but rather in an
enlarged set S̃μ. This issue arises from the imprecise numeri-
cal representation of the POVMs as well as the imprecision of
the numerical optimization solver, which leads to violation of
constraints in the optimization problem. To resolve this issue,
one needs to consider the larger set S̃μ to guarantee that ρ f is
included. Reference [19] presents a method for the asymptotic
case. In Ref. [19], one has to consider only violations per-
taining to certainty constraints {�i}. In the finite key scenario,
we also need to consider the uncertainty constraints {�̃ j}. To
rigorously account for numerical imprecision, we now adapt
the method in Ref. [19] to finite key analysis.

An imprecise solver may lead to a solution ρ f which is not
positive semidefinite or that does not satisfy these constraints.
To handle the first issue, if the state ρ f has negative eigenval-
ues, one first perturbs the state to be ρ ′

f ≡ ρ f + |λmin(ρ f )|1 so
that ρ ′

f does not have negative eigenvalues. Then one checks
the maximum violation of the certainty constraints of ρ ′

f , and
defines εsol ≡ maxi∈� |Tr(ρ ′

f �i ) − γi|.
Imprecise representations can be seen as deviations from

the true POVM and probability representations. One can
therefore denote the imprecise representations as follows:

�i = �i + δ�i and γ i = γi + δγi,

where ‖δ�i‖HS � ε1 and |δγi| � ε2 for all i ∈ �. By defin-
ing εrep ≡ ε1 + ε2, it is shown in Lemma 10 of Ref. [19]
that |Tr(�i ) − γ i| � εrep,∀i ∈ �. One then defines ε′ =
max(εsol, εrep) and considers ρ subject to the constraints
{|Tr(ρ�i ) − γ i| � ε′}.

These imprecisions may also lead to violation of the vari-
ational distance constraint. Therefore, one should redefine
μ for the second step to guarantee the ρ f is considered in
the second step. Since the uncertainty constraints pertain to
the variational distance which takes the imprecisions as a
whole, to properly enlarge μ to take constraint violations into
account, one can use the Cauchy-Schwarz inequality along
with Lemma 10 of Ref. [19] to expand μ as μ′ = max(μ +
nε′, ‖�P (ρ f ) − F‖1 + nε′), where n = |�|.

Lastly, there is the possibility that the solver finds an opti-
mal solution (σ, F ) such that ‖N (F ) − N (F )‖1 > t . In this
case, one should expand t . Thus, define t ′ ≡ max(t, ‖N (F ) −
N (F )‖1). Then one defines Sμ′ε′t ′ to play the role of Sμ by the
following:

Sμ′ε′t ′ = {
ρ ∈ Pos(HA ⊗ HB)||Tr(�iρ) − γ i|

� ε′ ∀i ∈ �, ‖�P (ρ) − N (F )‖1

� μ′, ‖N (F ) − N (F )‖1 � t ′} ⊇ Sμ. (A3)

Clearly, if ε′ = 0, t ′ = t , and μ′ = μ, one reconstructs the
original set Sμ. This alternative set is used for deriving the
dual problem in the second step in the following section.
By optimizing over this set Sμ′ε′t ′ , we handle the numerical
imprecision related to certainty and uncertainty constraints.

A final remark is that when G(ρ) is singular, the derivative
in Eq. (11) may not exist. To tackle this issue, Ref. [19]
introduces a small perturbation as

Gε (ρ) ≡ (1 − ε)G(ρ) + ε1/d ′,

fε (ρ) ≡ D(Gε (ρ)||Z[Gε (ρ)]), (A4)

where d ′ is the dimension of G(ρ), and ε � 0 is chosen in a
way such that Gε (ρ) is not singular. The derivative of fε (ρ) is
obtained by replacing G with Gε in Eq. (11).

4. Finite key SDP

We present the SDP that also takes into account the nu-
merical imprecision discussed above. (However, for ease of
writing, we still use {�i} to denote certainty constraints and
{�̃ j} to denote uncertainty constraints.) For simplicity, we
present here derivations in the case of one variation bound
and state the result related to multiple coarse grainings in
Appendix A 6.
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The primal problem of our SDP at ρ ∈ Sμ′ε′t ′ is

minimize 〈∇ fε (ρ), σ 〉
subject to Tr(G) + Tr(H ) � μ′,

G � �P (σ ) − N (F ),

H � N (F ) − �P (σ ),

Tr(G) + Tr(H ) � t ′,

G � N (F ) − FN ,

H � FN − N (F ),

Tr(F ) = 1,

|Tr(�iσ ) − γi| � ε′ ∀i ∈ �,

σ, F, G, H, G, H � 0, (A5)

where FN ≡ N (F ). We use this notation to emphasize N (F ) is fixed and is not an optimization variable because F and N
are both fixed. We note this is Eq. (16) with the inclusion of numerical imprecision. This equation therefore considers the
set of density matrices which define collective attacks Alice and Bob would non-negligibly accept (see Sec. II B for further
discussion), but with the numerical imprecision of the computer taken into account. Let α0(ρ) denote the optimal value of this
primal problem. To derive its dual problem, Eq. (A5) can be reformatted to fit the definition of Eq. (A1) as follows:

A = diag(∇ fε (ρ), 0),

B = diag

(
μ′, 0, 0, t ′, FN ,−FN , 1,

∑
i

(ε + γi )|i〉〈i|,
∑

i

(ε − γi )|i〉〈i|
)

,

�(X ) = diag(Tr(G) + Tr(H ) + z,−G − N (F ) + �P (σ ) + I,−H + N (F ) − �P (σ ) + J, Tr(G) + Tr(H ) + z,

− G + N (F ) + I,−H − N (F ) + J, Tr(F ),�0(σ ) + M1,−�0(σ ) + M2),

X = d̃iag(σ, F, G, H, z, I, J, G, H , z, I, J, M1, M2), (A6)

where 0 is a shorthand notation to mean that all other blocks are zero matrices of appropriate size, �0(X ) ≡ ∑
i∈� Tr(X�i )|i〉〈i|,

N (X ) = ∑
x,y p(y|x)|y〉〈x|X |x〉〈y|, N (X ) = ∑

x,y p(y|x)|y〉〈x|X |x〉〈y|, and z, z ∈ C, I ∈ L(C|�|), J ∈ L(C|�|), I ∈ L(C|�C |),
J ∈ L(C|�C |), M1 ∈ L(C|�|), and M2 ∈ L(C|�|) are slack variables. Furthermore, �C represents the alphabet for the coarse
graining. It is easy to verify using the definition of adjoint map, 〈Y, �(X )〉 = 〈�†(Y ), X 〉, that the adjoint of � is

�†(Y ) = diag(�†
0(W1 − W2) + �

†
P (K − L),N †(L − K ) + N †

(K − L) + b1W , a1W − K,

a1W − L, a, K, L, a1W − K, a1W − L, a, K, L,W1,W2), (A7)

where Y = d̃iag(a, K, L, a, K, L, b,W1,W2),

�
†
0(W ) =

∑
i∈�

W (i, i)�i, �
†
P (V ) =

∑
j∈�

V ( j, j)�̃ j . (A8)

If we substitute these definitions in the standard form of SDP [in Eqs. (A1) and (A2)] and flip signs of a, a, b, K, L, K , and L,
we then get the following dual problem:

maximize

〈∑
i∈�

(ε′ + γi )|i〉〈i|,W1

〉
+

〈∑
i∈�

(ε′ − γi )|i
〉
〈i|,W2〉 + 〈FN , L − K〉 − μ′a − t ′a − b

subject to
∑
i∈�

[W1(i, i) − W2(i, i)]�i +
∑
j∈�

[L( j, j) − K ( j, j)]�̃ j � ∇ fε (ρ),

N †
(L − K ) − N †(L − K ) � b1W ,

0 � K � a1W , 0 � K � a1W ,

0 � L � a1W , 0 � L � a1W ,

a, a � 0, W1,W2 � 0, (A9)

where W ≡ C|�|. Let β0(ρ) denote the optimal value of this dual problem.
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From Eq. (A9), we observe that off-diagonal entries of K , L, K , L, W1, and W2 are not important for this optimization
problem since for any optimal solution Y ∗ = d̃iag(a∗, K∗, L∗, a∗, K

∗
, L

∗
, b∗,W ∗

1 ,W ∗
2 ) of this problem, if K ′, L′, K

′
, L

′
, W ′

1 ,
and W ′

2 are matrices obtained by taking only the diagonal parts of K∗, L∗, K
∗
, L

∗
,W ∗

1 , and W ∗
2 , respectively, then the matrix

Y ′ = diag(a∗, K ′, L′, K
′
, L

′
,W ′

1,W ′
2 ) is also optimal as it is feasible and achieves the same optimal value. Moreover, we may

optimize over the difference L − K (L − K) subject to the constraint −a1W � L − K � a1W (−a1W � L − K � a1W ) as only
the difference L − K (L − K) matters in the optimization and its range is −a1 � L − K � a1 (−a1 � L − K � a1), which is
determined by the two constraints 0 � K � a1 and 0 � L � a1 (0 � K � a1 and 0 � L � a1). If we write �γ as the vector whose
ith entry is γi and f = diag(FN ), the dual problem in Eq. (A9) is simplified as

maximize (ε′ + �γ ) · �y1 + (ε′ − �γ ) · �y2 + f · �z − μ′a − t ′a − b

subject to
∑
i∈�

[y1(i) − y2(i)]�i +
∑
j∈�

z( j)�̃ j � ∇ fε (ρ),

−→
N

†
(�z) −

−→
N†(�z) � b�1,

− a�1 � �z � a�1,

− a�1 � �z � a�1,

a, a � 0, �y1, �y2 � �0, (A10)

where
−→
N † is defined such that diag(N †(Z )) = −→

N †(diag(Z )) for arbitrary Z ∈ L(C|�C |). We remark that when ε′ = 0, we can
replace �y1 and �y2 by �y ≡ �y1 − �y2 subject to the constraint �y ∈ R|�|. When μ′ = μ, t ′ = t , and ε′ = 0,
Eq. (A10) reduces to Eq. (15) in the main text after this replacement.

5. Reliability and tightness

We now prove that the lower bound using the linearization is tight for the finite key SDP. That is, in the limit where the
numerical imprecisions go away, the program will obtain the true answer. In this section, we present the precise mathematical
statement of tightness for the SDP in Eq. (14) in Theorem 4, which considers the issues of numerical imprecision discussed
in Appendix A 3. The extension to multiple coarse grainings is then straightforward. This theorem is a finite-size version of
Theorem 3 in Ref. [19]. In proving this theorem, we will adapt the proofs in Appendixes D and E of Ref. [19] as well as
technical lemmas in Appendixes A–C of Ref. [19].

As our optimization problem comes from a physical scenario and we are only interested in the situation where the set Sμ′ε′t ′

is not empty (otherwise we may trivially set the key rate to be zero), we restrict our attention to this situation.
Theorem 4. (General proof of tightness of numerical method). Let Sμ′ε′t ′ be defined in Eq. (A3) and assume Sμ′ε′t ′ 	= ∅. Let

ρ ∈ Sμ′ε′t ′ where G(ρ) is of size d ′ × d ′ and ε′ > 0. For 0 < ε � 1/[e(d ′ − 1)], then

α � βμ′ε′t ′ε (ρ) − ζε (A11)

where

α = min
σ∈Sμ

f (σ ), (A12)

βμ′ε′t ′ε (σ ) ≡ fε (σ ) − Tr[σ∇ fε (σ )] + max
(a,a, �y1, �y2,�z,�z,b)∈S∗

μ′ε′t ′ (σ )
[(ε′ + �γ ) · �y1 + (ε′ − �γ ) · �y2 + f · �z − μ′a − t ′a − b], (A13)

and

ζε ≡ 2ε(d ′ − 1) log2
d ′

ε(d ′ − 1)
. (A14)

The set S∗
μ′ε′t ′ (σ ) is defined by

S∗
μ′ε′t ′ (σ ) ≡

{
(a, a, �y1, �y2, �z, �z, b) ∈ (R,R,R|�|,R|�|,R|�|,R|�|,R)|,

a, a � 0,−a�1 � �z � a�1,−a�1 � �z � a�1, �y1 � 0, �y2 � 0,∑
i∈�

[y1(i) − y2(i)]�i +
∑
j∈�

z( j)�̃ j � ∇ fε (σ ),
−→
N

†
(�z) −

−→
N†(�z) � b�1

}
. (A15)
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Moreover, if ρ∗ is an optimal solution to the primal problem,

lim
ε→0+

lim
ε′ → 0+
μ′ → μ

t ′ → t

[βμ′t ′εε′ (ρ∗) − ζε] = α. (A16)

We note that the statement of tightness in the main text (Theorem 2) is for when there are no numerical imprecisions.
Theorem 4 is a generalization of that theorem that handles numerical imprecisions as well.

To prove Theorem 4, we first show that for any ρ ∈ Sμ′ε′t ′ , the primal optimal value α0(ρ) is equal to the dual optimal value
β0(ρ) as Lemma 5. Then, we break down the proof of theorem into two parts: reliability in Eq. (A11) and tightness in Eq. (A16).

Lemma 5. If Sμ′ε′t ′ 	= ∅, then α0(ρ) = β0(ρ) for any ρ ∈ Sμ′ε′t ′ .
Proof. As Sμ′ε′t ′ 	= ∅, to apply Slater’s condition, we just find a strictly feasible solution to the dual problem. We consider

the dual problem in the form of Eq. (A9). Let a = a = 3. Let W1 = diag(x − 3,−1,−1, . . . ,−1), where x = −|λmin(∇ fε (ρ))|.
Thus, W1 � 0. Let W2 = −1 � 0. Without loss of generality, let �1 = 1 as we always have the constraint Tr(σ ) = 1 in the primal
problem. Let L = 21W and K = 1W . Thus, −a1W ≺ L − K ≺ a1W . Furthermore,

∑
j[K ( j, j) − L( j, j)]�̃ j = 1 as {�̃ j} is a

POVM. Thus,
∑

i[W1(i, i) − W2(i, i)]�i + ∑
j[K ( j, j) − L( j, j)]�̃ j = (x − 1)1 ≺ ∇ fε (ρ) by construction of x. Let L = 21W ,

K = 1W , and b = 2. Then −a1W ≺ L − K ≺ a1W and N †
(L − K ) − N †(L − K ) = 0 ≺ b1W . The last equality followed from

the fact N is a quantum channel and so its adjoint is unital. Thus, all inequalities are strictly satisfied. �
We now adapt the proof in Appendix D.3 of Ref. [19] to finite key scenario.
Lemma 6. In the context of Theorem 4, α � βμ′ε′t ′ε (ρ) − ζε for any ρ ∈ Sμ′ε′t ′ , which is Eq. (A11).
Proof. Let αμ′ε′t ′ε ≡ minσ∈Sμ′ε′t ′ fε (σ ). Suppose that ρ∗

μ′ε′t ′ε ∈ Sμ′ε′t ′ is an optimal solution of this optimization. For any ρ ∈
Sμ′ε′t ′ , since fε is convex,

αμ′ε′t ′ε = fε (ρ∗
μ′ε′t ′ε ) � fε (ρ) + 〈(ρ∗

μ′ε′t ′ε − ρ),∇ fε (ρ)〉
� fε (ρ) − 〈ρ,∇ fε (ρ)〉 + min

σ∈Sμ′ε′t ′
〈σ,∇ fε (ρ)〉

= fε (ρ) − 〈ρ,∇ fε (ρ)〉 + α0(ρ)

= fε (ρ) − 〈ρ,∇ fε (ρ)〉 + β0(ρ) = βμ′t ′ε′ε (ρ), (A17)

where the first two inequalities follow from the same argument about this linearization of our convex objective function as it is
used in Eqs. (77)– (79) of Ref. [19] and the last line follows from Lemma 5 and the definition of βμ′t ′ε′ε (ρ). Since Sμ ⊆ Sμ′ε′t ′ ,

α = min
σ∈Sμ

f (σ ) � min
σ∈Sμ′ε′t ′

f (σ ) � min
σ∈Sμ′ε′t ′

fε (σ ) − ζε = αμ′ε′t ′ε − ζε, (A18)

where the last inequality follows from a continuity argument (which is Lemma 8 and Lemma 9 in Ref. [19]). Combining this
result with Eq. (A17) leads to Eq. (A11). �

As we have shown the reliability of our numerical method, we now proceed with the tightness in Eq. (A16). If ρ∗ is an optimal
solution, an immediate consequence of Lemma 6 is that for any ρ ∈ Sμ′ε′t ′ , the following equation holds:

min
σ∈Sμ′ε′t ′

Tr[(σ − ρ∗)∇ f (ρ∗)] � 0. (A19)

As Eq. (A19) holds for any feasible density operator in the set Sμ′ε′t ′ ⊇ Sμ, we want to show that if ρ∗ optimizes the objective
function f , then minσ∈Sμ

Tr[(σ − ρ∗)∇ f (ρ∗)] = 0 where the optimization is over Sμ as Eq. (A16) pertains to the limit where
that is the set we are interested in. Therefore, we just need to prove

min
σ∈Sμ′ε′t ′

Tr[(σ − ρ∗)∇ f (ρ∗)] � 0 (A20)

when Sμ′ε′t ′ 	= ∅.
Lemma 7. When Sμ′ε′t ′ 	= ∅,

min
σ∈Sμ′ε′t ′

Tr[(σ − ρ∗)∇ f (ρ∗)] � 0. (A21)

Proof. Let Sμ′ε′t ′ 	= ∅. By Lemma 5, we know that Eq. (A5) obtains its optimal value. Let ρ∗ optimize f over Sμ′ε′t ′ 	= ∅. As
f is a differentiable, convex function (one may consider fε to guarantee differentiability), it is the case that for all σ ∈ Sμ′ε′t ′ ,
Tr[∇ fε′ (ρ∗)(σ − ρ∗)] � 0 (Eq. (4.21) of Ref. [60]). It follows minσ∈Sμ′ε′t ′ Tr[(σ − ρ∗)∇ f (ρ∗)] � 0. �

Equation (A19) and Lemma 7 imply that, given ρ∗ that optimizes f over Sμ′ε′t ′ ,

min
σ∈Sμ′ε′t ′

Tr((σ − ρ∗)∇ f (ρ∗)) = 0.
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We can therefore conclude the following:

f (ρ∗) = f (ρ∗) + min
σ∈Sμ′ε′t ′

Tr[(σ − ρ∗)∇ f (ρ∗)]

= f (ρ∗) − Tr(ρ∗∇ f (ρ∗)) + max
(a,a, �y1, �y2,�z,�z,b)∈S∗

μ′ε′t ′ (ρ
∗ )

[(ε′ + �γ ) · �y1 + (ε′ − �γ ) · �y2 + f · �z − μ′a − t ′a − b] = β(ρ∗);

this completes the proof of Eq. (A16) and Theorem 4.

6. Multiple coarse grainings

We now can show that it is easy to extend to the case where one considers multiple coarse grainings. First, we define � f as
the alphabet indexing the fine-grained statistics of the experiment. Let k index the set of conditional probability distributions
pertaining to coarse-grained data, {p�k |� f }k . Each conditional probability distribution induces a channel Nk which applies the
coarse graining to the statistics. Define the POVM which pertains to the kth conditional probability distribution as {�̃k

j } j∈�k

which induces a measurement channel �Pk . In this case, j is implicitly dependent on k as different coarse grainings will construct
probability distributions of different sizes. Then, the primal problem may be written as

minimize 〈∇ fε (ρ), σ 〉
subject to Tr(�iσ ) = γi, ∀i ∈ �,

‖�Pk (σ ) − Nk (Fk )‖1 � μk ∀k,

‖N (Fk ) − N (F )‖1 � t ∀k,

Fk � 0 ∀k,

σ � 0, (A22)

where �Pk (X ) ≡ ∑
j∈�k

Tr(X �̃k
j )| j〉〈 j| and Nk (X ) = ∑

x∈� f ,y∈�k
p�k |� f (y|x)|y〉〈x|X |x〉〈y|. We stress that Fk is indexed by k

given the set considered in Theorem 1.
To convert this linearized primal problem into a semidefinite program, we effectively are just optimizing k copies of Eq. (A5)

at the same time. This means we can write the equivalent form of Eq. (A5):

minimize 〈∇ fε (ρ), σ 〉
subject to Tr(Gk ) + Tr(Hk ) � μ′

k ∀k,

Gk � �Pk (σ ) − Fk ∀k,

Hk � Fk − �Pk (σ ) ∀k,

Tr(Gk ) + Tr(Hk ) � t ′
k ∀k,

Gk � N (Fk ) − FN ∀k,

Hk � FN − N (Fk ) ∀k,

|Tr(�iσ ) − γi| � ε′,

Fk, Gk, Hk, Gk, Hk � 0 ∀k,

σ � 0, (A23)

where we have let t ′
k be indexed by k in case different coarse grainings violate the Q set by different amounts. To reformat

Eq. (A23) into the definition in Eq. (A1), we can extend the definitions in Eq. (A6) in a block-diagonal fashion using the matrix
direct sum, ⊕, over k:

A = diag(∇ fε (ρ), 0),

B = diag

(
⊕kμk,⊕k0,⊕k0,⊕kt,⊕kFN ,⊕k − FN ,⊕k1,

∑
i

(ε + γi )|i〉〈i|,
∑

i

(ε − γi )|i〉〈i|
)

,

�(X ) = diag(⊕k[Tr(Gk ) + Tr(Hk ) + zk],⊕k[−Gk − Nk (Fk ) + �Pk (σ ) + Ik],⊕k[−Hk + Nk (Fk ) − �Pk (σ ) + Jk],

⊕k [Tr(Gk ) + Tr(Hk ) + zk],⊕k[−Gk + N (Fk ) + Ik],⊕k[−Hk − N (Fk ) + Jk],⊕kTr(Fk ),

�0(σ ) + M1,−�0(σ ) + M2),

X = d̃iag(σ,⊕kFk,⊕kGk,⊕kHk,⊕kzk,⊕kIk,⊕kJk,⊕kGk,⊕kHk,⊕kzk,⊕kIk,⊕kJk, M1, M2).
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It is straightforward to see the adjoint map of � in this case is

�†(Y ) = diag

(
�

†
0(W1 − W2) +

∑
k

�
†
Pk

(Kk − Lk ),⊕k[N †
k (Lk − Kk ) + N †

(Kk − Lk ) + bk1W ],⊕k[ak1W − Kk],

⊕k[ak1W − Lk],⊕kak,⊕kKk,⊕kLk,⊕k[ak1W − Kk],⊕k[ak1W − Lk],⊕kak,⊕kKk,⊕kLk,W1,W2

)
,

where

Y = d̃iag(⊕kak,⊕kKk,⊕kLk,⊕kak,⊕kKk,⊕kLk,⊕kbk,W1,W2).

Finally, again because all of the ks are independent, this dual problem is ultimately simplified to

maximize
∑

k

f · �zk + (ε′ + �γ ) · �y1 + (ε′ − �γ ) · �y2 − �μ · �a − �t · �a − ‖�b‖1

subject to
∑

i

[y1(i) − y2(i)]�i +
∑

k

(∑
j

zk ( j)�̃k
j

)
� ∇ fε (ρ),

−→
N †

(�zk ) −
−→
N †

k (�z) � bk�1W∀k,

− ak�1W � �zk � ak�1W∀k,

− ak�1W � �zk � ak�1W∀k,

�a, �a � 0, �y1, �y2 � 0, (A24)

where �μ′ is just the vector whose kth entry is given by μ′
k

and zk, z̄k are not the variables in the definition of X but are
a simplification of the dual variable as defined in the same
fashion as in Eq. (A10). From these forms, it is clear that
strong duality and tightness proofs follow from the single
POVM case by indexing over the variable k and scaling things
properly.

APPENDIX B: DERIVATIONS OF TERMS

In this section, we derive the terms in the key rate which
differ from previous works. Recall that an input ξ is εPE

securely filtered if the probability that Alice and Bob do not
abort the parameter estimation subprotocol on input ξ is less
than εPE. Given a bipartite measurement {�̃ j}, by Born’s rule,
the measurement and a bipartite state σ induce a probability
distribution over measurement outcomes, p. Therefore, if one
measures σ n times using {�̃ j} each time, it is sufficient to
determine a distance between p and the observed frequency
distribution over measurement outcomes, f , such that the
probability of obtaining a frequency distribution || f − p||1 >

μ is less than εPE. The following theorem captures this notion.
Theorem 8. To construct a set of states, Sμ [Eq. (1)], such

that the complement of the set, Sμ, satisfies the property that
∀σ ∈ Sμ, σ⊗m is εPE securely filtered, it is sufficient that μ =√

2
√

ln(1/εPE )+|�| ln(m+1)
m .

Proof. By Theorem 11.2.1 of Ref. [61], given an empiri-
cal probability distribution f constructed from sampling i.i.d.
random variables from a probability distribution p which has
|�| outcomes,

Pr[D( f ||p) > ε] � 2−m(ε−|�| log2 (m+1)
m )

Furthermore, Lemma 11.6.1 of [61] states:√
2 ln 2D( f ||p) � ‖ f − p‖1.

Therefore,

Pr[‖ f − p‖1 >
√

2 ln 2ε]

� Pr[
√

2 ln 2D( f ||p) >
√

2 ln 2ε]

� 2−m[ε−|�| log2 (m+1)
m ]

≡ εPE.

Then, except with probability εPE, ‖ f − p‖1 �
√

2 ln 2ε ≡ μ.
We now just solve for μ using arithmetic:

εPE = 2−m[ μ2

2 ln 2 −|�| log2(m+1)/m]

⇒ μ =
√

2

√
ln(1/εPE) + |�| ln(m + 1)

m
.

�
Derivation of δ(ε̄). Our version of δ(ε̄) arises from the cor-

rection of a typographical error in Theorem 3.3.6 of Ref. [9]
and then stopping midway through the derivation of Corollary
3.3.7 of Ref. [9] so as to have the prefactor 2 log2(d + 3) in-
stead of 2d + 3. As the typographical error in Theorem 3.3.6
was already noted in Ref. [10], we simply state the corrected
theorem:

Theorem 3.3.6 of Ref. [9]: Let ρ ∈ D(HA ⊗ HB), σB ∈
D(HB), and n ∈ N. Then for any ε � 0,

1

n
H ε

min(ρ⊗n|σ⊗n) � H (ρ) − H (ρB) − D(ρB||σB) − δ,
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where δ = 2 log2(rank(ρA) + Tr(ρ2(1A ⊗ σ−1
B )) +

2)
√

log2(2/ε)
n .

We now give our version of Corollary 3.3.7, which is the
original proof but without adding looseness so as to write it in
terms of max entropy:

Theorem 9 (Variation of Corollary 3.3.7 of Ref. [9]). Let
ρXB ∈ D(HX ⊗ HB) be a classical-quantum state. Then for
any ε � 0,

1

n
H ε

min

(
ρ⊗n

XB

∣∣ρ⊗n
B

)
� H (XB) − H (B) − δ,

where δ = 2 log2(rank(ρX ) + 3)
√

log2(2/ε)
n .

Proof. Without loss of generality, assume ρB is invertible
as the general statement follows by continuity:

1X ⊗ ρB − ρXB =
∑
x∈X

(1X − |x〉〈x|) ⊗ ρx
B � 0.

Thus, by an operator inequality (Lemma B.5.4 of Ref. [9]), we
know

λmax
(√

ρXB
(
1X ⊗ ρ−1

B

)√
ρXB

)
� 1.

As Tr(ρXB) = 1,
Tr

(
ρ2

XB

(
1X ⊗ρ−1

B

))=Tr
(
ρXB

(√
ρXB

(
1X ⊗ρ−1

B

)√
ρXB

))
� 1.

It therefore follows that
log2

(
rank(ρX )+Tr

(
ρ2

XB

(
1X ⊗ρ−1

B

))+2
)

� log2 (rank(ρX )+3).
Plugging this value into Theorem 3.3.6 completes the
proof. �

APPENDIX C: COHERENT ATTACK ANALYSIS

As noted in the main text, if one were to use the finite
quantum de Finetti theorem to bound the coherent attack,
there are a few minor changes from the presentation in the
main text which is for collective attack. Namely, there is the
introduction of another security term εQdF, a different way to
calculate the correction term δ(ε̄) as well as μ, and two new
parameters r and k which need to be chosen appropriately. To
show that it can be handled, we briefly discuss where each
change arises.

The first aspect is that the quantum de Finetti theorem
itself is a probabilistic statement about the distance between
a subsystem of a large state and a state which is a convex
combination of i.i.d. states. This probability, which we refer to
as εQdF, must then be included. In this case, we can therefore
rewrite Theorem 6.5.1 of Ref. [9] so ε terms are explicit:

Theorem 6.5.1 of Ref. [9]. Given a general QKD protocol
as defined in the main text where a total of N signals are trans-
mitted, m of the signals are used for parameter estimation, and
n of the signals are used for key generation, let k ∈ N and
bn + m + k = N where b accounts for block-wise process-
ing. Let ε̄, εEC, εPA, εPE, εQdF > 0. Then the QKD protocol is
(εQdF + εPE + ε̄ + εEC + εPA) secure if the error correction is
εEC secure and if


 � n[Hμ(X |E ) − δ(ε̄)] − 2(m + k) log2(dim(HA ⊗ HB))

− leakεEC − 2 log2

(
2

εPA

)
,

where

μ ≡ 2

√
h

(
r

m

)
+ log2(1/εPE) + |�| log2( m

2 + 1)

m
, (C1)

δ(ε̄) ≡
(

5

2
log2(d ) + 4

)√
h(r/n) + 2

n
log2(4/ε̄), (C2)

r ≡
(

bn + m

k
+ 1

)[
2 ln

(
2

εQdF

)
+ dim(HA ⊗ HB)2 ln(k)

]
− 1 � N, (C3)

where d is the size of the alphabet for Alice and Bob’s output
key.

Proof. See Ref. [9]. �
As can be seen from the statement of the theorem, the key

rate will be lower than that of the collective attack as the
correction term δ(ε̄) and variation bound μ will be larger for
any fixed m for the finite key analysis. This is largely due to
the binary entropy terms which depend on r. To make r small,
one must either let εQdF be large or sacrifice many of the N
signals to make k large. Physically, this “sacrifice” is to throw
out a large portion of the signal states to make the rest of the
system close enough to a mixture of i.i.d. signals.

Given this theorem, all one needs to do to use our nu-
merical solver with the finite quantum de Finetti theorem
is replace the variation bound in Eq. (4) with Eq. (C1), the
correction term from Eq. (3) with Eq. (C2), add the −2(m +
k) log2(dim(HA ⊗ HB)) term to calculating the key length,
and optimize over k such that r � N .

Finally, we note that in case one is interested in proving
security for a prepare-and-measure QKD protocol and there-
fore needs to apply source-replacement scheme, one must
introduce an extra ε term as explained in Remark 4.3.3. of
Ref. [9].

APPENDIX D: POSTPROCESSING MAPS FOR EXAMPLES

In this section, we provide the postprocessing maps G for
each example for completeness. As explained in Ref. [19], the
postprocessing map G can be decomposed into three opera-
tions on a state ρ (see Appendix A of Ref. [40] for an in-depth
derivation):

(1) The isometric quantum channel A which represents
the measurements of Alice and Bob as well as their partition-
ing of resulting data into public and private information.

(2) A projection � on their public data which represents
the general sifting step.

(3) A partial isometry V which acts on the subspace
spanned by � which models the key map applied by Alice
or Bob.

Then from these G is defined as G(·) = V �A(·)�V †.
Lastly, we note that the channel A(·) = ∑

a,b(KA
a ⊗

KB
b )(·)(KA

a ⊗ KB
b )† where KA

a = ∑
αa

√
PA

a,αa
⊗ |a〉Ã ⊗ |αa〉A,

KB
b = ∑

βb

√
PB

b,βb
⊗ |b〉B̃ ⊗ |βb〉B, where the spaces with a

tilde denote public information and spaces with a bar denote
private information as in Fig. 1. aα denotes the outcome α

given public announcement a, and PA
a,αa

denotes the (fine-
grained) measurement Alice would have done to have public
information a and private information α. The notation is the
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same for Bob. We refer to Appendix A of Ref. [40] for a
further discussion of the postprocessing framework.

1. Single-photon BB84

The examples in Secs. IV A and IV B use the same map
G. In singe-photon BB84, Alice and Bob perform von Neu-
mann measurements in the Z and X bases with probabilities

pz and 1 − pz respectively, the public information Alice and
Bob announce are what bases they measure in, the private
information is what outcome they got (represented by a 0 or
1) in both bases, and the sifting throws out any measurement
where Alice and Bob did not use the same basis. Lastly, we
note that in Secs. IV A and IV B, we assumed Alice only
performs the key map in the Z basis. Therefore, we have the
following definitions for constructing the G map:

KA
Z = √

pz|0〉〈0|A ⊗ |0〉Ã ⊗ |0〉A + √
pz|1〉〈1|A ⊗ |0〉Ã ⊗ |1〉A,

KA
X =

√
1 − pz|+〉〈+|A ⊗ |1〉Ã ⊗ |0〉A +

√
1 − pz|−〉〈−|A ⊗ |1〉Ã ⊗ |1〉A,

KB
Z = √

pz|0〉〈0|B ⊗ |0〉B̃ ⊗ |0〉B + √
pz|1〉〈1|B ⊗ |0〉B̃ ⊗ |1〉B,

KB
X =

√
1 − pz|+〉〈+|B ⊗ |1〉B̃ ⊗ |0〉B +

√
1 − pz|−〉〈−|B ⊗ |0〉B̃ ⊗ |1〉B,

� = |0〉〈0|Ã ⊗ |0〉〈0|B̃ + |1〉〈1|Ã ⊗ |1〉〈1|B̃,

V = |0〉R ⊗ |0〉〈0|Ã ⊗ |0〉〈0|A ⊗ |0〉〈0|B̃ + |1〉R ⊗ |0〉〈0|Ã ⊗ |1〉〈1|A ⊗ |0〉〈0|B̃.

We note that while we used the source-replacement scheme, we used the Gram-Schmidt process to return Alice’s space to the
original size as explained in Ref. [30], which in this case reconstructs Alice’s original POVM.

2. MDI BB84

For MDI BB84, as we consider the case where Alice and Bob only distill key from the Z basis, using the source-replacement
scheme on both Alice’s and Bob’s sources and the simplification rules explained in Appendix A of Ref. [40], there is only one
Kraus operator for the entire map G:

KZ = (|0〉R ⊗ |0〉〈0|A + |1〉R ⊗ |1〉〈1|A) ⊗ (|0〉〈0|B + |1〉〈1|B) ⊗ (|0〉〈0|C + |1〉〈1|C ).

3. Discrete-phase-randomized BB84

In the discrete-phase-randomized BB84, we begin from the use of the squashing model which results in Alice preparing four
states for each global phase and Bob having the five-outcome POVM described in Sec. IV D. Then by the source-replacement
scheme on Alice, Alice’s portion of the signal is a 4c-dimensional Hilbert space HA, where c is the number of global phases Alice
uses. In other words, HA

∼= ⊕cH4, where H4 is a four-dimensional Hilbert space and ⊕ is the direct sum. To make the expression
of the Kraus operators concise, define the projector �n = |n〉〈n|, where n ∈ {0, 1, 2, 3}. Then, using that Alice performs the key
map along with the simplifications from Appendix A of Ref. [40], we have two Kraus operators which describe the action of G:

KZ = |0〉R ⊗
(⊕

c

(�0)

)
⊗ √

pz(|0〉〈0|B + |1〉〈1|B) ⊗ |0〉Ã + |1〉R ⊗
(⊕

c

(�1)

)
⊗ √

pz(|0〉〈0|B + |1〉〈1|B) ⊗ |0〉Ã,

KX = |0〉R ⊗
(⊕

c

(�2)

)
⊗

√
1 − pz(|+〉〈+|B + |−〉〈−|B) ⊗ |1〉Ã+|1〉R ⊗

(⊕
c

(�3)

)
⊗

√
1−pz(|+〉〈+|B + |−〉〈−|B) ⊗ |1〉Ã,

where ⊕c�n is well defined for all n as �n ∈ H4 and HA
∼= ⊕cH4.
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