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Thermodynamic uncertainty relation for systems with unidirectional transitions
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We derive a thermodynamic uncertainty relation (TUR) for systems with unidirectional transitions. The
uncertainty relation involves a mixture of thermodynamic and dynamic terms, namely the entropy production
from bidirectional transitions, and the net flux of unidirectional transitions. The derivation does not assume a
steady state, and the results apply equally well to transient processes with arbitrary initial conditions. As every
bidirectional transition can also be seen as a pair of separate unidirectional ones, our approach is equipped with
an inherent degree of freedom. Thus, for any given system, an ensemble of valid TURs can be derived. However,
we find that choosing a representation that best matches the system’s dynamics over the observation time will
yield a TUR with a tighter bound on fluctuations. More precisely, we show that a bidirectional representation
should be replaced by a unidirectional one when the entropy production associated with the transitions between
two states is larger than the sum of the net fluxes between them. Thus, in addition to offering TURs for systems
in which such relations were previously unavailable, the results presented herein also provide a systematic
method to improve TUR bounds via physically motivated replacement of bidirectional transitions with pairs
of unidirectional transitions. The power of our approach and its implementation are demonstrated on a model for
a random walk with stochastic resetting and on the Michaelis-Menten model of enzymatic catalysis.
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I. INTRODUCTION

The last three decades have seen significant progress in our
understanding of out-of-equilibrium systems and processes.
The celebrated fluctuation theorem replaces the inequality
of the second law by an equality that connects the ratio of
probabilities of symmetry-related realizations to thermody-
namic quantities [1–7]. This important result has shown the
usefulness of assigning a thermodynamic interpretation to
single realizations of an out-of-equilibrium process. A the-
oretical framework, termed stochastic thermodynamics, was
built around this idea [8,9]. Stochastic thermodynamics is well
suited to describe single molecule experiments of molecular
motors and machines that operate while being immersed in
liquid environments [10].

One of the intriguing results in the field is the thermo-
dynamic uncertainty relation (TUR) [11–13]. The TUR is a
bound involving the mean value of a fluctuating current JT ,
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its variance var[JT ], and the average entropy production �T
accumulated up to time T . In steady state, it takes the form

var[JT ]

〈JT 〉2
� 2

�T
, (1)

in units where Boltzmann’s constant is set to kB = 1. Loosely
speaking, the TUR reveals that beyond a certain threshold,
variance reduction, or increased precision, can only be ob-
tained at the expense of increased dissipation. The TUR can
be used to obtain bounds on the entropy production of a
system without the need to know specific details about its
structure [14]. The TUR was first suggested by Barato and
Seifert [11], based on the study of several models, and it was
then derived using large deviation theory [12]. The simplicity,
appealing physical interpretation, and generality of the TUR
have led to many extensions and related results [15–34]. Two
mathematical approaches were used to derive the TUR and its
generalizations. The original proof was based on the large de-
viations formalism [12]. An alternative approach, based on the
Cramér-Rao inequality, has been used to rederive the TUR and
related results [35–37]. This information theoretic approach
will also be used below. Falasco et al. have presented a novel
approach that unifies and generalizes many TURs [38].

To date, work on the TUR was mainly focused on systems
that are in steady state with some notable exceptions [38–43]
(see also [13] and references therein). The inability to describe
fully time-dependent processes was a major limitation of the
theory. This serious gap in the theory was only closed very
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recently. In [44], Liu et al. derived a TUR that is valid for
systems with arbitrary initial states, and is thus applicable for
finite-time relaxation processes. While this paper was being
written, Koyuk and Seifert presented a TUR that applies for
processes with time-dependent rates [45]. These two works
significantly extend the applicability of TURs.

There is still a class of systems for which the TURs do
not apply, namely systems with unidirectional transitions.
Here, a unidirectional transition is one that has a finite rate
Ri j > 0, while its reversed counterpart is forbidden, namely
Rji = 0. Systems with unidirectional transitions are less stud-
ied since much of stochastic thermodynamics is built upon
local detailed balance, which can hold only for bidirectional
transitions. Thus, it is not surprising that only a few papers
were devoted to the stochastic thermodynamics of systems
with unidirectional transitions [46–54].

Nevertheless, there are many instances in which one is
interested in physically relevant models that include unidi-
rectional transitions. These may appear as an idealization
of a process whose inverse rarely occurs on a relevant
timescale, or because they are meant to represent exter-
nally controlled events such as resetting (to be described
below). As relevant examples consider the total asymmetric
simple exclusion process (TASEP) [55], driven dissipative
systems, e.g., the inelastic Lorentz gas [56], directed perco-
lation in liquid crystals [57], and the decay of an atom via
spontaneous emission [58]. Such irreversible transitions also
occur in cytoneme-based morphogenesis [59], motor-driven
intracellular transport [60], backtracking recovery in RNA
polymerization [61], and in models of population dynam-
ics [62] and queuing [63] where irreversible transitions are
manifested as catastrophes. Unidirectional transitions are also
used to model chemical enzymatic reactions, in particular the
catalytic process [64–66]. Quite ubiquitously, they also appear
in discrete models of first-passage problems [67].

A particular set of unidirectional transitions that has re-
cently drawn considerable attention arises in systems with
resetting. There, upon resetting, the system is returned to a
predetermined state. Stochastic resetting was studied in con-
nection with random search processes. Interestingly, it was
found that the addition of resetting can reduce the mean time
taken to complete the search, due to elimination of realizations
with extremely long search completion times. This seminal
result has led to an extensive research effort focused on the
properties of stochastic resetting systems [68–83]. In addi-
tion, resetting was recently realized experimentally [84,85].
We refer to [69] for an extensive review of the subject. In
stark contrast, to date only a few papers have been devoted
to the stochastic thermodynamics of resetting. Fuchs et al.
used stochastic thermodynamics to give a consistent thermo-
dynamic interpretation of resetting processes [46] and derived
the first and second law for them. Stochastic resetting sys-
tems were also shown to satisfy integral fluctuation theorems
in [47]. Recently, universality of work fluctuations followed
up by the validation of the Jarzynski equality was studied for
a stochastic resetting system [48]. Yet, a TUR for systems with
stochastic resetting—and more generally for systems with
unidirectional transitions—is still missing.

In this work, we present a TUR for systems with uni-
directional transitions. Our derivation is motivated by, and

follows closely, the approach of Liu et al. [44], but never-
theless extends it in two important aspects. First, we modify
the original derivation to apply to unidirectional transitions.
In addition, we also allow for non-current-like observables,
such as the time spent in different states. Interestingly, the
TUR we obtain includes a mixture of thermodynamic and
dynamic contributions. Specifically, the entropy production
term in the familiar TUR is replaced with a linear combination
of the entropy production due to bidirectional transitions and
the total flux (or activity) of the unidirectional transitions. The
TUR we derive can be applied to bound the fluctuations of
a diverse set of observables in various different setups. To
illustrate the versatility of the formalism, we will demonstrate
its power in and out of steady state. We will also show how the
freedom to treat bidirectional transitions as pairs of separate
unidirectional transitions gives rise to a systematic, and phys-
ically motivated, method to improve bounds on fluctuations
and make them tighter.

Our paper is organized as follows. In Sec. II we present
the models that will be studied, namely Markovian jump pro-
cesses with a combination of unidirectional and bidirectional
transitions. In Sec. III we generalize the derivation of Liu
et al. [44] to systems with unidirectional transitions. In Sec. IV
we present two applications of the TUR. The first is for the
number of resetting events in a stochastic resetting system
that is in a steady state. The second is for the probability to
complete an enzymatic catalytic process by a certain finite
time. We conclude in Sec. V.

II. MODEL AND SETUP

We consider systems whose dynamics can be modeled as
a Markovian jump process on a network with a finite number
of states, Ns. The physical properties of the system are deter-
mined by the connectivity of the network and the dependence
of the transition rates on physical parameters. Let us denote
the rate of the transition from state j to i by K (α)

i j (t ). Here, α is
an index that is used to distinguish between several physically
different transitions that occur between the same two states,
e.g., due to coupling to different temperatures or particle
reservoirs. The principle of microreversibility states that if
K (α)

i j > 0, then also K (α)
ji > 0. In stochastic thermodynamics, it

is also common to demand local detailed balance, for instance

K (α)
i j

K (α)
ji

= exp[βα (Ej − Ei )], (2)

where Ei is the energy of the ith state. The principle of local
detailed balance is based on the assumption that the transition
is coupled to an environment that is in equilibrium with an
inverse temperature βα . The condition (2) is needed for the
model to be thermodynamically consistent. Equation (2) is
just an example for local detailed balance in a process where
energy is exchanged. It should be modified if the transition
involves an exchange of particles, or an externally applied
nonconservative force. A thorough discussion of local detailed
balance can be found in the review of stochastic thermody-
namics by Seifert [9]. In what follows, we will use the term
bidirectional transitions to refer to transitions like the ones
described above.
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FIG. 1. An example for a graph representing a Markovian jump
process. The model has four states, with five bidirectional transitions
connecting them. These transitions (e.g., K (1)

ab , K (1)
ba ) are denoted by

double-headed arrows. Note that states a and b are connected by two
distinct transitions with different rates (e.g., K (1)

ab and K (2)
ab ). These

are assumed to have a different physical origin. The transition from
state b to d (denoted by Rdb) is unidirectional, and is represented by
a single-headed red dashed arrow.

In addition to bidirectional transitions, we further allow
unidirectional transitions between states. These are denoted
by rates R(γ )

i j > 0, with a reversed transition whose rate

vanishes, R(γ )
ji = 0. Here, γ makes a distinction between uni-

directional transitions, which occur between the same two
states but are of different physical origin. Clearly, such tran-
sitions violate microreversibility and local detailed balance.
We intentionally use different symbols for bidirectional and
unidirectional transitions, since distinguishing them will help
clarify many of the subsequent calculations. We note that
while the distinction between unidirectional and bidirectional
transitions is meant to represent properties of the model of
interest (such as processes that almost never occur), there is
nothing that prevents one from formally viewing a bidirec-
tional transition as a pair of unidirectional ones. This freedom
will be used later to clarify some aspects of the approxima-
tions that allow us to treat transitions as unidirectional.

It is often convenient to depict a Markovian jump process
as a graph, as is done in Fig. 1. The nodes of the graph
correspond to the states of the model, whereas the links denote
the allowed transitions. The net rate of transitions from state j
to state i is

�i j (t ) =
∑

α

K (α)
i j (t ) +

∑
γ

R(γ )
i j (t ). (3)

It is also useful to consider the escape rate out of state j,

λ j (t ) = −� j j (t ) =
Ns∑

i = 1
i �= j

�i j (t ). (4)

The probability to find the system in each state evolves ac-
cording to a master equation,

dP

dt
= �P , (5)

where P (t ) denotes a vector containing the probabilities to
find the system in the different states at time t , and the matrix
elements of � are given in Eqs. (3) and (4).

If we follow the state of the system as a function of time,
we will observe a realization, or a history, of the process.
Each history is characterized by a list of states the system
was in, and the transitions the system made to pass be-
tween them. An example for such a history is ω = (i0, t0 =
0; i1, t1, ξ1; i2, t2, ξ2; . . . ; in, tn, ξn � T ), where the transition
from il−1 to il happened at time tl . Here ξ is an index that
identifies the transition that has taken place. It will point out
to a bidirectional transition if it matches one of the α’s, and
to a unidirectional one if its value matches one of the γ ’s
that are allowed for this transition. Such histories (possibly
coarse-grained) are observed in single molecule experiments
on certain molecular motors and machines. To understand
such stochastic processes, we should consider all possible
histories with a given final time, T , and their probabilities.
Note that this family of histories includes ones with different
numbers of transitions, n. Let us say that we are interested in a
physical quantity F[ω] that can be calculated for each history
ω. With the help of the probability density P[ω] of histories,
we can discuss its mean value 〈F〉 and its fluctuations. In the
following, we will need to consider both time-independent
and time-dependent processes. We start by examining the
simpler time-independent case.

For systems with time-independent transition rates, we can
characterize each history by the number of times each bidirec-
tional transition was made, which is given by

n(α)
i j [ω] =

n∑
l=1

δil−1, j δil ,i δξl ,α, (6)

and equivalently for unidirectional transitions. Another rele-
vant quantity is the time spent in each state (i.e., the residence
time) during such a history,

τi[ω] =
n∑

l=1

δil ,i(tl+1 − tl ). (7)

Here we use the convention that tn+1 = T , or equivalently
τn[ω] ≡ T − tn, to write Eq. (7) in a more compact form.
This should not be taken to mean that there is a transition
at tn+1 = T . The probability density of the history ω is then
given by [9,47]

P[ω] ≡ Pi0 (0) exp

(
−

Ns∑
i=1

λi τi[ω]

)

× exp

⎛
⎜⎜⎜⎝

∑
i, j, α
i �= j

n(α)
i j [ω] ln K (α)

i j

⎞
⎟⎟⎟⎠ exp

⎛
⎜⎜⎜⎝

∑
i, j, γ
i �= j

n(γ )
i j [ω] ln R(γ )

i j

⎞
⎟⎟⎟⎠,

(8)

where Pi0 (0) is the initial condition. The sum
∑

i, j
i �= j

Xi j =∑Ns
j=1

∑Ns

i = 1
i �= j

Xi j is a compact way of writing the sum over

all transitions (ordered pairs of states). In what follows, we
adopt a notation in which the top subscript in a summation
symbol denotes the variables being summed, while the bottom
subscript gives additional restrictions, such as i �= j or i > j.
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For processes with time-independent rates, the physical
quantities we will be interested in are given by functionals
of the form

F[ω] ≡
Ns∑

i=1

qiτi[ω]

︸ ︷︷ ︸
residence time

+
∑
i, j, α

i �= j

d (α)
i j n(α)

i j [ω]

︸ ︷︷ ︸
bidirectional jumps

+
∑
i, j, γ

i �= j

c(γ )
i j n(γ )

i j [ω]

︸ ︷︷ ︸
unidirectional jumps

,

(9)

where qi, d (α)
i j , and c(γ )

i j are parameters that can be chosen so
that F can describe different physical quantities. The first term
in Eq. (9) measures quantities related to residence times. The
second term quantifies the contribution of bidirectional tran-
sitions. Here often one demands that d (α)

i j is antisymmetric,

namely that d (α)
i j = −d (α)

ji . The reason is that many physical
quantities, including various currents, and entropy production
are obtained from antisymmetric di j . The derivation of the
TUR below utilizes this requirement in order to make a

connection with the entropy production of bidirectional tran-
sitions. The last term in Eq. (9) gives the contribution from
unidirectional transitions. Consequently, c(γ )

i j need not be an-
tisymmetric.

For time-dependent processes, the form of the probability
density of histories and the functionals are more cumbersome
as they depend on the values of the rates over the entire history
course. In this case, it is convenient to define

χi(t ) = δω(t ),i, (10)

which is an indicator function that attains the value 1 if the
system is in state i at time t , and 0 otherwise. We also use

ṅ(α)
i j (t ) =

n∑
l=1

δil−1, j δil ,i δξl ,αδ(t − tl ), (11)

which is a sum of Dirac δ functions at the times that match
the bidirectional transition j → i, via the α channel, and
equivalently for unidirectional transitions via the γ channel.
Using these, the probability density of a history ω in a time-
dependent process can be written as [9,47]

P[ω(t )] ≡ Pi0 (0) exp

⎡
⎢⎢⎢⎣−

∫ T

0
dt

⎛
⎜⎜⎜⎝

Ns∑
i=1

λi(t ) χi(t ) −
∑
i, j, α
i �= j

ṅ(α)
i j (t ) ln K (α)

i j (t ) −
∑
i, j, γ
i �= j

ṅ(γ )
i j (t ) ln R(γ )

i j (t )

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦. (12)

The probabilities of histories are normalized such that
∑

ω P[ω] = 1, where the sum over histories should be understood as
a sum over the number of transitions and integration over all the intermediate times. We note that the ensemble average over the
histories of χi(t ) is the probability to be at state i at time t ,

〈χi(t )〉 =
∑
ω(t )

P[ω(t )]δω(t ),i = Pi(t ). (13)

Similarly, we have 〈
ṅ(α)

i j (t )
〉 = K (α)

i j (t )Pj (t ), (14)

which is the flux through channel α of bidirectional j → i transitions at time t , and equivalently for unidirectional transitions
via the channel γ . For time-dependent processes, one may consider more general functionals of the following form:

F[ω] ≡
∫ T

0
dt

⎛
⎜⎜⎜⎝

Ns∑
i=1

qi(t )χi(t ) +
∑
i, j, α
i �= j

d (α)
i j (t )ṅ(α)

i j (t ) +
∑
i, j, γ
i �= j

c(γ )
i j (t )ṅ(γ )

i j (t )

⎞
⎟⎟⎟⎠. (15)

This expression allows us to consider time-dependent weights qi(t ) and counting fields di j (t ), ci j (t ). In what follows, we will
mostly be interested in systems with time-independent rates and physical quantities that are described by the time-independent
functional in Eq. (9). Note, however, that the derivation of the TUR requires us to also consider time-dependent extensions of
the dynamics, and we will therefore need to use Eqs. (12) and (15) as well.

Consider the mean value of the functional, F (T ) = 〈F[ω]〉. Substitution of Eqs. (13) and (14) in Eq. (15) gives

F (T ) =
∫ T

0
dt

⎡
⎢⎢⎢⎣

Ns∑
i=1

qi(t )Pi(t ) +
∑
j, i, α
j �= i

d (α)
i j (t ) K (α)

i j (t )Pj (t ) +
∑
j, i, γ
j �= i

c(γ )
i j (t ) R(γ )

i j (t )Pj (t )

⎤
⎥⎥⎥⎦, (16)

and equivalently

dF

dt
=

Ns∑
i=1

qi(t )Pi(t ) +
∑
j, i, α
j �= i

d (α)
i j (t )K (α)

i j (t )Pj (t ) +
∑
j, i, γ
j �= i

c(γ )
i j (t )R(γ )

i j (t )Pj (t ). (17)
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Equation (16) will be the starting point for the derivation of
the uncertainty relation. It is useful since it does not require
enumerating all the histories of a process. It is therefore a
comparatively easy way of computing the mean value of a
functional, as it only requires the solution of the master equa-
tion and the calculation of a simple integral. An alternative
derivation of Eq. (17) is presented in Appendix A.

III. TUR WITH UNIDIRECTIONAL TRANSITIONS

In this section, we derive a TUR for jump processes with
unidirectional transitions. Our derivation extends the one pre-
sented in Ref. [44] to systems with unidirectional transitions,
and it is similarly based on the Cramér-Rao inequality. Con-
sider a parameter-dependent extension of the dynamics that
is obtained by allowing the transition rates to depend on a
parameter θ . The rates K (α)

i j,θ (t ) and R(γ )
i j,θ (t ) are assumed to

depend smoothly on θ , and reduce to the physical dynamics
at θ = 0. The physical, or equivalently the original, dynamics
(θ = 0) that we consider will have time-independent rates.
However, the system need not be at steady state since we will
not make any demands regarding the initial conditions.

Although the initial condition, Pi(0), is θ -independent, the
modified dynamics has a θ -dependent probability distribution

of histories, given by Eq. (12) with the θ -dependent rates.
Considering all the possible histories between t = 0 and t =
T , one can view F[ω] as a random variable, with probability
density Pθ [ω]. The mean Fθ (T ) = 〈Fθ [ω]〉 and the variance
of this random variable satisfies the generalized Cramér-Rao
inequality [86–88]

varω[Fθ [ω]] �
[

∂Fθ (T )
∂θ

]2

I (θ )
, (18)

where the Fisher information is given by [86–88]

I (θ ) = −
〈

∂2

∂θ2
lnPθ [ω]

〉
ω

. (19)

When θ = 0, the variance in Eq. (18) is the variance of the
functional F[ω] in the physical (original) dynamics. However,
the terms on the right-hand side of Eq. (18) generally do
not offer a meaningful physical interpretation. The derivation
of the TUR consists of identifying a correct parametrization
of the transition rates that results in a physically meaningful
bound. This will be done in the following.

The terms on the right-hand side of Eq. (18) can be
computed using the technique described in Sec. II and Ap-
pendix, albeit for the process with the θ -dependent rates.
Using Eq. (16) for Fθ (T ), we get

Fθ (T ) =
∫ T

0
dt

⎛
⎜⎜⎜⎝

Ns∑
i=1

qi(t )Pi,θ (t ) +
∑
i, j, α
i �= j

d (α)
i j (t ) K (α)

i j,θ (t )Pj,θ (t ) +
∑
i, j, γ
i �= j

c(γ )
i j (t )R(γ )

i j,θ (t )Pj,θ (t )

⎞
⎟⎟⎟⎠. (20)

Taking a derivative with respect to θ and then taking the limit θ → 0 gives

∂Fθ (T )

∂θ

∣∣∣∣
θ=0

=
∫ T

0
dt

⎛
⎜⎜⎜⎝

Ns∑
i=1

qi(t )
∂Pi,θ (t )

∂θ

∣∣∣∣
θ=0

+
∑
i, j, α
i �= j

d (α)
i j (t )

[
∂Pj,θ (t )

∂θ
K (α)

i j (t ) + ∂K (α)
i j,θ (t )

∂θ
Pj (t )

]
θ=0

+
∑
i, j, γ

i �= j

c(γ )
i j (t )

[
∂Pj,θ (t )

∂θ
R(γ )

i j (t ) + ∂R(γ )
i j,θ (t )

∂θ
Pj (t )

]
θ=0

⎞
⎟⎟⎟⎠. (21)

The Fisher information can be obtained by substituting the θ -dependent version of Eq. (12) into Eq. (19). This reveals that I (θ )
is the mean value of a functional of the form (20) with

qi(t ) = ∂2λi,θ (t )

∂θ2
, (22)

d (α)
i j (t ) = −∂2 ln K (α)

i j,θ (t )

∂θ2
, (23)

c(γ )
i j (t ) = −∂2 ln R(γ )

i j,θ (t )

∂θ2
. (24)
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Note that we used the fact that the initial probability does not depend on the parameter θ . As a result, the Fisher information can
be recast as

I (θ ) =
∫ T

0
dt

⎛
⎜⎜⎜⎝

Ns∑
i=1

∂2λi,θ (t )

∂θ2
Pi,θ (t ) −

∑
i, j, α

i �= j

∂2 ln K (α)
i j,θ (t )

∂θ2
K (α)

i j,θ (t ) Pj,θ (t ) −
∑
i, j, γ
i �= j

∂2 ln R(γ )
i j,θ (t )

∂θ2
R(γ )

i j,θ (t ) Pj,θ (t )

⎞
⎟⎟⎟⎠. (25)

The expression for I (θ ) can be simplified with the help of Eqs. (3) and (4). After a bit of algebra, and taking the limit θ → 0,
we obtain

I (0) =
∫ T

0
dt

⎛
⎜⎜⎜⎝

∑
i, j, α

i �= j

Pj (t ) K (α)
i j (t )

[
∂ ln K (α)

i j,θ (t )

∂θ

]2

θ=0

+
∑
i, j, γ
i �= j

Pj (t ) R(γ )
i j (t )

[
∂ ln R(γ )

i j,θ (t )

∂θ

]2

θ=0

⎞
⎟⎟⎟⎠. (26)

To evaluate the first derivatives in Eqs. (21) and (26) at θ = 0, we employ a small θ -expansion. We first note that the
probabilities Pi,θ in Eqs. (21) and (26) are the solutions of the master equation

Ṗθ (t ) = �θ (t )Pθ (t ), (27)

where �θ (t ) is the rate matrix built from the θ -dependent rates. Recalling Eq. (5) where �(t ) is the rate matrix for the original
dynamics, we expand the probability and the rate matrix in Eq. (27) for small θ ,

�θ (t ) = � + θ�1(t ) + O(θ2), (28)

Pθ (t ) = P (t ) + θP1(t ) + O(θ2). (29)

To make further progress, we choose the following parametrization for the rates:

K (α)
i j,θ (t ) = K (α)

i j exp
[
θν

(α)
i j (t )

]
, ν

(α)
i j (t ) = ∂

∂θ
ln K (α)

i j,θ (t )

∣∣∣∣
θ=0

, (30)

R(γ )
i j,θ (t ) = R(γ )

i j exp
[
θμ

(γ )
i j (t )

]
, μ

(γ )
i j (t ) = ∂

∂θ
ln R(γ )

i j,θ (t )

∣∣∣∣
θ=0

. (31)

This parametrization is not the most general that one can construct, but as will be shown, it allows for a choice of parameters
that leads to a TUR with a clear physical interpretation. As a first step, we require that

K (α)
ji ν

(α)
ji (t )Pi(t ) − K (α)

i j ν
(α)
i j (t )Pj (t ) = K (α)

ji Pi(t ) − K (α)
i j Pj (t ) (32)

for every bidirectional transition. Similarly, for the unidirectional transitions we demand

R(γ )
i j μ

(γ )
i j (t )Pj (t ) = R(γ )

i j Pj (t ). (33)

Note that Eq. (33) gives μ
(γ )
i j (t ) = 1, and completely determines the parametrization of the unidirectional transitions.

Equations (32) and (33) mean that the part of the contribution emerging from the first derivatives with respect to θ is
proportional to the current in the physical dynamics. These conditions will ultimately allow us to recast the numerator on
the right-hand side of Eq. (18) in terms of the mean current associated with F (plus some corrections). As a result, the small θ

expansion satisfies

�1(t )P (t ) = �P (t ) = Ṗ (t ). (34)

Equation (34) allows us to calculate P1(t ) with the help of a simple linear-response calculation,

P1(t ) =
∫ t

0
dt ′e�(t−t ′ )�1(t ′)e�t ′

P (0) = t Ṗ (t ). (35)

As a result, we have Pθ (t ) = P (t ) + θt Ṗ (t ) + O(θ2) and thus we can substitute dPi,θ (t )
dθ

|
θ=0

= t Ṗi(t ) in Eq. (21).

The condition (32) does not fully determine the form of the transition rates. To determine ν
(α)
ji (t ), we substitute Eq. (30) into

the expression for the Fisher information (26) to obtain

I (0) =
∫ T

0
dt

⎡
⎢⎢⎢⎣

∑
i, j, α

i > j

(
Pj (t )K (α)

i j

[
ν

(α)
i j (t )

]2 + Pi(t )K (α)
ji

[
ν

(α)
ji (t )

]2) +
∑
i, j, γ
i �= j

R(γ )
i j Pj (t )

⎤
⎥⎥⎥⎦. (36)
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Following [44], we connect the terms related to the bidirectional transitions in Eq. (36) to the entropy production, which is a
well-known observable in stochastic thermodynamics. Formally, this connection is done by demanding that

Pj (t )K (α)
i j

[
ν

(α)
i j (t )

]2 + Pi(t )K (α)
ji

[
ν

(α)
ji (t )

]2 = 1

2

[
K (α)

ji Pi(t ) − K (α)
i j Pj (t )

]
ln

K (α)
ji Pi(t )

K (α)
i j Pj (t )

. (37)

It was shown in [44] that Eqs. (32) and (37) have a unique time-dependent solution, and thus fully determine the parametrization
ν

(α)
i j (t ). One can now substitute Eq. (37) into Eq. (36), resulting in

I (0) =
∫ T

0
dt

⎡
⎢⎢⎢⎣1

2

∑
i, j, α

i > j

[
K (α)

ji Pi(t ) − K (α)
i j Pj (t )

]
ln

K (α)
ji Pi(t )

K (α)
i j Pj (t )

+
∑
i, j, γ
i �= j

R(γ )
i j Pj (t )

⎤
⎥⎥⎥⎦ = 1

2

∫ T

0
dt σrev(t ) +

∫ T

0
dt Juni(t ), (38)

where we have introduced

σrev(t ) =
∑
i, j, α

i > j

[
K (α)

ji Pi(t ) − K (α)
i j Pj (t )

]
ln

K (α)
ji Pi(t )

K (α)
i j Pj (t )

(39)

as the entropy production rate due to the bidirectional transitions, and

Juni(t ) =
∑
i, j, γ
i �= j

R(γ )
i j Pj (t ) (40)

as the flux due to the unidirectional transitions. Naturally, �rev = ∫ T
0 dt σrev(t ) is the total entropy produced due to the

bidirectional transitions during the time window T . In contrast, �uni = ∫ T
0 dt Juni(t ) is the total flux (or activity) of the

unidirectional transitions up to time T . Thus, Eq. (38) can be recast in the following way:

I (0) = 1
2�rev(T ) + �uni(T ). (41)

The physical interpretation of both terms in Eq. (41) is apparent since it is comprised of entropic contributions from the
bidirectional transitions plus the total flux (or activity) from the unidirectional ones.

What is left is to recast ∂Fθ

∂θ
|
θ=0

[numerator on the right-hand side of Eq. (18)] in terms of physical quantities. We now focus

on time-independent functionals, assuming that qi, d (α)
i j , and c(γ )

i j do not vary during the process. With the help of d (α)
i j = −d (α)

ji
(the asymmetric property) and a substitution of Eqs. (32) and (33) into Eq. (21), we find

∂Fθ (T )

∂θ

∣∣∣∣
θ=0

=
∫ T

0
dt

⎛
⎜⎜⎜⎝

Ns∑
i=1

qit Ṗi(t ) +
∑
i, j, α
i �= j

d (α)
i j K (α)

i j t Ṗj (t ) +
∑
i, j, γ
i �= j

c(γ )
i j R(γ )

i j t Ṗj

+
∑
i, j, α

i > j

d (α)
i j

[
K (α)

i j Pj (t ) − K (α)
ji Pi(t )

] +
∑
i, j, γ
i �= j

c(γ )
i j R(γ )

i j Pj (t )

⎞
⎟⎟⎟⎠. (42)

We now note that the rate of change of F (t ) = 〈F[ω]〉 with time can then be written as

j(t ) ≡ dF

dt
=

Ns∑
i=1

Pi(t )qi +
∑
j, i, α
j �= i

Pj (t )d (α)
i j K (α)

i j +
∑
j, i, γ
j �= i

Pj (t )c(γ )
i j R(γ )

i j , (43)

where we have used Eq. (17). We now take the time derivative of the above equation and compare terms with Eq. (42). After
some simplifications, we arrive at the following relation:

∂Fθ (T )

∂θ

∣∣∣∣
θ=0

=
∫ T

0
dt

[
d

dt
{t j(t )} −

Ns∑
i=1

qiPi(t )

]
= T j(T ) −

Ns∑
i=1

∫ T

0
dt qiPi(t ), (44)
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which appears in the numerator on the right-hand side of Eq. (18). Plugging back the Fisher information from Eq. (38) and the
above relation (44) in Eq. (18), the Cramér-Rao inequality takes the form

varω[F (ω)] �
[
T j(T ) − ∑Ns

i=1

∫ T
0 dt qiPi(t )

]2∫ T
0 dt

[
1
2σrev(t ) + Juni(t )

] . (45)

Equation (45) is the central result of this paper. It is a TUR-like relation that holds for models with unidirectional transitions,
and for arbitrary initial states. Furthermore, it was derived for quite general functionals, which are of the form (9). One can find
bounds on various physical quantities by choosing different values for the parameters qi, c(γ )

i j , and d (α)
i j of the functional. We

apply this relation to several physically interesting examples in the next section. Before continuing, we note that it is possible to
generalize the bound also for systems that are externally driven. This can be modeled by considering transition rates that depend
on a parameter λ (not to be confused with the auxiliary parameter θ ) that varies with time. The only change in the derivation
above is the appearance of an additional term in d j

dt , which results in

varω[F (ω)] �
[
T j(T ) − ∑Ns

i=1

∫ T
0 dt qiPi(t ) − ∫ T

0 dt t ∂ j
∂λ

dλ
dt

]2∫ T
0 dt

[
1
2σrev(t ) + Juni(t )

] . (46)

Equation (46) shows some similarities with the TUR recently
derived by Koyuk et al. when there are only bidirectional
transitions [45].

IV. APPLICATIONS

In this section, we explore applications of the TUR in
Eq. (45). We focus on two physical problems that are of-
ten described using models with unidirectional transitions,
namely stochastic resetting systems and models of enzymatic
catalysis. The flexibility of Eq. (45) allows one to apply it to
different stochastic quantities, as well as for different types of
processes. To highlight this flexibility, we apply the TUR to a
steady-state system in the stochastic resetting context and to a
transient system in the context of enzymatic catalysis. In each
of the examples, we obtain a TUR for one physically relevant
quantity that is natural to the problem. Other inequalities can
be derived from Eq. (45) by choosing different functionals.

A. Stochastic resetting systems

Stochastic dynamics with resetting can take place in con-
tinuous space, e.g., as in diffusion with resetting [68], or
alternatively in discrete space by a jump process on a net-
work [46,47,54,89]. The TUR derived in the previous section
is relevant for the latter type of dynamics. To model resetting
in a jump process on a network, one of the states, say ir ,
is chosen to be the resetting state. Thus, after each resetting
event, the system is brought back to that state. Since there are
no anti-resetting events, the resetting process is modeled by a
set of unidirectional transitions that point from any state i �= ir
to the resetting state ir . We study models in which the resetting
process is Markovian, and we denote the resetting rates by
ri = Rir ,i. In addition, there are usual bidirectional transitions,
with rates Ki j , between the states, and even in the absence
of resetting the system can move stochastically between the
states. Thus, the resulting stochastic dynamics exhibits a com-
bination of bidirectional transitions, associated with a physical
mechanism such as diffusion, and unidirectional transitions
describing outside intervention that resets the system. An ex-
ample for such a system is given in Fig. 2(a). In this model,
one can make bidirectional transitions (or “diffuse”) among

four states. In addition, the system also undergoes random
resetting events that bring it back to state ir = 2.

Let us consider such a model and record many histories
with the same duration T . To simplify the considerations,
we assume that the resetting processes are autonomous, with
time-independent rates. We also assume that the system is in
steady state, and we denote its probability distribution by πi.
A natural quantity to study is the number of resetting events
in a realization

Nr[ω] ≡
∑
i �=ir

nir i[ω]. (47)

Crucially, this is a functional of the form (9), obtained by
substituting qi = di j = 0 and ci j = 1 for i = ir and zero oth-
erwise. The rate of resetting events at steady state j(T ) is just
the flux to the resetting state

j(T ) =
∑
i �=ir

riπi = Juni. (48)

Thus, the mean number of resetting at steady state is simply
given by 〈Nr〉 = T Juni. Similarly, the steady-state entropy
production rate due to the reversible transitions is also time-
independent and is given by

σrev =
∑
i, j, α
i > j

[
K (α)

ji πi − K (α)
i j π j

]
ln

K (α)
ji πi

K (α)
i j π j

, (49)

and hence �rev = T σrev. The number of resetting events in a
process of duration T therefore satisfies the TUR,

var[Nr]

T J2
uni

� 1
1
2σrev + Juni

. (50)

Equation (50) is obtained from Eq. (45) by substituting the
values of the counting fields and taking into account the fact
that the system is at steady state. We note that when all the
resetting rates are equal, the TUR can be simplified further
since j(T ) = 〈Ṅr〉 = r

∑
i �=ir

πi = r(1 − πir ).
To test the inequality (50), we have considered a four-

state Markov network as shown in Fig. 2(a). For given rates,
we simulated the jump process starting from the steady-state
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(a) (b)

FIG. 2. Bounds on the fluctuations in the number of resetting transitions. (a) A four-state Markov network with bidirectional (double-
sided arrows) and unidirectional (single-sided arrows) transitions. Bidirectional transitions occur between two states while the unidirectional
(resetting) transitions are from state i = 1, 3, 4 to state i = ir = 2. We prepare the system in steady state at time zero and count the total number
(Nr) of resetting transitions until an observation time T = 10. (b) Demonstration of the TUR (50). Here, the variance of Nr (circle markers

in red) is plotted against Q = T J2
uni

1
2 σrev+Juni

for a given realization of the system depicted in panel (a). To properly test the TUR, we used random

values for the bidirectional and resetting rates, which were taken from a uniform distribution U (0.01 : 10). For each such set of rates, we have
performed the averaging over 106 stochastic trajectories. As can be seen from the plot, all the results lie above the gray line with slope 1, in
agreement with the TUR of Eq. (50).

distribution. In each simulation we followed the system for
a duration T , and we counted the number of unidirectional
(resetting) jumps that took place during this time. Repeat-
ing this process allowed us to calculate the variance of this
random variable. The rest of the quantities in Eq. (50) were
calculated from the steady-state distribution. We then repeated
the calculations for systems with different values of the rates.
These were chosen at random from a uniform distribution
U (0.01 : 10). The results are shown in Fig. 2(b). It is clear that
the inequality (50) is satisfied by all the examples we tested.

B. Enzyme kinetics

Enzymatic dynamics can be modeled as Markovian jump
processes [64–66]. Moreover, such models often include uni-
directional transitions. Figure 3 depicts the canonical example
of Michaelis-Menten kinetics. According to this model, a
substrate molecule binds to the enzyme with a rate kon. Once
bound to the enzyme, the substrate molecule can either disso-
ciate with rate koff or it can undergo catalysis to form products
with rate kcat. The kinetic scheme in Fig. 3(a) can be used to
study the dynamics of a single catalytic cycle (essentially a
first-passage problem that is also conditioned on a catalysis
event that occurred at time 0−). The kinetic scheme depicted
in Fig. 3(b) is obtained by returning the enzyme to its initial

1 32 1 2

(a) (b)

FIG. 3. A jump process with Michaelis-Menten kinetics. Panel
(a) denotes a scheme with transient dynamics that stops once the
catalytic step has taken place. In panel (b), the catalytic step brings
the system back to the initial state, thereby allowing us to study
consecutive catalytic cycles and the enzyme’s steady state.

state after each catalytic event. It allows one to study the
steady state of the enzyme. This makes the kinetic scheme of
Fig. 3(b) very similar to the resetting systems studied above.
In particular, a random variable that counts the number of
completed cycles in a finite time would satisfy a TUR akin
to Eq. (50). To highlight different aspects of the method, we
instead focus on deriving a TUR for the transient dynamics of
the scheme depicted in Fig. 3(a).

The unidirectional transitions in such models should be
understood as approximations, or idealizations of the real re-
action schemes in certain limits. They are used either because
the reverse transition is so rare that it is never observed, or if an
experiment is stopped once a transition is observed for the first
time. The neglected or ignored reverse transition is needed if
one wishes to quantify the entropy production of that step in
the cycle. However, the popularity of models with unidirec-
tional transitions means that it will be very useful to be able to
apply concepts such as TURs for their dynamics. Utilizing the
theoretical framework developed in Sec. III, we will derive a
TUR for the kinetic scheme depicted in Fig. 3(a). We then
use this simple model to examine the freedom of viewing
a bidirectional transition—here the 1 ⇐⇒ 2 transition—as a
pair of unidirectional transitions. We show that this results in
an additional bound, and we check to see which one is tighter.

1. TUR for a Michaelis-Menten model

The Michaelis-Menten scheme, and many other models of
enzymes, are characterized by n − 1 states that are connected
by bidirectional transitions, and one absorbing state, n. The
system reaches the absorbing state when the enzymatic cycle
is over. The transitions to that state are all assumed to be
unidirectional. We note in passing that models with a more
complex structure of unidirectional transitions can be treated
using this general formalism as well. In particular, here we
will be interested in the following functional:

C[ω] =
n−1∑
i=1

nn,i[ω] = n3,2[ω], (51)
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where the last equality gives the expression of the functional
for the Michaelis-Menten scheme depicted in Fig. 3(a). This
functional counts the number of irreversible transitions, and it
is therefore similar to the one studied in the previous subsec-
tion. However, in the context of the enzymatic model studied
here, it acts as a random variable which tells us if the catalytic
cycle is complete or not. Thus, C(t ) is an indicator function
that gets the value 1 if the enzyme completed its cycle before
time t , otherwise it is zero. Hence, the mean of this observable
is given by

〈C(t )〉 = Pr(cycle completion time < t ) = 1 − S(t ), (52)

where

S(t ) =
n−1∑
i=1

Pi(t ) (53)

is the survival probability and Pi(t ) is the occupation proba-
bility at site i at time t . Similarly, the variance of C can easily
be calculated to give

var(C) = S(t )[1 − S(t )]. (54)

The TUR given by Eq. (45) can be readily adapted for the
Michaelis-Menten model and this observable. The accumu-
lated flux of irreversible transitions up to time t is given by∫ t

0
dt ′Juni(t

′) = 1 − S(t ), (55)

where we have used the fact that Juni(t ) = kcatP2(t ) = Ṗ3(t )
for the example studied here. For the Michaelis-Menten
model, the reversible entropy production is given by

�rev(t ) =
∫ t

0
dt ′[konP1(t ′) − koffP2(t ′)] ln

konP1(t ′)
koffP2(t ′)

. (56)

Finally, for this model the current j(T ) in the TUR (45) is the
rate of completing the cycle at time t , namely j(t ) = Ṗ3(t ) =
−Ṡ(t ). Collecting everything, the TUR for the probability to
complete a cycle at time t can be recast as

S(t )[1 − S(t )] � t2Ṡ2(t )
1
2�rev(t ) + 1 − S(t )

. (57)

The dynamics of the Michaelis-Menten model can be
easily solved. Assuming an initial condition of P1(0) = 1,
P2(0) = P3(0) = 0, one finds

P (t ) =
⎛
⎝0

0
1

⎞
⎠ + �3/kcat

�2 − �3

⎛
⎝−�2 − kcat

�2

kcat

⎞
⎠e�2t

+ �2/kcat

�3 − �2

⎛
⎝−�3 − kcat

�3

kcat

⎞
⎠e�3t . (58)

Here �2,3 = −σ∓�
2 , where σ = kon + koff + kcat and � =√

σ 2 − 4konkcat are the eigenvalues describing the decay rates
of the probability distribution toward the absorbing state.

The two sides of the inequality in Eq. (57) are depicted
in Fig. 4 for different values of the time, t and the binding
rate kon. It is clear that the TUR holds for all the parameters
included in the figure. Moreover, both surfaces exhibit similar

Variance

Entropic bound

FIG. 4. The TUR for the Michaelis-Menten scheme in Fig. 3(a).
The top meshed surface corresponds to the variance of the random
variable C that indicates whether the cycle is completed by time t
[Eq. (54)]. The bottom surface is the lower bound from the right-hand
side of Eq. (57). Here koff = 2 and kcat = 1.

qualitative behavior as the parameters are varied. One should
not use the results of Fig. 4 to deduce that the inequality is
tight. If one examines the ratio of both sides of Eq. (57),
one finds that the ratio is closest to 1 in the region where
the variance is maximal. The model and observable studied
here are quite simple. In particular, the fact that C can only get
two values makes its variance trivially related to its mean. Our
results simply demonstrate the validity of the TUR to models
of enzymes with transient dynamics.

2. Comparison of entropic and kinetic bounds

The simplicity of the Michaelis-Menten model can be used
to illuminate a property of the derivation of the TUR. Namely,
one can choose to treat any bidirectional transition as a pair of
unidirectional ones. If we apply this to the 1 ⇐⇒ 2 transitions
in Fig. 3(a), we find an additional inequality

S(t )[1 − S(t )] � t2Ṡ2(t )

�uni(t ) + 1 − S(t )
, (59)

where

�uni(t ) =
∫ t

0
dt ′[konP1(t ′) + koffP2(t ′)]. (60)

Variance

Entropic bound

Kinetic bound

FIG. 5. Comparison of the entropic and kinetic bounds for the
Michaelis-Menten scheme. The topmost surface corresponds to the
variance of C from Eq. (54). The cyan surface is the right-hand
side of Eq. (57) (called here the entropic bound). The red surface
corresponds to the right-hand side of Eq. (59) (or kinetic bound). All
surfaces are plotted as a function of t and koff, while kon = 2 and
kcat = 1 are kept fixed.
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(a)
Variance

Entropic bound

Kinetic bound

Variance

Entropic bound

Kinetic bound

(b)

FIG. 6. One-dimensional representation of the results in Fig. 5 obtained for fixed t . Panels (a) and (b) show the cross sections for t = 1
and 3, respectively. Here, we set kon = 2 and kcat = 1.

Crucially both Eqs. (57) and (59) are valid inequalities. Since
both hold, one should rather ask which one is tighter and
therefore more informative. Intuitively, one expects that this
depends on specific details of the model, and in particular how
close is the 1 to 2 transition to being approximately unidirec-
tional, for instance when the rate koff becomes small. Figure 5
shows a comparison of the “entropic” bound from Eq. (57)
and the kinetic bound from Eq. (59). The upper, meshed
surface is the variance S(t )[1 − S(t )], which is plotted as a
function of koff and t . The cyan surface is the right-hand side of
Eq. (57) whereas the red surface corresponds to the right-hand
side of Eq. (59). Figure 6 depicts two one-dimensional cross
sections of the surfaces, one at t = 1 and the other at t = 3.

The results in Figs. 5 and 6 show that the tighter bound
depends on the values of model parameters. At large values
of koff the entropic bound is tighter, and in this case a mea-
surement (or calculation) of the variance var(C) will give a
useful limitation of the entropy production and a less restric-
tive one for the integrated fluxes of the 1 ⇐⇒ 2 transitions. In
contrast, at small values of koff the more restrictive bound is
the kinetic one. This behavior can be understood qualitatively
by realizing that the entropy production associated with a 1
to 2 transition blows up when koff → 0. One can apply the
same ideas to the unidirectional 2 → 3 transition. The TURs
in (57) and (59) can be viewed as if they were obtained by
considering a model with bidirectional transitions, taking the
limit of vanishing 3 → 2 rate, and using the (clearly tighter)
kinetic bound for the catalysis step of the cycle.

V. DISCUSSION AND CONCLUDING PERSPECTIVE

In this paper, we have derived a thermodynamic uncer-
tainty relation that can be applied to models with unidirec-
tional transitions. Such models are used to study a variety of
physically relevant processes, including stochastic resetting
systems and enzymatic catalysis, which were given here as
illustrative examples. Interestingly, the TUR turns out to de-
pend on the entropy production of bidirectional transitions and
on the total activity (or flux) of the unidirectional transitions.

The derivation of our main result, Eq. (45), is based on
the Cramér-Rao inequality. The derivation is an extension of
the one given by Liu et al. [44] for bidirectional transitions to
systems with unidirectional transitions. Since the derivation is

not based on large deviation theory, there is no need to assume
that the system is in steady state. Thus, beyond the ability
to describe models with unidirectional transitions, the TUR
obtained here can also be applied to processes that may not be
at steady state, such as a single cycle of an enzyme. This gives
the freedom to examine the possible role of different initial
conditions. An interesting time-dependent TUR was recently
derived by Koyuk and Seifert [45]. However, we note that their
TUR is valid for systems that have only bidirectional transi-
tions, and it is based on a different mathematical approach.

Unidirectional transitions are often regarded as simplifica-
tions, or idealizations, of the real world, since the principle of
microreversibility states that if a transition i → j is possible,
then so is its j → i counterpart. One possible exception to this
rule is resetting, which is viewed as something that is done by
an external agent. One of the problems of models with uni-
directional transitions is that the entropy production of those
transitions is not well defined. Should this affect the useful-
ness of the TUR (45)? In fact, the derivation presented above
helps to clarify some of the aspects of the approximation in
which one describes a transition as being unidirectional, as
explained below.

The derivation of the TUR had considerable freedom. As
discussed in Sec. IV B, a pair of transitions Ki j and Kji could
be treated as a bidirectional transition, or as a pair of uni-
directional transitions. This is in fact a general feature of
the derivation, and is not restricted to the Michaelis-Menten
model or to a specific transition. Both choices result in dif-
ferent, but valid, inequalities. The difference appears in the
denominator on the right-hand side of Eq. (45). If the i j
transition is treated as bidirectional, the denominator includes
a term that expresses the entropy production due to this tran-
sition, namely

�(i j)
rev =

∫
dt[Ki jPj (t ) − KjiPi(t )] ln

[
Ki jPj (t )

KjiPi(t )

]
. (61)

On the other hand, if one chooses a parametrization that treats
the i j transitions as two unidirectional transitions, one finds
an inequality in which the term above is replaced with

�
(i j)
uni =

∫
dt[Ki jPj (t ) + KjiPi(t )]. (62)
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It is important to note that both terms are positive, and they
are added to positive contributions from other transitions.

The discussion above points out that many such inequal-
ities are valid, and that the entropy production is not the
only relevant quantity. Which inequality should one use? The
more informative bound is the one that is tighter. Luckily,
finding the tightest inequality can be done by considering each
transition separately. All one needs to do is to compare the
bidirectional entropy production calculated for the i ⇐⇒ j
transition [Eq. (61)] with the sum of unidirectional fluxes of
the same transition [Eq. (62)]. Taking the smaller of the two
ensures a tighter bound overall. We believe that the choice
depends on the details of the process one wishes to study.
If a pair of transitions i → j and j → i are close to being
detailed balanced during the process, one should use the TUR
with �

(i j)
rev and obtain a bound involving entropy production

associated with this transition. If instead one of the transi-
tions is very unlikely, the flux-related term �

(i j)
uni is smaller,

and thus the more informative bound will include this term
instead of the entropy production, since it is very large in
such cases. This was made clear in the enzymatic catalysis
example studied in Sec. IV B. Following this argument, it is
helpful to view unidirectional transitions as a limit in which
the rate of the reversible transition goes to zero. In that case,
the entropy production diverges, and a bound that is based on
the entropy production is therefore trivial and noninformative
as it simply states that the variance is positive. Our derivation,
in fact, shows that one can obtain an alternative, and tighter,
bound that involves the net flux of transitions.

Finally, one of the most fundamental properties of the TUR
is that it can be used to obtain bounds on system structure
and properties, such as the entropy production, from experi-
mentally accessible fluctuations of observables. Crucially, this
inference is independent of the model used to describe the
system. Several recent papers demonstrated the usefulness
of this approach in systems with bidirectional transitions. A
bound on the efficiency of a stepping molecular motor was
derived by Seifert in [90]. Calculation of the bound required
only experimentally accessible quantities such as the random-
ness parameter [90] (see also [91]). TUR-based bounds for
different molecular motors were obtained in [92]. Several
recent papers were devoted to understand various aspects of
the estimation of entropy production from TURs [93–96]. We
believe that using the TURs to infer properties of this type
for systems with unidirectional transitions is an important
and promising application, and that further research in this
direction is required. It will also be interesting to find out
how to effectively use the freedom, shown in this paper, to
choose different parametrizations that result in different but
physically meaningful inequalities for this purpose. We leave
this for future research.
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APPENDIX A: ALTERNATIVE DERIVATION OF EQ. (17)

In this Appendix, we present an alternative derivation of
the expression for the mean value of the functional F[ω]. To
this end, let us consider the joint probability

Qi( f , t ) =
∑

ω

P[ω]χi(t )δ[F (ω(0 : t )) − f ] (A1)

to find the system in state i, and with F (t ) = f , at time t . This
joint probability has the marginals

Q( f , t ) =
Ns∑

i=1

Qi( f , t ) (A2)

and

Pi(t ) =
∫

df Qi( f , t ). (A3)

We wish to write an evolution equation for Qi( f , t ). To do so,
we identify the various processes that may change f and i in
an infinitesimal time step between t − dt and t . For instance,
the system will be in state i with F[ω] = f at time t if it was
at i with F[ω] = f − qidt at time t − dt and no transition
was made in the time interval dt . Similarly, if the system was
at state j with F[ω] = f − d (α)

i j at time t − dt it can reach
state i with F[ω] = f by making the j → i transition (via α).
By including all such incoming and outgoing transitions, one
arrives at the following evolution equation:

∂Qi( f , t )

∂t

= −∂Qi( f , t )

∂ f
qi(t ) +

∑
j, α

j �= i

Q j
(

f − d (α)
i j (t ), t

)
K (α)

i j (t )

+
∑
j, γ

j �= i

Q j
(

f − c(γ )
i j (t ), t

)
R(γ )

i j (t ) − Qi( f , t )λi(t ). (A4)

Equation (A4) should be supplemented with the initial condi-
tion

Qi( f , 0) = Pi(0) δ( f ). (A5)

We note that the evolution of the joint distribution of thermo-
dynamic variables such as work or entropy production, and
the state of the system, is commonly studied in the field (see,
for instance, Refs. [6,97–100]). We can now express the mean
value of the functional F as

F (t ) ≡ 〈F (ω)〉 =
Ns∑

i=1

∫
df f Qi( f , t ). (A6)

Taking a time derivative of both sides, we have

dF

dt
=

Ns∑
i=1

∫
df f

∂Qi( f , t )

∂t
. (A7)
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Substituting the expression for ∂Qi ( f ,t )
∂t from Eq. (A4) into Eq. (A7) results in

dF

dt
=

Ns∑
i=1

∫
df f

⎛
⎜⎜⎜⎝−∂Qi( f , t )

∂ f
qi(t ) +

∑
j, α

j �= i

Q j
(

f − d (α)
i j (t ), t

)
K (α)

i j (t ) +
∑
j, γ

j �= i

Q j
(

f − c(γ )
i j (t ), t

)
R(γ )

i j (t ) − Qi( f , t )λi(t )

⎞
⎟⎟⎟⎠.

(A8)

It is not a priori clear what is gained by this substitution, but it turns out that the above expression can be simplified
considerably. This is done by changing the integration variables of the part that is related to bidirectional transitions. After
recasting, we have∑

j, i, α

j �= i

∫
df f Qj

(
f − d (α)

i j (t ), t
)
K (α)

i j (t ) =
∑
j, i, α
j �= i

[
d (α)

i j (t )K (α)
i j (t )Pj (t ) +

∫
df ′ f ′Qj ( f ′, t )K (α)

i j (t )

]
, (A9)

and the terms related to unidirectional transitions can be treated similarly. Substitution of these terms back into Eq. (A8) with
the use of Eqs. (3) and (4) lead to some cancellations, and we find

dF

dt
= −

Ns∑
i=1

∫
df f

∂Qi( f , t )

∂ f
qi(t ) +

∑
j, i, α
j �= i

d (α)
i j (t )K (α)

i j (t )Pj (t ) +
∑
j, i, γ
j �= i

c(γ )
i j (t )R(γ )

i j (t )Pj (t ) . (A10)

Next, one employs integration by parts on the first term on the right-hand side of the above expression,∫
df f

(
−∂Qi( f , t )

∂ f

)
qi(t ) = − f Qi( f , t )qi(t )

∣∣∣∣ f =∞

f =−∞
+

∫
df Qi( f , t ) qi(t ) = qi(t )Pi(t ), (A11)

where in the last line we have used Eq. (A3). Here we assumed that for any finite time, lim| f |→∞ f Qi( f , t ) = 0. Finally, collecting
all the terms together in Eq. (A10), we arrive at Eq. (17).

[1] D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Probability of
Second Law Violations in Shearing Steady States, Phys. Rev.
Lett. 71, 3616(E) (1993).

[2] G. Gallavotti, and E. G. D. Cohen, Dynamical Ensembles in
Nonequilibrium Statistical Mechanics, Phys. Rev. Lett. 74,
2694 (1995).

[3] C. Jarzynski, Nonequilibrium Equality for Free Energy Differ-
ences, Phys. Rev. Lett. 78, 2690 (1997).

[4] G. E. Crooks, Nonequilibrium measurements of free energy
differences for microscopically reversible Markovian systems,
J. Stat. Phys. 90, 1481 (1998).

[5] J. Kurchan, Fluctuation theorem for stochastic dynamics, J.
Phys. A 31, 3719 (1998).

[6] J. L. Lebowitz and H. Spohn, A Gallavotti-Cohen-type
symmetry in the large deviation functional for stochastic dy-
namics, J. Stat. Phys. 95, 333 (1999).

[7] U. Seifert, Entropy Production Along a Stochastic Trajectory
and an Integral Fluctuation Theorem, Phys. Rev. Lett. 95,
040602 (2005).

[8] K. Sekimoto, Stochastic Energetics (Springer, Berlin, 2010).
[9] U. Seifert, Stochastic thermodynamics, fluctuation theorems

and molecular machines, Rep. Prog. Phys. 75, 126001
(2012).

[10] Nonequilibrium Statistical Physics of Small Systems: Fluctua-
tion Relations and Beyond, edited by R. Klages, W. Just, and
C. Jarzynski (Wiley, Singapore, 2013).

[11] A. C. Barato and U. Seifert, Thermodynamic Uncertainty
Relation for Biomolecular Processes, Phys. Rev. Lett. 114,
158101 (2015).

[12] T. R. Gingrich, J. M. Horowitz, N. Perunov, and J. L. England,
Dissipation Bounds All Steady-State Current Fluctuations,
Phys. Rev. Lett. 116, 120601 (2016).

[13] J. M. Horowitz and T. R. Gingrich, Thermodynamic uncer-
tainty relations constrain non-equilibrium fluctuations, Nat.
Phys. 16, 15 (2020).

[14] P. Pietzonka, A. C. Barato, and U. Seifert, Universal bound
on the efficiency of molecular motors, J. Stat. Mech. (2016)
124004.

[15] M. Polettini, A. Lazarescu, and M. Esposito, Tightening the
uncertainty principle for stochastic currents, Phys. Rev. E 94,
052104 (2016).

[16] J. M. Horowitz and T. R. Gingrich, Proof of the finite-time
thermodynamic uncertainty relation for steady-state currents,
Phys. Rev. E 96, 020103(R) (2017).

[17] P. Pietzonka, F. Ritort, and U. Seifert, Finite-time generaliza-
tion of the thermodynamic uncertainty relation, Phys. Rev. E
96, 012101 (2017).

[18] K. Proesmans and C. V. den Broeck, Discrete-time thermody-
namic uncertainty relation, Europhys. Lett. 119, 20001 (2017).

[19] T. R. Gingrich and J. M. Horowitz, Fundamental Bounds on
First Passage Time Fluctuations for Currents, Phys. Rev. Lett.
119, 170601 (2017).

013273-13

https://doi.org/10.1103/PhysRevLett.71.3616
https://doi.org/10.1103/PhysRevLett.74.2694
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1023/A:1023208217925
https://doi.org/10.1088/0305-4470/31/16/003
https://doi.org/10.1023/A:1004589714161
https://doi.org/10.1103/PhysRevLett.95.040602
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevLett.116.120601
https://doi.org/10.1038/s41567-019-0702-6
https://doi.org/10.1088/1742-5468/2016/12/124004
https://doi.org/10.1103/PhysRevE.94.052104
https://doi.org/10.1103/PhysRevE.96.020103
https://doi.org/10.1103/PhysRevE.96.012101
https://doi.org/10.1209/0295-5075/119/20001
https://doi.org/10.1103/PhysRevLett.119.170601


ARNAB PAL, SHLOMI REUVENI, AND SAAR RAHAV PHYSICAL REVIEW RESEARCH 3, 013273 (2021)

[20] J. P. Garrahan, Simple bounds on fluctuations and uncertainty
relations for first-passage times of counting observables, Phys.
Rev. E 95, 032134 (2017).

[21] A. C. Barato, R. Chetrite, A. Faggionato, and D. Gabrielli,
Bounds on current fluctuations in periodically driven systems,
New J. Phys. 20, 103023 (2018).

[22] C. Nardini and H. Touchette, Process interpretation of current
entropic bounds, Eur. Phys. J. B 91, 16 (2018).

[23] A. Dechant and S.-I. Sasa, Current fluctuations and transport
efficiency for general Langevin systems, J. Stat. Mech. (2018)
063209.

[24] T. Koyuk, U. Seifert, and P. Pietzonka, A generalization of
the thermodynamic uncertainty relation to periodically driven
systems, J. Phys. A 52, 02LT02 (2018).

[25] I. Di Terlizzi and M. Baiesi, Kinetic uncertainty relation, J.
Phys. A 52, 02LT03 (2018).

[26] F. Carollo, R. L. Jack, and J. P. Garrahan, Unraveling the Large
Deviation Statistics of Markovian Open Quantum Systems,
Phys. Rev. Lett. 122, 130605 (2019).

[27] P. P. Potts and P. Samuelsson, Thermodynamic uncertainty
relations including measurement and feedback, Phys. Rev. E
100, 052137 (2019).

[28] J. S. Lee, J.-M. Park, and H. Park, Thermodynamic un-
certainty relation for underdamped Langevin systems driven
by a velocity-dependent force, Phys. Rev. E 100, 062132
(2019).

[29] T. V. Vu and Y. Hasegawa, Uncertainty relation under informa-
tion measurement and feedback control, J. Phys. A 53, 075001
(2020).

[30] G. Falasco and M. Esposito, The Dissipation-Time Uncer-
tainty Relation, Phys. Rev. Lett. 125, 120604 (2020).

[31] B. K. Agarwalla and D. Segal, Assessing the validity of
the thermodynamic uncertainty relation in quantum systems,
Phys. Rev. B 98, 155438 (2018).

[32] G. Guarnieri, G. T. Landi, S. R. Clark, and J. Goold, Ther-
modynamics of precision in quantum non-equilibrium steady
states, Phys. Rev. Research 1, 033021 (2019).

[33] S. K. Manikandan, D. Gupta, and S. Krishnamurthy, Inferring
Entropy Production from Short Experiments, Phys. Rev. Lett.
124, 120603 (2020).

[34] S. Pal, S. Saryal, D. Segal, T. S. Mahesh, and B. K. Agarwalla,
Experimental study of the thermodynamic uncertainty rela-
tion, Phys. Rev. Research 2, 022044(R) (2020).

[35] A. Dechant, Multidimensional thermodynamic uncertainty re-
lations, J. Phys. A 52, 035001 (2018).

[36] Y. Hasegawa and T. V. Vu, Uncertainty relations in stochastic
processes: An information inequality approach, Phys. Rev. E
99, 062126 (2019).

[37] S. Ito and A. Dechant, Stochastic Time Evolution, Informa-
tion Geometry, and the Cramér-Rao Bound, Phys. Rev. X 10,
021056 (2020).

[38] G. Falasco, M. Esposito, and J. C. Delvenne, Unifying ther-
modynamic uncertainty relations, New J. Phys. 22, 053046
(2020).

[39] P. E. Harunari, C. E. Fiore, and K. Proesmans, Exact statistics
and thermodynamic uncertainty relations for a periodically
driven electron pump, J. Phys. A 53, 374001 (2020).

[40] T. Koyuk and U. Seifert, Operationally Accessible Bounds on
Fluctuations and Entropy Production in Periodically Driven
Systems, Phys. Rev. Lett. 122, 230601 (2019).

[41] T. V. Vu and Y. Hasegawa, Thermodynamic uncertainty rela-
tions under arbitrary control protocols, Phys. Rev. Research 2,
013060 (2020).

[42] S. Otsubo, S. Ito, A. Dechant, and T. Sagawa, Estimating en-
tropy production by machine learning of short-time fluctuating
currents, Phys. Rev. E 101, 062106 (2020).

[43] Y. Hasegawa and T. V. Vu, Fluctuation Theorem Uncertainty
Relation, Phys. Rev. Lett. 123, 110602 (2019).

[44] K. Liu, Z. Gong, and M. Ueda, Thermodynamic Uncertainty
Relation for Arbitrary Initial States, Phys. Rev. Lett. 125,
140602 (2020).

[45] T. Koyuk and U. Seifert, Thermodynamic Uncertainty Re-
lation for Time-Dependent Driving, Phys. Rev. Lett. 125,
260604 (2020).

[46] J. Fuchs, S. Goldt, and U. Seifert, Stochastic thermodynamics
of resetting, Europhys. Lett. 113, 60009 (2016).

[47] A. Pal and S. Rahav, Integral fluctuation theorems for stochas-
tic resetting systems, Phys. Rev. E 96, 062135 (2017).

[48] D. Gupta, C. A. Plata, and A. Pal, Work Fluctuations and
Jarzynski Equality in Stochastic Resetting, Phys. Rev. Lett.
124, 110608 (2020).

[49] D. Ben Avraham, S. Dorosz, and M. Pleimling, Entropy pro-
duction in nonequilibrium steady states: A different approach
and an exactly solvable canonical model, Phys. Rev. E 84,
011115 (2011).

[50] S. Zeraati, F. H. Jafarpour, and H. Hinrichsen, Entropy
production of nonequilibrium steady states with irreversible
transitions, J. Stat. Mech. (2012) L12001.

[51] S. Rahav and U. Harbola, An integral fluctuation theorem for
systems with unidirectional transitions, J. Stat. Mech. (2014)
P10044.

[52] Y. Murashita, K. Funo, and M. Ueda, Nonequilibrium equal-
ities in absolutely irreversible processes, Phys. Rev. E 90,
042110 (2014).

[53] M. Baiesi and G. Falasco, Inflow rate, a time-symmetric
observable obeying fluctuation relations, Phys. Rev. E 92,
042162 (2015).

[54] D. M. Busiello, D. Gupta, and A. Maritan, Entropy production
in systems with unidirectional transitions, Phys. Rev. Research
2, 023011 (2020).

[55] B. Derrida, S. A. Janowsky, J. L. Lebowitz, and E. R. Speer,
Exact solution of the totally asymmetric simple exclusion pro-
cess: Shock profiles, J. Stat. Phys. 73, 813 (1993).

[56] S. H. Chong, M. Otsuki, and H. Hayakawa, Generalized Green
Kubo relation and integral fluctuation theorem for driven dis-
sipative systems without microscopic time reversibility, Phys.
Rev. E 81, 041130 (2010).

[57] K. A. Takeuchi, M. Kuroda, H. Chaté, and M. Sano, Directed
Percolation Criticality in Turbulent Liquid Crystals, Phys. Rev.
Lett. 99, 234503 (2007).

[58] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge
University Press, Cambridge, UK, 1997).

[59] P. C. Bressloff, Directed intermittent search with stochastic
resetting, J. Phys. A 53, 105001 (2020).

[60] P. C. Bressloff, Modeling active cellular transport as a directed
search process with stochastic resetting and delays, J. Phys. A:
Math. Theor. 53, 355001 (2020).

[61] É. Roldán, A. Lisica, D. Sánchez-Taltavull, and S. W. Grill,
Stochastic resetting in backtrack recovery by RNA poly-
merases, Phys. Rev. E 93, 062411 (2016).

013273-14

https://doi.org/10.1103/PhysRevE.95.032134
https://doi.org/10.1088/1367-2630/aae512
https://doi.org/10.1140/epjb/e2017-80612-7
https://doi.org/10.1088/1742-5468/aac91a
https://doi.org/10.1088/1751-8121/aaeec4
https://doi.org/10.1088/1751-8121/aaee34
https://doi.org/10.1103/PhysRevLett.122.130605
https://doi.org/10.1103/PhysRevE.100.052137
https://doi.org/10.1103/PhysRevE.100.062132
https://doi.org/10.1088/1751-8121/ab64a4
https://doi.org/10.1103/PhysRevLett.125.120604
https://doi.org/10.1103/PhysRevB.98.155438
https://doi.org/10.1103/PhysRevResearch.1.033021
https://doi.org/10.1103/PhysRevLett.124.120603
https://doi.org/10.1103/PhysRevResearch.2.022044
https://doi.org/10.1088/1751-8121/aaf3ff
https://doi.org/10.1103/PhysRevE.99.062126
https://doi.org/10.1103/PhysRevX.10.021056
https://doi.org/10.1088/1367-2630/ab8679
https://doi.org/10.1088/1751-8121/aba05e
https://doi.org/10.1103/PhysRevLett.122.230601
https://doi.org/10.1103/PhysRevResearch.2.013060
https://doi.org/10.1103/PhysRevE.101.062106
https://doi.org/10.1103/PhysRevLett.123.110602
https://doi.org/10.1103/PhysRevLett.125.140602
https://doi.org/10.1103/PhysRevLett.125.260604
https://doi.org/10.1209/0295-5075/113/60009
https://doi.org/10.1103/PhysRevE.96.062135
https://doi.org/10.1103/PhysRevLett.124.110608
https://doi.org/10.1103/PhysRevE.84.011115
https://doi.org/10.1088/1742-5468/2012/12/L12001
https://doi.org/10.1088/1742-5468/2014/10/P10044
https://doi.org/10.1103/PhysRevE.90.042110
https://doi.org/10.1103/PhysRevE.92.042162
https://doi.org/10.1103/PhysRevResearch.2.023011
https://doi.org/10.1007/BF01052811
https://doi.org/10.1103/PhysRevE.81.041130
https://doi.org/10.1103/PhysRevLett.99.234503
https://doi.org/10.1088/1751-8121/ab7138
https://doi.org/10.1088/1751-8121/ab9fb7
https://doi.org/10.1103/PhysRevE.93.062411


THERMODYNAMIC UNCERTAINTY RELATION FOR … PHYSICAL REVIEW RESEARCH 3, 013273 (2021)

[62] S. Dharmaraja, A. Di Crescenzo, V. Giorno, and A. G. Nobile,
A continuous-time Ehrenfest model with catastrophes and its
jump diffusion approximation, J. Stat. Phys. 161, 326 (2015).

[63] A. Di Crescenzo, V. Giorno, B. K. Kumar, and A. G. Nobile,
A double-ended queue with catastrophes and repairs, and
a jumpdiffusion approximation, Methodol. Comput. Appl.
Probab. 14, 937 (2012).

[64] I. H. Segel, Enzyme Kinetics: Behavior and Analysis of Rapid
Equilibrium and Steady State Enzyme Systems (Wiley, New
York, 1975), Vol. 115.

[65] S. C. Kou, B. J. Cherayil, W. Min, B. P. English, and X. S. Xie,
Single-molecule Michaelis-Menten equations, J. Phys. Chem.
B 109, 19068 (2005).

[66] S. Reuveni, M. Urbakh, and J. Klafter, Role of substrate un-
binding in Michaelis-Menten enzymatic reactions, Proc. Natl.
Acad. Sci. (USA) 111, 4391 (2014).

[67] S. Redner, A Guide to First-Passage Processes (Cambridge
University Press, Cambridge, 2001).

[68] M. R. Evans and S. N. Majumdar, Diffusion with Stochastic
Resetting, Phys. Rev. Lett. 106, 160601 (2011).

[69] M. R. Evans, S. N. Majumdar, and G. Schehr, Stochastic
resetting and applications, J. Phys. A 53, 193001 (2020).

[70] L. Kusmierz, S. N. Majumdar, S. Sabhapandit, and G.
Schehr, First Order Transition for the Optimal Search Time
of Lévy Flights with Resetting, Phys. Rev. Lett. 113, 220602
(2014).

[71] M. R. Evans, S. N. Majumdar, and K. Mallick, Optimal
diffusive search: nonequilibrium resetting versus equilibrium
dynamics, J. Phys. A 46, 185001 (2013).

[72] A. Pal, Diffusion in a potential landscape with stochastic re-
setting, Phys. Rev. E 91, 012113 (2015).

[73] J. M. Meylahn, S. Sabhapandit, and H. Touchette, Large devi-
ations for Markov processes with resetting, Phys. Rev. E 92,
062148 (2015).

[74] S. N. Majumdar, S. Sabhapandit, and G. Schehr, Dynamical
transition in the temporal relaxation of stochastic processes
under resetting, Phys. Rev. E 91, 052131 (2015).

[75] A. Pal, A. Kundu, and M. R. Evans, Diffusion under time-
dependent resetting, J. Phys. A 49, 225001 (2016).

[76] S. Eule and J. J. Metzger, Non-equilibrium steady states of
stochastic processes with intermittent resetting, New J. Phys.
18, 033006 (2016).

[77] E. Roldan and S. Gupta, Path-integral formalism for stochastic
resetting: Exactly solved examples and shortcuts to confine-
ment, Phys. Rev. E 96, 022130 (2017).

[78] A. Nagar and S. Gupta, Diffusion with stochastic resetting at
power-law times, Phys. Rev. E 93, 060102(R) (2016).

[79] S. Reuveni, Optimal Stochastic Restart Renders Fluctuations
in First Passage Times Universal, Phys. Rev. Lett. 116, 170601
(2016).

[80] A. Pal and S. Reuveni, First Passage Under Restart, Phys. Rev.
Lett. 118, 030603 (2017).

[81] A. Pal, I. Eliazar and S. Reuveni, First Passage Under Restart
with Branching, Phys. Rev. Lett. 122, 020602 (2019).

[82] A. Pal and V. V. Prasad, Landau-like expansion for phase
transitions in stochastic resetting, Phys. Rev. Research 1,
032001(R) (2019).

[83] A. Pal and V. V. Prasad, First passage under stochastic reset-
ting in an interval, Phys. Rev. E 99, 032123 (2019).

[84] O. Tal-Friedman, A. Pal, A. Sekhon, S. Reuveni, and Y.
Roichman, Experimental realization of diffusion with stochas-
tic resetting, J. Phys. Chem. Lett. 11, 7350 (2020).

[85] B. Besga, A. Bovon, A. Petrosyan, S. N. Majumdar, and S.
Ciliberto, Optimal mean first-passage time for a Brownian
searcher subjected to resetting: experimental and theoretical
results, Phys. Rev. Research 2, 032029(R) (2020).

[86] A. Stuart, J. K. Ord, and S. Arnold, Classical Inference and
the Linear Model, 6th ed., Kendall’s Advanced Theory of
Statistics Vol. 2A (Arnold, London, 1999).

[87] G. Casella and R. L. Berger, Statistical Inference, edited by C.
Crockett (Duxbury, Belmont, CA, 2001).

[88] E. L. Lehmann and G. Casella, Theory of Point Estimation
(Springer, New York, 2003).

[89] A. P. Riascos, D. Boyer, P. Herringer, and J. L. Mateos, Ran-
dom walks on networks with stochastic resetting, Phys. Rev. E
101, 062147 (2020).

[90] U. Seifert, Stochastic thermodynamics: From principles to the
cost of precision, Physica A 504, 176 (2018).

[91] U. Seifert, From stochastic thermodynamics to thermody-
namic inference, Annu. Rev. Condens. Matter Phys. 10, 171
(2018).

[92] W. Hwang and C. Hyeon, Energetic costs, precision, and trans-
port efficiency of molecular motors, J. Phys. Chem. Lett. 9,
513 (2018).

[93] T. R. Gingrich, G. M. Rotskoff, and J. M. Horowitz, Inferring
dissipation from current fluctuations, J. Phys. A 50, 184004
(2017).

[94] J. Li, J. M. Horowitz, T. R. Gingrich, and N. Fakhri, Quantify-
ing dissipation using fluctuating currents, Nat. Commun. 10,
1666 (2019).

[95] T. V. Vu, V. T. Vo, and Y. Hasegawa, Entropy production
estimation with optimal current, Phys. Rev. E 101, 042138
(2020).

[96] B. Lander, J. Mehl, V. Blickle, C. Bechinger, and U. Seifert,
Noninvasive measurement of dissipation in colloidal systems,
Phys. Rev. E 86, 030401(R) (2012).

[97] O. Mazonka and C. Jarzynski, Exactly solvable model
illustrating far-from-equilibrium predictions, arXiv:cond-
mat/9912121.

[98] A. Imparato and L. Peliti, Work-probability distribution in
systems driven out of equilibrium, Phys. Rev. E 72, 046114
(2005).

[99] A. Pal and S. Sabhapandit, Work fluctuations for a Brownian
particle in a harmonic trap with fluctuating locations, Phys.
Rev. E 87, 022138 (2013).

[100] A. Pal and S. Sabhapandit, Work fluctuations for a Brownian
particle driven by a correlated external random force, Phys.
Rev. E 90, 052116 (2014).

013273-15

https://doi.org/10.1007/s10955-015-1336-4
https://doi.org/10.1007/s11009-011-9214-2
https://doi.org/10.1021/jp051490q
https://doi.org/10.1073/pnas.1318122111
https://doi.org/10.1103/PhysRevLett.106.160601
https://doi.org/10.1088/1751-8121/ab7cfe
https://doi.org/10.1103/PhysRevLett.113.220602
https://doi.org/10.1088/1751-8113/46/18/185001
https://doi.org/10.1103/PhysRevE.91.012113
https://doi.org/10.1103/PhysRevE.92.062148
https://doi.org/10.1103/PhysRevE.91.052131
https://doi.org/10.1088/1751-8113/49/22/225001
https://doi.org/10.1088/1367-2630/18/3/033006
https://doi.org/10.1103/PhysRevE.96.022130
https://doi.org/10.1103/PhysRevE.93.060102
https://doi.org/10.1103/PhysRevLett.116.170601
https://doi.org/10.1103/PhysRevLett.118.030603
https://doi.org/10.1103/PhysRevLett.122.020602
https://doi.org/10.1103/PhysRevResearch.1.032001
https://doi.org/10.1103/PhysRevE.99.032123
https://doi.org/10.1021/acs.jpclett.0c02122
https://doi.org/10.1103/PhysRevResearch.2.032029
https://doi.org/10.1103/PhysRevE.101.062147
https://doi.org/10.1016/j.physa.2017.10.024
https://doi.org/10.1146/annurev-conmatphys-031218-013554
https://doi.org/10.1021/acs.jpclett.7b03197
https://doi.org/10.1088/1751-8121/aa672f
https://doi.org/10.1038/s41467-019-09631-x
https://doi.org/10.1103/PhysRevE.101.042138
https://doi.org/10.1103/PhysRevE.86.030401
http://arxiv.org/abs/arXiv:cond-mat/9912121
https://doi.org/10.1103/PhysRevE.72.046114
https://doi.org/10.1103/PhysRevE.87.022138
https://doi.org/10.1103/PhysRevE.90.052116

