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Multiple abrupt phase transitions in urban transport congestion
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During the last decades, the study of cities has been transformed by new approaches combining engineering
and complexity sciences. Network theory is playing a central role, facilitating the quantitative analysis of crucial
urban dynamics, such as mobility, city growth, or urban planning. In this work we focus on the spatial aspects of
congestion. Analyzing a large amount of real city networks, we show that the location of the onset of congestion
changes according to the considered urban area, defining, in turn, a set of congestion regimes separated by
abrupt transitions. To help unveiling this spatial dependencies of congestion (in terms of network betweenness
analysis), we introduce a family of planar road network models composed by a dense urban center connected to
an arboreal periphery. These models, coined as GT and DT-MST models, allow us to analytically, numerically,
and experimentally describe how and why congestion emerges in particular geographical areas of monocentric
cities and, subsequently, to describe the congestion regimes and the factors that promote the appearance of
their abrupt transitions. We show that the fundamental ingredient behind the observed abrupt transitions is the
spatial separation between the urban center and the periphery, and the number of separated areas that form the
periphery. Elaborating on the implications of our results, we show that they may have influence in the design and
optimization of road networks regarding urban growth and the management of daily traffic dynamics.
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I. INTRODUCTION

Cities evolved, and continue evolving, into different orga-
nizational patterns as a consequence of historical, political,
or financial circumstances and continuous optimization [1,2].
City constituents usually interact with one another, requiring
a complex systems perspective to describe the observed phe-
nomena. Urban transportation networks, such as metro, bus
lines, or road networks, are paradigmatic examples of fields
that have attracted the interest of the physics community for,
at least, two decades [3–5].

For the topic of interest here, the analysis of road net-
works, different approaches have been taken depending on
their individual characteristics and its purpose. Dynamics on
inter-urban roads (a.k.a. arterial roads, or high capacity roads),
characterized by long segments and limited interconnection, is
governed by the interaction between cars circulating within.
Thus, most of the phenomena arising in this context (con-
gestion, traffic waves, phantom traffic jams, slower-is-faster
effect, etc.) can be explained by considering vehicles moving
on independent roads, e.g., using car-following models and
fluid dynamics [6–10], or the fundamental diagram of traffic
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flow which relates density and flux of vehicles [11,12]. On the
contrary, in intra-urban dynamics, vehicles continuously relo-
cate to different road segments during their trajectory, which
makes that most of the phenomenology observed is governed
by the road network structure modeling the dependencies
among these segments. In this situation, complex networks
theory plays a salient role. Theoretical models developed
along these lines, such as the classical UTA model [7], have
helped to understand several important characteristics of such
systems, e.g., urban mobility [13,14], traffic [5,15–21], road
usage [22,23], and network collapse [24–26].

These two types of road networks (high capacity and ur-
ban roads), which are usually analyzed independently, are
increasingly entangled as cities sprawl over suburban areas
[23]. As shown in similar systems, when different structural
patterns are combined to compose a new system, we may
observe emergent phenomena induced by this entanglement
such as double phase transitions [27–29], special cases of the
Braes paradox [30], or increase in network resilience [31].
This evidences that current approaches are too narrow to fully
understand road network structure and dynamics. Up to date,
only a few works have studied the urban transportation net-
works from this intertwined perspective. In [32] the authors
describe the structural properties of systems where arterial
and local urban roads share the same geographic space. This
model allows them to explain the universal shape of the ex-
perimentally observed betweenness distribution of the road
networks in a large set of worldwide cities.

In this work we focus on the spatial aspects of congestion
on monocentric cities where arterial roads and urban local
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ones operate on separate geographic spaces.Specifically, we
assume that local roads are basically located at the city center,
and arterial roads at the urban periphery. Although this may
seem an oversimplification of the real situation, and probably
neither of both extreme cases (complete overlap or complete
separation) are fully compatible with observations, as we will
see, it will suffice to unveil several interesting properties of
road networks related to the congestion phenomena.

With the previous considerations in mind, we develop a
family of planar road network models with equivalent struc-
tural properties, a dense urban center and a periphery with
arboreal structure. We start by analyzing the most ideal-
ized situation of the model family that we call the grid-tree
(GT) model. This model is able to reproduce previous results
in terms of betweenness distribution [32], and at the same
time offers a considerable advantage in terms of analytical
tractability. The GT-model equations evidence that cities may
experience a set of multiple abrupt phase transitions in the
spatial localization of congested areas. These, in turn, de-
fine a set of congestion regimes: emergence of congestion in
the city center, in its periphery, or in urban arterial roads. We
further elaborate on these transitions by conducting analysis
on a more general model family, the DT-MST model (from
Delaunay triangulation and maximum spanning tree). Surpris-
ingly, abrupt transitions hold for such a general context as
well, allowing us to conclude that they follow from the way
different road types, located on separated spatial areas, are
entangled to form an integrated road transportation system.

After the effort to characterize the transitions on synthetic
networks, we turn our attention to the analysis of real road
networks. For that empirical analysis, we first present an auto-
matic and unsupervised method to characterize such regimes
and transitions on almost a hundred cities. Results show that
the predicted abrupt transitions exist in real cities and that our
model is practically able to predict the exact number of them.

The article is organized as follows. In Sec. II we discuss the
importance of the betweenness centrality in urban settings, its
characteristics when the network is embedded in Euclidean
spaces, and we relate our work to recent literature. In Sec. III
we develop our GT model and analyze it in terms of state-of-
the-art results related to the betweenness distribution and its
spatial behavior. Section IV is devoted to the derivation, and
subsequent validation, of the analytical expressions for the
betweenness of several distinguished nodes of the GT model.
In Sec. V we derive, using the previous analytical calculations,
the abrupt transitions which define the congestion regimes. In
Sec. VI we introduce the general DT-MST model and discuss
how its properties are related to the origin of the transitions.
The existence of these different congestion regimes is vali-
dated with empirical road networks associated with real cities
in Sec. VII. Finally, in Sec. VIII we discuss the relevance of
the transitions in real cities and the applicability of our results,
and Sec. IX contains some concluding remarks.

II. BETWEENNESS DISTRIBUTION IN CITIES

Betweenness, initially introduced in the social sciences
[33,34], is a centrality measure of network constituents (nodes
and edges) which quantifies their importance, in terms of the
amount of paths crossing them. Besides sociology [35–39],

betweenness centrality has been used in many other problems
of interest: community detection [40,41], epidemic spreading
[42], percolation [43,44], and targeted attacks to networks
[45–48], to name a few [49–52]. Yet probably, one of the most
prominent applications is in the analysis of traffic and routing
[5,15,17,30,53–61].

Betweenness centrality is implicitly related to the concept
of path which, in turn, depends on the routes that elements
take while traversing the network. To model traffic, it is
usually convenient to focus on the classical definition based
on shortest path dynamics. In this context, the shortest-path
betweenness (Bn) considers only the least costly paths (usu-
ally in length or traversal time) between city locations and is
defined, for a given node n, as

Bn = 1

N
∑
o�=d

σod (n)

σod
, (1)

where σod is the number of shortest paths going from origin
o to destination d , while σod (n) is the number of these paths
crossing n. Factor N , usually taken to be (N − 1)(N − 2), N2,
N (where N represents the number of nodes in the network),
or even 1, represents a normalization constant which may be
different depending on the application. For convenience, we
will consider only the non-normalized betweenness, setting
N = 1.

Despite node and edge betweenness being usually con-
sidered purely structural centrality measures, it is important
to realize that, implicitly, they carry on a routing protocol,
an origin-destination matrix, and a microscopic dynamics of
traffic that can be tailored to adapt different situations. This
allows us, similar to queuing theory [62] or the UTA model
[7], to accurately model the expected traffic at the micro,
meso, and macroscale [59].

Regarding the routing protocol, recent studies indicate that
drivers (and pedestrians) may opt for alternative trajectories
larger than the shortest path [63], but the assumption of short-
est path dynamics is still an outstanding routing model to
analyze. It is based on the rational choice of trajectories and,
undoubtedly, has been helpful in the design and analysis of
transportation networks. Other routing protocols [64] (e.g.,
random walks [65]) or origin-destination matrices (e.g., those
based on experimental data [17]) lead to alternative definitions
of betweenness, usually wrapped under the name of effective
betweenness [5].

As already evidenced by Guimerà et al. [5], the analysis of
the betweenness distribution is crucial for the understanding
of the dynamical properties of transportation networks, since
it constitutes an accurate proxy of node and link usage which,
combined with other properties (e.g., processing capacity),
can accurately predict congestion.

Recently, Kirkley et al. [32] have shown that, when net-
works are attributed with planar properties, such as urban
road networks, these distributions display a particular shape
that scales with N . Additionally, there is a strong dependence
between node betweenness and its geographic position. In
general, low betweenness nodes are located at peripheral re-
gions, while high betweenness nodes appear near the urban
center. This distribution can be seen in Fig. 1 for three dif-
ferent cities (see Fig. 2 of [32] for a large scale analysis).
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FIG. 1. Betweenness distribution of the road networks of three cities, Phoenix (AZ, USA), Medan (Indonesia), and Surat (India), compared
with a GT model without noise (red dotted line), and GT model with three different kinds of noise: biased edge addition, biased edge removal,
and Delaunay. The bottom right panel shows a QQ plot between the real (cities) and experimental (GT model) betweenness distributions.
The QQ plot refers to the quantiles of the distribution obtained by the GT model (vertical axis) against those related to the empirical one
(horizontal axis). Similarity between the distributions improves as the QQ plot approaches the bisector, the gray solid straight line. GT-model
parameters are w = 31, r = 2, and h = 9, while noise has been generated until density ρ = 0.52 is obtained for the gravity and Delaunay type,
and ρ = 0.4 for the negative one.

The right-hand side of the betweenness distribution can be
approximated with a power law with an exponential cutoff:
P(Bn) = B−α

n eBn/β . Exponent α happens to be quite stable,
with values α ≈ 1. However, the value of β has a strong
dependence on the size of the city [32].

III. GRID-TREE MODEL FOR MONOCENTRIC CITY
ROAD NETWORKS

The dependence of the shape of the tail of the between-
ness distribution with respect to city size suggests that there
might be a structural transition between different network
topologies as we depart from the city center. Different net-
work arrangements may coexist [66,67]. At large distances
we mainly expect to find arterial roads [23,66], whose con-
nectivity may resemble a tree [66] (or a dendritic structure).
The betweenness distribution of trees follows a power law
which is compatible with the low influence on the cut-off
parameter β on P(Bn) (see left panel in Fig. S1 of the Sup-
plemental Material [68]). As we approach the city center,
the presence of local roads increases and the structure of the
network increments in regularity [66,69,70]. Although many
types of regular networks (e.g., Delaunay triangulations or
rectangular grids) could mimic this structure, most of them
have similar properties in terms of betweenness. They pro-
vide high interconnectivity between city center buildings, with
high redundancy of paths, offering, in turn, higher resilience

to congestion than treelike structures. A grid graph displays
a betweenness distribution with a cutoff (see Fig. S1 of the
Supplemental Material [68]).

These observations allow us to set the basis of our models
for road networks of monocentric cities: a dense regular planar
graph in the city center embraced by a treelike (or arboreal)
network structure. In this section, city center is described by a
square grid, connected to trees that model the periphery. More
precisely, our grid-tree model (simply GT model hereafter)
consists of a regular grid, of size w × w, connected with a set
of nt trees with height h and branching factor r, see Fig. 2.
We suppose the trees are full and complete. We explore an
alternative model in Sec. VI.

The number of nodes of the grid NG and of the trees NT are
given by

NG = w2, NT =
h∑

v=0

rv = rh+1 − 1

r − 1
, (2)

while the size of the GT-model structure is

NGT = NG + nt NT . (3)

For simplicity and symmetry of the GT model, we choose four
trees (nt = 4), an odd number for the sides of the grid (w =
2� + 1, with � ∈ N), and assume that trees are connected to
the central node of each side, see Fig. 2.
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FIG. 2. Diagram of a network generated with the GT model, with
parameters w = 2� + 1, r = 2, and h = 3. The maximum between-
ness can be located at the grid-center node (in red), the connector
nodes (marked with a double circle), or the tree-root nodes (marked
with a star). Colors, labels, and notation are set to explain the analyt-
ical computation of the betweenness of the central node of the grid,
see Sec. IV.

Compared to actual cities of diverse size, the GT model
reproduces the range [1,∞) (right branch) of the betweenness
distribution in Fig. 1 [red line in Figs. 2(a)–2(c)]. These are the
nodes with larger betweenness centrality, the critical ones to
many network phenomena. This is a clear evidence that our
simple regular network model may suffice for the analysis of
these phenomena. The left-hand side of the rescaled between-
ness distribution, range [0, 1), corresponding to low values of
betweenness, emerges with the addition of structural noise to
the GT model. We have tested three types of noise: random
addition and removal of edges (both with distance bias), and
Delaunay noise. See Appendix A for a detailed description of
noise generation procedures.

The matching between the empirical and GT-model dis-
tribution is also portrayed through a quantile-quantile (QQ)
plot, which allows us to compare two distributions by plot-
ting their quantiles against each other. The QQ plots for the
three cities show that the GT model leads to similar shapes
of the betweenness distribution, and especially, a good fit
for the upper part of the distribution. The lower part of the
distribution, corresponding to the structural noise, is slightly
underestimated.

Additionally, as important as the shape of the distribution,
is the relationship between the node’s geographic position and
its betweenness. We show in Fig. 3 that the GT model recovers
the monotonic decrease of the larger betweenness nodes, as
well as the average betweenness, as we move away from the
city center (see Fig. S2 of the Supplemental Material [68]).
Furthermore, it not only recovers the general trend but also
the deviation of these values, i.e., large deviations for nodes
near the city center, and low deviations for peripheral regions
(see Fig. S2 of the Supplemental Material [68]).

FIG. 3. Comparison between the real (bottom) and estimated
(top) relationship between nodes geographic position and their be-
tweenness for small (Dalian, China), medium (Medan, Indonesia),
and big cities (Tokyo, Japan) from the left to the right. The GT
models used have parameters w = 51, r = 2 with h = 1, 3, 5, from
the left to the right. Additive noise is also added in terms of relative
increments of network density �ρ/ρ = 1.5% (see Appendix A 2).
All distances and betweenness are normalized between 0 and 1.
Coordinates for the nodes of the GT model have been assigned using
the planar embedding described in Appendix A 1. Solid lines on the
scatter plots represent the 80 centiles of the betweenness distribution
at the given radius R; similar results for the mean and standard
deviations are provided in Fig. S2 of the Supplemental Material [68].

These positive results depend, of course, on the choice of
the parameters. The accuracy of the GT model is determined
by the values taken by w, r, h, and the level of noise. In
particular, it is governed by the ratio between NG and NT .
As this ratio grows, the high-betweenness distribution branch
approaches the form of a grid and the cut-off β has an influ-
ential role, while in the opposite case a power law emerges as
it is related to the betweenness distribution of the tree. Results
in Fig. 3 correspond to intermediate regimes. They show a
theoretical-empirical comparison of the betweenness spatial
behavior. For this objective we have selected small (Dalian),
medium (Medan), and large (Tokyo) cities, and compared
them with the GT model generated with different tree sizes,
namely with h = 1, 3, 5. We have chosen to extend the trees
instead of the grid because as cities grow (see Sec. II) the tree
structure becomes predominant. We present the betweenness
spatial behavior for grid and trees in Fig. S3 of the Supple-
mental Material [68].

IV. ANALYTICAL DERIVATION OF BETWEENNESS
IN THE GT MODEL

For a large set of traffic models and strategies, the critical
injection rate of vehicles γc, i.e., the maximum rate at which
vehicles can enter the system without congesting it, can be
obtained in terms of the maximum node betweenness B∗

n
[5,15,30,53–55,57,58,60]:

γc = NGT − 1

B∗
n

. (4)
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The value of B∗
n sets the onset of congestion. Thus, it makes

sense to study routing dynamics over the GT model in such
terms. Here we are concerned about how topological changes
in terms of the GT model model parameters (i.e., w, r, h, and
noise), may affect the position of B∗

n in the network.
Numerical exploration of the (noiseless) GT model reveals

that the onset of congestion is set by nodes located at three
different key network positions: the center node of the grid
(red node in Fig. 2), at connector nodes on the perimeter of
the grid (nodes with a circumscribed circle in Fig. 2), or at
the root of the trees (nodes with a star within in Fig. 2). We
will refer to these nodes as grid center (gc), connector (c), and
tree root (t), respectively. According to them, it is possible to
define three different congestion regimes, which correspond
to the location of the node that marks the onset of congestion.
This indicates that the transportation network may collapse
in the city center, in the perimetral city roads (ring roads), or
in arterial roads, unveiling a new spatiodynamical property of
network congestion. Note that in these two last cases, because
of symmetry, we have four nodes with equivalent structural
properties (see Fig. 2).

According to Eq. (4), the understanding of which circum-
stances lead to each regime goes through the analysis of the
betweenness for these three types of nodes. The rest of this
section develops the analytical expressions of the betweenness
for these nodes of interest, while we leave for Sec. V the
analysis of the congestion regimes. To this aim we proceed
in the classical way of counting the number of paths crossing
each of the nodes, according to the definition in Eq. (1). As
we will see, regularities in the network allow for an efficient
computation of such values. For the sake of simplicity, we
assume that origin and destination nodes do not contribute to
the betweenness of such nodes. Otherwise, one should add
2(NGT − 1) to each node: NGT − 1 for the paths where the
node is origin, and NGT − 1 for the paths where the node is
destination.

Considering the structural composition of the GT model,
each node may be traversed by three different types of paths:
(1) paths with origin and destination in the trees; (2) paths
between a tree and the grid; and (3) paths within the grid.
The betweenness of each node can be obtained as the sum of
the contributions of each of these types of paths. Specifically,
the betweenness of any node in the network can be written as
a second-degree polynomial:

Bj = a jN
2
T + b jNT + c j, (5)

with different coefficients depending on the GT-model pa-
rameters. The constant term c j considers the contribution of
paths fully contained within the grid, which does not depend
on the parameters of the tree. The linear term b jNT , instead,
considers the contribution of paths that go between a tree and
the grid, while the first term a jN2

T considers the contribution
of paths that go between trees. All the coefficients aj , b j , and
c j depend on the grid parameter (w or �), and for the tree-root
node, also on r.

The analytical computation of the coefficients of Bj is cum-
bersome. Consequently, to improve readability of the paper,
in the following we only describe the mechanism we use to
obtain the betweenness for the grid-center node (B(gc)), and
postpone the derivation of the betweenness for the connector

node (B(c)) and the tree-root node (B(t )) to Appendixes B and
C, respectively.

Coefficient a(gc) of the betweenness of the grid-center node
can be expressed as

a(gc) = 2 + 4
1

π�,�

= 2 + 4
(�!)2

(2�)!
, (6)

where � = (w − 1)/2 corresponds to the distance between the
central node of the grid and its sides, see Fig. 2, and we
have defined πx,y, the number of different paths in the grid
involving x horizontal and y vertical steps:

πx,y =
(

x + y

x

)
= (x + y)!

x! y!
. (7)

As described in Eq. (5), a(gc) only considers the contribution
to betweenness of paths with origin and destination belonging
to nodes in different trees. Following Fig. 2, which visually
describes the process, we first consider the betweenness con-
tribution to the grid-center node (colored in red) of paths that
go from T2 to T4. Each of these paths contributes with a unity
to B(gc), since all paths between those nodes go though the
central node. Taking into account also the paths between T1

and T3, we obtain the factor 2 in Eq. (6).
Now consider the contribution of paths that go from either

T1 or T3 to nodes within T4. All these paths are canalized
through nodes no and nd , and there are many paths of equal
length between no and nd : we have path multiplicity (or de-
generation). Some of them are illustrated as green lines in
Fig. 2. We proceed combinatorially to count all these paths.
Consider we need to move � steps to the right (→) and �

steps down (↓) to go from no to nd . There are π�,� = (2l
l

)
ways in which we could order the → and ↓ operations. Only
one of these paths goes through the central node, the one
where all ↓ operation precede the → ones. In this way the
betweenness contribution of any of the paths that go from
nodes in T1 or T3 to nodes within T4 is 1/π�,�. Considering
there are four different origin-destination combinations in
this configuration—(T1, T4), (T3, T4), (T1, T2), and (T3, T2)—
we add a factor 4 to Eq. (6). Note that we do not have to
account for the reversed assignment of the trees as origin and
destination, e.g., (T4, T1), due to the reversibility of the paths;
if we calculate all the shortest paths from node i to node j, it
is not necessary to do the same for paths between j and i.

The expression for b(gc) is the following:

b(gc) = 4� + 8
�∑

x=0

�∑
y=1

πx,y

πx+�,y

= 4� + 8
�∑

x=0

�∑
y=1

(x + y)! (x + �)!

x! (x + y + �)!
. (8)

Figure 2 provides a visual support for the explanation of the
terms in Eq. (8). Consider a node identified with variables
(x, y), i.e., located at x horizontal and y vertical steps of the
central node of the grid. The shortest paths whose destina-
tion node is within tree T4 and that go through the central
node are paths whose origin is located on the left-hand side
of the grid, shaded in orange in the diagram. Any of these
origin-destination pairs has πx,y different paths that cross the
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central node, and πx+�,y paths to reach the connector node that
connects the grid and the tree, since the connector node is
� nodes to the right of the central node. Thus, each of the
origin-destination pairs contribute to the betweenness of the
central node with a factor πx,y/πx+�,y.

We can now exploit the grid’s symmetries to obtain their
total contribution to the betweenness of the central node. For
each origin node above the central node there is an equivalent
node below it, thus a factor 2 must be added. However, for
nodes with x = 0, there is just one path to the destination, and
it crosses the central node, thus the term � in front of the sums.
Finally, a factor 4 to both terms is necessary to account for
the four possible destination trees connected to the grid, thus
completing all the terms in Eq. (8).

The calculation of coefficient c(gc) is similar to the previous
ones, with just the difference that both origin and destination
of the paths belong to the grid. The result is

c(gc) = 2�2 + 4
�∑

a=1

�∑
y=1

1

πa,y
+ 8

�∑
a=1

�∑
x=1

�∑
y=1

πx,y

πx+a,y

+ 2
�∑

a=1

�∑
b=1

�∑
x=1

�∑
y=1

πx,y πa,b

πx+a,y+b
. (9)

The idea is to consider that the origin node is identified with
variables (x, y) and the destination node with (a, b), where
x and a represent the horizontal distances to the grid center,
while y and b are the corresponding vertical distances. There
exist four different configurations for the relative positions of
these origin and destination nodes that lead to the four terms
in Eq. (9).

In the first term, the origin and destination are aligned with
the grid center, i.e., x = a = 0 for a vertical alignment, and
y = b = 0 for the horizontal alignment. They amount to a total
of �2 nondegenerated shortest paths per alignment, in which
all of them contain the grid-center node.

The second term considers the cases in which origin and
destination nodes are one aligned horizontally and the other
vertically with the grid center, i.e., the cases x = b = 0 and
y = a = 0. There are four of these combinations, and in all
of them there is only one shortest path that crosses the grid
center. If we choose for example the case x = b = 0, there
exist a total of πa,y shortest paths between the origin and the
destination, thus explaining this term in Eq. (9).

Next, we have the situation in which the alignment with
the grid center is limited to one of the nodes, and in one of the
directions; let us choose the destination node and the horizon-
tal alignment, i.e., b = 0. Now, only πx,y of the πx+a,y shortest
paths connecting origin and destination pass through the grid
center. Since there are eight possible origin-destination con-
figurations with this relative alignment, they explain the third
term on the right-hand side of Eq. (9).

Finally, the last term comes from the two configurations
where no alignment is present, with πx,y πa,b shortest paths
crossing the grid center among the πx+a,y+b connecting origin
and destination.

Once we have computed the three coefficients, the be-
tweenness of the grid center is simply

B(gc) = a(gc)N2
T + b(gc)NT + c(gc). (10)

FIG. 4. Comparison between the analytical and numerical be-
tweenness for the grid’s central node B(gc) (top), connector node
B(c) (middle), and tree-root node B(t ) (bottom) of the GT model.
Analytical values are obtained by means of Eq. (5), while numerical
ones are calculated using the Brandes algorithm [71]. Both B(gc) and
B(c) are obtained by varying w ∈ [3, 40] at r = h = 2, while B(t ) is
treated as a function of r ∈ [3, 30] at fixed h = 2 and w = 5.

Note that the same approach could have been used to obtain
the betweenness of all the nodes in the grid, not just the grid
center. Basically, the limits of the sums in Eqs. (8) and (9)
would change to reflect the new position of the reference node,
some terms would disappear from the coefficients due to the
node not being within a shortest path, and special care would
be needed to account for nodes in the sides and corners of the
grid. The analysis for one type of these nodes, the connector
node, is available in Appendix B, while in Appendix C we
show the calculation of the betweenness for all of the nodes in
the trees, including the important tree-root node.

For validation purposes, Fig. 4 displays a correlation plot
between the analytical values of the betweenness calculated
using the expressions above, and the numerical values ob-
tained using the Brandes algorithm [71], showing perfect
agreement.

V. CONGESTION REGIMES

The position of the maximum betweenness node provides
information about which city areas determine the collapse
of the transportation network. The three regimes (central’s
grid, connector, and tree-root node) we have discussed in the
previous sections may be interpreted as different congestion
phases which characterize an urban system. In this section we
establish a relation between the three congestion regimes and
the parameters of the GT model. Precisely, given the values of
w, r, and h, we conclude where, geographically, congestion
occurs.

The transition between two different regions is defined by
the condition

B(r1 ) − B(r2 ) = 0, r1 �= r2, (11)

where r1 and r2 are two distinct regimes. For instance, the
frontier between the tree-root (t) and the connector node (c)
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FIG. 5. Congestion phase space of the GT model, showing the three regimes and their transitions. Left: Solid black lines refer to the
regimes as predicted by Eq. (17), with w = 25 and r = 2. Circles represent the experimental results after the addition of noise. Each circle is
located at the statistical mode (here indicated by R∗

c ) obtained with the distribution of Rc after 150 realizations. The color of the circle shows
the probability of that value over the experimental Rc distribution. See Figs. S4 and S5 of the Supplemental Material [68] for an equivalent
analysis with lower and higher levels of noise (�ρ/ρ = 0.2% and 23%, respectively), which show that the transitions persist even for high
levels of noise, and their shift to the right vanishes with low noise. Right: Average distance, in GT model, between the maximum betweenness
node and the grid center as a function of the number of nodes of the grid NG and the trees NT , for a fixed value of the branch parameter r = 2.
Average is carried out over 20 model configurations with noise �ρ/ρ = 0.2%. The result is normalized considering the maximum obtained
over the set of configurations related to the same grid size (NG). Red line corresponds to the estimated frontier between the grid-center and
the connector regime, while black lines (solid and dashed) correspond to the transition between the connector regime and tree-root one, as
predicted by Eq. (17). Blue vertical line highlights the system at NG = w2 = 252 and corresponds to the results of the left panel.

regimes is defined by the equation

B(t ) − B(c) = 0, (12)

with B(t ) and B(c) introduced in Eq. (5). Clearly Eq. (12) is a
second-degree polynomial:

a(t,c)N2
T + b(t,c)NT + c(t,c) = 0, (13)

with

a(t,c) = a(t ) − a(c), (14)

b(t,c) = b(t ) − b(c), (15)

c(t,c) = c(t ) − c(c). (16)

Then, by using the equations in Sec. IV, and Appendixes B
and C, we can provide an analytic solution to Eq. (13):

NT = −b(t,c) +
√

�(t,c)

2a(t,c)
, (17)

with the discriminant

�(t,c) = (b(t,c) )2 − 4a(t,c)c(t,c). (18)

In a similar way we can obtain the transition between the other
regimes.

Figure 5 shows the three different regimes for varying
configurations of the GT model. When the trees are small with
respect to the grid, the grid-center node dominates congestion.

Increasing the size of the trees, the congestion jumps first
to the connector nodes, and later to the tree-root nodes. An
appropriate parameter to know the current congestion regime
is the congestion radius Rc, defined as the distance between
the maximum betweenness node and the grid center.

Once noise is added to the GT model using the methods in
Appendix A, the regime’s transitions are expected to soften.
The left panel of Fig. 5 presents the behavior of the congestion
radius as a function of NT for fixed r and w. First, for small
sizes of the trees, we observe an offset in the grid-center
regime, although the congestion radius remains close to the
grid center (Rc = 0). Second, as tree height increases, we ob-
serve an expected noisy behavior preclusion of the transitions
between the regimes. Finally, a general shift of the different
transition with respect to the noiseless case is also pointed
out. However, despite all, the different regimes are still clearly
identifiable and stable for a wide range of NT values when
noise is added to the GT model. It is worth highlighting that
the abruptness of the transition remains despite the noise, and
its slight smoothing effect.

The right panel of Fig. 5 generalizes the results on the left
one and analyzes, in terms of a phase diagram, the accuracy
in predicting the transition between the different regimes for
a large set of model parameters. As defined, the GT model
only considers squared grids and regular trees, which proba-
bly is too restrictive to resemble real cities. Also, it renders
sparse model sampling as the parameters get large. To over-
come these drawbacks, we extend the model to incorporate
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intermediate grid and tree sizes [besides the ones given by
Eq. (2) which allows us to draw GT-model realizations of any
network size]. In the grid case we generate these intermediate
sizes between w2 and (w + 1)2 by incrementally adding nodes
(one by one) to the current grid periphery until we reach the
desired nodes number w2 � NG � (w + 1)2. In this iterative
process, nodes are added at random locations considering the
remaining empty positions. We also implement an equivalent
procedure for the tree.

Results in the right panel of Fig. 5 are intuitive: congestion
occurs in the center of the grid (dark values in the phase dia-
gram) when trees are short, i.e., grid dynamics predominate.
As trees increase in size (vertical axis) a phase transition to
the connector regime occurs (gray values in the diagram). At
this point, the connector nodes become a bottleneck for the
transportation network. Eventually, as trees keep increasing
in size, the highest hierarchy nodes of trees becomes the
bottleneck and then we reach the tree-root regime (light gray
in the diagram). These transitions from the center to the outer
bounds of the graph are reminiscent of the double percolation
phase transition observed in core-periphery networks [27].
Indeed, the GT model shares some structural features with
that family of networks, which may explain the resemblance
of such observation. Finally, note that the phase transitions
evidenced in the left panel of Fig. 5 represent a vertical slice
of the phase diagram in the right one (marked as a blue vertical
line).

We see that the transition between the grid center and
the connector regimes, predicted by Eq. (17), is accurate in
all the phase diagram (red line). The transition between the
connector and the tree-root regimes, as given by Eq. (17), is
only accurate at grid sizes given by Eq. (2) (black solid line
with dots in Fig. 5). This is mainly because the addition of
individual nodes to the side of the grid contributes unequally
to the betweenness of the connector and the tree root. In
comparison with the regular sizes of the grid (circles) we need
much larger trees to trespass the phase transition. This can be
considered in Eq. (17) without much effort to obtain a better
prediction (black dashed line). A detailed explanation is given
in Appendix D.

In addition to the detection of the phase transitions, our
analytical development allows us to understand the asymptotic
behavior of the regimes. Here the quadratic character of the
transition function in Eq. (13) permits us to state that the two
regimes never collapse, neither reach a constant separation,
and the grid-side area enlarges as NG increases. This would
mean that, as cities grow larger, the internal flow predominates
the dynamics of the transportation system. This is compatible
with recent observations considering real transport data [72].

Finally, it is interesting to analyze how the different con-
gestion regimes are affected by the amount of trees connected
to the grid. Supported by the results in Fig. S6 of the Supple-
mental Material [68], where we analyze the congestion radius
as a function of the number of trees connected to the grid,
we conclude that the connector and tree root regimes slowly
merge as the number of trees is increased. These results are
additionally validated in Fig. S7 of the Supplemental Material
[68], where we study a particular case with a large number
of trees connected to the grid. In general, the connection of
further peripheral structures to the grid perimeter implies a

large increase of the betweenness of the connector nodes,
which get a high score regardless of the trees height.

One could also consider the situation in which the number
of trees is fixed, but increasing the number of connections
between their roots and the grid perimeter. This alternative
situation gives high betweenness scores to the tree root, and
the corresponding regime absorbs the connector one. In con-
clusion, the individual presence of the connector and tree root
regime is influenced by the number of trees and the related
entry/exit points, i.e., on how grid-tree spatial discontinuity
is engineered. Nevertheless, regardless of these microscopic
details, the existence of an abrupt transition between center
regime and one of the remaining two is robust, see Fig. S6 of
the Supplemental Material [68].

VI. DT-MST RANDOM PLANAR MODEL

The results presented in the previous section have been
obtained by means of the GT model introduced in Sec. III. The
main advantage of this model lies in its analytical tractability
that permits us to characterize the possible congestion regimes
and the related abrupt transitions. However, as usual, this
comes at the cost of hard assumptions and oversimplifications.
The GT model depends on a number of choices concerning its
microscopic ingredients, such as the number of connectors or
the trees regularity.

In the current section we relax many of these constraints,
allowing us to identify the fundamental properties of street
networks behind the discovered abrupt transitions. Specifi-
cally, we construct random planar networks which keep the
general idea of arterial-central roads structure and entangle-
ment, while being as free as possible from any other artificial
assumption. In this framework, the GT model constitutes a
particular case in which the center and the arterial periphery
can be approximated to a grid and a regular tree, respectively,
for analytical purposes.

To construct these random planar networks, that we call
DT-MST model, we rely on a node embedding over a two-
dimensional space, and two network generation algorithms:
a Delaunay triangulation (DT), and a maximum spanning
tree (MST). We use the network structure obtained from the
DT to model the central core of the city with radius r �
R(DT) ≡ √

2 �. In this way the high abundance of intersections,
constituting a distinguishing feature of urban roads, arises
automatically. Along the same line, the peripheral treelike
structure is constructed by means of the maximum spanning
tree (MST) obtained from the DT edges. It is important to
underline that MST is constructed maximizing with respect
to edge betweenness, rather than minimizing euclidean dis-
tances. This is crucial to obtain the main routing structure that
jointly considers network flow and distance.

Since we are interested in progressively relaxing the as-
sumptions imposed by the GT model, we introduce a new
parameter �N/N ∈ [0, 1] to indicate the amount of nodes that
are randomly displaced from the original node embedding of
the GT model (as shown in Fig. 10 of Appendix A 1), with
fixed values of w, L, and r. The limit �N/N = 0 corresponds
exactly to the positions of the GT model, while �N/N = 1
defines the situation in which all node positions are dis-
tributed uniformly at random. Once we have the positions of
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FIG. 6. Spatial behavior of congestion nodes for the random planar models introduced in Sec. VI, generated from a GT-model realization
with w = 35, h = 9, and r = 2. Each column corresponds to a different amount of the spatial noise, i.e., to different values of �N/N . In
the upper row, the resulting network configurations are shown, with MST and DT edges painted in red and black, respectively. Hexagonal
bins provide information about the occurrence of congestion nodes in space, and their colors show the related frequency in proportion to the
intensity. In the bottom row we present the dependence of the congestion radius Rc on the patch radial size Rp, i.e., the radius of the circle
centered in the middle of the network, that is used to define the considered subgraph within this radius. The congestion radius range is divided
into bins, and each point is located at the statistical mode R∗

c obtained with the distribution of Rc after 100 realizations, as in Fig. 5. The color
of the circular markers shows the probability of that value over the experimental Rc distribution. Shadow areas represent the variance of the
different realizations of Rc values with respect to the bin average value. The red solid line represents the GT model as presented in Sec. III,
without any noise addition.

the nodes, we perform a DT on them to obtain a network.
Next, we calculate the betweenness of all the edges, and use
them to build its MST. Finally, the network corresponding
to this DT-MST model is formed by the links of the DT
inside the region r � RDT (the center area), while its periphery
is described by the links of the MST not included in the
DT. Note that, for �N/N = 0, the DT-MST model recovers
a similar structure than the GT model, although not ex-
actly the same (e.g., the quadrangular grid has been replaced
by a DT).

Figure 6 shows the resulting network configurations and its
congestion analysis for �N/N = 0.0, 0.1, 0.5, 1.0. Clearly,
for �N/N = 1, all dependence on the GT-model microscopic
features are lost. First of all, node positions follow a random
uniform distribution, and both the grid and trees symmetries
are lost. The latter are not regular anymore, namely their
branching factors are no longer fixed to a constant value.
In general, the number of trees and connectors of the DT-
MST model, as well as their positions, follow from the MST
construction and may take any value. As opposed to the GT
model, the center area is circular.

Hexagonal bins in Fig. 6 provide the information about the
location of maximum betweenness nodes, and portray a very
clear behavior: congestion either occurs in the center, or in the
connection of the center with the periphery. This behavior can
also be inferred from the bottom panels, where we study the

congestion radius as a function of the patch radius. Note that
this procedure is equivalent to the one followed in Sec. V, in
which congestion radius is analyzed as a function of the tree
size. Similarly to the analysis provided in Fig. 5, we recover an
abrupt transition between the congestion regime characterized
by congestion appearing in the center and the one where
congestion happens in the tree root, proving that its existence
does not depend on the specific assumptions underlying the
construction of the GT model.

The merging of the connector and tree-root regimes can be
explained by the high number of trees connected to the DT
region, which follows automatically from the MST construc-
tion. This fits well the discussion at the end of Sec. V, where
we have analyzed the effect of having an increasing number
of trees connected to the grid in the GT model. Therefore, we
may conclude that an abrupt transition between the connector
and tree-root regimes exists provided the number of trees is
small enough; otherwise, these regimes are merged into just
one effective regime.

To further analyze the robustness of the transition between
center and periphery, in Fig. S8 of the Supplemental Material
[68] we provide results for different values of R(DT) (DT size),
which show that the transition also arises for different relative
sizes of the DT and the MST regions. Remarkably, transitions
are dropped out when the network is only composed by the
DT or the MST, see Fig. S9 of the Supplemental Material
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[68]. In these situations, congestion only occurs in the center,
independently of the patch size.

All the previous analysis indicate that the spatial separation
seems to be crucial for the emergence of the transition. To
finally confirm this, we have modified the model to generate
networks where we increasingly overlap random DT edges
on an underlying MST in the same spatial region. Results in
Fig. S10 of the Supplemental Material [68] show that homo-
geneously mixing such structures prevents the appearance of
transitions.

Summarizing, we have shown that the fundamental ingre-
dient causing the emergence of an abrupt transition between
the center and the periphery is the interplay of the two dif-
ferent structures composing the network, a peripheral treelike
structure and a regular and dense center. Specifically, it de-
pends on the existence of structural discontinuities between
the networks composing the system. Additionally, the second
abrupt transition between the connector and tree regimes re-
quires the existence of a low number of trees and connector
nodes, otherwise these regimes merge.

VII. EVIDENCE OF CONGESTION REGIMES
IN REAL CITIES

The congestion regimes and the abrupt transitions un-
covered by our theoretical models have not been previously
observed in real cities. In this section we empirically assess
for a large set of cities the existence of these regimes and study
how abrupt their transitions are.

Specifically, we center our analysis in the structure of each
city’s road network contained within different concentric cir-
cles of radius Rp, using as geometric center of the city the one
provided by an online service [73]. This is equivalent to the
procedure we have implemented in Sec. VI. The Rp radius
has a clear urban interpretation: it defines the city portion
where the traffic dynamics is concentrated, and out of which
it is supposed to be negligible. So, one may tune Rp in order
to approach different mobility contexts: large values describe
situations where arterial roads and traffic flows from/to city
outskirts (or alternatively dormitory cities) are significant,
while low values describes situations where only within city
traffic is significant.

For each value of Rp we obtain the set of λ nodes with
largest betweenness, and calculate the average congestion ra-
dius as

R̄(λ)
c = 1

λ

λ∑
i=1

Ri, (19)

the average distance to the center of the city of these λ-largest
betweenness nodes. In the study of the synthetic networks (GT
and DT-MST models), we limited the analysis to the largest
betweenness node (λ = 1). For the GT model, its location
was exactly calculated analytically. In the case of the DT-MST
model, the robustness of the results was accomplished by av-
eraging over different realizations of the model, thus ensuring
their statistical significance. For real urban road networks, the
statistical significance is achieved by using λ > 1; in partic-
ular, from now on we make use of λ = 15, and leave the

FIG. 7. Analysis of congestion regimes for nine cities. Points
represent the average distance from city center of the λ = 15 nodes
with largest betweenness. Vertical lines indicate the change points.
Plots are normalized between 0 and 1 considering the radius of
the different cities. Regimes and transitions have been automatically
detected by the unsupervised method described in Appendix E.

study of the dependence on this parameter to the Supplemental
Material [68].

The theoretical analysis for the identification of the differ-
ent congestion regimes, presented in Secs. V and VI, is based
on the variation of the congestion radius with respect to the
patch radius. Both network models, GT model and DT-MST
model, show a clear distinction between the different regimes.
However, real cities present more challenging scenarios where
the structural separation between the city center and its periph-
ery may not be as clear. To overcome this issue without falling
into arbitrary assumptions, we have designed an automated
and unsupervised approach to statistically find the conges-
tion regimes in real road networks. The method is based on
identifying change points where the congestion radius signifi-
cantly changes, either in mean or slope [74]. Additionally, we
make use of the elbow method (usually applied to k-means
clustering algorithm) to choose the optimal number of change
points, see Appendix E. Subsequently, regions between two
consecutive change points will define the congestion regimes.

We have applied our analysis to the 97 city road networks
in [32], using the data provided by the authors; a detailed
description the data can be read in the reference. Overall re-
sults show that 52 networks present clear, detectable at naked
eye, regimes with abrupt transitions between them, while 45
present detectable regimes with smoother transitions.

Figure 7 shows the results for 9 of the networks with
clear multiple abrupt transitions, with radius ranging from
the 39 km of Abidjan to the 64 km of Tianjin. Equivalent
results for another 21 cities are presented in Fig. S11 of the
Supplemental Material [68]. For these 30 cities, the behavior
is very close to our theoretical predictions. For illustrative pur-
poses and to compare the real city structure with our synthetic
models, in Fig. 8 we present the map of the city of Baghdad,
highlighting the λ highest betweenness nodes associated with
each patch. It is possible to recognize the groups of nodes
for each congestion regime, either localized in the city center,
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FIG. 8. Spatial behavior of the congestion nodes for the city of Baghdad. On the left we present the dependence of the quantity introduced
in Eq. (19) with λ = 15, as a function of the patch radius Rp, as well as in Fig. 7. It is possible to detect the existence of three congestion
regimes, marked with different colors, associated with different city areas where congestion occur. These can be recognized on the right, where
we show the map of the city, with the congestion nodes related to each regime. Precisely, for each value of Rp we plot the corresponding λ high
betweenness nodes, with a color of the regime they belong to. In the gray regime, congestion nodes are located in the city center, while in the
blue one they fall on its perimeter. For the green one, congestion is mostly located at the connections between the city center and peripheral
arterial roads.

its perimeter, or in the connections of the city center to the
periphery. The similarities with the regimes unveiled by the
GT model are outstanding.

Regarding the number of congestion regimes detected, our
automatic method has shown that the analyzed cities have
between three and five regimes. However, one has to consider
that our method looks for changes in mean and slope, thus,
in some situations in which the transition is not so abrupt,
the transition itself may be identified as a regime. When this
happens, the amount of congestion regimes lays between two
and three. See Fig. 9 for several examples of that situation.
The amount of detected abrupt transitions is in clear agree-
ment with the models developed in Secs. III and VI, where
either two or three regimes are detected. Anyway, we must
remark that our main objective is not to accurately predict the
number of transitions, but to point out their existence, and
to relate them to the structural discontinuity in urban road
networks.

In this regard it is important to understand the mechanisms
that make transitions abrupt. Comparing the left panel of
Fig. 5 with Figs. S4 and S5 of the Supplemental Material
[68], adding structural noise to our synthetic models, turns
into shifts and uncertainty of the transitions. Similarly, in the
context of the DT-MST model, smoother transitions may also
be recovered by relaxing the structural discontinuity between
arterial and central roads, i.e., making this structural transition
occur in a wider spatial range.

Finally, in Fig. S12 of the Supplemental Material [68]
we present a sensitivity analysis for different values of λ ∈
{2, 5, 10, 15}, which shows that the detected pattern persists
as well for lower values of λ. Additionally, in Figs. S13 and
S8 of the Supplemental Material [68] we test R̄(λ)

c on the GT

and DT-MST models, respectively, showing that the abrupt
transition patterns persist.

VIII. DISCUSSION AND PERSPECTIVES

The management and control of congestion has a di-
rect impact on the efficiency and the engineering of urban
transportation networks. In this paper the analysis of a rich

FIG. 9. Several examples of real cities that present softer regime
transitions between the identified regimes. Points represent the av-
erage distance from city center of the λ = 15 nodes with largest
betweenness. Vertical lines indicate the change points. Plots are
normalized between 0 and 1 considering the radius of the different
cities. Regimes and transitions have been automatically detected by
the unsupervised method described in Appendix E.
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data set composed of 97 road networks of cities worldwide
have shown the existence of several congestion regimes,
with abrupt transitions, associated with the geographic areas
where the principal road bottlenecks occur. Using our GT and
DT-MST models, we have shown (analytically and experi-
mentally) that the regimes arise because of the entanglement
between the arterial and central roads and their embedding
in separated spaces. A transition between city center and pe-
riphery appears due to this spatial change in structure, while
the existence of a second transition depends on the number
of separated arboreal structures that form the periphery. Ad-
ditionally, the abrupt transitions between the regimes respond
to how fast is the structural discontinuity between them, with
softer transitions emerging by tightening their interconnectiv-
ity (e.g., in the form of structural noise).

Most of our results are based on the analysis of the location
of bottlenecks as we take, incrementally, larger concentric
urban areas. Although there is not a direct mapping, we
understand that this process may mimic, at least, two differ-
ent processes occurring in urban settings: urban growth and
changes in hourly mobility patterns.

From the structural point of view, as cities evolve, arterial
roads connecting different cities are engulfed by the urban
sprawl [23], which presents structural regularities [66,67]
similar to central parts of our models (grid and DT). This
growing process can be simulated with our models by fixing
the size of the trees and analyzing its behavior with respect
to increasing sizes of the grid. Alternatively, several cities
with strong historical background have evolved from a dense,
gridlike center, towards a sparse, treelike structure [70,75]
which could also be modeled with our models. Meanwhile,
from the dynamical point of view, faster transportation means
(and, particularly, cars) have contributed to longer commuting
distances in geographically spread-out cities, which means
that (effectively) cities have extended to wider areas. This is,
as well, clearly related to the analysis we provide here, when
the city center (with regular structure) is fixed and only the
periphery part is extended.

At another timescale we find daily urban mobility patterns.
During morning rush hour, citizens depart from the dormitory
cities towards the urban center. In that situation, the effec-
tive road network structure spans far from the city center
(large patch radius in our analysis). As the day progresses,
traffic from dormitory cities is reduced and internal traffic
determines the effective transportation network (low value of
patch radius). Intermediate patch radius consider the transition
between these two opposite situations.

As seen with the previous examples, although our results
may seem theoretical in some aspects, several urban processes
can be analyzed within our framework by either fixing the
urban center (grid or DT) or the periphery structure (regular
tree or MST) and varying the size of the remaining structure.

Taking a wider perspective on the presented results, the
general conclusion of the paper can be shortly summarized
by stating that critical nodes (bottlenecks) on road networks
present a general tendency to be abruptly shifted away from
the city center, as cities increasingly incorporate larger areas
and conurbations. Although each city may have its own par-
ticularities, from a complex networks point of view, we can

consider this phenomenon as unexpected but desirable in real
urban road networks.

Unexpected, since it is difficult to conclude whether road
networks have been designed with this purpose in mind, or it
is a byproduct of some other process. In general, one could
have also expected that congestion radius increases according
to a continuous law, without any abrupt jump.

To see why it is a desirable phenomenon, let us first analyze
the dramatic effects if no transitions would exist. We have
seen through our analysis that this happens in lattices, regular
trees, Delaunay triangulation, maximum spanning trees (see
Fig. S9 of the Supplemental Material [68]), and in networks
with total overlap between these simple structures (see Fig.
S10 of the Supplemental Material [68]); that is, in situations
where there is no structural differentiation between the center
and the periphery of the network. In these arrangements, the
location of critical nodes does not depend on the size of the
network, meaning that if road networks grow maintaining
the same structural properties, then critical nodes (located at
the city center) will receive increasing pressure, extremely
deteriorating the system. We can then conclude that, as cities
grow (or incorporate new peripheral traffic in time), there is a
need for their road network to incorporate structural changes
in it. Once these are incorporated (as the ones described in this
paper), we see that expelling bottlenecks out from the urban
center may, in part, avoid severe congestion problems.

Within this context, excessively abrupt displacement of
bottlenecks (our detected abrupt structural transitions) in-
dicate points or regions where the structural transition is
excessively sharp, and this must have implications, yet to be
studied, with respect to the efficiency (in whatever terms)
of the transportation system. Although we still have un-
certainties about the effect of transition abruptness, our
developments have shown that smoother structural transitions
can be achieved by tightening the connectivity between the
different road types, for instance, adding noise between the
two structures (see Fig. S4 compared to Figs. 5 and S5.).

IX. CONCLUSIONS

In this work we have unveiled and studied the existence
of multiple abrupt transitions in the location of urban road
networks bottlenecks. With our models we have provided
understanding about the essential structural features of road
networks that promote the emergence of this phenomenol-
ogy, and we have given indications on how to control the
abruptness of the transitions. Finally, we elaborate on the
implications of our work to urban planning.

Despite the extensive analysis we have provided, there is,
clearly, much work to do ahead. The incorporation of road
traffic data, the analysis of the specific effects of the phase
transitions on the routing dynamics, and the development of
smart methods to alleviate the abrupt transition, are some
exercises that may become necessary to fully understand the
effects of the phenomenon described here.

Overall we believe that our work puts some light on the
importance of the entanglement between the different road
types, and provides clues on the fundamental reasons of the
observed phenomena. Although further research is necessary,

013267-12



MULTIPLE ABRUPT PHASE TRANSITIONS IN URBAN … PHYSICAL REVIEW RESEARCH 3, 013267 (2021)

the discovered issue is important, and needs to be addressed
to optimize the efficiency of urban transport systems.
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APPENDIX A: GT MODEL WITH NOISE

We have tested three types of noise: (1) random edge
addition with length bias, (2) random edge removal with
length bias, and (3) Delaunay triangulation noise. For all noise
models, edges are gradually inserted or removed until graph
density ρ = E/(3N − 6) is modified in the desired amount
�ρ = �E/(3N − 6), where E is the number of edges and N
is the number of nodes of the network. Note that for planar
graphs 0 � ρ � 1, see Chap. 2 of [76]. Since the noise is in-
troduced with biases proportional to the distances between the
nodes, it is necessary to assign first coordinates to the nodes.

1. Planar embedding

The coordinates origin, i.e., the node with position (0,0),
is assumed to be located in the center of the grid, which is
well defined since the grid is supposed to have sides with an
odd number of nodes w = 2� + 1 (perfect grid), as shown in
Fig. 2. This holds even for grids with a general size NG (such
as in Fig. 5), because they are obtained by randomly adding
new nodes to the periphery of a perfect grid. In the grid, node
coordinates (xg, yg) remain defined as the number of jumps
required to reach the central node: xg counts the jumps in the
horizontal direction, while yg in the vertical one.

It is possible to proceed in a similar way for the tree nodes.
Here position of a node t is defined using polar coordinates
with respect to the grid-center node:

(xt , yt ) = (R(t ) + 4dt )[cos(θt ), sin(θt )], (A1)

where
(1) The tree root is set to be in the same axis as the corre-

sponding connector node, and at a distance R(t ) = √
2 � + 2

from the grid center. This selection is useful to avoid the
collision between tree and grid nodes.

(2) dt is the number of jumps required to reach the node t
from its tree root (i.e., the tree level).

(3) θt accounts for the angular separation of node t with
respect to the grid center. All nodes at the same level of the
tree, and for the four trees of the GT model, are uniformly
distributed along the circle of radius R(t ) + 4dt .

An example of this planar embedding is shown in Fig. 10.

2. GT model with additive length bias noise

For this type of noise we randomly add edges with a
probability inversely proportional to a certain power of the

FIG. 10. Example of the planar embedding of the GT model with
parameters w = 7, r = 2, and h = 3.

euclidean distance di j between endpoints i and j. The iterative
procedure works as follows: for a given pair of nodes i and
j chosen uniformly at random, an edge (i, j) is added with
probability 1 − (di j )−ε , provided that planarity restrictions
are not compromised. The value of ε > 0 controls the bias
towards the introduction of new edges.

3. GT model with negative length bias noise

This kind of noise is implemented following the same
procedure as for additive noise, with the only difference that
now edges are removed, rather than added.

4. GT model with Delaunay noise

This type of noise is generated considering the Delaunay
triangulation of the GT-model nodes, mimicking the pro-
cedure in [32]. Once the triangulation is generated, edges,
uniformly chosen at random, are gradually inserted to the base
model until the desired edge density is reached.

APPENDIX B: BETWEENNESS OF CONNECTOR
NODES OF THE GT MODEL

The calculation of the betweenness of the connector nodes
of the GT model, i.e., the nodes in the center of the sides
of the grid to which the root of the trees are connected, can
be done following the same approach as in Sec. IV. First,
we decompose the betweenness in three contributions using
Eq. (5):

B(c) = a(c)N2
T + b(c)NT + c(c). (B1)

Let us consider for example the connector node to tree T4 in
Fig. 2. All the shortest paths coming from nodes in the other
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three trees have to pass through it, thus

a(c) = 3. (B2)

Similarly, all the paths starting in nodes of the grid and
going to the tree T4 also cross our connector node, contributing
to its betweenness with one unity per origin node, i.e., with
a term w2 − 1. Additionally, this connector also participates
in other paths between the grid and the other trees. More
precisely, if the origin is a node in the same side of the grid as
the connector, there are two trees with shortest paths through
the connector. For example, if we take as origin the node
which is at a distance y below the considered connector in
Fig. 2, there is one path crossing the connector among the
π2�,y shortest paths to arrive to tree T2, and π�,� paths through
the connector among the π�,�+y to arrive to tree T1. Given
the up-down symmetry of the system, the final expression for
coefficient b(c) is

b(c) = w2 − 1 + 2
�∑

y=1

(
1

π2�,y
+ π�,�

π�,�+y

)
. (B3)

Finally, shortest paths that start and end in the grid and
cross a connector node need again that one of the endpoints
is on the same side as the connector, thus we choose again
as origin a node at a distance y below the previously con-
sidered connector. The destination node can be identified
with variables (a, b), the horizontal (to the left) and vertical
(upwards) distances to the connector node, respectively. The
case a = 0 consists of destinations in the same side as the
origin and connector, thus contributing to the betweenness of
the connector with a value �2. When a > 0 there are πa,b paths
through the connector node among the total πa,b+y shortest
paths connecting the origin and destination nodes, thus we get

c(c) = �2 + 2
2�∑

a=1

�∑
b=0

�∑
y=1

πa,b

πa,b+y
. (B4)

APPENDIX C: BETWEENNESS OF TREE NODES
OF THE GT MODEL

The symmetries of full and complete trees allow for the
calculation of the betweenness of all their nodes. In fact, all
nodes of the tree located at the same level share the same value
of the betweenness, thus we can denote it as B(v), where level
v ∈ {0, . . . , h} is 0 for the root and h for the leaves of the tree.

Trees are characterized by the absence of cycles. As a
consequence, there is a unique path connecting every pair of
nodes, which means that all σod = 1, thus simplifying Eq. (1).

Let us consider a node at level v of the tree. There are two
types of paths that cross it: paths that come from one children
(level v + 1) and continue to one of its siblings (level v + 1);
and paths that come from the parent (level v − 1) and continue
to one of the children (level v + 1). We need to count how
many different paths exist for each of these types.

In the first case, for each of the r(r − 1)/2 pairs of children,
there are NT (h − v − 1) possible origins of the path, and the
same number of possible destinations, thus forming a total of
r(r−1)

2 NT (h − v − 1)2 different paths. Here we have made use
of Eq. (2), which provides the number of nodes in a full and

complete tree with branching ratio r and height h:

NT (h) = rh+1 − 1

r − 1
. (C1)

In our case we have applied it to calculate the number of nodes
of the subtree formed by a child from level v + 1 and all its
descendants.

In a similar way, the number of paths that cross the node
and its parent is equal to the number of descendants of the
node r NT (h − v − 1), multiplied by the number of the rest
of the nodes NT (h) − NT (h − v). Combining both results, the
betweenness of a node at level v reads

B(v) = r(r − 1)

2
NT (h − v − 1)2

+ [NT (h) − NT (h − v)]r NT (h − v − 1), (C2)

which can be written as

B(v) = r(rh−v − 1)

2(r − 1)2

(
2rh+1 − rh−v+1 − rh−v − r + 1

)
. (C3)

This expression is valid for all nodes of the tree, including
the root (v = 0). In particular, betweenness vanishes for the
leaves B(h) = 0 as expected.

It is worth noting that maximum betweenness of the tree is
located at the root only for trees with branching ratio r > 2;
binary trees have the maximum at the children of the root. This
can be shown by calculating the difference of betweenness
between levels v = 0 and v = 1:

B(0) − B(1) = rh

2(r − 1)
[rh−1(r2 − 2r − 1) + 2]. (C4)

The term in brackets is negative if r = 2 and h > 2. To obtain
Eq. (C4), we have made use of the property

NT (h) = NT (h − 1) + rh. (C5)

Once we have determined the betweenness within the
tree, we need to include the contribution of the rest of the
network which forms the GT model. The new paths to con-
sider are those starting outside the tree, with destination in a
node descendant of the one for which we want to calculate
the betweenness. If this node belongs to level v, following the
same procedure which has led to Eq. (C2), the result is

Btotal(v) = B(v) + [NGT − NT (h)]r NT (h − v − 1). (C6)

Note that NGT = w2 + 4NT (h). Now we obtain the final ex-
pression for the desired betweenness of the tree roots of the
GT model B(t ) = Btotal(0):

B(t ) = r(rh − 1)

2(r − 1)2
[7rh+1 − rh + (2w2 − 1)(r − 1) − 6].

(C7)
For binary trees (r = 2), the consideration of the full GT-

model network makes the root of the tree become the node
of maximum betweenness among the rest of the nodes in the
tree:

Btotal(0) − Btotal(1)

= rh

2(r − 1)
[rh−1(7r2 − 2r − 1) + 2w2(r − 1) − 4].

(C8)
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This time, the term in brackets is positive for all values of the
branching ratio, height of the tree, and size of the grid.

The betweenness of the tree-root nodes can also be ex-
pressed in terms of the sizes of the trees of the GT model,
as in Eq. (5), if we do not expand the value of NT = NT (h) in
Eqs. (C2) and (C6):

B(t ) = r(r − 1)

2

(
NT − 1

r

)2

+ (w2 + 3NT )(NT − 1), (C9)

where we have made use of

NT (h − 1) = NT − 1

r
. (C10)

Rearranging the terms in Eq. (C9) we get

B(t ) = a(t )N2
T + b(t )

j NT + c(t )
j , (C11)

with

a(t ) = 3 + r − 1

2r
, (C12)

b(t ) = w2 − 3 − r − 1

r
, (C13)

c(t ) = r − 1

2r
− w2. (C14)

APPENDIX D: CONGESTION REGIMES FOR THE GT
MODEL WITH NONCOMPLETE GRIDS

Analytical betweenness expressions in Sec. IV have been
derived assuming the case of complete grids, i.e., grids with
side w = 2� + 1 (n ∈ N) and w2 nodes. In Fig. 5 we also
introduced incomplete grids to fill the gaps between grids of
odd-squared sizes. These incomplete grids, with extra nodes
in the periphery, modify differently the values of the between-
ness of the connector and tree-root nodes, thus shifting the
transition between these regimes.

Consider Fig. 11 as an illustration of the following process.
We start by connecting a new node no to the left side of a
complete grid, and quantify its contribution to the between-
ness of the connector node nc (belonging to the side in front
of the new node), and the adjacent tree-root nt . After adding
no, nodes nc and nt , among others, experience an increment in
its betweenness that can be formalized as

�B(t ) = NT − 1, (D1)

�B(c) = �B(t ) + 1 + δ(c). (D2)

The value of �B(t ) includes the contribution to betweenness
of paths between no and the nodes of the tree to which node
nt belongs to. Since all paths need to cross nt to reach their
destinations, this value is equivalent to the number of nodes
in the tree minus one. These paths also cross the connector
and contribute to �B(c), see the black path in Fig. 11. How-
ever, �B(c) embodies a new term δ(c) that considers the paths
between the new node and the grid ones located on the same
side as the connector nc, and above it, see the green paths in
Fig. 11. It turns out that

�B(c) > �B(t ), (D3)

which explains why, in Fig. 5, numerical simulations asso-
ciated with the connector regime overcome the solid black

FIG. 11. Graphical representation of a network generated with
the GT model with parameters w = 2� + 1, r = 2, and h = 3, in
which an additional node no has been attached to periphery. Colors,
labels, and notation are set to explain the derivation in Appendix D.

frontier defined by Eq. (17). Formally, we may write

δ(c) = σno,nd (nc)

σno,nd

. (D4)

It can be approximated by

δ(c) � 2
�∑

b=1

�∑
y=1

πw,b

πw,b+y
, (D5)

where we have taken advantage of the same idea used to derive
the c(c) term in Eq. (B4). This is an approximation because we
are supposing that the side on which node no is located is also
full of new nodes, above and below it. This gives a good upper
bound for most configurations, which is enough to obtain the
corrected transition boundary depicted as a dashed line in the
right panel of Fig. 5.

FIG. 12. Relationship between fitting error (MSE) and the num-
ber of change points used to approximate the curves in Fig. 7.
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APPENDIX E: DETECTION OF THE NUMBER
OF CONGESTION REGIMES

Theoretical analysis based on GT model predicts three
different phases that can be clearly defined by two cut points
(a.k.a. change points). To identify these pattern in empirical
road networks (see Fig. 7), one has to decide the number of
change points to consider. Note that, as the number of change
points increases, the fitting error decreases. To automatically
decide the optimal number of change points, we recall the
elbow test introduced in [77]. The method is based on the con-
cept of diminishing returns to balance the accuracy obtained
with respect to the number of change points considered.

In Fig. 12 we plot the evolution of the mean squared error
(MSE) of the fit with respect to the number of change points.
As expected, the resulting line draws an elbow: in general, the
error rapidly decreases as the number of change points grows,
but after a certain value, adding another change point does
not provide much improvement. Such a surplus of precision
can be considered a kind of overfitting. Of course the opposite
situation, namely a very low number of change points, leads to
underfitting. Thus, the elbow singles out the optimal number
of change points. In Fig. 12 we see that the elbow position
approximately falls between 2 and 4 change points, endorsing
the GT-model prediction.
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