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Quasiperiodicity has long been known to be a potential platform to explore exotic phenomena, realizing
an intricate middle point between ordered solids and disordered matter. In particular, quasiperiodic struc-
tures are promising playgrounds to engineer critical wave functions, a powerful starting point to engineer
exotic correlated states. Here we show that systems hosting a quasiperiodic modulation of antiferromagnetism
and spin-singlet superconductivity, as realized by atomic chains in twisted van der Waals materials, host a
localization-delocalization transition as a function of the coupling strength. Associated with this transition,
we demonstrate the emergence of a robust quasiperiodic critical point for arbitrary incommensurate potentials,
which appears for generic relative weights of the spin-singlet superconductivity and antiferromagnetism. We
show that inclusion of residual electronic interactions leads to an emergent spin-triplet superconducting state,
which gets dramatically enhanced at the vicinity of the quasiperiodic critical point. Our results put forward
quasiperiodicity as a powerful knob to engineer robust superconducting states, providing an alternative pathway
towards artificially designed unconventional superconductors.
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I. INTRODUCTION

Unconventional superconductivity [1,2] encompasses one
of the most exotic states found in quantum materials. In par-
ticular, recent interest in topological superconductors hosting
Majorana states has been boosted by their potential for topo-
logical quantum computing [3,4]. However, unconventional
superconductivity and, in particular, spin-triplet superconduc-
tivity remains a highly elusive state in natural compounds
[5–9], with a few exceptions such as doped Bi2Se3 [10–13],
UTe2 [14], and UPt3 [15]. Whereas several compounds have
been identified as a potential candidate for spin-triplet su-
perconductivity [16–21], finding generic mechanisms for its
engineering still remains a challenge. To date, a highly suc-
cessful strategy for engineering spin-triplet superconductors
consists of focusing on materials with potential coexisting
magnetic and superconducting orders [22,23]. This procedure
has been heavily exploited for the engineering of Majorana
bound states with a variety of platforms [24–31]. Most of
these schemes have relied on engineering periodic structures
with competing orders, while its study in nonperiodic systems
has remained relatively unexplored [32,33]. In stark contrast,
the study of conventional superconductivity in disordered
[34–36] and quasiperiodic [37–40] systems has a long history,
especially in demonstrating the potential critical advantages of
nonperiodicity for engineering robust superconducting states.
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Quasiperiodic patterns display a never-repeating arrange-
ment of elements [41,42], yet they host a long-range order.
Due to the lack of conventional periodicity, standard band
structure arguments no longer hold, and their electronic struc-
ture exhibits a notably rich behavior [43], such as the presence
of confined states [44–46], fractal dimensions [47–49], pseu-
dogap in the density of states [50–53], and unconventional
conduction properties [54–57]. More importantly, the incom-
mensurate structure of quasicrystals has prominent effects on
the electron eigenstates. Incommensurate potentials give rise
to electronic wave functions that are extended, localized, or
critical [58–61], and ultimately can host topological states of
matter fully associated to the quasiperiodicity [62,63].

Here we demonstrate that quasiperiodic patterns arising
from a combination of spin-singlet superconductivity and
antiferromagnetism provide a powerful platform to engi-
neer spin-triplet superconductivity. In particular, we show
that this antiferromagnetic-superconductor pattern hosts a
localization-delocalization phase transition, with an asso-
ciated quasiperiodic critical point with multifractal wave
functions. We further show that upon inclusion of resid-
ual interactions, a spin-triplet superconducting state emerges
that gets dramatically enhanced at the proximity of the
localization-delocalization critical point. Our results show
that magnetic-superconducting quasiperiodic patterns, as
those found in atomic chains in twisted van der Waals
materials, provide a different mechanism to engineer uncon-
ventional superconducting states by exploiting quasiperiodic
criticality.

Our manuscript is organized as follows. Section II in-
troduces a realization of our model, and we show the
emergence of a critical point in quasiperiodic superconductor-
antiferromagnet patterns, separating the extended and
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FIG. 1. (a) Engineered antiferromagnetic atomic chain on top
of a superconducting twisted graphene bilayer. The twisted sys-
tem shows a spatially modulated superconducting state (yellow),
which coexists with the spatially modulated antiferromagnetism
of the chain. (b) The modulation of the superconducting �(n) =
� cos (�n) and antiferromagnetic m(n) = m sin (�n) order param-
eters along the chain direction, associated to the Hamiltonian of
Eq. (1).

localized regime. In Sec. III, we show that interactions give
rise to a spin-triplet superconducting state, and we analyze
its dependence with respect to the details of the quasiperiodic
modulation. In Sec. IV, we demonstrate the robustness of
the interaction-induced spin-triplet superconducting state with
respect to perturbations in the quasiperiodic Hamiltonian. Fi-
nally, in Sec V, we summarize our conclusions.

II. ANTIFERROMAGNET-SUPERCONDUCTOR
QUASIPERIODIC CRITICALITY

The system that we will study combines a spatially modu-
lated antiferromagnetism and superconductivity, as shown in
Figs. 1(a) and 1(b). This type of spatially modulated param-
eters appears in generic twisted two-dimensional materials
that combine superconductivity and magnetism [31]. Here
we will focus on a specific case in which the system is
purely one dimensional. This situation can be realized by tak-
ing a twisted graphene multilayer in a superconducting state
[64–70], whose superfluid density follows the modulation of
the moiré pattern, and depositing an array of adatoms on
top of it [71–78] [Fig. 1(a)]. The adatoms will have a long-
range antiferromagnetic order stemming from the graphene
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [79],
leading to a one-dimensional antiferromagnetic state [80–82].
Both electronic orders will have a modulation following the
moiré pattern, effectively realizing a one-dimensional model
with modulated antiferromagnetism and superconductivity
[83–86].

We describe this system combining a modulated super-
conducting and antiferromagnetic exchange by the following

effective Hamiltonian [87–90]:

H = t
∑
n,s

c†
n,scn+1,s + H.c.

+ m
∑
n,s,s′

σ s,s′
z (−1)n sin(�n)c†

n,scn,s′

+�
∑

n

cos(�n)c†
n,↑c†

n,↓ + H.c., (1)

where c†
i,s (ci,s) denotes the fermionic creation (annihilation)

operator for site n and spin s, and σz is the spin Pauli ma-
trix. The first term denotes the kinetic energy of the system,
the second term denotes the spatially modulated antiferro-
magnetism, and the third term corresponds to the modulated
superconductivity. The parameters � and m are responsible
for the strength of the modulation corresponding to the anti-
ferromagnetism and superconductivity, respectively, and � is
the wavelength of the modulation. The model of Eq. (1) as-
sumes that the proximity-induced superconducting state will
be stronger when the magnetism is weaker [Fig. 1(b)], as often
happens for spin-singlet superconductivity. In the following,
the s-wave superconducting order will be taken as a parameter
of the model as stemming from proximity. When interactions
are included, a different superconducting order can appear on
top of the proximitized one. This additional superconducting
order arising when interactions are included will be called
interaction-induced superconducting order. For convenience,
we will parametrize the superconducting and antiferromag-
netic strength as m = λ sin α and � = λ cos α, so that the net
strength of the quasiperiodic modulation can be defined by the
parameter λ = √

m2 + �2.
For irrational values of �/(2π ), the model of Eq. (1) lacks

translational symmetry and thus does not accept a descrip-
tion in terms of Bloch states. As a result, the eigenstates of
this Hamiltonian are not guaranteed to be extended states,
as the Hamiltonian is inherently nonperiodic. Whereas ran-
dom disorder creates localization at arbitrarily small coupling
constants in one dimension [91], quasiperiodic patterns are
known to give rise to a localization transition at finite cou-
pling constant [59,92]. In particular, it is worth noting that for
� = 0, our model is mathematically equivalent to the Aubry-
Andre-Harper (AAH) model [59]. Therefore, in the limit of
� = 0, the previous model will have a localization transition
at m = 2t , so that for m < 2t , all the states will be extended,
and for m > 2t , all the states will be localized. As we show
below, the generalized model of Eq. (1) with � �= 0 shares
many of the characteristics of the AAH model, in particular a
critical transition at the finite coupling constant.

We now address the localization-delocalization transition
in the previous model. To determine the extended and local-
ized nature of the states, we compute the inverse participation
ratio (IPR) of each eigenstate �n as

Pn =
∑

i

|�n(i)|4, (2)

where i runs over all the components of each eigenstate. For
localized states whose wave function spans a certain number
of sites L, for a system of size N , the value of the IPR is a
finite nonzero number. In stark contrast, for extended states,
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FIG. 2. (a)–(c) IPR for every state as a function of the modulation
strength, with (a) α = π/3, (b) α = π/4, and (c) α = π/6. It is
observed that the the localization transition takes place for λ = 2t in
all instances. (d) IPR averaged over all the states as a function of m
and �, showing a phase boundary following �2 + m2 = 4t2. (e)–(g)
The spatial distribution of the wave function in the (e) extended, (f)
critical, and (g) localized regimes.

the value of the IPR scales as 1/N becomes zero in the ther-
modynamic limit.

Let us now explore the model of Eq. (1) and, in particu-
lar, analyze how the localization of the states evolves as we
increase the strength of the quasiperiodic modulation λ. We
show in Fig. 2(a) the evolution of the IPR for the different
eigenstates, as a function of the modulation strength λ for α =
π/3, which corresponds to taking �/m ≈ 0.57. In particular,
as shown in Figs. 2(a)–2(c), all the states remain extended
until λ = 2t is reached, at which point all become localized.
Note that the single in-gap modes that remain localized all the
time correspond to topological edge states [62,63]. This can
be systematically studied by looking at the average IPR of the
states as a function of � and m. This is shown in Fig. 2(d),
where it can be seen that a boundary with the functional form

�2 + m2 = λ2 = 4t2 separates the localized region from the
extended region. The transition’s independence with respect
to α can be rationalized from a low-energy model. In partic-
ular, for a tight-binding chain with antiferromagnetism and
superconductivity, the low-energy model consists of a four-
component Dirac equation [87–90,93]. The antiferromagnetic
m and superconducting � order parameters enter this low-
energy model as two inequivalent masses m(x) and �(x) in
the Dirac equation. Thus, from the low-energy perspective, the
quasiperiodic model can be understood as a Dirac equation
in which two mass terms m(x) and �(x) are modulated in
space. In particular, performing a local spinor rotation of the
Dirac model, we reach an effective model with a single Dirac
equation with a mass term χ (x) =

√
m(x)2 + �(x)2. This

spinor rotation does not change the localized or delocalized
nature of the eigenstates. By definition of m(x) ∼ λ cos α and
m(x) ∼ λ sin α, χ (x) is independent of α, and therefore the
localization-delocalization nature becomes independent of α.

At the previous phase boundary separating the extended
from localized states, wave functions with critical behavior
emerge. The different nature of the extended, localized, and
critical states can be easily observed by plotting individual
wave functions. In particular, we show in Figs. 2(e)–2(g) the
wave function closest to charge neutrality for an extended
[Fig. 2(e)], critical [Fig. 2(f)], and localized [Fig. 2(g)] regime.
Whereas the extended wave functions span over the whole
system [Fig. 2(e)], localized wave functions are strongly local-
ized in a few lattice sites [Fig. 2(g)]. The critical wave function
of Fig. 2(f) is characterized by multifractal revivals [94–100].
This will become especially important in the next section,
as the multifractal behavior of the states will substantially
increase the impact of interactions in the system.

III. INTERACTION-DRIVEN SPIN-TRIPLET
SUPERCONDUCTIVITY

Let us now move on to consider the impact of interac-
tions in the previous quasiperiodic system. In particular, we
will show that the inclusion of interactions will lead to spin-
triplet superconductivity, where the criticality driven by the
quasiperiodic pattern can be used as a knob to enhance the
superconducting order parameter close to the critical point.
Local interactions of the form Hint ∼ ∑

n c†
n,↑cn,↑c†

n,↓cn,↓ are
already accounted for in the staggered antiferromagnet and
superconducting terms of the Hamiltonian. Therefore, we will
now consider the effect of residual nonlocal interactions, in
particular nearest-neighbor density-density interactions. For
that reason, we will now include an interaction term in our
Hamiltonian of the form

HV = −V
∑

n

(∑
s

c†
n,scn,s

)(∑
s′

c†
n+1,s′cn+1,s′

)
, (3)

where V controls the strength of the nearest-neighbor at-
tractive interaction. In the following, we will solve the
previous Hamiltonian by a mean-field decoupling. Before
moving forward with our results, it is first worthwhile to
note that quantum many-body methods such as bosonization
and density-matrix renormalization group [101] (DMRG) are
used to obtain accurate results in interacting one-dimensional
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systems [102,103]. These methods fully capture quantum
fluctuations, which are missing in mean-field approaches.
Mean-field theory methods are used to approximately study
interacting quasiperiodic models in one dimension, provid-
ing qualitatively correct results that can later be refined with
more advanced quantum many-body methods. In particular,
mean-field methods in one dimension have been benchmarked
with density-matrix renormalization group calculations for
Aubry-Andre-Harper models [104,105], finding a good quali-
tative agreement between the mean-field and DMRG methods
[104,105]. Following those results, it is expected that re-
sults obtained with mean-field theory provide a qualitatively
correct picture. Specifically, a particular difference between
the mean-field and full many-body approaches is that mean-
field solutions would predict long-range order, whereas exact
solutions would rather show quasi-long-range order, with a
power-law decay of correlations in the order parameter [106].

Keeping the previous points in mind, we now move on
to solve the previous interacting term given by Eq. (3)
using a mean-field approximation HMF

V , including all the nor-
mal HMF,h

V and anomalous HMF,s
V ,HMF,t

V contributions. The
previous mean-field decoupling will give rise to hopping
renormalization HMF,h

V , singlet superconductivity renormal-
ization HMF,s

V , and, most importantly, potential spin-triplet
superconducting order HMF,t

V . We will focus on this last term,
whose contribution to the mean-field Hamiltonian is of the
form

HMF,t
V =

∑
n

�ss′
n,n+1cn,scn+1,s′ + H.c., (4)

where, by definition of the fermionic anticommutation rela-
tions, �s,s′

n,n+1 = −�s′,s
n+1,n. It is worthwhile to note that the

interaction term that we consider can lead to both spin-singlet
and spin-triplet components. In our calculations, we have
verified that the spin-singlet component is zero in the cases
under study. This can be intuitively understood from the fact
that the existence of local antiferromagnetism is expected
to quench spin-singlet instabilities [34,107–109]. Therefore,
whereas spin-singlet instabilities may appear from Eq. (3), the
spin-triplet component is the leading instability of the model
under study. In the following, we will focus on the spin-triplet
component of the superconducting order that fulfills �s,s′

n,n+1 =
−�s,s′

n+1,n. As the spin-triplet component of the interaction-
induced superconducting state has several degrees of freedom,
it is convenient to define a spatially dependent d vector, 	dn,n+1,
that parameterizes the spin-triplet superconducting order as

�ss′
n,n+1 =

(
�

↑↑
n,n+1 �

↑↓
n,n+1

�
↓↑
n,n+1 �

↓↓
n,n+1

)
= iσy( 	dn,n+1 · 	σ ), (5)

where 	σ are the spin-Pauli matrices.
As a first step, it is interesting to look at the real-space

distribution of the unconventional superconducting state. In
particular, we show in Fig. 3 the real-space distribution of the
spin-triplet state defined as


(n) =
∑

j

| 	dn,n+ j |2 = | 	dn,n−1|2 + | 	dn,n+1|2. (6)

FIG. 3. (a) Self-consistent interaction-induced spin-triplet super-
conducting order as a function of the position, and (b) spatial profiles
of the spin-singlet superconductivity �(n) = � cos (�n) and antifer-
romagnetism m(n) = m sin (�n). It is observed that the spin-triplet
component is maximal in the regions where the spin-singlet super-
conductivity and antiferromagnetism coexist.

We note that in the case of first-neighbor interactions,
the previous sum includes only j = −1 and j = +1, yet
in the presence of longer-range interactions, other terms could
be included. We observe that the spin-triplet density follows
the quasiperiodic pattern, and that it becomes zero in regions
only having antiferromagnetism or s-wave superconductivity
[Figs. 3(a) and 3(b)]. In particular, the value of the spin-
triplet superconducting order becomes maximal every time
the s-wave superconductivity and antiferromagnetism coexist
maximally in absolute value, irrespective of their signs. Inter-
estingly, we find that such spin-triplet component is maximal
right in the region where the s-wave superconductivity and
antiferromagnetism coexist in the same footing [Figs. 3(a)
and 3(b)], highlighting the key interplay of magnetism and
superconductivity for driving as a spin-triplet superconduct-
ing state. Moreover, it is interesting to examine the specific
type of spin-triplet state that the interactions promote. In
particular, we find that the 	dn,n+1 is always locked to the
same direction of the antiferromagnetism, which in terms
of the superconducting order parameters is associated to an
interaction-induced spin-triplet �

↑↓
n,n+1 order parameter for

antiferromagnetism in the z axis.
We now move on to examine the impact of the quasiperi-

odic criticality on the induced spin-triplet state. As anticipated
above, the critical behavior of the wave functions is known
to provide an effective mechanism for enhancing electronic
instabilities [110–115]. To verify this, we now compute the
self-consistent spin-triplet order parameter of Eq. (6) averaged
over all the sites, 〈
〉 = 1

N

∑
n 
(n), as a function of the
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FIG. 4. Self-consistent interaction-induced spin-triplet super-
conductivity (a) as a function of the superconductor-antiferromagnet
(SC-AF) modulation strength for V = 0.2t , α = π/4, (b) as a func-
tion of the interaction strength V for α = π/4, �/(2π ) = 1/

√
2,

(c) as a function of the SC-AF angle α for �/(2π ) = 1/
√

2, V =
0.2t , and (d) as a function of the quasiperiodic modulation frequency
� for V = 0.2t , α = π/4. An enhancement of the interaction-
induced spin-triplet superconducting state is observed, stemming
from the interplay of antiferromagnetism and superconductivity.

modulation strength λ, as shown in Fig. 4(a). It is ob-
served that as the modulation strength increases, the induced
spin-triplet parameter grows, becoming maximal around the
critical point and decreasing as the system goes deeper into the
localized regime. The enhancement associated to the critical
point can also be verified by computing the induced spin-
triplet order parameter as a function of the interaction strength
V , as shown in Fig. 4(b). It is seen that for all coupling
constants, the spin-triplet state is stronger close to the critical
point λ = 2t than deep into the extended (λ = t) or localized
(λ = 5t) regime. The fact that the maximum does not exactly
appear at the critical point, but towards the localized region,
can be rationalized as follows. In the localized limit, a siz-
able superconducting stability of isolated electronic states can
happen at small coupling. In this localized regime, the ab-
sence of kinetic energy for the localized modes yields a large
expectation value of the superconducting order that explains
the existence of a sizable spin-triplet superconductor (SC)
in the localized regime, and a maximum that is not exactly at
the critical point. However, in this localized regime, the differ-
ent states that become ordered are spatially separated, which
would prevent the existence of phase coherence between them
[106,116]. While those fluctuations of the phase coherence are
not captured at the mean-field level, a calculation that includes
quantum fluctuations would show that the phase coherence
in this localized regime is very small [106,116]. In contrast,
for λ < 2t , the extended nature of the states would give a

superconducting state with a large phase coherence and su-
perconducting stiffness.

We now move on to examine the impact of the two
quasiperiodic modulations as parameterized by α. As we
showed above, the extended-localized transition takes place
for λ = 2t , and independently of the value of α. This means
that a critical point appears independently of the relative
strengths between � and m, and it only depends on λ =√

�2 + m2. In stark contrast, the emergence of a spin-triplet
component due to interactions turns out to be highly depen-
dent on α, as shown in Fig. 4(c). In particular, we observe
that when the system is purely antiferromagnetic or purely su-
perconducting (α = 0, π/2), the spin-triplet component that
is generated is exactly zero. In comparison, the spin-triplet
state is maximal for α = π/4, which corresponds to having
an equal weight on the singlet superconducting and antiferro-
magnetic order parameters. This observation emphasizes the
importance of the coexistence of antiferromagnetism and su-
perconductivity for the emergence of the interaction-induced
spin-triplet state.

Finally, we consider the impact of the spatial modulation
frequency � in the interaction-induced spin-triplet state. As
shown in Fig. 4(d), we observe that the enhancement at the
critical point happens for generic values of the modulation
frequency. In the limit of small �, the system is essentially
formed by patches of superconductor and antiferromagnet
[87–90], having a typical length of the order of ł ∼ 1/�,
and thus the interaction between the superconducting and
antiferromagnetic state happens in a limited part of the sys-
tem. In comparison, for � ≈ π/2, there is a quick oscillation
between the two orders, promoting a dense coexistence of
antiferromagnetism and spin-singlet superconductivity in the
system. We observe that the interaction-induced spin-triplet
component is especially strong in this regime [Fig. 4(d)],
reflecting the key interplay between spin-singlet superconduc-
tivity and antiferromagnetism for driving the unconventional
superconducting state.

IV. ROBUSTNESS TO PERTURBATIONS

In this section, we address the robustness of our phe-
nomenology with respect to perturbations. In particular, we
will focus on the impact of next-to-nearest-neighbor hopping
and Anderson disorder. The next-to-nearest-neighbor hopping
breaks the bipartite nature of the lattice, whereas the An-
derson disorder would drive the system to a localized state
for all λ. In particular, we obtain that the critically enhanced
spin-triplet superconducting state also happens with those ad-
ditional perturbations, as elaborated below. Second-neighbor
perturbations are expected to appear in a realization of the
previous model and break the original bipartite nature of the
system. The previous term is included in our Hamiltonian by
means of a perturbation of the form

HNNN = t ′ ∑
n,s

c†
n,scn+2,s + H.c. (7)

The results with this additional perturbation are shown in
Fig. 5(a), where we took t ′ = 0.2t . It is observed that the
enhancement of the interaction-induced spin-triplet state hap-
pens in the presence of this additional perturbation. It is

013262-5



MARYAM KHOSRAVIAN AND J. L. LADO PHYSICAL REVIEW RESEARCH 3, 013262 (2021)

FIG. 5. Spin-triplet superconducting state in the presence of
(a) second-neighbor hopping for α = π/4, V = 0.2t and (b) random
disorder for α = π/4, V = 0.2t . It is observed that the enhancement
close to the critical point survives perturbations to the quasiperiodic
Hamiltonian of Eq. (1).

worthwhile to note that in the presence of second-neighbor
hoppings, the localization-delocalization transition becomes
state dependent and will no longer happen at λ = 2t . Nev-
ertheless, it is observed that the qualitative behavior remains
analogous to the idealized case with t ′ = 0. This is especially
important for potential realizations of our model in twisted
two-dimensional materials and cold-atom setups, as generi-
cally these systems present small additional contributions to
the Hamiltonian such as a second-neighbor hopping.

Next, we consider the impact of random disorder in the
system, included as an on-site Anderson perturbation,

Hdis =
∑
n,s

εnc†
n,scn,s, (8)

where εn is a random number between [−0.1, 0.1]t . First,
it is interesting to note that the inclusion of an arbitrarily
small amount of disorder would drive the extended states to
a localized regime. As a result, in the presence of disorder,
the localization-delocalization transition as a function of λ is
completely destroyed, as the state becomes localized for all
λ. The disorder strength λ will define a minimal localiza-
tion length for the system. As λ is ramped up, the system
will go from a localized regime dominated by the disorder

to a regime in which the localization is dominated by the
quasiperiodic potential. Although the critical point is washed
out, the enhancement of the superconducting state will still
be visible at this quasiperiodic-disorder localization crossover.
This is shown in Fig. 5(b), where it is seen that the spin-triplet
enhancement close to the former critical point is still visible.
This phenomenology shows that even in experimental setups
that host small imperfections, the enhancement of an uncon-
ventional spin-triplet superconducting state can be observed.

Finally, we comment on the prospects of extending the
previous phenomenology to two-dimensional systems. In
our manuscript, we focused on showing the existence of a
localization-delocalization transition for a quasiperiodic one-
dimensional model. Right at the transition, the existence of
a critical point leads to an enhancement of an interaction-
induced instability that, due to the nature of our system,
was a spin-triplet superconducting instability. Interestingly,
a quasiperiodic system in higher dimensions also shows
localization-delocalization transitions, and associated criti-
cal points to them [117]. Enhanced symmetry-broken orders
induced by interactions have been found in those quasiperi-
odic two-dimensional models [38,118–122], both in the cases
of spin-singlet superconductivity [38,118–120] and magnetic
order [122]. The previous phenomenology in two dimen-
sions was also demonstrated for one-dimensional models,
highlighting that symmetry breaking enhanced by quasiperi-
odicity happens both in one-dimensional and two-dimensional
quasiperiodic models. Ultimately, the previous results suggest
that the extension of our model to two dimensions could lead
to two-dimensional spin-triplet superconductivity.

V. CONCLUSION

To summarize, we have demonstrated that
antiferromagnet-superconductor moiré patterns show a
critical point associated with a localization-delocalization
transition. We showed that the quasiperiodic criticality
happens for arbitrary ratios between the superconducting
and antiferromagnetic order parameters, and that the
critical point is universally located in a curve defined
by the two order parameters. Upon inclusion of residual
electronic interactions, we demonstrated the emergence
of an unconventional spin-triplet state, whose d vector
is locked along the antiferromagnetic spin direction.
We showed that the emergence of this unconventional
superconducting state is finely related to the interplay
between antiferromagnetism and superconductivity, having
a spatially inhomogeneous superconducting order that
is maximal when the two parent orders coexist. Finally,
we showed that this phenomenology happens for generic
quasiperiodic modulation frequencies and survives the
presence of perturbations to the Hamiltonian. Ultimately, the
phenomenology that is presented can be realized in twisted
graphene superlattices with atomically engineered impurities,
and generically on moiré patterns between two-dimensional
antiferromagnets and superconductors. Our results put
forward antiferromagnetic-superconducting quasiperiodicity
as a powerful knob to engineer robust superconducting
states, providing a route towards the design of artificial
unconventional superconductors.
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Popāević, A. Smontara, H. J. Kim, J. G. Kim, and J. Dolinšek,
Electronic density of states and metastability of icosahedral
Au–Al–Yb quasicrystal, J. Alloys Compd. 586, 343 (2014).

[54] F. S. Pierce, S. J. Poon, and Q. Guo, Electron localization in
metallic quasicrystals, Science 261, 737 (1993).

[55] G. Trambly de Laissardière and T. Fujiwara, Electronic struc-
ture and transport in a model approximant of the decagonal
quasicrystal Al-Cu-Co, Phys. Rev. B 50, 9843 (1994).

[56] T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G.
Sharapov, Three-dimensional Dirac fermions in quasicrystals
as seen via optical conductivity, Phys. Rev. B 87, 235121
(2013).

[57] G. T. de Laissardière and D. Mayou, Anomalous electronic
transport in quasicrystals and related complex metallic alloys,
C. R. Phys. 15, 70 (2014).

[58] A. P. Siebesma and L. Pietronero, Multifractal properties of
wave functions for one-dimensional systems with an incom-
mensurate potential, Europhys. Lett. 4, 597 (1987).

[59] S. Aubry and G. André, Analyticity breaking and Anderson
localization in incommensurate lattices, Ann. Israel Phys. Soc
3, 18 (1980).

[60] T. Devakul and D. A. Huse, Anderson localization transitions
with and without random potentials, Phys. Rev. B 96, 214201
(2017).

[61] Y. Su and S.-Z. Lin, Nontrivial topology and localization in
the double exchange model with possible applications to per-
ovskite manganites, Phys. Rev. B 98, 235116 (2018).

[62] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O.
Zilberberg, Topological States And Adiabatic Pumping In
Quasicrystals, Phys. Rev. Lett. 109, 106402 (2012).

[63] Y. E. Kraus and O. Zilberberg, Topological Equivalence Be-
tween The Fibonacci Quasicrystal And The Harper Model,
Phys. Rev. Lett. 109, 116404 (2012).

[64] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Unconventional superconduc-
tivity in magic-angle graphene superlattices, Nature (London)
556, 43 (2018).

[65] M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe,
T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Tuning
superconductivity in twisted bilayer graphene, Science 363,
1059 (2019).

[66] X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das,
C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, A. Bachtold,

013262-8

https://doi.org/10.1038/nphys3947
https://doi.org/10.1038/nature26142
https://doi.org/10.1038/s41586-020-2989-y
https://doi.org/10.1103/PhysRevB.88.054204
https://doi.org/10.1103/PhysRevLett.110.146404
https://doi.org/10.1016/0022-3697(59)90036-8
https://doi.org/10.1103/PhysRevB.82.014509
https://doi.org/10.1103/PhysRevB.93.045111
https://doi.org/10.1103/PhysRevB.34.4390
https://doi.org/10.1103/PhysRevB.95.024509
https://doi.org/10.1103/PhysRevB.35.2494
https://doi.org/10.1103/PhysRevB.38.7436
https://doi.org/10.1103/PhysRevLett.53.1951
https://doi.org/10.1103/PhysRevLett.53.2477
https://doi.org/10.1080/14786430701196990
https://doi.org/10.1103/PhysRevLett.56.2740
https://doi.org/10.1103/PhysRevB.38.1621
https://doi.org/10.1103/PhysRevB.51.15827
https://doi.org/10.1103/PhysRevB.34.3904
https://doi.org/10.1143/JPSJ.55.1420
https://doi.org/10.1103/PhysRevB.38.5981
https://doi.org/10.1103/PhysRevB.40.942
https://doi.org/10.1103/PhysRevLett.66.333
https://doi.org/10.1103/PhysRevB.95.104201
https://doi.org/10.1016/j.jallcom.2013.10.073
https://doi.org/10.1126/science.261.5122.737
https://doi.org/10.1103/PhysRevB.50.9843
https://doi.org/10.1103/PhysRevB.87.235121
https://doi.org/10.1016/j.crhy.2013.09.010
https://doi.org/10.1209/0295-5075/4/5/014
https://doi.org/10.1103/PhysRevB.96.214201
https://doi.org/10.1103/PhysRevB.98.235116
https://doi.org/10.1103/PhysRevLett.109.106402
https://doi.org/10.1103/PhysRevLett.109.116404
https://doi.org/10.1038/nature26160
https://doi.org/10.1126/science.aav1910


QUASIPERIODIC CRITICALITY AND SPIN-TRIPLET … PHYSICAL REVIEW RESEARCH 3, 013262 (2021)

A. H. MacDonald, and D. K. Efetov, Superconductors, orbital
magnets and correlated states in magic-angle bilayer graphene,
Nature (London) 574, 653 (2019).
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