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Dissipation engineered directional filter for quantum ratchets
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We demonstrate transport rectification in a Hermitian Hamiltonian quantum ratchet by a dissipative, dynamic
impurity. While the bulk of the ratchet supports transport in both directions, the properly designed loss function of
the local impurity acts as a direction-dependent filter for the moving states. We analyze this scheme theoretically
by making use of Floquet S-matrix theory. In addition, we provide direct experimental observation of one-way
transmittance in periodically modulated plasmonic waveguide arrays containing a local impurity with engineered

losses.
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I. INTRODUCTION

Systems governed by time-periodic Hamiltonians can
feature a variety of transport phenomena inaccessible in equi-
librium. A fascinating example is the ratchet effect, i.e., the
ability to convert periodic drive into directed motion without
a bias force. The working principle of a ratchet relies on the
breaking of space- and time-reversal symmetry which would
otherwise not allow a directed current [1]. Introduced by
Smoluchowski [2] and Feynman [3], ratchets represent a wide
class of microscopic motors, which operate in classical as well
as in quantum systems. In particular, the ratchet effect was
observed in microbiological [4] and molecular motion [5],
semiconductor [6] and superconductor [7] heterostructures,
irradiated graphene [8], electron pumps [9], photonic setups
[10,11], and Bose-Einstein condensates [12,13].

In most classical ratchets, which are based on thermal mo-
tion and dissipation, and in most dissipative quantum ratchets,
initial conditions play no role [4,5,14-16]. In contrast, in
Hamiltonian quantum ratchets directed transport arises from a
quantum coherence effect, namely the Chern number or Berry
phase accumulated when a quantum state is moved by the
driving potential along a closed loop in Hamiltonian param-
eter space. When the driving is adiabatic, the transport current
is quantized, known as Thouless pumping [17]. The realiza-
tion of this concept faces, however, two fundamental difficul-
ties. For fast, nonadiabatic driving, the transport quantization
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generically breaks down, and the transport efficiency depends
sensitively on the relative phase of the driving parameters
and on the initial state of the driven system [12,13,18-20].
More concretely, being periodic in time, quantum ratchets
can be described in terms of Floquet states [18]. The overlap
of these states with the initial conditions determines their
population and hence their contribution to the current in the
stationary state. Since the system’s Hamiltonian can support
currents in both directions, only a proper choice of the initial
conditions will generate maximal, unidirectional transport. In
contrast, it is desirable to achieve optimal transport efficiency
without initial-state preparation.

In the present study, we propose and experimentally realize
a scheme for quantized, directional transport in fast Hamilto-
nian ratchets using a local impurity with engineered dynamic
dissipation as a direction-dependent filter. In the driven Rice-
Mele model where space- and time-inversion symmetries are
broken by the driven Hamiltonian, any initial condition can
carry a current. However, the topological transport quanti-
zation is not robust to nonadiabatic effects [21,22] unless
intensity or particle losses are introduced globally [20,23].
Since adiabatic conditions cannot be reached in most exper-
imental situations and it is often desirable to minimize losses,
we here consider the periodically driven Su-Schrieffer-Heeger
(SSH) model. In general, it breaks time-inversion symme-
try due to a phase shift between the time-periodic coupling
constants, but always preserves space inversion on the Hamil-
tonian level [11,24-26]. As we will show below, this system
supports quantized transport for certain nonadiabatic driving
frequencies once the space inversion symmetry is broken by
initial conditions. This model and its transport properties are
discussed in Sec. II. In Sec. III, we introduce time-dependent
losses localized at a finite number of lattice sites (see Fig. 1).
Motivated by the conditions of our experimental system, we
implement these losses by the imaginary part of the potential.
By means of the Floquet formalism, we show how a properly
designed, time-periodic local loss function can facilitate non-
reciprocal transport through this impurity. In previous studies,
local periodic driving of the real part of a potential has been
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FIG. 1. Sketch of the dimerized tight-binding Floquet chain with
local time-periodically modulated decay rates y,,g(t) and hopping
amplitudes J;(¢) and J,(¢). We partition the chain in sublattices A/B
and label the unit cell by j. The reflection r; , and transmission #
of the Floquet state with quasimomentum & and band index « are
schematically indicated by arrows.

used to control transmission through the modulated region
[27-29]. In this work, the non-Hermiticity of the impurity is a
key feature, as it breaks the relevant space and time-inversion
symmetries in the scattering process [20,30,31]. It enables,
in combination with the ratchet effect of the driven SSH
lattice, the nonreciprocal transport. In Sec. IV, we develop
a numerical method based on the Floquet S-matrix theory
[32,33] in order to analyze the direction-dependent transmis-
sion coefficients in dependence on the system parameters.
We find the optimal driving scheme to achieve the largest
asymmetry in the transmission for a given decay rate. Fur-
thermore, in Sec. V we provide the experimental observation
of transport rectification in arrays of coupled dielectric-loaded
surface plasmon-polariton waveguides (DLSPPW) with con-
trolled losses. A brief summary and concluding remarks are
given in Sec. VL.

II. RATCHET MODEL

The SSH model [24] consists of a dimerized tight-binding
chain with a two-site unit cell and constant, homogeneous
onsite potentials (sublattice A has odd sites and sublattice B
has even sites; see Fig. 1). Its Hamiltonian is given by

Hpux (1) = Z]l ()t acip + Rt ge A +He (D)
J

Here, c; asp (€j.a/B) are creation (annihilation) operators for
site A (B) in unit cell j. The time-periodic intra- and intercell
coupling constants Jy,2(t) are modulated such that Ji(r) >
J2(t) holds for the first half of the period while the situation
is inverted in the second half. In this case, the movement of
a right-moving excitation from A to B sites in the first half of
the period and then from B to A sites can be supported at the
special group velocity of one unit cell per driving period and
we find that the transport may become largely independent
of the magnitude of the quasimomentum. In the experiments
below, we sinusoidally vary the spacing between the neigh-
boring sites, which leads to the following functional form of
the coupling constants:

Jl (l) — Joe—k(l—sin(wt))’ (28.)
L) =N —-T/2). (2b)

Here, = 27 /T 1is the driving frequency and 7 is the pe-
riod of modulation. To be consistent with the experiment, we
choose in the following A = 2.11. For simplicity, we measure
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FIG. 2. (a) Band structure in the first FBBZ at three different
driving frequencies: 1, w = 0.597Jp; 2, = 1.195Jy; and 3, w = 2J.
The color code shows the corresponding group velocity vf, i (b) Av-
erage absolute value of the group velocity as a function of w. Gray
lines mark values from Eqgs. (3) and (4) and numbers highlight the
frequencies from panel (a). (c) Quasienergy spectra in dependence
on the driving frequency. (d) Squared absolute value of the state
amplitude at w = 1.195J; with positive (@ = 1) and negative (¢ = 2)
group velocities along one period at sublattices A and B. Red lines
show the time-dependent losses y4,5(¢) on sublattices A and B for
¢ = 0 which consist of temporal intervals L of the constant decay
rate . Note that in our model y,,5(¢) are applied only to the central
unit cell as illustrated in Fig. 1.

all the quantities in units of Jy and set the unit cell as well as
the reduced Planck constant to one: ay = 1 and 7z = 1. The
calculation of the bulk quasienergy spectrum is carried out
using the Floquet-Bloch theory [34] (see Appendix A) and
exemplified in Fig. 2(a) in the first Floquet-Bloch Brillouin
zone (FBBZ) for three different w values. The figure shows
that the driving frequency has a huge impact on the band
shape: At @ = 1.195Jy (num. 2) the bands are almost linear
with the slope 1/T; in contrast, at @ = 0.597 (num. 1) they
become almost flat. Note that the almost linear, gapless bands
are helical in the Floquet-Bloch Brilloin zone and can be
related to a nontrivial topology [26]. The chiral symmetry of
the Hamiltonian (1) guarantees that the spectrum is always
symmetric with respect to the Floquet quasienergy € — —e.
We can therefore choose to label the quasienergies and the
corresponding Floquet-Bloch states according to the sign of
the group velocity such that @ = 1 stands for v& > 0 while
a = 2 for v& < 0. As shown in Fig. 2(b), the group velocity
averaged over all (o = 1) states, % 1 dkvy ., depends oscil-
latory on w. The quasienergy spectrum in Fig. 2(c) reveals that
such a behavior is directly connected to the oscillating size
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of the band gap. The ratchet transport is most efficient when
the average group velocity reaches its maximum of one unit
cell per driving period. These points correspond to gapless
helical bands, which in turn possess minimal dispersion. Such
a dynamics can be qualitatively understood with a simplified
dimer model, which is discussed in Appendix B. There we
find that the helical bands and maximum group velocity occur
if the states undergo half-cycles of Rabi oscillations between
the two sublattices. This physics can be linked to the condition
for the velocity maxima and gap closings in terms of the
time-integrated hopping

4, desQnjwE)
N 14 2n

Both hopping constants (2) have the same time average, for
which an explicit expression is found by fol d&§J2n jw§) =
Joe > To(ir), I = 1,2, where J,(x) is the Bessel function of
the first kind. Likewise, minima of the group velocity and the
bandwidth are predicted to occur near

Ay el jog)
n 2+42n

where the transport is partially blocked. In Figs. 2(b) and
2(c), it is shown that this correctly predicts extrema of the
average group velocity and the closing of the bulk gap in our
system. We note that for frequencies larger than wy, the energy
splitting between the Floquet-Bloch bands becomes larger
than the bandwidth. Thus, the coupling between the bands
can be neglected and our model behaves like a static tight-
binding lattice with one effective hopping constant Jeg =
]01 d¢J;2m/w&), i = 1, 2. Here transport is ballistic and no
ratchet effect occurs.

In the context of our experimental setup, the achievable
frequency range is roughly w € [0.7Jy; 2Jy]. Further, we will
focus only on the first maximum wy = 1.195J as it lies in this
range. The dynamics of the periodic Floquet-Bloch states in
this regime is governed by oscillations between the two sublat-
tices [see Fig. 2(d)]: The density of a right-moving state (« =
1) tunnels from sublattice A at t = Tm to sublattice B at r =
T /2 + Tm, while it is fully transferred back att = T (m + 1),
where m is an integer. Time-reversal symmetry is present
in our model due to the special phase relation between the
time-periodic coupling constants (2). This symmetry implies
that the aforementioned process is exactly inverted for the left-
moving state with the same quasienergy. The ratchet effect
occurs when the asymmetric initial conditions are applied at
t = 0; i.e., the system is initiated at one sublattice A or B.
Via Fourier analysis, this results in predominant population
of only the left- or right-moving states, respectively. Thus,
such an SSH-based ratchet strongly depends on the initial
conditions, in contrast to Thouless pumping, where transport
is induced by the phase relation between the on-site energies
and the coupling constants.

, neNy,i=1,2. 3)

n

., neNy,i=12 (4

III. DIRECTION-DEPENDENT FILTER

Now, we additionally subject two central lattice sites, A
and B, from unit cell j = 0, to time-periodic losses oscillating
at the same frequency w as the bulk (see Fig. 1). Losses in

the waveguide experiments below are well described by the
complex on-site potentials [35,36], so we introduce them as a
simple but nontrivial model for the dissipative part. The corre-
sponding Hamiltonian is the sum of the bulk Hamiltonian and
the local impurity V (¢):

H(t) = Hpux(t) + V (1), (5a)
V(1) = —iya(t)eg sCo.n — ivB(1)CE 5Co - (5b)

The decay rates on sublattices A and B are denoted by
va,B(t) and have a form of T'-periodic step functions; i.e., the
onsite losses can be turned on and off in a periodic manner as
realized in our experiments below. The mathematical descrip-
tion is given by

ya(t) = yo X O(— cos(wt + ¢) —cos(wL/T)), (6a)
ye(t) = yalt = T/2), (6b)

where ®(x) is the Heaviside function, yy is the loss am-
plitude, L is the duration of the losses within one period
T (L<T), and ¢ is the phase shift. Note that for ¢ =0
the losses are out of phase with the coupling constants; i.e.,
they are centered at t = (m + 1/2) T on sublattice A and at
t = mT on sublattice B.

In the following, we aim at analyzing the scattering process
of a quantum particle propagating along the driven SSH chain
and scattered by this impurity (see gray arrows in Fig. 1).
Assume that the system is driven with the resonant frequency
wy, so that the bands are helical and the band-averaged group
velocity is maximal. In order to understand the origin of
nonreciprocal transmission induced by V(¢), it is central to
look at the periodic exchange of the state density between
the two sublattices. In the previous section, it was shown that
the counterpropagating Floquet-Bloch states have different
spatiotemporal distributions which enabled populating only
states moving in the chosen direction by proper choice of
the initial conditions. The same feature can be employed for
direction-dependent filtering. In particular, when we introduce
strong losses at space-time moments, where the maxima of
|Pr.a—2.m(2)]? reside, the time-reversal symmetry and the os-
cillatory motion of the states guarantees that |¢k,a=1,m(l)|2
is minimal at these moments [see red lines in Fig. 2(d)].
Thus, we can effectively absorb only the states moving in
the —x direction (o« = 2 states). The transmission through the
impurity can be controlled by tuning such system parameters
as yp, L, and ¢. It is to be expected that with increasing loss
strength 3 and duration of the losses L transmission in —x
direction decreases. But how strongly will the states moving
in the opposite direction be affected? What is the influence
of the phase shift ¢? Does one-way transmission persist at
frequencies away from resonance? To answer these questions
and to predict optimal parameters for the experiment, we
apply Floquet S-matrix theory.

IV. FLOQUET S-MATRIX ANALYSIS

We calculate transmission and reflection coefficients for
scattering by the impurity with the use of Floquet S-matrix
theory (see Appendix C). As a natural initial condition for
the ratchet, we assume a uniform superposition of either all
the right- or left-moving states and consider band-averaged
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FIG. 3. Transmission of (a) right and (b) left movers over the
impurity parameters y, and L at wy = 1.195J. (¢) Decadic loga-
rithm of T, /T,—, for wy = 1.195Jy; white line marks the function
maxy (Ty—/Ty=2)(yp). (d) Transmission (blue) and reflection (red)
of right (solid) of left (dashed) moving states over the shift angle ¢
for yp = 1.5Jp and L = 0.25 T. (e) Transmission and (f) reflection of
right movers for L = 0.25T and y, = 1.5Jy over driving frequency
w and quasimomentum k.

quantities [Appendix C, Eq. (C4)]. Figures 3(a) and 3(b)
display the transmission over the loss duration L and strength
¥ at ¢ = 0 for the « = 1 and o = 2 states, respectively. We
clearly see that for a wide range of system parameters our
proposed scheme works as an excellent direction-dependent
filter. This is prominently visible for L < 0.57 where
the right-moving states are transmitted with T,_; = O(1),
while the transmission of the left movers drops sharply
with increasing ), and L. Similar results are found in
the disconnected dimer model in Appendix B, Eq. (B6).
The ratio T,—;/T,—> [Fig. 3(c)] quantifies this effect and
can exceed 10° in the examined parameter range. Our
illustrative picture of generating directional losses can
be formalized by looking at the matrix elements of the
impurity operator in the basis of the Floquet-Bloch states
Vigpm.teamy = LT [ dt (@gp.n(OIV ()| ram(®)),  where
the states [Pk q.m(t)) are calculated by (A4). The parts
diagonal in the band index «, 8 = 1,2 determine the size
of the transmission, while the off-diagonal ones couple the
channels and induce reflection. Evaluating these integrals
in our situation shows that the matrix elements for the right
movers Vg 1,1, ,1,m and the interband coupling V(g 1 n), & 2,m)
are much smaller than for the left movers Vi 2 ) k,2,m)-

This leads to the large suppression of the transmission of
the left-moving states while the right movers are almost
unaffected. Using this picture explains the naively unexpected
effect that the ratio T,—;/7T,—> has for all 3 a maximum at
finite L: For small L, the dissipation of both directions is
small, leading to T,—/Ty— = O(1). At large L, however,
especially if L > 0.57, also the right movers are strongly
damped, which implies a decrease of T,_;/T,—,. Here the
time interval with losses is so long that they do not fit with
the sublattice oscillation of the right movers, leading to larger
matrix elements and stronger damping.

We are interested in what happens if the parameters are
tuned away from our proposed driving scheme and begin with
changing the parameter ¢. The resulting transmission and
reflection coefficients are shown in Fig. 3(d). At the points
¢ = 0, 7 unidirectional transport is most favorable, as the
dissipation peaks such that it only damps either left or right
movers strongly. For intermediate values of ¢, the losses are
present during the intermediate part of the motion of the
states [see Fig. 2(d)], where both sublattices host population
of substantial weight. This results in a lower ratio T,—1/T,—>
compared to ¢ = 0, w and confirms that we indeed took the
optimal values for our proposed driving scheme. The reflec-
tion coefficients have a maximum at ¢ = /2, 37 /2. Here,
the dissipation is centered at the time, when both sublattices
are populated equally, creating the largest matrix elements
Vig.a.n),(k,Ba,m) and strongest coupling between the channels.
Remarkably, the reflection coefficients are not mirror sym-
metric about ¢ = . We sketch this interesting feature for
the case ¢ = m /2. Here the dissipation is timed such that
a wave packet consisting of right-moving states is damped
before it performs the sublattice oscillation inside the dis-
sipative region, leading to small reflection. In the case of a
left-moving packet, the dissipation is timed such that it delays
the sublattice oscillation when the packet is about to enter the
lossy region. As a result, a major portion stays outside and
thus gets reflected. For yp — oo and L = 0.57, this effect
increases up to Ry—» ~ 1 and Ry_; =

In Figs. 3(e) and 3(f), the transmission and reflection co-
efficients of the right movers are plotted in dependence of
quasimomentum k and frequency w. As the coefficients are
symmetric in k, we restrict ourselves to half the Brillouin
zone, i.e., k > 0. The transmission is O(1) and homoge-
neous for all quasimomenta at the point of helical bands
o = wp = 1.1948 Jy. Moving away from the ideal case, trans-
mission around k = 0 decreases due to hybridization of the
quasienergy bands [see Fig. 1(b)], which mixes right- and
left-moving states. These hybridized states do not perform a
full oscillation between the sublattices, so both right and left
movers are affected by the dissipation. This leads to a reduced
transmission coefficient in comparison to the ideal case of
helical bands. The reflection coefficient shown in Fig. 3(f) is
small and homogeneous for w = wy, while it increases around
k = 0 due to the fact that the hybridized states lead to a finite
interband coupling V{4 «,»).,+«,m)- In the motion of a wave
packet, the states near k = 0 are slow compared to others as
the group velocity tends to zero at k = 0. As these parts of
the packet reach the impurity at a late time in an experimental
setting, our scheme filters out the slow parts in the transmitted
packet.
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FIG. 4. (a) Sketch of a plasmonic waveguide array featuring uni-
directional transmittance. Green and red arrows indicate the low- and
high-loss directions, respectively. (b) SEM scan of a typical sample.
Inputs A and B are marked by red boxes and blue dotted lines to
highlight the region with periodic dissipation. The chromium stripe
used to implement losses is magnified in the top right corner.

V. EXPERIMENTS

We realize unidirectional transmittance in arrays of cou-
pled dielectric-loaded surface plasmon polariton waveguides
(DLSPPWs). Here, we rely on the mathematical analogy be-
tween the tight-binding Schrodinger equation and the paraxial
Helmbholtz equation, which describes propagation of light in
coupled waveguides [37-39]. According to this analogy, time
is directly mapped into propagation distance which enables
us to mimic a Floquet system by periodic modulation of the
corresponding parameters along the waveguide axis [40,41].
Precise control of the system’s parameters including losses
as well as powerful detection techniques make DLSPPWs an
ideal system to investigate transmission through a region with
local dynamic dissipation.

A sketch and a scanning electron micrograph (SEM) of
a typical sample are shown in Figs. 4(a) and 4(b), respec-
tively. See Appendix D for sample fabrication and geometrical
parameters of DLSPPWs. The array displayed in Fig. 4(a)
is analogous to a one-dimensional Floquet chain with two
sites (waveguides) per unit cell, A and B. The sinusoidal
modulation of the center-to-center distances d; »(z) results in
periodic modulation of the corresponding coupling constants.
This modulation can be expressed by Eq. (2) since the mode
overlap decays as oc e~ with the distance d between the
waveguides. The parameters from Eq. (2) were determined
in an auxiliary experiment with just two waveguides by mea-
suring the coupling length Leouple = %” in dependence on
the distance between two waveguides d. Fitting the func-
tion InC(d) by a line, we obtain A = 2.11 £ 0.21 and Jy =
0.16 £0.05 um’l. Due to strong confinement of SPPs, we
can neglect the variation of a propagation constant caused by
waveguide bending and consider the real part of the on-site
potential to be zero [41]. We introduce local periodic dissipa-

tion by deposition of chromium stripes below the waveguides.
Cr can cause strong losses with negligible effect on the real
part of the effective refractive index [36]. Using simulations
based on finite-element analysis (COMSOL MULTIPHYSICS), we
estimate the minimum loss strength induced by the Cr layer to
be yo = 0.25 um~'. The width of the Cr stripe is designed to
be much larger than the width of a waveguide [see Fig. 4(b)].
We can therefore assume the losses to be approximately con-
stant along the whole length of the stripe L as given by
Eq. (6). We note that in addition to the engineered losses, the
propagation of SPPs is accompanied by the constant decay
rate B = (7.3 £0.02) x 1073 um~! « y; caused by ohmic
losses in the metal, imperfections of the fabricated film, and
leakage radiation into the substrate. These losses are assumed
to be homogeneous and independent of z. The propagation
of SPPs in the array is monitored by real- and Fourier space
leakage radiation microscopy (see Appendix E).

First, we consider the case without engineered losses and
determine the driving frequency w = 27 /T at which we can
achieve directed transverse motion of SSPs with the highest
group velocity v,. Theory predicts for this case the absence of
hybridization of the counterpropagating states and therefore
the most pronounced one-way transmission effect. To find
the group velocity maximum, we fabricate arrays of modu-
lated DLSPPWs (no Cr is deposited) with various frequencies
of modulation. For every array, we measure the real-space
intensity distribution /(x, z) (analogous to |W(x,?)|?) after
the single-site excitation at the sublattice A. Note that the
corresponding data for the input B is just mirrored about
x = 0. We use the experimental data to extract the position
of the center of mass (c.m.) of the wave packet (x)(z) =
210, 2) xx;/ 32 1(xj, 2) as a function of z. The group
velocity v, is found as the slope of the linear fit to (x)(z)
and plotted in units of a unit cell per driving period ay/T
against w in Fig. 5(a). The resulting curve reaches the peak
value of about 0.63 at w = Q; ~ 0.23 um~'. We note that the
measured peak value of the group velocity is smaller than 1,
as would be expected from the completely filled band [see
Fig. 2(c)]. We attribute this deviation to the contribution of
camera noise and nonperfect excitation conditions. By the
latter, we mean that first the overlap of the states moving
in the —x direction with the initial conditions is not exactly
zero, and second, when guided SPPs are excited by shining
laser light onto the grating coupler, the laser spot slightly
excites the neighboring waveguides. These factors inevitably
decrease the c.m. displacement. The quantitative comparison
with the theoretical value of wq in Eq. (3) requires the value
of Jy, which has an experimental uncertainty 1.09Jy < Q1 <
2.09Jp that is fully consistent with the theoretical value of
wo = 1.195Jy. In Figs. 5(b) and 5(c), we compare the real- and
Fourier-space intensity distributions for two frequencies €2,
(close to the resonance wp) and 2, (maximum frequency in
our measurements, away from the resonance). In real space, at
€21 we observe that the wave packet is confined, and the inten-
sity maximum is transported in positive x direction [Fig. 5(b),
top]. The corresponding Fourier intensity distribution I (k,, k;)
shown in Fig. 5(c) (top) reveals nearly linear dispersion and
predominant population of the Floquet states with Ui, ¢ > 0.In
contrast, at €2, the wave packet is spreading in both directions
[see Fig. 5(b), bottom] and in Fourier space [see Fig. 5(c),
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FIG. 5. (a) Measured mean group velocity of a wave packet vs é )l 10"
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(c) Fourier-space SPP intensity distributions for the same arrays as
in panel (b).

bottom] the gaps between the quasienergy bands broaden, and
the states with vi « < 0 become noticeably populated. Such
a behavior results from hybridization of counterpropagating
states and is fully consistent with the theory [compare with
Fig. 2(b)].

Next, we fabricate DLSPPW arrays with local modulated
losses using the optimal driving frequency €2; determined
above. For that, we deposit Cr stripes of length L = 0.3T
beneath the two waveguides in between the inputs A and B,
so that the phase shift in Eq. (6) is zero ¢ = 0 [see Fig. 2(b)].
The inputs are placed such that the excited wave packet im-
pinges upon the region of modulated losses from both sides.
In Fig. 6(a), the resulting real-space intensity distributions
of SPPs for two input conditions are displayed. Here, the
wave packet impinging from the region x > 0 (top image)
is strongly damped such that no SPPs are visible after the
lossy region. Since the transmitted wave is lower than the
noise level, the transmission coefficient must be T,—, < 1072,
In contrast, when the wave packet impinges from the oppo-
site side, x < 0, it is partially transmitted (bottom image).
By comparing to the case with no loss, we can estimate the
transmission coefficient T,—; &~ 0.53. Additionally, the weak
reflection from the interface is observed for both sides (see red
arrows). This can be related to the slight shift of the Cr stripes
in respect to the waveguides, which leads to a nonzero phase
shift ¢.

We now aim to improve the performance of the direction-
dependent filtering in our system; in particular, we want to
increase the transmission in the low-loss direction 7T,—; while
keeping the T,—, below the detection limit of 1072, Relying
on the numerical calculations discussed above, at the constant
loss strength y this can be realized by reducing the Cr stripe

FIG. 6. Real space intensity distributions for the DLSPPW arrays
with local modulated dissipation (highlighted by white dashed lines)
featuring unidirectional transmittance at 2;. The wave packet is
excited at x > O (input B, top) or at x < O (input A, bottom). The
area plots at the right side from the real-space data show the intensity
distribution after the propagation distance z = 57. (a) Chromium
stripes with L = 0.3T were deposited below two waveguides. The
red arrows point to reflected wave. (b) The same as in panel (a), but
the length of the Cr stripe was reduced to L = 0.15T'.

length L. Indeed, for L = 0.15T [Fig. 6(b)], we again observe
strong absorption in —x direction such that T,—, < 107%;
however, the transmission in the opposite direction is substan-
tially increased T,,—; &~ 0.92. In this case, we see no reflection
from the interface.

VI. CONCLUSION

In conclusion, we proposed and experimentally realized a
direction-dependent filter in a Hamiltonian quantum ratchet.
Our ratchet scheme on a 1D periodically driven lattice is
inspired by the arrays of evanescently coupled waveguides as
experimental platform. Using Floquet-Bloch theory, we show
that at certain frequencies such a model supports directional
transport characterized by helical Floquet bands with negli-
gible dispersion. Based on the sublattice oscillation of the
Floquet-Bloch states, we introduce local periodic losses as
a method for direction-dependent filtering. In doing so, we
achieve strong nonreciprocal transport at all quasimomenta
and a vast range of system parameters. In order to quantify
nonreciprocal transmission, we develop the Floquet scatter-
ing theory for the conceptually interesting though commonly
undiscussed case where both bulk and scattering potentials
are modulated time periodically. Using this approach, we
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calculate asymmetric transmission and reflection coefficients
for various system parameters and determine the optimal
conditions for direction-dependent filtering. Based on the the-
oretical predictions, we realize our ratchet model in arrays of
coupled periodically modulated plasmonic waveguides. Us-
ing real- and Fourier space measurements, we determine the
resonant modulation frequency corresponding to the high-
est group velocity and almost dispersionless bands. Next,
the non-Hermitian impurity is implemented by means of an
absorber deposited locally below the waveguides in a two-
step lithographic process. Nonreciprocal transmission through
this impurity is clearly demonstrated by real-space intensity
distributions. Our results indicate that it is possible to cre-
ate a Hamiltonian ratchet being intrinsically nonreciprocal
such that any mixed initial state can be filtered to achieve mo-
tion in only one chosen direction. Contrary to nonreciprocal
transport induced by non-Hermitian gauge fields, no addi-
tional gain is needed [42]. This makes our method favourable
in further experimental settings such as ultracold quantum
gases [13,18].
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APPENDIX A: FLOQUET-BLOCH THEORY
FOR THE HAMILTONIAN RATCHET

We study our ratchet model within a framework of the
Floquet-Bloch theory [34]. For that, we first transform the
bulk Hamiltonian from Eq. (1) to k space:

Hpui(t) = Y _ Y He (). (A1)
k

Here, we introduced v = ﬁ > e M0l (cja, e 0e;p)T
with the length of the unit cell ay and the number of unit
cells Ny. The time-dependent Bloch Hamiltonian Hy (¢) of our
model reads

0 h(k, t)) (A2)

Hy(t) = (h*(k,t) 0

where h(k,t) = Jy(t)e*®/? + Jo(t)e~*@/2 and * denotes the
complex conjugation. The steady states of the Hamiltonian
(A2) are the so called Floquet-Bloch states [34]

|1/fk,oz (t)> - e*iek_a_,,,t |¢k,a,m (t)> s

which are composed of a phase factor involving the
quasienergy €4, and the T-periodic Floquet mode
|Pk.a.m(t)). The index m arises from periodicity of the
quasienergies, namely € q.m = €k.o.0 + Mw, where €; 4 lies
in the so-called first Floquet-Brillouin zone [—w/2, w/2).
As the corresponding modes only differ by a phase fac-
tor, |Pg.a.m(t)) = emet |Pk.0.0(2)), the solutions from different
Floquet-Brillouin zones describe the same physics. In our
case, the states can be labeled by their quasimomentum k, the
band o = 1, 2, and the Floquet index m. The Floquet modes
are eigenstates of the Floquet operator Hy (1) = Hy(t) — iaa_z in
Floquet space F = R ® 7, which consists of the configura-
tion space R and the space of the time-periodic functions T
[43,44]. This eigenvalue equation reads

Hi |¢k,a,m>> = Ek,a,m|¢k,a,m>)-

Here |¢)) is the element of F which corresponds to |¢ (7)) and
A is the operator which is acting in F connected with A(t).
When we introduce the Fourier basis |n) € 7 and express
|n(t)) = e~ where |Pk.0.m(t)) and Hi(t) are written by
their Fourier coefficients f™ = 1/T fOT dt e f(t), Eq. (A4)
transforms to

Z [H]i”*l) - na)(SnJ] |¢)lg{()¥,m> = Ek,a,m|¢](:;,m>~
1

(A3)

(A4)

(AS5)

Equation (AS5) is first truncated in Floquet space by in-
troducing a cutoff such that |¢15',10)¢,m> =0 for |n| > meyroft-
The resulting eigenvalue problem involving a finite matrix
is solved numerically with a cutoff my large enough to
guarantee that the solution has converged.

APPENDIX B: DISCONNECTED DIMER MODEL

In order to qualitatively understand the origin of
the rectified transport, we consider the Hamiltonian (2)
with a simplified driving scheme, where one period, for
0<t <T,reads

J, tely,ty +6t

Si0) = {0 othe[r\l)visle [ ’ (Bla)
J, telb, 4+t

h(t) = {O othe[révisze [ ’ (B1b)

Here t; + 6t < T/2 with 6t > 0 and t, = T/2 +¢t;. The
Schrédinger equation for |y (1))=Y, (yict 4+ ¥Pel 5)[0)
reads

iy = hOY] +hOy) ),
i0y7 = LY} +hOvh,

where we assume as initial conditions 1//}/ (t=0)=35,8;.
For t €[0,4[ all couplings are zero and the wave
function stays at its initial value. In the interval ¢ €
[t1,#; + 8t[ the state undergoes Rabi oscillations between

(B2a)
(B2b)
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sublattices A and B,

Y (t) = coslJ(t — 11)],
Yl (t) = —isin[J(r —1)].

We assume in the following that population is fully
transferred between the sublattices, i.e., the condition
Jét = % + nmr holds with n € Ny. A similar analysis for the
second half of the cycle (B1) yields that the state moves in
one driving period T one unit cell to the right w}’ t=T)=
8, A8ji+1, while a state starting on sublattice B moves the
same length to the left. Thus we created a simple scheme
for ideal, rectified transport. The quasienergy bands are linear
Eham = (DL — 2) + mw. Using 8t = §& 27 /w, we
find the driving frequencies where perfect linear bands occur
to be

(B3a)
(B3b)

———,n e Np. (B4)
n

As Eq. (B4) only depends on the area J4&, it can be general-
ized to Eq. (3). Also, in this model unidirectional transport
can be investigated when an impurity is added. We there-
fore look at a special scheme for the dissipative impurity
potential Eq. (5b):

__}vo, t el +6t, 0]

valt) = {O, otherwise ’ (B5a)
_Jvo, te[0,4[Uln+6t,T[

ve(t) = {O, otherwise - (BSb)

The right-moving state can transmit unaffected through the
impurity, while the left moving state is exponentially damped.
The transmission coefficients read

Ty =1, (B6a)

Ty—> = exp[—2yoLppl, (B6b)

where Lpp = T — 26t.

APPENDIX C: FLOQUET SCATTERING THEORY

We are interested in the scattering properties of the
Floquet-Bloch states |¢iq.»)) in the presence of an in gen-
eral non-Hermitian impurity operator V(z). In contrast to
the common literature [30-33,45], we look at a setup where
both bulk and scattering potential are modulated time pe-
riodically with the same frequency w. It turns out that the
Lippmann-Schwinger equation for Floquet systems equals a
static Lippmann-Schwinger theory in the Floquet space F.
It is central to calculate the matrix elements of the Flo-
quet S matrix in the Floquet-Bloch basis Sy, g.n), (k,a,m)- FOr @
general operator A(¢), these matrix elements are defined by
A(q,ﬂ,n),(k.a,m) = % fOT dt (d’q,ﬁ.n(t)|A(t)|¢k,ot,m(t)>a where the
states |¢y.o.m(t)) are calculated by (A4). The matrix elements
of the Floquet S matrix describe the amplitude for finding a
particle in the state (g, 8, n) after the scattering process if
initially it was in state (k, o, m). The Floquet S matrix can
be termed as

S(q,ﬁ,n),(k,ut,m) = 8(k - q)sa,ﬁ&l,m
- 27Ti5(6q,ﬂ,n - 6k.oz,m)T(q,/SA,n),(k,ou,m)a (Cl)

where we introduce the matrix elements of the Floquet T
matrix 7 = VQ+, with the impurity operator V € F and
the Mgller operator QT =1 + (e + 0T — Hou — V)~V
The matrix elements of the Floquet 7" matrix are given by
the self-consistency equation

Tig,B.n),(ke.my = Vig, p.n), (ko)

s
Vig.p.m.(p.8.1) (€2)
+ / dp ————Tp.5.0),(k.at,m)-
; - €kam — Ep,B,l + 0+ :

We transform Eq. (C2) to a linear system which is solved
numerically by discretizing the quasimomentum space and by
introducing a cuttoff mp,s in the Floquet index. In our case,
where bulk and scattering potential are driven by the same
frequency, Eq. (C1) dictates that the scattered waves reside in
the same Floquet-Brillouin zone as the incoming wave, while
all other channels host evanescent waves. Thus, only a 2 x 2

submatrix
V—ka=2
I_ka=2

of the Floquet S matrix will be nonzero and contribute to

scattering. Here we introduced the k-dependent transmission
2mi

amplitude # o, = 1 — WT("’“*’"“’W’"” and reflection ampli-

(C3)

Fk,a=1

~ Heae
Sscatt(k) = < ko=l

tude ry o = _%nfk’ﬁ;éa’m),(k,a’m) by the nonsingular parts
a,k

of the Floquet § matrix. The k-dependent transmission and re-
flection coefficients measuring the probability for these events
are given by Tj o = |tr.o|* and Ry o = |ri.«|%. In our setting,
we average these quantities over a full band

1 2

T,=— [ dkTya, (Cda)
2 0
1 2w

= — dkRy. 4. (C4b)
2 0 '

In the case of a Hermitian impurity, the matrix Secarr(k) is a
unitary matrix [30], implying the relation T o—1 = T_k g=2-
This results in equal averages T,—; = T,—» and shows that
nonreciprocal transport is not possible in the Hermitian case.

APPENDIX D: SAMPLE FABRICATION

The DLSPPW arrays with locally modulated dissipation
are fabricated with a two-step electron beam lithography pro-
cess (EBL). The sample preparation starts with evaporation of
62 nm of Ag and 2 nm of Cu for adhesion on a cleaned surface
of a glass substrate. Then the sample is spin coated with the
polymeric resist poly(methyl methacrylate) (PMMA). In the
first EBL step, we utilize PMMA as a positive-tone resist
in order to fabricate a template for the lossy regions and
alignment markers. The areas exposed to the electron beam
are dissolved in a developer and 15 nm of Cr is evaporated
on top of the substrate. After the lift-off process, we end up
with the Cr stripes and the alignment markers at the predefined
positions. The width of each Cr stripe is set to 1.3 um. Then
the sample is again spin coated with PMMA and the second
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EBL step takes place. Now we fabricate the DLSPPW arrays
on top of the Cr stripes using the markers for the alignment.
In this step, PMMA acts as a negative tone resist which is
achieved by increasing the applied electron dose [46]. Fi-
nally, the samples are developed in acetone. The atomic force
microscopy measurements revealed that the applied electron
dose results in the mean waveguide height of 90 nm and
the width of 270 nm, which allows us to work in a single-
mode regime at a vacuum wavelength of A = 0.98 um. For
these geometrical parameters, the propagation constant of the
guided mode is B = B’ — if” = const, B’ = 6.55 um~! (ob-
tained by numerical simulations with COMSOL MULTIPHYSICS)
and 87 = (7.3 £0.02) x 103 um™! (obtained by measuring
propagation length of SPPs). The distance between the ad-
jacent waveguides varies as d; » = (2 £ 0.65sin wz)pm, w =
27 /T. As shown in Fig. 4(b), the modulated part of the array
is preceded by a short straight interval of the length 6 um.
This region contains the grating coupler (red box) which is
used for SPP excitation. The grating is deposited only onto the
two waveguides at the left and right sides from the dissipative
region (inputs A and B), while the extension of others to this

region is needed to prevent fire-end excitation of the adjacent
waveguides.

APPENDIX E: LEAKAGE RADIATION MICROSCOPY

SPPs are excited by focusing a TM-polarized laser beam
with 49 = 980 nm [numerical aperture (NA) of the focusing
objective is 0.4] onto the grating coupler deposited on top of
the chosen waveguide. The propagation of SPPs in the array
is monitored by real- and Fourier-space leakage radiation
microscopy (LRM) [20,39]. The leakage radiation as well as
the transmitted laser beam are both collected by a high NA
oil immersion objective (Nikon 1.4 NA, 60x Plan-Apo). The
transmitted laser was filtered out by placing a knife edge at
the intermediate back focal plane (BFP) of the oil immersion
objective. The remaining radiation was imaged onto an
scientific complementary metal-oxide semiconductor camera
(Andor Marana). Real-space SPP intensity distributions were
recorded at the real image plane while the momentum-space
intensity distribution was obtained by imaging the BFP of the
oil immersion objective.
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