
PHYSICAL REVIEW RESEARCH 3, 013258 (2021)
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Spatial organization of proteins in cells is important for many biological functions. In general, the nonlinear,
spatially coupled models for protein-pattern formation are only accessible to numerical simulations, which has
limited insight into the general underlying principles. To overcome this limitation, we adopt the setting of
two diffusively coupled, well-mixed compartments that represents the elementary feature of any pattern—an
interface. For intracellular systems, the total numbers of proteins are conserved on the relevant timescale of
pattern formation. Thus the essential dynamics is the redistribution of the globally conserved mass densities
between the two compartments. We present a phase-portrait analysis in the phase-space of the redistributed
masses that provides insights on the physical mechanisms underlying pattern formation. We demonstrate this
approach for several paradigmatic model systems. In particular, we show that the pole-to-pole Min oscillations
in Escherichia coli are relaxation oscillations of the MinD polarity orientation. This reveals a close relation
between cell polarity oscillatory patterns in cells. Critically, our findings suggest that the design principles of
intracellular pattern formation are found in characteristic features in these phase portraits (nullclines and fixed
points). These features are not uniquely determined by the topology of the protein-interaction network but depend
on parameters (kinetic rates, diffusion constants) and distinct networks can give rise to equivalent phase portrait
features.
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I. INTRODUCTION

The spatial intracellular organization of proteins by reac-
tions (protein-protein interactions) and diffusion has received
growing attention in recent years; for recent reviews, see
Refs. [1–8]. Gaining intuition and theoretical insight into the
spatiotemporal protein dynamics remains challenging owing
to the complexity arising from the spatial coupling and nonlin-
ear reaction terms. Therefore insights often remain restricted
to specific mathematical models. A systematic understanding
is hard to achieve, in particular, if there are multiple protein
species with several conformational states involved (complex
interaction network). Thus finding the elementary principles
underpinning protein-based pattern formation still remains a
largely open question.

To simplify the analysis on a technical level, systems
of two diffusively coupled, well-mixed compartments (also
called “boxes,” “reactors,’, “cells,” or “patches”) have been
widely used in earlier literature. In fact Turing himself
used the setting of diffusively coupled compartments (called
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“cells”) in his pioneering work to show that diffusion can
destabilize otherwise stable reactions, thus leading to spa-
tial pattern formation [9]. Physically, the two-compartment
setting represents the elementary feature of any pattern—an
interface connecting a low density region to a high density
region. In the context of intracellular pattern formation, the
two compartments typically represent the polar zones of rod-
shaped cells, such as E. coli bacteria [see Fig. 1(a)], M.
xanthus bacteria [10,11], and fission yeast (S. pombe) [12,13].

In a broader context, two-compartment systems also
have been realized in experiments, using diffusively coupled
CSTRs (continuously stirred tank reactors) [14] and recently
using nanometer scale microfluidic devices [15,16]. Further-
more, in population dynamics, they are known as “two-patch
systems” and have been used to study toe role of spatial
coupling and patterning in ecology, see, e.g., Refs. [17–19].

In this manuscript, we focus on protein-based pattern for-
mation in cells. A key property of such intracellular pattern
formation is that the total number of proteins is conserved on
the relevant timescale of pattern formation [6,20–23]. Recent
works [24,25] suggest that (diffusive) mass redistribution is
the key physical process driving pattern formation in mass-
conserving reaction–diffusion systems. Based on this insight,
a framework termed local equilibria theory has been devel-
oped [25]. The basic idea of this framework is to consider the
system as decomposed into (notional) compartments, small
enough to be effectively well-mixed. Within each compart-
ment, the reactive dynamics conserves the mass(es). The
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FIG. 1. Reduction from the full dynamics in cell-geometry to
the phase portrait of mass-redistribution dynamics. (a) Sphero-
cylinder geometry of a rod-shaped E. coli cell (top) and reduced
two-compartment setting representing the two cell halves (bottom).
Purple arrows illustrate diffusive mass transport. (b) Protein-
interaction network of the Min system of E. coli (see main text
Sec. III for details. (c) Time traces of the protein mass in the compart-
ments relative to the mean, �nD,E defined via n(1,2)

D,E = n̄D,E ± �nD,E,
showing the pole-to-pole oscillations in three-dimensional cell ge-
ometry. (d) Oscillations persist in the two-compartment setting, with
diffusive exchange rates set to a slow timescale. (e) Phase portrait
of the mass-redistribution dynamics showing the flow field (gray
arrows) and the nullclines of MinD and MinE redistribution (blue
and red lines). The origin (0,0) corresponds to the homogeneous state
which is unstable against perturbations redistributing mass. The limit
cycle trajectory (black) corresponds to pole-to-pole oscillations. The
cartoons in the four corners illustrate the two-compartments (sep-
arated by a vertical dashed line) where the color intensity indicates
the mass distribution of MinD (blue) and MinE (red) in the respective
quadrant of the phase portrait.

reactive equilibria (steady states) of the reactions within an
isolated compartment, controlled by these local masses, serve
as proxies for the local dynamics. Diffusive coupling of the
compartments redistributes masses between them. In turn,
the changing local masses shift the local reactive equilib-
ria and potentially change their stability. Thinking about
reaction–diffusion systems in terms of this interplay between
mass-redistribution and shifting local equilibria has proven a
powerful approach to study their complex nonlinear dynamics
[24–28].

Here we adopt the two-compartment setting and show how
this way of thinking can be made explicit in the form of simple
graphical constructions and a phase portrait analysis in the
phase space of the redistributed masses. This will enable us to
gain insights on the physical mechanisms underlying pattern
formation that would otherwise remain hidden. Importantly,
and in contrast to previous works [10,11,29–31], we do not
assume the fast diffusing (cytosolic) components to be well
mixed. In other words, we explicitly allow for cytosolic gradi-
ents between the two compartments. As we will see later, this

is important understand the physical mechanisms underlying
pattern formation. In particular, it is key to explain the pole-
to-pole oscillations of Min proteins in E. coli.

a. Motivation. Let us present the main motivation for this
work using the pole-to-pole oscillations of Min proteins in
E. coli as a concrete example without going into techni-
cal details (which will be presented below). Put briefly, the
pole-to-pole oscillations are driven by two types of proteins,
MinD and MinE, which cycle between membrane-bound and
cytosolic states and interact with each other on the mem-
brane [Fig. 1(b)], while the total masses of MinD and MinE
(nD and nE) remain conserved. A key insight from previous
works is that spatial redistribution of such globally conserved
masses constitutes the essential degrees of freedom of mass-
conserving reaction diffusion systems [24]. Indeed, mapping
the Min system to the two-compartment setting and tuning
the diffusive exchange rates to a slow timescale retains the
qualitative features of the pole-to-pole oscillations [Figs. 1(c)
and 1(d)]. On the slow timescale, only the masses in the two
compartments n(1,2)

D,E remain as dynamic variables. Because of
mass conservation, the average masses n̄D,E remain constant.
Defining the redistributed masses, �nD and �nE, via n(1,2)

D,E =
n̄D,E ± �nD,E, we can visualize the dynamics in the two-
dimensional (�nD,�nE)-phase space, Fig. 1(e), where we
plot the flow field and its nullclines. Along the nullclines the
rate of mass-exchange between the compartments vanishes.
We hence refer to them as mass-redistribution nullclines. The
phase portrait shows the characteristics of relaxation oscil-
lations. In this paper, we show that the Min pole-to-pole
oscillations are indeed spatial relaxation oscillations of the
MinD polarity orientation.

This example shows how important qualitative features of
mass-conserving reaction–diffusion (MCRD) systems can be
obtained from a phase portrait analysis in the phase space of
the redistributed masses. In the following, we show how this
phase portrait can be constructed systematically, starting from
the reaction–diffusion equations. We show what determines
the structure of the phase space flow and derive a simple
geometric relation between the mass-redistribution nullclines
and the reactive nullclines of the local reaction kinetics.

b. Structure of the paper. To introduce the basic elements
of our analysis, we first study MCRD systems with two com-
ponents, e.g., the membrane-bound and cytosolic state of a
single protein species (see Sec. II). We then generalize the
nullcline-based approach to systematically derive the phase
portrait of the Min system of E. coli shown in Fig. 1(e).
This construction then allows us to study the role of diffusive
mass redistribution of MinD and MinE for the formation of
Min-protein patterns. Finally, we apply the same approach to
two other paradigmatic model systems: PAR polarity of C.
elegans and Cdc42 polarity of budding yeast. Comparing the
different nullcline geometries of these systems allows one to
classify their pattern-forming mechanisms (see Sec. IV). Such
a nullcline-based classification provides intuition for the role
of various elements in the biochemical network. Moreover, it
might guide model building and serve as a first step of analysis
for systems that are biochemically not as well characterized as
the aforementioned examples. In the Conclusions, Sec. V, we
discuss important implications of our work, both specific to
the Min system and in a broader context, and give an outlook
to promising future research directions.
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II. TWO-COMPONENT MCRD SYSTEMS

Two-component MCRD systems have been previously
used as conceptual models for cell polarity [20,29,32,33]. In
this section, we apply local equilibria theory [24,25] to these
systems in the two-compartment setting. In this simplified set-
ting, the formulation of local equilibria theory is technically
simpler than in spatially continuous systems.1 Importantly,
the approach developed below for two-component MCRD
systems can be generalized to systems with more components
and more conserved masses such as those studied in Secs. III
and IV, where the new approach yields novel insights.

Let us denote the concentrations of the two components
in compartment i ∈ {1, 2} by ui = (mi, ci ), where mi and ci

are the concentration of membrane-bound and cytosolic pro-
teins, respectively. The reaction kinetics f = ( f ,− f ) within
each compartment account for the attachment and detachment
to and from the membrane. Importantly, they conserve the
local total density (mass) ni = mi + ci in each of the two
compartments individually. Mass is transferred between the
compartments by a diffusive exchange process that acts to
even out concentration differences. Denoting the diffusive
exchange rates in the matrix D = diag(Dm,Dc), we have the
coupled compartment dynamics in vector notation

∂t u1 = D(u2 − u1) + f (u1),

∂t u2 = D(u1 − u2) + f (u2). (1)

Since both the local reactions and the diffusive exchange are
mass conserving, the average total density n̄ = (n1 + n2)/2
is a constant of motion. In Appendix A, it is shown how the
(diffusive) exchange rates Dm,c can be related to the diffusion
constants Dm,c in a spatially continuous system, in such a way
that the linearized dynamics of Eq. (1) near a homogeneous
steady state is identical to the linearized dynamics of a single
Fourier mode ∼ cos(πx/L) in the spatially continuous system
on the interval [0, L] with no-flux boundary conditions. For
patterns with large amplitudes, nonlinearities lead to mode
coupling in a spatially continuous system. This is not cap-
tured by the two-component system which only describes the
dynamics at a single length scale. Nonetheless, one can gain
a good qualitative understanding of the full nonlinear pattern
formation process, including the termination of the pattern-
forming instability in a stationary pattern.

A. Setting the stage: phase-space geometry of
two-component MCRD systems

In the following, we present the key concepts of local equi-
libria theory in the two-compartment setting. Because of mass
conservation, only the mass density difference with respect to
the mean �n := (n1 − n2)/2 is a dynamic variable, while n̄ is
a control parameter. Thus we can rewrite the local masses as
n1,2(t ) = n̄ ± �n(t ). Adding the equations for ∂t m1 and ∂t c1

(Eq. (1) yields ∂t n1, and thus

∂t�n(t ) = −Dm�m − Dc�c, (2)

1A detailed analysis of two-component MCRD systems in a spa-
tially continuous setting can be found in Ref. [25].

where �u = (�m,�c) := u1 − u2 and we used that ∂t n̄ = 0.
Observe that the reaction terms cancel because they conserve
the mass in each compartment individually. Thus the dynam-
ics of the total density is solely determined by concentration
differences in m and c between the two compartments. These
concentration differences approximate the gradients in the
spatially continuous system.

To understand how these concentration differences are
governed by the reaction kinetics, consider the (m, c)-phase
plane of the reaction kinetics [see Fig. 2(a)]. While this phase
plane is two-dimensional, mass conservation also implies that
reactive flow ( f ,− f ) in each compartment i is constrained to
a respective linear subspace mi + ci = ni. We term these sub-
spaces the local phase spaces of each compartment [22,25].
Here, and in the following, the term local always refers to
the properties of a single (notionally isolated) compartment.
Correspondingly, we define as local reactive equilibrium the
point within the local phase space where the reaction kinetics
are balanced, i.e., where the reactive flow vanishes ( f = 0):

u∗(ni ) :

{
f (u∗) = 0,

m∗ + c∗ = ni.
(3)

Geometrically, the local equilibria are the intersection points
between the local phase spaces and the reactive nullcline (see
Fig. 2).2 These local equilibria determine the steady state
(reactive equilibrium) in each compartment that would be
reached if, given the local masses n1 and n2, the two compart-
ments were isolated, i.e., if the diffusive exchange between the
compartments was shut off. Thus the local equilibria serve as
proxies for the local reactive flow within each of the compart-
ments [red arrows in Fig. 2(a)].

Diffusive coupling between the compartments redistributes
mass between the compartments. This is reflected in the shift-
ing of the local phase spaces in the (m, c)-phase plane, as
indicated by the purple arrows in Figs. 2(a) and 2(b). As a
result, the local reaction kinetics change since the local equi-
libria move in the (m, c)-phase plane. In the following, we will
elucidate this interplay between diffusive mass-redistribution
and shifting local equilibria in the most elementary form.

B. Limit of slow mass exchange

To separate the roles of local reactions and diffusive mass
redistribution, we consider a situation where the latter occurs
on a much slower timescale than the former.3 In this limit, the
cytosolic and membrane concentrations in each compartment
adiabatically follow the local equilibria that depend on the lo-
cal masses ni, as encoded by the shape of the reactive nullcline
in the (m, c)-phase plane [see Fig. 2(b)]. We can, there-
fore, approximate the densities by their respective equilibrium

2Depending on the nullcline shape, there can be several reactive
equilibria for a given total density [25]. We focus here on the case
where only one, stable equilibrium exists.

3More specifically, this means Dm,c � σloc, where σloc is the eigen-
value of the linearized local reaction kinetics with the smallest
absolute real part. In the case of a two-component system, σloc =
fc − fm, with fα = ∂α f |u∗ .
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FIG. 2. Phase space structure of a two-compartment two-component MCRD system, with reaction and diffusion on the same timescale
(a) and with diffusion set to a slower timescale (b). The concentrations (mi, ci ) in the two compartments are marked by blue dots, labeled 1
and 2, respectively. The local phase spaces corresponding to the masses in the two compartments n1,2 = n̄ ± �n are shown as gray lines. Gray
arrows indicate the reactive flow towards the reactive nullcline f = 0 (solid black line). Black dots mark the local equilibria (intersection points
between reactive nullcline and local phase spaces) and red arrows indicate the reactive flow towards these local equilibria. (b) When diffusion
is set to a slower timescale, the local concentrations adiabatically follow the reactive nullcline. Thus the only remaining degree of freedom is
the mass difference �n, whose dynamics is governed by the concentration differences �m∗(�n) and �c∗(�n) (see Eq. (2)).

values

ui(t ) ≈ u∗(ni(t )
)
. (4)

We term this the local quasi-steady state approximation
(LQSSA). The dynamics of the mass difference �n is then
governed by a closed equation

∂t�n(t ) ≈ −Dm�m∗(�n) − Dc�c∗(�n), (5)

with the shorthand notation for the concentration differences
between the two compartments:

�u∗(�n) := u∗(n̄ + �n) − u∗(n̄ − �n). (6)

In this approximation, the roles of local reactive dynamics and
diffusive mass exchange are clearly separated. The concentra-
tions only change if the local phase spaces shift due to mass
redistribution. In turn, the mass fluxes from one compartment
to the other are determined by the concentration gradients
�u∗(�n), weighted by the respective exchange rates Dm,c.
This nonlinear feedback between shifting equilibria and mass
redistribution is the basic mechanism underlying pattern for-
mation in mass-conserving reaction diffusion systems [24,25].
Importantly, the role of the reaction kinetics is fully encoded
in the shape of the reactive nullcline, i.e., the functional de-
pendence of the reactive equilibrium concentrations u∗(n) on
the total density n.

The local masses ni within each compartment play the
role of control variables [24] that determine the position of
the local phase spaces (and thus the position of the reactive
equilibria) within the (m, c)-phase plane. At the same time the
local masses are also dynamic variables that change by means
of diffusive mass redistribution between the compartments.
Accordingly, we refer to the phase space of the redistributed
masses as control space. In the two-component MCRD sys-
tem, the only control variable is the mass difference �n, such
that the control space is one-dimensional.

Typically, diffusion on the membrane is orders of mag-
nitude slower than in the cytosol, Dm � Dc such that its
contribution to mass redistribution can be neglected; see, e.g.,
Refs. [34,35]. Hence, to simplify the following analysis, we

neglect the slow membrane diffusion (i.e., we set Dm = 0),
such that

∂t�n(t ) = −Dc�c∗(�n)

= −Dc[c∗(n̄ + �n) − c∗(n̄ − �n)]. (7)

Generalization to account for the effect of membrane diffusion
is straightforward by changing variables from c to the ‘mass-
redistribution potential’ η := c + (Dm/Dc)m [36].

Equation (7), has a simple geometric interpretation as
shown in Figs. 3(b) and 3(c). The term in the brackets in
Eq. (7) expresses the difference between the nullcline (solid,
black line) and its mirror image (dashed gray line) reflected
at the point n̄. Depending on the nullcline slope at n̄, the
resulting dynamics ∂t�n, indicated by the blue arrows, is
qualitatively different. For a positive slope, ∂nc∗(n)|n̄ > 0,
following a small perturbation from the “homogeneous” state
�n = 0 the system returns to the �n = 0; see Fig. 3(b). In
contrast, for a negative slope, ∂nc∗(n)|n̄ < 0, the homoge-
neous state is unstable; see Fig. 3(c). This criterion for a
lateral instability (instability against spatially inhomogeneous
perturbations) was previously derived in Ref. [25] for spa-
tially continuous systems. The physical mechanism for this
mass-redistribution instability is that the reactive equilibrium
shifts to lower concentration of the fast diffusing (cytosolic)
component, c∗(n), when the total density n is increased, and
vice versa. Hence, a small perturbation δn results in a gradient
�c that transports mass from the compartment with lower
mass to the compartment with higher mass. This amplification
mechanism drives the instability.

The growth of the mass difference �n will stop once the
cytosolic gradient �c∗(�n) vanishes, i.e., when the cytoso-
lic concentration is the same in both compartments, c∗(n̄ +
�n) = c∗(n̄ − �n). Thus stationary states can be determined
graphically as the intersection points of the nullcline c∗(n)
with its own mirror image, mirrored at n̄, as illustrated in
Fig. 3(c). The intersection point at �n = 0 always exists
by construction, and corresponds to the homogeneous steady
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FIG. 3. Graphical construction of the control-space dynamics
for two-component MCRD systems. (a) Reactive nullcline (line of
reactive equilibria) c∗(n). (b) For n̄ < ncrit , the lines c∗(n̄ + �n)
(black solid line) and c∗(n̄ − �n) (gray dashed line) only intersect
once at �n = 0, corresponding to the homogeneous steady state.
The flow direction in control space (indicated by blue arrows) is
determined by the sign of the difference between c∗(n̄ + �n) and
c∗(n̄ + �n), as indicated by the green and purple shading; cf. Eq. (7).
(c) For n̄ > ncrit , there are two additional intersection points between
c∗(n̄ + �n) and c∗(n̄ − �n), corresponding polarized steady states.
The flow in control space is directed away from the homogeneous
state �n = 0, which is therefore unstable, and drives the system
towards one of the stable polarized states.

state. The two intersection points at �n �= 0 represent polar-
ized steady states.

In summary, we have shown how one can graphically con-
struct the mass-redistribution dynamics of two-compartment
systems with one conserved mass simply based on the reactive
nullcline u∗(n). In the next section, we will generalize this
construction to systems with two conserved masses.

III. TWO-CONSERVED MASSES: THE EXAMPLE OF
MIN-PROTEIN OSCILLATIONS

The Min-protein system is a paradigmatic model system
for intracellular pattern formation. It was discovered in E.
coli, where the pole-to-pole oscillations of the proteins MinD
and MinE allow the cell to position its division machinery at
midcell [37,38]. This spatial oscillation, i.e., the alternating
accumulation of the proteins at the two cell poles is driven
by cycling of MinD and MinE between cytosolic and mem-
brane bound states, fuelled by ATP (details described below).
Subsequent to its reconstitution in vitro [39], the Min system
has been studied in great detail, both experimentally [26,39–
50] and theoretically [22,24,26,46,49,51–54]. This research
has revealed a bewildering zoo of patterns, including traveling
waves, standing waves, spatiotemporal chaos, and defect me-
diated turbulence, observed in different experimental setups
(including microfluidic devices [26,43] and vesicles [47,48]).
Recent works employing local-equilibria theory to interpret

data from numerical simulations and experiments have pro-
vided insights on the mechanisms underlying these patterns
and their relationships among each other [6,26].

Here, we revisit the comparatively simple pole-to-pole
oscillation employing the local-equilibria theory in the two-
compartment setting. This offers a fresh perspective on the
Min-protein dynamics as it allows us to understand this ele-
mentary dynamic pattern in terms of phase space geometry,
independently of numerical simulations. In future work, this
could serve as a starting point to systematically understand
more complex patterns, like “stripe oscillations” (standing
waves) in filamentous cells [22,38] and the zoo of patterns
found in vitro [26,50,55].

Intuitively, the two-compartment system represents the
two cell poles (or cell halves) of the rod-shaped E. coli
bacterium, as shown in Fig. 1(a) (see Appendix B 1 for a
systematic reduction starting from the full three-dimensional
cell geometry). Figures 1(c) and 1(d) shows that the key
qualitative features of Min pole-to-pole oscillations are still
captured by the two-compartment model (see also Fig. 7 in
Appendix B). While this two-compartment model cannot be
expected to give a detailed quantitative description of Min
oscillations, it has the advantage of informing about the basic
underlying mechanism. This complements earlier quantita-
tive studies of the in vivo dynamics [22,54]. Moreover, the
two-compartment model serves as a minimal system for an
oscillation mode recently reported for an in vitro reconstitu-
tion of the Min system in microfluidic devices [26]. There,
the oscillations go back and forth between two membrane sur-
faces through the bulk solution in-between them (see Fig. 8 in
Appendix B). The analogy between this in vitro oscillation
mode and pole-to-pole oscillations in vivo is further discussed
in the conclusions, Sec. III D.

We use a well-established minimal model for the Min-
protein interactions that has been shown to successfully
reproduce and predict a large range of experimental findings,
quantitatively in vivo and qualitatively in vitro [6,22,27,46,53].
For a detailed description of the model, we refer the reader
to Refs. [22,27]. In short, the minimal model employs
mass-action law kinetics to account for the attachment and
detachment of MinD and MinE to and from the membrane and
for their interactions there [see Fig. 1(b)]: membrane-bound
MinD amplifies the attachment of further MinD from the
cytosol with rate kdD and also recruits MinE from the cytosol
with rate kdE to form MinDE complexes on the membrane. In
these complexes, MinE stimulates MinD hydrolysis with rate
kde, leading to the dissociation of the complex and detachment
of both proteins to the cytosol. In the cytosol, MinD undergoes
nucleotide exchange from the ADP-bound form to the ATP-
bound form, which can then attach to the membrane again.

Mathematically, the above reaction kinetics are described
by the system of equations of the form Eq. (1) with u =
(md, mde, cDT, cDD, cE), D = diag(Dd,Dde,DD,DD,DE) and

f (u) =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ron
D (u) − Ron

E (u)

Ron
E (u) − Roff

DE(u)

−Ron
D (u) + λcDD

Roff
DE(u) − λcDD

−Ron
E (u) + Roff

DE(u)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (8)
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FIG. 4. Graphical construction of the dynamics in control space from the reactive nullcline surfaces. [(a) and (b)] Reactive nullcline
surfaces showing MinD and MinE cytosol concentration (shaded blue and red, respectively) as a function of the mass differences �nD,�nE.
The intersection of each surface with its point reflection (shaded in gray with dashed outlines) determine the mass-redistribution nullclines
(see text for details). These nullclines are a generalization of the fixed points shown in Figs. 3(b) and 3(c). (c) Phase portrait of the dynamics
Eq. (14) with the MinD and MinE mass-redistribution nullclines obtained by the construction in (a) and (b) and the limit cycle trajectory
(black) corresponding to pole-to-pole oscillations [cf. Fig. 1(e)]. (d) Setting MinE diffusion to a slower timescale transforms the limit cycle
trajectory to the shape characteristic for relaxations oscillations. For parameters, see Table I.

where the reaction terms

Ron
D (u) = (kD + kdDmd )cDT , (9a)

Ron
E (u) = kdEmdcE , (9b)

Roff
DE(u) = kdemde , (9c)

account, respectively, for MinD attachment and self-
recruitment to the membrane, MinE recruitment by MinD, and
dissociation of MinDE complexes with subsequent detach-
ment of both proteins to the cytosol. The term λcDD accounts
for nucleotide exchange, i.e., conversion from cDD to cDT,
in the cytosol. Importantly, these reaction kinetics conserve
the total number of MinD and MinE proteins, n̄D and n̄E,
individually, i.e., there are two globally conserved masses that
are redistributed between the two compartments (cell halves).4

Numerically integrating the above set of ordinary differ-
ential equations using the parameters from Ref. [22] yields

4In the most general form, each such conservation law can be
written as sT· f = 0, where the entries in the “stoichiometric” vector
s account for the components whose sum is conserved. In the case of
the Min system, we have sT

D = (1, 1, 1, 1, 0) and sT
E = (0, 1, 0, 0, 1)

for the conservation of MinD and MinE respectively.

pole-to-pole oscillations in good qualitative agreement with
the oscillations found in the full three-dimensional geometry
[see Figs. 7(a) and 7(b) in Appendix B]. Importantly, these
oscillations persist if diffusive exchange between the com-
partments is set to a slow timescale compared to the reaction
kinetics [see Fig. 7(c)]. In this limit, the concentrations in
the two compartments adiabatically follow the equilibrium
concentrations that depend on the local masses nD,i, nE,i in the
two compartments. Hence, we can again apply the LQSSA,
Eq. (4), substituting the concentrations u by the reactive equi-
libria u∗. A discussion of the validity of this approximation
and potential generalizations is deferred to the Conclusions,
Sec. V.

The reactive equilibria as a function of the masses nD and
nE are (for each compartment) determined by [cf. Eq. (3)]

u∗(nD, nE) :

⎧⎨
⎩

f (u∗) = 0 ,

c∗
D + m∗

d + m∗
de = nD ,

c∗
E + m∗

de = nE ,

(10)

where we introduced the total cytosolic MinD concentration
cD = cDD + cDT. For each component in the concentration
vector u∗, this defines a surface parametrized by nD and nE,
as shown in Figs. 4(a) and 4(b) for c∗

D and c∗
E (the respective

surfaces for the membrane concentrations m∗
d and m∗

de are
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TABLE I. Parameters for the Min-skeleton model adapted from
[22]. ζ is the bulk-surface ratio that appears because we express
cytosol concentrations in units of surface density μm−2, as explained
in the text (Appendix B 1).

Parameter Value Unit

DD 16 μm2 s−1

DE 10 μm2 s−1

Dd 0.013 μm2 s−1

Dde 0.013 μm2 s−1

nD 5.0 μm−2

nE 2.0 μm−2

λ 6.0 s−1

kD 0.1/ζ s−1

kdD 0.108/ζ μm2 s−1

kdE 0.435/ζ μm2 s−1

kde 0.4 s−1

shown in Fig. 10 in Appendix B). We will term these reactive
nullcline surfaces. In the following, we show how the dynam-
ics of the local masses nD,i, nE,i can be inferred from these
surfaces, analogously to the construction shown in Fig. 3 for
two-component MCRD systems.

Because the total number of MinD and MinE proteins are
conserved, only the protein masses redistributed between the
two polar zones, �nD,E(t ), are time dependent and the mass
densities of MinD and MinE in the right and left polar zone
are given by

nα,1/2(t ) = n̄α ± �nα (t ), α = D, E. (11)

Analogously to the two-component system, we call the re-
distributed masses �nD,E(t ) the control variables and the
(�nD,�nE)-phase plane the control space. The dynamics in
control space are governed by

∂t�nD(t ) = −DD �c∗
D − Dd �m∗

d − Dde �m∗
de, (12a)

∂t�nE(t ) = −DE �c∗
E − Dde �m∗

de, (12b)

where the concentration gradients (differences between the
two polar zones) of the local equilibria are defined as [cf.
Eq. (6)]

�u∗(�n) := u∗(n̄ + �n) − u∗(n̄ − �n). (13)

A. From reactive nullcline surfaces to
mass-redistribution nullclines

To understand the qualitative structure of the control-space
dynamics Eq. (12), we first consider the lines along which
there is no mass-redistribution of MinD/E, respectively,
∂t�nD,E = 0. We term these mass-redistribution nullclines.
Importantly, these are not to be confused with the reactive
nullcline (line of reactive equilibria) along which the reactive
flow vanishes within a single compartment.

As we shall see in Sec. III B, one can neglect the slow
membrane diffusion to understand the basic oscillation mech-

anism of the Min system. We therefore consider this simpler
case, Dd = Dde = 0, first. Equation (12) then reduces to

∂t�nD(t ) = −DD �c∗
D(�nD,�nE), (14a)

∂t�nE(t ) = −DE �c∗
E(�nD,�nE), (14b)

describing how mass redistribution is driven by the gradients
in the cytosolic protein densities, which are slaved to the local
equilibria. Thus the mass-redistribution nullclines are simply
given by �c∗

D = 0 and �c∗
E = 0. Geometrically, this corre-

sponds to the intersection lines between the reactive nullcline
surfaces c∗

D,E(nD, nE), and their respective point reflections,
reflected at the point (n̄D, n̄E); see gray surfaces with dashed
outlines in Figs. 4(a) and 4(b). In other words, the shape of
reactive nullcline surfaces encodes the essential information
about the nonlinear reaction kinetics for the dynamics of the
spatially coupled system.

This construction is the analog to the construction for the
two-component system shown in Fig. 3. In fact, in slices with
nE = const, the line c∗

D(nD) has the same shape as the nullcline
shown in Fig. 3. This “hump shape” gives rise to the N-shaped
MinD-redistribution nullcline [∂t�nD = 0, see blue line in
Figs. 4(a) and 4(c)]. The two outer branches of this N-shaped
nullcline represent polarized MinD states, corresponding to
the two outer fixed points in the analogous two-component
system construction Fig. 3(c). We will make this more con-
crete below in Sec. III C. If n̄D lies to the left of the crest
of c∗

D(nD, nE), the resulting MinD-redistribution nullcline is
monotonic, analogous to the single fixed point in Fig. 3(b).
The crest of the c∗

D surface defined by ∂nD c∗
D(nD, nE) = 0 ap-

proximately follows the line nE/nD ≈ kdD/kdE for sufficiently
large nE (specifically in the limit n2

E � kDkdDkde/k3
dE). This

relation is found by applying the implicit function theorem to
evaluate the derivative ∂nD c∗

D using the definition Eq. (10) for
the reactive equilibria.

In contrast to the nontrivial MinD-redistribution null-
cline, the monotonicity of the surface c∗

E(nD, nE) gives rise
to a monotonic MinE-redistribution nullcline [red line in
Figs. 4(b) and 4(c)] for all n̄D, n̄E.

Mass-redistribution potentials. In passing, let us intro-
duce an alternative formulation of the mass-redistribution
dynamics Eq. (12) that allows one to generalize the graph-
ical construction presented in Fig. 4 to arbitrary values
of all diffusion constants (including Dd,de > 0). Using the
mass-redistribution potentials (cf. Ref. [25]), ηD = cD +
(Dd/DD)md + (Dde/DD)mde and ηE = cE + (Dde/DE)mde,
Eq. (12) can be written as

∂t�nD(t ) = −DD �η∗
D, (15a)

∂t�nE(t ) = −DE �η∗
E. (15b)

Since these equations have the same form as Eq. (14), the
construction shown in Fig. 4 can be generalized by exchang-
ing c∗

D,E for η∗
D,E. The surfaces η∗

D and η∗
E can be interpreted

as “superpositions” of the local-equilibrium surfaces of the
individual components weighted by the respective exchange
rates Di. The effect of reaction rates or diffusion constants on
the spatial dynamics is encoded in the deformation of these
surfaces under variation of these parameters (see movies 1 and
2 in Ref. [56]).
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B. Min pole-to-pole oscillations are relaxation oscillations

The nullclines enable one to read off the qualitative struc-
ture of the dynamics in the (�nD,�nE)-phase plane [57,58].
Specifically, one immediately recognizes the characteristic
scenario of a relaxation oscillator.5 Recalling that the two
outer branches of the N-shaped MinD-redistribution null-
cline correspond to polarized MinD states, this shows that
Min pole-to-pole oscillations are relaxation oscillations of
the MinD-polarity direction driven by mass-redistribution of
MinE between the two cell halves.

The limit cycle of relaxation oscillators can be graphically
constructed in the limit where the variable with the N-shaped
nullcline evolves on a much faster timescale compared to the
other variable [58]. In the Min system, this corresponds to
setting MinE redistribution to a much slower timescale than
MinD redistribution (DD � DE). In this limit, the limit cycle
deforms into a “trapezoidal” trajectory; see Fig. 4(d). The
dynamics slowly follows the N-shaped MinD-redistribution
nullcline (polarized MinD states), driven by MinE redistribu-
tion, and rapidly switches between the left and right branches
at the extrema of this nullcline, driven by MinD redistribution.

In a broader context, the above analysis demonstrates
how the reactive nullcline surfaces and their intersection
lines–which are the mass-redistribution nullclines—are help-
ful tools to explore the ability of systems to show nontrivial
spatial dynamics without the need to perform a full scale
finite element simulation. The shape of the reactive null-
cline surfaces and thus the mass-redistribution nullclines are
ultimately a consequence of the nonlinear feedback in the
reaction kinetics. In the specific case of the Min system, these
are the recruitment terms kdDmdcD and kdEmdcD. It is impor-
tant to recall that the shape of the nullclines resulting from
the reaction kinetics, and not the specific reaction kinetics
per se, determines the spatial (mass-redistribution) dynamics.
Hence, different reaction terms can give rise to same nullcline
geometry, and thus the same spatial dynamics. Rather than
classifying dynamics based on their reaction network topol-
ogy, this suggests that a classification might be possible in
terms of the shapes of their reactive nullcline surfaces and the
resulting mass-redistribution nullclines. We demonstrate this
in Sec. IV, where we analyze two further paradigmatic models
for intracellular pattern formation.

C. The role of diffusive MinE transport

So far, we have neglected membrane diffusion to elu-
cidate the basic Min-oscillation mechanism. We now relax
that approximation and first consider the role of MinE mem-
brane diffusion. Using the conservation law mde + cE = nE,
Eq. (12b) can be recast as

∂t�nE = −(DE − Dde)�c∗
E(�nD,�nE) − Dde�nE. (16)

This shows that diffusive transport on the membrane always
counteracts cytosolic transport. In particular, if one were to
set DE = Dde, there would be no MinE mass-redistribution

5Relaxation oscillators are often encountered in simple two-
component models of (biological) oscillators and switches; see, e.g.,
the FitzHugh–Nagumo model [74,75] and Chap. 5 in Ref. [76].

since Eq. (16) would reduce to ∂t�nE = −Dde�nE, such that
�nE would simply relax to the homogeneous state �nE =
0. Thus, in control space, the MinE-redistribution nullcline
would simply be given by �nE = 0, which intersects the
N-shaped MinD nullcline at three points, representing the un-
stable homogeneous steady state in the center and two stable
polarized states on the left and right, respectively. Hence,
the dynamics would reduce to the one-dimensional control
space for MinD redistribution which, corresponding to the
scenario shown in Fig. 3. From this Gedankenexperiment, we
conclude that the elementary pattern-forming mechanism of
the Min system is MinD polarization and does not require
spatial redistribution of MinE. The specific function of MinE
in MinD polarization is that of a “local catalyst” that provides
nonlinear feedback essential in shaping the nonmonotonic
reactive MinD nullcline c∗

D(nD). Thus, while redistribution of
MinE is not required for the formation of a polarized MinD
pattern, it causes the emergence of oscillations by periodically
inducing switching of the MinD polarization direction as we
showed in the previous section.

Physiologically, DE = Dde would actually correspond to
a scenario where free MinE remains membrane bound, i.e.,
MinE would cycle between the MinD-bound and the free
conformation on the membrane and cE would then denote the
concentration of free MinE. The stationary patterns resulting
in this case provide a potential hint for the possible biomolec-
ular features of MinE responsible for the (quasi)stationary
patterns reported in recent experiments using MinE purified
with a His-tag at the C-terminus instead of the N-terminus
[50]. Compared to his-MinE, MinE-his might have a strong
membrane affinity causing free MinE to remain membrane-
bound after the dissociation of MinDE complexes. Free MinE
on the membrane diffuses much slower than in the cytosol
thus suppresses the MinE redistribution that gives rise to
dynamic patterns (waves and oscillations). This hypothesis
suggests that increasing the MTS strength of MinE might
cause a transition from dynamic to quasi-stationary patterns.

To elucidate the role of MinE transport more quanti-
tatively, we now study the transition from stationary to
oscillatory patterns as a function of the diffusion constants
DE and Dde. Varying these diffusion constants results in
a deformation of the MinE-redistribution nullcline in con-
trol space. Specifically, the shape of the MinD-redistribution
nullcline only depends on the difference DE − Dde, i.e.,
the balance of co-polarizing diffusion of free MinE com-
pared to the contra-polarizing diffusion of MinDE complexes.
In the relaxation-oscillation limit where MinE-redistribution
is much slower than MinD redistribution (Dde,DE � DD),
the locations of the intersection points between the MinD’s
and MinE’s mass-redistribution nullclines determine whether
the system is oscillator or exhibits stationary polarity [see
Fig. 5(b)]. The transition case separating these two regimes is
when the MinE-redistribution nullcline intersects the MinD-
redistribution nullcline at its extrema. In addition, the stability
of the homogeneous steady state can be obtained by a linear
stability analysis in LQSSA (see Appendix C 2). The resulting
“phase diagram” is shown in Fig. 5(a).

This phase diagram obtained using LQSSA can be com-
pared to the phase diagram of the full model obtained by
numerical simulations [see Fig. 5(b)]. The fact that the
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FIG. 5. Phase diagrams of Min protein dynamics. In each panel, the points and shaded background indicate the results from numerical
simulations, distinguishing no patterns (gray), oscillations (purple) and stationary polarity (green). (a) Phase diagram for the LQSSA dynamics
Eq. (12). The solid purple and green line indicate the Hopf and pitchfork bifurcations found by linear stability analysis of the LQSSA dynamics.
Along the dashed red line, the MinE-redistribution nullcline intersects MinD-redistribution nullcline at the latter’s extrema. In the limit
DE,Dde � DD, this marks the transition between relaxation oscillations and stationary polarity. The gray line indicates the line DE = Dde.
(b) Example trajectories in the (�nD, �nE )-phase plane [cf. Fig. 4(c)]: (i) no instability, (ii) pole-to-pole oscillations, (iii) stationary polarity
for DE > Dde, and (iv) stationary polarity for DE < Dde (note the opposite slope of the MinE-redistribution nullcline). In (iii) and (iv), the
dashed gray line shows the separatrix, that separates the basins of attraction of the two polarized states. (c) Phase diagram from numerical
simulations of the full two-compartment dynamics, Eq. (1). Note the excellent agreement with LQSSA (a). (d) Phase diagram from numerical
simulations of the PDEs on a line (varying DE in full three-dimensional cell geometry affects also the vertical gradients rather than just lateral
diffusion). For parameters, see Table I

topology of the two phase diagrams agrees shows that the
reduced dynamics, Eq. (12), accounts for the relevant physics
of the in vivo Min system.

D. Concluding remarks on the Min system

We have shown that dynamics underlying Min pole-to-pole
oscillations can be reduced to the redistribution of MinD and
MinE mass between the two cell poles. A simple geometrical
construction yields the qualitative phase space structure of
the mass-redistribution dynamics. Specifically, we recovered
the paradigmatic N-shaped nullcline that underlies general
relaxation oscillations. This systematic reduction immediately
allowed us to transfer the knowledge on relaxation oscil-
lations to the Min pole-to-pole oscillations. The outer legs
of the N-shaped MinD-redistribution nullcline correspond to
oppositely polarized MinD states. MinE redistribution drives
cyclic switching between these two states, giving rise to the
pole-to-pole oscillations. In the absence of MinE redistribu-

tion (achieved by setting DE = Dde), MinD forms stationary
polarized patterns instead. This shows that the elementary
pattern underlying for pole-to-pole oscillations in the in vivo
Min system is not oscillatory but generic cell polarity. We
conclude that the oscillatory dynamics are not a direct prop-
erty of the kinetic interaction network, which is the same for
the oscillatory and nonoscillatory regime. Instead, oscillations
arise as consequence of MinE redistribution “downstream”
of MinD polarization. MinE redistribution is not necessary
for MinD polarization while MinD redistribution is strictly
required. This links pole-to-pole oscillation in the Min system
and generic cell polarity and suggests a hierarchy of species in
large multispecies multicomponent systems. Notably, this also
shows that the functional role of MinE for pattern formation
cannot be considered to be that of an inhibitor in the sense of
the “activator-inhibitor” mechanism [59,60].

The above analysis of the mass-redistribution dynamics
elucidates the different roles of MinD and MinE redistribution
for Min-protein pattern formation. In Sec. IV, we apply the
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same reduction approach to two other intracellular systems.
This will allow us to compare the underlying pattern-forming
mechanisms on the level of their mass-redistribution nullcline
geometries.

a. Min oscillations in vitro. Let us emphasize again that the
pole-to-pole oscillations emerge due to the diffusive coupling
of two compartments, representing the two cell halves. An
isolated compartment exhibits only stable, stationary states.
In other words, the in vivo Min system is not an “oscillatory
medium” of coupled oscillators. Remarkably, this is in stark
contrast to the Min-protein pattern dynamics observed in clas-
sical in vitro setups with a large cytosolic bulk volume on top
of a flat membrane surface. Here, a single (laterally isolated)
membrane patch is coupled to an extended cytosolic reservoir,
and it is this coupling that gives rise to local oscillations
[6,26]. This shows that on a mechanistic level, Min protein
patterns in cells are distinct from patterns in reconstituted
systems with a large bulk.

In a recent work, the Min system was studied in microflu-
idic chambers with two flat membrane surfaces separated by
a bulk solution [26] (see Fig. 8 in Appendix B). This limits
the bulk volume above each membrane patch and thus sup-
presses the local oscillations for sufficiently low bulk height.
Interestingly, for intermediate bulk height, experiments and
a theoretical analysis have revealed an oscillation mode that
transports mass between the two opposite membrane surfaces
through the bulk in-between them. This oscillation is anal-
ogous to the in vivo pole-to-pole oscillation where the two
opposite membrane patches play the role of the cell poles
in vivo. Correspondingly, with regard to the in vitro geome-
try, the two-compartment system serves as a minimal system
to represent single vertical bulk column and the membrane
patches at its top and bottom; see Fig. 8.

b. Historic note: Oscillations driven by diffusive coupling
of two “dead” cells. Intriguingly, the Min-oscillation mech-
anism described above has some parallels to a conceptual
model for diffusion-driven oscillations studied by Smale al-
ready in 1974 [61]. Smale’s motivation, inspired by Turing’s
pioneering work [9], was to show how two identical reactors
that exhibit only a stable stationary state when isolated, start
oscillating (in anti-phase) when coupled diffusively. Or, as
Smale put it: “One has two dead (mathematically dead) cells
interacting by a diffusion process which has a tendency in
itself to equalize the concentrations. Yet in interaction, a state
continues to pulse indefinitely.” As we showed above, the in
vivo Min system also has that property.

Remarkably, Smale used a relaxation oscillator as starting
point to construct the diffusion driven two-compartment os-
cillator. In a broader view, this demonstrates how structures
in phase space, like fixed points and nullclines, are powerful
tools to understand and design nonlinear systems. For in-
stance, they have been used to great success in the study of
neuronal dynamics [62] and biochemical oscillators [63,64].

IV. CONTROL SPACE FLOW OF THE PAR
AND CDC42 SYSTEMS

The above investigation of the Min system demonstrates
that the key characteristics of the spatio-temporal protein
dynamics, and the underlying pattern-forming mechanisms,

TABLE II. Parameters for the PAR model adapted from [23].

Parameter Value Unit

Dc 10 μm2 s−1

Dm 0.1 μm2 s−1

nA 3.0 μm−2

nP 3.0 μm−2

ka 0.1 s−1

kA 1.0 s−1

kap 0.1 μm2 s−1

kp 0.1 s−1

kP 1.0 s−1

kpa 0.1 μm2 s−1

can be inferred from the shapes of the reactive nullcline
surfaces. In the following, we use the approach introduced
above to two paradigmatic model systems for intracellular
self-organization: the PAR system of C. elegans and the
Cdc42 system of budding yeast (S. cerevisiae). Starting from
previously established mathematical models on spatially con-
tinuous domains, we follow the same reduction procedure as
for the Min system; details on the models, parameter choices
and the reduction procedure are described in Appendix D. Put
briefly, the spatially continuous dynamics is mapped to the
two-compartment setting, and the LQSSA is applied such that
only the redistributed masses remain as dynamic variables.
The mass-redistribution dynamics can then be analyzed in
terms of the reactive nullcline surfaces and the resulting phase
portraits as shown in (Fig. 6). This allows us to compare
the pattern forming mechanisms underlying these different
systems.

a. PAR system. The first division of C. elengans embryos
is asymmetric, where the fate of the daughter cells is defined
by proteins called aPARs and pPARs that segregate along the
long axis of the ellipsoidal cells [4]. A model for the forma-
tion of these segregated domains was introduce in Ref. [21],
based on the mutual antagonism between cortex-bound A-
and pPARs (see Fig. 6(a). Here, we adopt this model here,
to illustrate the phase portrait structure that is characteris-

TABLE III. Parameters for the Cdc42 model adapted from [67].
ζ = R/3 is the bulk-surface ratio of the spherical cell.

Parameter Value Unit

Dc 10 μm2 s−1

Dm 0.01 μm2 s−1

R 4.0 μm
nD 3000/(4πR2) μm−2

nB 6500/(4πR2) μm−2

kbd 0.2 μm2 s−1

ktd 1.0 s−1

kdt 0.002 s−1

kbD 0.266/ζ μm2 s−1

kd 1.0 s−1

kD 0.28 /ζ s−1

kB 0.001/ζ μm2 s−1

ktB 0.009 /ζ μm2 s−1

kb 0.35 s−1
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FIG. 6. Reaction networks, reactive nullcline surfaces and control-space phase portraits for the PAR system of C. elegans [(a)–(c)] and
the Cdc42 system of S. Cerevisiae [(d)–(f)]. (a) Cartoon of a C. elegans embryo showing the segregated aPAR and pPAR domains which as a
result of mutual detachment of aPAR and pPAR proteins from the membrane. (b) Reactive nullcline surfaces of aPARs (blue, left) and pPARs
(red, right). Note the symmetry under the exchange A ↔ P. (c) Control-space phase portrait showing the mass-redistribution dynamics and the
mass-redistribution nullclines of aPARs (blue) and pPARs (red). Both mass-redistribution nullclines intersect the lines �nA,P = 0 only once,
indicating that pattern formation requires redistribution of both protein species. For parameters, see Table II. (d) Cartoon of a budding yeast
cell showing a polar cluster of co-localized Cdc42 and Bem1-GEF complexes. In WT cells, Cdc42 and Bem1-GEF complexes (homologous
to Scd1-Scd2 complexes in fission yeast) mutually recruit each other to the membrane and are therefore co-localized in the resulting pattern.
(e) Reactive nullcline surfaces of Cdc42 (blue, left) and Bem1-GEF (red, right). For parameters, see Table III. (f) Control-space phase portrait
showing the mass-redistribution dynamics and the mass-redistribution nullclines of Cdc42 (blue) and Bem1-GEF (red). The N-shaped Cdc42-
redistribution nullcline intersects the line �nB = 0 three times, indicating that redistribution of Bem1-GEF complexes is not required for
pattern formation. In contrast to MinE in the Min system, where cytosolic MinE redistribution drives oscillations, the cytosolic redistribution
of Bem1-GEF complexes has a stabilizing effect on stationary patterns.

tic of the mutual-antagonism mechanism. Model details and
the parameters are given in Appendix D. Since, the reaction
network (and the parameters used) are symmetric, so are
the reactive nullcline surfaces [Fig. 6(b)]. From the resulting
mass-redistribution nullclines [Fig. 6(c)], we can immediately
see that the patterns form by segregation into domains where
pPAR concentration is high while aPAR concentration is low
and vice versa. Notably, the mass-redistribution nullclines do
not intersect the lines �nA = 0 and �nP = 0 away from the
origin, indicating that PAR-pattern formation the requires the
redistribution of both protein species. Moreover, the topol-
ogy of the phase portrait is such that oscillations cannot
occur. We expect that these qualitative insights generalize to
more detailed models for PAR-protein polarity, see e.g., Ref.
[65].

b. Cdc42 system. Budding yeast cells divide asymmetri-
cally by budding and growing a daughter cell. The division
site is determined by the polarization of GTP-bound Cdc42
to a “spot” on the membrane [66]. In wild-type cells, Cdc42
polarization is driven by a mutual-recruitment mechanism that
is facilitated by the scaffold protein Bem1. Bem1 is recruited
to the membrane by Cdc42-GTP. Membrane-bound Bem1
then recruits Cdc42’s GEF, Cdc24, forming Bem1-GEF com-
plexes. In turn, Bem1-GEF complexes recruit Cdc42-GDP
from the cytosol and catalyze its conversion to Cdc42-GTP,

thus closing the feedback loop. To illustrate the phase por-
trait structure that is characteristic of this mutual recruitment
mechanism, we adopt a simplified form of the detailed, quan-
titative model introduced in Ref. [67]; see Appendix D. In
the simplified model, Bem1-GEF complexes are described
as a single species with a membrane-bound and a cytosolic
state [see Fig. 6(d)]. Figures 6(e) and 6(d) shows the reac-
tive nullcline surfaces and the resulting phase portrait of this
model. The location of the mass-redistribution nullcline in-
tersection points, corresponding to stationary polarized states,
indicates that Cdc42 and Bem1-GEF complexes co-polarize
as expected. Moreover, the N-shaped Cdc42-redistribution
nullcline that intersects the line �nB = 0 three times, indicat-
ing that polarization does not require spatial redistribution of
Bem1-GEF complexes. Still, the enzymatic action of Bem1-
GEF complexes in the local reaction kinetics is essential for
Cdc42 polarization as they provide the nonlinear feedback
that shapes the Cdc42-redistribution nullcline. In this sense,
Bem1-GEF complexes play an analogous but inverse role to
MinE in the Min system. In the physiological case, Bem1-
GEF complexes they stabilize polarity by co-polarizing with
Cdc42. In the unphysiological case that free Bem1-GEF com-
plexes diffuse slower that membrane-bound ones (Db > DB),
contra-polarization of Bem1-GEF complexes drives cycling
switching of Cdc42 polarity. Thus the Cdc42 system and the
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Min system can be regarded as two complementary versions
of the same mechanism in which the enzymatic function of
the “secondary protein” (Bem1-GEF/MinE) is reversed such
that its spatial redistribution has opposite effects in the two
systems.

The above analysis has a striking implication: On the level
of the pattern forming mechanisms, the Cdc42 system is
closely related to the Min system, while the PAR system oper-
ates based on a fundamentally different mechanism. From the
perspective of the phenomenology exhibited for physiological
parameters, this is highly surprising since the Cdc42 system
and the PAR system exhibit stationary polarity patterns, while
the Min system exhibits pole-to-pole oscillations.

V. CONCLUSIONS

Quantitative models of biological systems are typi-
cally multicomponent multispecies systems with a high-
dimensional parameter space. It is therefore particularly
challenging to find a unifying level of description where the
mechanisms underlying different models can be compared.

Here, we presented a reduction method to obtain a phase-
portrait representation of mass-conserving pattern forming
systems which crystallizes their key qualitative features. This
reduction is based on two steps. First, a reduction of the
spatially continuous domain to two well-mixed compartments
coupled by diffusion. This approximation assumes that the
pattern of interest is a single “interface” connecting a high
density region to a low density region. This is rather the
rule than the exception for protein patterns observed in cells,
especially bacterial cells due to their small size. Moreover,
such an interface can also be interpreted as the elemen-
tary building block of more complex patterns with many
interfaces. Second, the local quasi-steady-state approximation
(LQSSA), which assumes that the relaxation of the concen-
trations in the compartments to a reactive equilibrium (local
quasi-steady state) is fast compared to slow diffusive mass
exchange between the compartments. This approximation is
motivated by the insights that the essential degree of free-
dom is the spatial redistribution of the conserved masses and
that the key information about the reaction kinetics is encoded
in the dependence of the reactive equilibria on these masses.
Limitations and potential extensions of the LQSSA are dis-
cussed in the Outlook, Sec. V A.

After these two reduction steps, the only remaining de-
grees of freedom are the differences in globally conserved
masses between the two compartments. In this reduced sys-
tem, the dynamics of these mass differences can simply be
inferred from the reactive nullcline (hyper)surfaces. Specifi-
cally, the intersection lines of reactive nullcline surfaces act
as mass-redistribution nullclines in the phase space of the
redistributed masses. The mass-redistribution nullclines de-
pend on the diffusion constants and thus inform about the
role of mass-redistribution in the observed phenomena. Thus
they allow a classification of pattern-forming systems, as we
demonstrated by comparing the phase portraits of three dif-
ferent protein-pattern forming systems. Attempts to classify
pattern-forming systems based on the topology of the protein
interaction network face the difficulty that many networks
can give rise to similar phenomena, and the same network

can produce different phenomena depending on parameters
(e.g., stationary and oscillatory patterns in the Min system).
In contrast, here we have demonstrated that the geometry
of the reactive nullcline surfaces informs on the key quali-
tative features of the observed dynamics. This suggests that
one can identify geometric design principles based on the
shape of the reactive nullcline surfaces and the resulting mass-
redistribution nullclines. Such design principles might guide
future model building efforts in a similar way as the design
principles that have been identified for neural excitability [62]
and well-mixed biochemical oscillators [63,64].

The phase-portrait analysis in terms of mass-redistribution
nullclines also shows that not all species need to be re-
distributed for patterns to form in the first place. One
can construct a “core” pattern-forming system, where these
species are considered nondiffusible and their kinetics ab-
sorbed into effective kinetics of the redistributed species. In
the Min system and the Cdc42 system, the (local) enzymatic
action of MinE / Bem1-GEF complexes is part of the core
pattern-forming mechanism, whereas their cytosolic redistri-
bution is not. Redistribution of MinD / Cdc42 is sufficient for
the formation of (stationary) MinD / Cdc42 patterns. Thus
the elementary polarization mechanism is equivalent in the
Min system and the Cdc42 system. The difference of these
system lies in the effect of the mass redistribution of the
“secondary proteins” MinE and Bem1-GEF, respectively. In
the Min system, redistribution of MinE by cytosolic diffusion
system drives cyclic switching of the MinD polarity axis and
thus gives rise to pole-to-pole oscillations. In contrast, redis-
tribution of Bem1-GEF complexes stabilizes stationary Cdc42
polarization.

Taken together, the shape of the reactive nullcline surfaces
and the resulting mass-redistribution nullclines inform about
important qualitative features of a model and thus bridge
the gap between nonlinear reaction kinetics and the observed
phenomena. In particular, they allows one to disentangle the
functional roles of each protein species in the pattern-forming
mechanisms.

Assuming a well-mixed cytosol misses important physics.
The assumption of a well-mixed cytosol is often made a priori,
justified by the observation that diffusive transport on cellular
scales is fast compared to membrane diffusion (and reaction
kinetics); see, e.g., [10,11,13,29–31]. This reasoning over-
looks that the relative rates of transport can be important if
there is more than one protein species diffusing in the cytosol.
Or put differently, setting the cytosol concentrations well-
mixed neglects that the cytosol gradients of different species
can have different amplitudes, which may be mechanistically
relevant, even if the cytosol gradients are shallow compared
to membrane gradients.

In fact, for the Min system, we find that increasing the
diffusion of free MinE eventually always suppresses pattern
formation in the Min system [see phase diagram Fig. 5(a) and
Appendix B 4]. This shows that the relative rate of cytosolic
transport of MinD versus MinE (and, the relative amplitude
of the cytosolic gradients, respectively) is important for the
dynamics. This shows that one misses important physics if
one assumes a well-mixed cytosol a priori.

In general, the timescales of cytosol diffusion—even if
fast— and, correspondingly, the relative amplitudes of cytoso-
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lic gradients—even if shallow—can be important if there is
more than one cytosolic (fast-diffusing) species. Approaches,
such as the so called “local-perturbation analysis” [30], that
rely on the a priori approximation to treat fast diffusing com-
ponents as well-mixed, may therefore miss important features
of the dynamics.

In passing, we note that explicit cytosol diffusion is also
important to account for effects due to cell geometry. This
is relevant for the axis selection of polarity patterns in rod-
shaped or ellipsoidal cells [49,65,68]. Compartment-based
models—although requiring more than two compartments—
have also been employed successfully to study such geometry
effects [68].

A. Outlook

a. Future applications and generalizations. Going forward,
it will be interesting to apply the reduction method and phase-
portrait analysis presented here to other model systems, e.g.,
the oscillatory Cdc42-polarization in fission yeast [12,13].
The phase portrait analysis might be particularly helpful to
study genuinely nonlinear phenomena like stimulus induced
pattern formation and stimulus-induced polarity switching
[11] which are not accessible to linear stability analysis.

Potential obvious generalizations of the two-compartment
setting are systems with asymmetric exchange rates, and those
with heterogeneous compartments (reaction kinetics, bulk-
surface ratio, size). Indeed, setting the redistribution of one
species to a slow timescale in the models with two conserved
masses (e.g., Min system), makes the system heterogeneous
from the point of view of the fast species. The heterogeneity
is determined by distribution of the slow species between the
two compartments and changes on the slow timescale. Con-
crete application for heterogeneous two-compartment models
might be Ran-GTPase driven nuclear transport, where the two
compartments represent the cytoplasm and nucleoplasm, with
transport between them through pores in nuclear envelope
[69–72]. More broadly, two-compartment systems with asym-
metric exchange rates and heterogeneous compartments have
been studied in ecology [17,19], where interesting new effects
compared to the symmetric case were found.

Another route of generalization is to study more than two
coupled compartments. In this case, the phase space of the
mass differences becomes high-dimensional and thus imprac-
tical for a phase-portrait analysis [68]. Instead, one can plot all
local masses into one graph, as was done in Ref. [6]. This way,
the spatial information is lost, but one can still gain insight
about the role of the control space structure (surface of local
equilibria and their stability) for the dynamics of the spatially
coupled system.

b. Relation to parameter-space topology. A previous work
on reaction–diffusion models for cell polarity has identi-
fied generic topological features of their parameter spaces
[23]. In the specific case of two-component systems, the
origin of these features was recently traced back to the
phase space geometry, specifically the shape of the reac-
tive nullcline of pattern forming systems (see Sec. VII in
Ref. [25]). Two-compartment systems are a promising setting
to generalize these findings to systems with more compo-
nents and phenomena like pole-to-pole oscillations. Indeed,

the way the mass-redistribution nullclines deform due to the
variation of parameters (kinetic rates, diffusion constants,
average masses) determines the bifurcations in parameter
space. Thus we expect a close relation between the ge-
ometry of mass-redistribution nullclines and phase space
topology.

c. Relaxing the local quasi-steady state assumption. The
analysis presented here relied crucially on the stability of the
local equilibria and a timescale separation between reactive
relaxation to the local equilibria and diffusive mass redistri-
bution. This allowed us to make the LQSSA Eq. (4). In the
absence of this timescale separation, the concentrations will
deviate from the local equilibria due to the diffusive flows
in the individual components. For two-component systems,
this deviation from the local equilibria has only a quantitative
effect but does not change the dynamics qualitatively. This
is because the local phase spaces are one-dimensional such
that the reactive flow is always directed straight towards the
local equilibrium [see Fig. 2(a)]. In contrast, in systems with
more components, explicitly accounting for the relaxation to-
wards local equilibria may be important to capture the salient
features of the full dynamics. One potential approach is to
allow for small deviations from the local equilibria along the
direction of the slowest decaying eigenvector. Moreover, local
equilibria may become unstable, driving the concentrations
away from them [24,73]. This qualitative change of the local
reaction dynamics can have profound consequences on the
dynamics of the spatially extended system, as was studied in
detail in Refs. [24,26]. There, it was found that destabilization
of the local equilibria gives rise to chaos near the onset of
pattern formation.

Even if a systematic reduction in terms of a (general-
ized) LQSSA is not possible, visualizing the trajectories from
full numerical simulations in control space can be a pow-
erful tool to gain insight into the underlying mechanisms
[6,26].
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APPENDIX A: RELATING DIFFUSIVE EXCHANGE RATES
TO DIFFUSION CONSTANTS

The diffusive exchange rates Dα can be related to the
diffusion constants Dα in a spatially continuous system in two
alternative ways. First, a finite volume approximation of the
Laplace operator on a line with reflective boundary conditions
yields

D(FV)
α = 4

L2
Dα. (A1)

Second, we can choose the exchange rates such that the
linearization of Eq. (1) for an antisymmetric perturbation
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FIG. 7. Comparison of the Min-protein dynamics in the full 3D geometry of an E. coli cell (a) to the two-compartment system [(b) and (c)]
representing the two cell-halves (poles); see Sec. III for details. Nonlinear reactions ( f , red arrows) account for cycling between membrane-
bound and cytosolic states (concentrations m and c). Diffusive exchange is indicated by purple arrows. Time traces (center) and phase-space
trajectories (right) of the redistributed masses �nD,E between the two cell-halves/compartments show good qualitative agreement between the
full 3D simulation and the two-compartment system. Importantly, setting the diffusive exchange rates to a much slower timescale (D → εD,
here ε = 10−2) does not qualitatively alter the pole-to-pole oscillation (c).

u1,2 = u∗ ± δu is identical to the linearization of a spatially
continuous MCRD system for a Fourier mode ∼ cos qx with
q = π/L:

D(LSA)
α = π2

2L2
Dα. (A2)

The factor 2 in the denominator originates from the lineariza-
tion of the exchange terms in Eq. (1) for the antisymmetric
mode where any perturbation in compartment 1 is balanced
by an equal and opposite perturbation in compartment 2.
For symmetric perturbations u1,2 = u∗ + δu, corresponding
to homogeneous perturbations of the continuous system, the
exchange term in Eq. (1) cancels. For the exchange rates
Eq. (A2), the small amplitude dynamics of antisymmetric per-
turbations of the two-compartment system exactly represent
the linearized dynamics of a single mode q = π/L in the
spatially continuous system, and one can use the system size
L as a bifurcation parameter to sample the whole dispersion
relation σ (q = π/L).

The two options above differ by a factor D(LSA)
α /D(FV)

α =
π2/8 ≈ 1.23. This can be interpreted as an effective rescaling
of the system size L by a factor π/(2

√
2) ≈ 1.11 due to the

finite difference discretization. Throughout this study, we used
the exchange rate defined by Eq. (A2).

APPENDIX B: MIN SYSTEM: GEOMETRY REDUCTION,
PARAMETER CHOICE, NUMERICAL SIMULATIONS AND

PHASE DIAGRAM

1. Reduction from three-dimensional spherocylinder to
two-comparmetment system

We model the three-dimensional cell geometry as a sphe-
rocylinder of length L = 3μm and radius R = 0.5μm. The
surface of this spherocylinder represents the cell membrane
and is the domain for the protein densities md, mde, while its
three-dimensional bulk is the domain of the cytosolic com-
ponents cDT, cDD and cE. Reactive boundary conditions at the
surface account for attachment and detachment of proteins at
the membrane. The mathematical implementation of the Min-
skeleton model in this three-dimensional bulk-surface coupled
setting can be found in [26].

To reduce this geometry to the two-compartment system,
we cut the spherocylinder at midplane and assume that the
cytosol and membrane in both halves are well mixed. That
is, we only account for concentration differences between the
two cell halves which serve as a proxy for the concentration
gradients along the cell. This reduction preserves the key
features of the Min pole-to-pole oscillation (see Fig. 7). More-
over, we express the cytosol concentrations in units of surface
density, ĉ = ζc, where ζ is the ratio of cytosolic bulk volume
to membrane area (short bulk-surface ratio). This allows us
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FIG. 8. Illustration of an in vitro setup using a flat microchamber
with two membrane surfaces (gray planes) on top and bottom of a
bulk volume [26]. An individual column of that system, comprising
two membrane patches and the bulk volume in-between them can be
pictured as an analog to the cell geometry, where the two membrane
patches correspond to the cell poles. The analogous approximation
by two compartments, as shown on the right, is valid as long as
the vertical bulk gradient is approximately linear. Comparing to
Fig. 1(a), the analogy between pole-to-pole oscillations in cells and
vertical membrane-to-membrane oscillations in microchambers be-
comes immediately evident.

to collect all concentrations in a vector that does not mix
units. Substituting c → ĉ/ζ , all reaction rates for reaction
terms involving a cytosol concentration are rescaled by the
bulk-surface ratio: k̂ = k/ζ . In the following, we drop the
hats.

The bulk-surface ratio of a spherocylinder is given by

ζ = πR2L + 4πR3/3

2πRL + 4πR2
= RL + 4R2/3

L + 4R
, (B1)

which, with L ≈ 3μm and R ≈ 3μm for E. coli, gives ζ ≈
0.23.

For the in vitro setup using flat microchambers whose top
and bottom surfaces are covered by lipid bilayers that mimic
the cell membrane, the bulk-surface ratio is simply H/2,
where H is the height of the microchamber; see Fig. 8. With
respect to this microchamber geometry, the two-compartment
system represents a single, laterally isolated cytosol column
with two membrane patches at its top and bottom. Only verti-
cal gradients in the cytosol on the scale of the microchamber
height are accounted for by the two compartments.

2. Parameter choice

For the physiological parameters from [22], the densities
enter a regime where the reaction kinetics is bistable [i.e.,
where there are two stable reactive equilibria for given local
total densities, see Fig. 9(a)]. This “local bistability” does
not change the dynamics of the spatially coupled system
qualitatively. However, it complicates the analysis in terms
of LQSSA to deal with the branch switching that happens
when the dynamics leaves the locally bistable region: upon
passing the saddle-node bifurcations that delimit the bistable
region, the concentrations jump to the remaining branch of
stable equilibria. To avoid these technical subtleties, we re-
duce the total densities to values where the local system no
longer becomes bistable [inset in Fig. 9(a)]. Because this also
increases the minimal domain size for instability, we increase
the domain length by a factor 8. The oscillation period in-
creases due to this, but the limit cycle in control space does not
change qualitatively [see Figs. 9(b) and 9(c)]. For the model
parameters used here, see Table I. The local equilibria surfaces
corresponding to these parameters are shown in Figs. 5 and 10,
showing cytosol and membrane concentrations, respectively.

FIG. 9. Qualitative equivalence of the Min dynamics at physi-
ological protein densities and with scaled down densities. (a) Pa-
rameter space of the protein densities nD, nE showing the regime of
bistable reaction kinetics in gray and trajectories from simulations
of the two compartment model. The inset on the top right shows
a curve of reactive equilibria (blue) in a slice through the bistable
region at constant nE. The inset on the bottom right shows a blow-up
of the trajectory in the low density regime. Purple dots mark the
average masses. [(b) and (c)] Time traces of the mass differences
corresponding to the two trajectories in (a). Note the differently
scaled time axes.

3. Simulations on 1D domain

In Fig. 5, we compare simulations of the two-compartment
system to simulations in a spatially continuous domain (1D
line) with no-flux boundary conditions. The dynamics in this
domain is given by

∂t u(x, t ) = D∂2
x u + f (u), (B2)

D = diag({Di}) is the diffusion matrix. (As in the two-
compartment setting, the concentrations are measured in units
of surface density, μm−2. To convert the bulk concentrations

FIG. 10. Reactive equilibrium surfaces showing the membrane
concentrations md and mde.
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to volume densities, they must be divided by the bulk-surface
ratio ζ .)

The reason that we do not perform the simulations in the
three-dimensional cell geometry is that we are interested in
the role of lateral MinE transport, which we study by tuning
the diffusion constants DE and Dde. Bulk-surface coupling
induces bulk-concentration gradients in the direction normal
to the membrane. Those gradients control the flux onto and
off the membrane (attachment–detachment dynamics). Hence,
changing the cytosol diffusion constants in the bulk-surface
coupled 3D system affects both transport and the reaction
kinetics. Reducing the system to a 1D line geometry, which
effectively amounts to neglecting vertical gradients, allows us
to tune the cytosol diffusion constants to study the role of
lateral mass transport alone.

4. No instability for well-mixed cytosol

In the limit DD,DE → ∞, the cytosol is well mixed, i.e.,
c(1) = c(2) = c. Defining

f ( j)
i = fi(m

( j)
d , m( j)

de , cDD, cDT, cE),

i ∈ {d, de, DD, DT, E}, j = 1, 2, (B3)

with f given by Eq. (8), the dynamics is governed by

∂t m
(1,2)
d = ±Dd

(
m(2)

d − m(1)
d

) + f (1,2)
d , (B4a)

∂t m
(1,2)
de = ±Dde

(
m(2)

de − m(1)
de

) + f (1,2)
de , (B4b)

∂t cDD = f (1)
DD + f (2)

DD, (B4c)

∂t cDT = f (1)
DT + f (2)

DT , (B4d)

∂t cE = f (1)
E + f (2)

E . (B4e)

We now perform a linear stability analysis of the homoge-
neous steady states (m(1) = m(2) = m∗, f (u∗) = 0) of these
equations and show that they never exhibit a symmetry break-
ing instability. Because of the parity symmetry, 1 ↔ 2, of the
homogeneous steady state, even and odd perturbations are de-
coupled. Even perturbations correspond to the stability against
homogeneous perturbations. Odd perturbations correspond
lateral stability, i.e., stability against spatially inhomogeneous
perturbations. These are the relevant perturbations for pattern
formation. For odd perturbations, mass conservation of MinD
and MinE enforces δcDD = −δcDT and δcE = 0. Thus we
obtain the eigenvalue problem

∂t

⎛
⎝ δmd

δmde

δcDT

⎞
⎠ = Jodd

⎛
⎝ δmd

δmde

δcDT

⎞
⎠ (B5)

with the Jacobian

Jodd =
⎛
⎝kdDcDT − kdEcE − 4Dd 0 kD + kdDmd

kdEcE −kde − 4Dde 0
0 0 −2kD − 2kdDmd − 2λ

⎞
⎠. (B6)

The eigenvalues of Jodd are

σ1 = kdDcDT − kdEcE − 4Dd,

σ2 = −kde − 4Dde,

σ3 = −2kD − 2kdDmd − 2λ. (B7)

One immediately sees that only the first eigenvalue, σ1, may
become positive. A necessary condition for this is

kdDcDT − kdEcE > 0. (B8)

The Jacobian is evaluated at the homogeneous steady state
where f (u∗) = 0. In particular,

fd = (kdDc∗
DT − kdEc∗

E)m∗
d + kDc∗

D = 0, (B9)

which implies kdDc∗
DT < kdEc∗

E for all steady states. Therefore
the necessary condition for instability, Eq. (B8), is never ful-
filled. In conclusion, the Min skeleton model with well-mixed
cytosol cannot exhibit a lateral instability (instability against
spatially inhomogeneous perturbations). This result, derived
in the two-compartment setting also holds in spatially contin-
uous domains thanks to the correspondence between these two
setting; see Sec. A.

APPENDIX C: LQSSA

1. General setup and notation

Consider a system with N components, u = {ui}i=1,...,N ,
governed by local reactions f (u) that conserve M masses,
n = {nα}α=1,...,M . The conserved masses are given in terms
of the component vector via nα = sT

αu where sα are “stoi-
chiometric” vectors fulfilling sT

α f = 0. Denoting the diffusive
exchange rates by the matrix D = diag{Di}, the dynamics in
LQSSA is given by

�nα = −sT
αD�u∗(�n), (C1)

where the slaved concentration gradients �u∗ are defined
in terms of the reactive equilibria as �u∗ = u∗(n̄ + �n) −
u∗(n̄ − �n); cf. Eq. (6). The reactive equilibria u∗(n) are
defined by

0
!= F

(
u∗; n

) =
({

sT
αu∗ − nα

}
α

f (u∗)

)
. (C2)

The factor sT
α D determines the diffusive mass flux of species

α that results from slaved concentration gradients. We now
define the “mass-redistribution potentials” [25] ηα := sT

αDu,
which allows us to write the mass-redistribution dynamics as

∂t�nα = −�η∗
α (�n). (C3)
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2. Linear stability analysis

For small perturbations δn around the homogeneous steady
state �n = 0, the dynamics is given by

∂tδnα = −2
∑

β

∂nβ
η∗

α|n̄ δnβ,=
∑

β

Jαβ δnβ, (C4)

where, in the second line, we introduced the mass-
redistribution Jacobian

Jαβ := −2∂nβ
η∗

α|n̄ = −2sT
α D (∂nβ

u∗|n̄). (C5)

The eigenvalues of this Jacobian determine the stability of the
homogeneous steady state in LQSSA.

Before we continue to calculate the derivatives ∂nβ
η∗

α in
terms of the linearized reaction kinetics, let us take moment
to interpret the Jacobian J . In the case of one conserved
mass n, we have the 1×1 Jacobian J = −2∂nη ∗ |n. Hence,
we recover the nullcline-slope criterion for lateral instability
∂nη ∗ |n < 0 (cf. Eq. (27) in Ref. [25]). For more than one
conserved mass, the entries of J are the slopes of the nullcline
(hyper-)surfaces η ∗ (n) along the directions of the conserved
masses in parameter space. The eigenvalue problem for J can
therefore be interpreted as a generalized slope criterion.

To find the nullcline slopes ∂nβ
η∗

α , we take the derivative of
the defining equation for the reactive equilibria Eq. (C2) with
respect to nα which gives (implicit function theorem)

∂nα
u∗ = −(DuF|u∗ )−1∂nα

F = (DuF|u∗ )−1eα, (C6)

where eα is the unit vector with entry 1 in the αth component.
Substituting this in Jacobian yields

Jαβ = −2sT
α D (DuF|u∗(n̄) )

−1eβ. (C7)

This can easily be implemented numerically to obtain the
Jacobian and calculate its eigenvalues.

a. Equivalence to perturbation theory in long-wavelength
limit. The Jacobian derived above for the two-compartment
system in LQSSA can also be obtained by a long-wavelength
perturbation theory for linear stability analysis on a continu-
ous domain. To see why this is, consider the Jacobian on a
spatially continuous domain

Jq = Du f |n̄ − q2D, (C8)

where D = diag({Di}) is the diffusion matrix, and q is the
wave number (i.e., −q2 are the eigenvalues of the Laplace
operator). In the long wavelength limit q → 0, we can find
the eigenvalues of Jq by solving the degenerate perturbation
problem with q2 as perturbation parameter. We are interested
in the eigenvalue branches that emanate from 0 at q = 0,
corresponding to the conservation laws. The associated left
eigenvectors, (spanning the left nullspace of Du f ) are the
‘stoichiometric vectors” sT

α . The right eigenvectors of Du f
associated to the eigenvalue 0 are ∂nα

u∗. This follows im-
mediately from the defining equation f (u∗) = 0 by taking
the derivative with respect to nα and using that f does not
explicitly depend on nα . The first order perturbation of the
degenerate 0 eigenvalues is given by eigenvalues of the matrix

M (1)
αβ = −sT

α D (∂nβ
u∗), (C9)

where we used sT
α∂nβ

u∗ = ∂nβ
(sT

αu∗) = ∂nβ
nα = δαβ . Substi-

tuting the diffusion matrix D by the exchange rate matrix via

Eq. (A2) yields the desired result

Jαβ = q2M (1)
αβ . (C10)

b. Example: Min system. For the Min system as defined in
the main text, we have

u = (md, mde, cDT, cDD, cE)T,

sT
D = (1, 1, 1, 1, 0), sT

E = (0, 1, 0, 0, 1),

F = (
sT

Du − nD, sT
Eu − nE, fd(u), fde(u), fDD(u)

)
,

D = diag(Dd,Dde,DD,DD,DE), (C11)

where f is given in Eq. (8). Note that we eliminated to
components from f because the system would otherwise be
overdetermined owing to the two conserved masses. This
gives the derivative matrix

DuF =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1 0
0 1 0 0 0

kdDcDT − kdEcE 0 kD + kdDmd 0 −kdEmd

kdEcE −kde 0 0 kdEmd

0 kde 0 −λ 0
−kdEcE kde 0 0 −kdEmd

⎞
⎟⎟⎟⎟⎟⎠

.

(C12)
Note that the first to rows are simply sT

D and sT
E, which follows

immediately from the definition of F.
c. Inhomogeneous (asymmetric) steady states. The deriva-

tion presented above for homogeneous steady sates can be
generalized to inhomogeneous steady states �ñ defined by
�u∗(�ñ) = 0. The resulting Jacobian reads

J̃αβ = sT
α D · [(DuF|n̄+�ñ)−1 + (DuF|n̄−�ñ)−1]eβ. (C13)

APPENDIX D: PAR AND CDC42 MODELS

1. PAR polarity model

We adopt the model introduced in Ref. [21] and further
analyzed in Ref. [23] which accounts for the membrane-
bound and cytosolic concentrations of aPARs and pPARs
u = (ma, mp, cA, cP) with the reaction kinetics

f =

⎛
⎜⎜⎜⎜⎝

kAcA − kama − kapm2
pma

kPcP − kpmp − kpam2
amp

−kAcA + kama + kapm2
pma

−kPcP + kpmp + kpam2
amp

⎞
⎟⎟⎟⎟⎠. (D1)

These reactions conserve the total densities of aPARs
nA = ma + cA and pPARs nP = mp + cP, respectively. Since
the reaction network is symmetric under the exchange A ↔
P, we use reaction rates that also respect this symme-
try for simplicity [23]. The diffusion matrix reads D =
4/L2diag(Dm, Dm, Dc, Dc), where L ≈ 15μm is the long half-
axis of the ellipsoidal cells. For the model parameters, see
Table II. Note that in LQSSA, this length only contributes
to the overall timescale but does not affect the phase portrait
structure.

2. Cdc42 polarity model

We use a simplified form of the quantitative model pro-
posed in [67]. This model describes the dynamics of the
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GTPase Cdc42, its guanine nucleotide exchange factor (GEF)
Cdc24 and the scaffold protein Bem1. The critical feedback
loop is constituted by mutual recruitment between membrane-
bound Cdc42-GTP and Bem1-GEF complexes. While the full
model accounts for Bem1 and GEF separately, we lump these
species into a complex species here. This retains the salient
features of the model, in particular the mutual recruitment
mechanism.

The variables of this simplified model are u =
(mt, md, mb, cD, cB), accounting, respectively, for membrane-
bound Cdc42-GTP, Cdc42-GTP and Bem1-GEF complexes
as well as cytosolic Cdc42-GDP and Bem1-GEF complexes.
The reaction kinetics, describing attachment and detachment
of Cdc42 at the membrane, hydrolysis, and nucleotide
exchange of Cdc42 of membrane-bound Cdc42, as well

recruitment of Bem1-GEF complexes to the membrane by
Cdc42-GTP are given by

f =

⎛
⎜⎜⎜⎝

kdtmd + kbdmbmd + kbDmbcD − ktdmt

kDcD + ktdmt − (kd + kdt + kbdmb)md

kBcB + ktBmtcB − kbmb

−kDcD − kbDmbcD + kdmd

−kBcB − ktBmtcB + kbmb

⎞
⎟⎟⎟⎠. (D2)

These reactions conserve the total densities of Cdc42 nD =
mt + md + cD and Bem1-GEF complexes nB = mb + cB, re-
spectively.

The parameter values, given in Table III are adapted
from Ref. [67]. The values of kb, kB and ktB are cho-
sen to account for the lumped Bem1-GEF complexes
species.
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