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Stable states with nonzero entropy under broken PT symmetry
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The PT -symmetric non-Hermitian systems have been widely studied and explored both in theory and in
experiment due to their various interesting features. In this work we focus on the dynamical features of a triple-
qubit system, one of which evolves under a local PT -symmetric Hamiltonian. An abnormal dynamic pattern in
the entropy evolution process is identified that presents a parameter-dependent stable state, determined by the
non-Hermiticity of Hamiltonian in the broken phase of PT symmetry. The entanglement and mutual information
of a two-body subsystem can increase beyond the initial values, which do not exist in the Hermitian and two-qubit
PT -symmetric systems. Moreover, an experimental demonstration of the stable states in non-Hermitian systems
with nonzero entropy and entanglement is realized on a four-qubit quantum simulator with nuclear spins. Our
work reveals the distinctive dynamic features in the triple-qubit PT -symmetric system and paves the way for
practical quantum simulation of multiparty non-Hermitian system on quantum computers.
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I. INTRODUCTION

In the conventional quantum mechanics, the Hamiltonian
of a closed system requires it to be Hermitian [1], which
guarantees the reality of the energy spectrum and the unitar-
ity of the corresponding time evolution operators. However,
the Hermiticity requirement is a sufficient condition but not
necessary for real eigenvalues, and in 1998 [2], Bender and
Boettcher found that a class of Hamiltonians satisfying joint
P (spatial reflection) and T (time reversal) symmetry instead
of Hermiticity can still have real eigenvalues in the unbroken
phase [3,4]. Moreover, there exists a critical point for phase
transition from the PT unbroken phase to a broken phase,
called the exceptional point or branch point [5–7]. Because of
various peculiar characters in this kind of non-Hermitian sys-
tem, such as the violation of the no-signaling principle [8,9],
entanglement restoration [10,11], and reversible-irreversible
criticality in information flow [12,13], the PT -symmetric
quantum mechanics has aroused continuous attention and re-
search interests in many directions. Recently, there has been
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some related research on its potential applications in recon-
structing standard quantum theory [14,15], and it has been
shown that a unitary evolution can be introduced by redefining
the inner product of quantum states [16,17], which makes it
equivalent to the Hermitian quantum theory.

In experimentation, many quantum processes such as
symmetry-breaking transitions [18–22], observation of ex-
ceptional points [23,24], and topological features [25,26]
of the PT -symmetric system have been demonstrated, and
they depend mainly on the optical systems [13], nuclear
spins [11,27], ultracold atoms [18], nitrogen-vacancy centers
[19], and superconductor systems [23] by introducing bal-
anced gain and loss or state-selective dissipation. Moreover,
some previous research [9,11] focuses on the two-body non-
Hermitian system as shown in Fig. 1, where two qubits (Alice
and Bob) are entangled initially and one of them (Alice)
evolves under a local PT -symmetric Hamiltonian. Such a
two-qubit model can lead to oscillations of entropy and en-
tanglement in the unbroken phase of PT symmetry, which
violates the property of entanglement monotonicity [10,11].
Specifically, the entropy and entanglement of both qubits will
decay exponentially to zero in the broken phase and form
stable states which do not vary with time. Such stable states,
whose dynamic process is named a normal dynamic pattern
(NDP) here, are related only to the quantum phase but are
independent of the degree of non-Hermiticity.

However, in this work we find that when the system
is extended from a two-body to a triple-body model, an-
other kind of evolution process, named an abnormal dynamic
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FIG. 1. The multiqubit system with local PT -symmetric oper-
ators. A quantum system is initialized as a maximally entangled
state and the first qubit (Alice) undergoes a local PT -symmetric
operation, while the other qubits remain isolated. The black lines are
entropy evolution with time in a broken PT -symmetric phase.

pattern (ADP) here, rises up. Subsystems evolving under ADP
can present novel non-Hermiticity-related stable states with
nonzero entropy. By controlling the local system of Alice, the
entanglement and mutual information between Bob and Char-
lie can be redistributed and even increased beyond the initial
value, which does not exist in the two-qubit PT -symmetric
system. This phenomenon is related to the non-Hermiticity
introduced on Alice, which triggers information exchange and
leads to entanglement change in the Bob-Charlie subsystem.
Some theoretical and numerical analyses are introduced to
investigate the properties of the partial-information reserved
quantum states in the broken phase of PT symmetry. By
enlarging the system with ancillary qubits and encoding the
subsystem with the non-Hermitian Hamiltonian with postse-
lection, an experimental demonstration of the stable states in
ADP is realized on a four-qubit quantum simulator based on a
quantum circuit algorithm.

II. ENTROPY OF STABLE STATES

We focus on the dynamical features of a composite
system consisting of three qubits, which is initialized as
a Greenberger-Horne-Zeilinger (GHZ) state [28] |ψ0〉 =
(|000〉 + |111〉)/

√
2, and the reduced density matrix of each

single qubit is ρsingle = I/2, which is the maximally mixed
state. Then one of the qubits, such as Alice qubit, performs the
local operation UA = e−iĤPT t (set h̄ = 1) on her own system
with a PT -symmetric Hamiltonian

ĤPT = s(σx + irσz ), (1)

where σi (i = x, y, z) represent the Pauli matrix. The parame-
ter s > 0 represents the energy scale and r > 0 is the degree of
non-Hermiticity. The PT -symmetric Hamiltonian ĤPT satis-
fies (PT )ĤPT (PT )−1 = ĤPT , where the operator P = σx,
and T corresponds to complex conjugation. The energy gap of
the Hamiltonian w = 2s

√
1 − r2 will be real as long as r < 1,

which means the PT symmetry is unbroken. The condition
r > 1 will lead to a broken phase with a transition at the
exceptional point rep = 1. The three-body Hamiltonian can
be expressed as Ĥ3

PT = ĤPT ⊗ IB ⊗ IC . The density matrix

FIG. 2. Two kinds of dynamical evolution pattern. (a) The en-
tropy S(ρA) shows a NDP, while (b) S(ρB) has an ADP. (c) Bloch
vectors of Alice’s and Bob’s stable states labeled by lines with
arrows in the Bloch upper hemisphere. Trajectory of Bloch vectors
are represented by lines with corresponding colors when changing
non-Hermiticity in a broken phase. (d) The entropy at point P and
Bob’s stable states.

ρ(t ) of the whole system can be obtained by a time-evolving
operator with a renormalized quantum state [12],

ρ(t ) = e−iĤ3
PT tρ(0)eiĤ3†

PT t

tr
[
e−iĤ3

PT tρ(0)eiĤ3†
PT t

] . (2)

The joint reduced states of the two-body system are ρi j =
trk (ρ), while the single-body reduced density matrices are
ρi = tr jk (ρ) (i, j, k = A, B,C). We focus on the dynamical
features of the von Neumann entropy S(ρ) = −tr(ρ log2 ρ)
[1] and plot the evolution process within the total time T
under different phases in Figs. 2(a) and 2(b). It can be con-
cluded that in the triple-qubit PT -symmetric system, for the
single-body subsystem the entropy of Alice can still evolve
under NDP: Entropy oscillates in the unbroken phase and
the amplitude increases when the parameter r approaches rep.
Once crossing the exceptional point, entropy exponentially
decays to zero and the system tends to be stable states, which
are indistinguishable in terms of entropy evolution character-
istics. However, the dynamic pattern of S(ρB) changed and
another kind of ADP shows up in the Bob qubit: Entropy
still oscillates in the unbroken phase, whereas in the broken
phase of PT symmetry, the entropy of stable states will not
decrease to zero exponentially but stabilizes to a value related
to the degree of non-Hermiticity. In other words, there exists
a parameter-dependent stable state in the subsystem of multi-
party PT -symmetric systems, and the entropy decreases with
the increase of non-Hermiticity. Such a stable state can main-
tain partial entropy in the system under broken PT symmetry.

Based on the evolution equation, we can determine the
reduced density matrix of qubit Bob,

ρB = 1

N

(|C|2 + (A − B)2 0
0 |C|2 + (A + B)2

)
, (3)

where A = cos(wt/2), B = (−2rs/w) sin(wt/2), C =
(−2is/w) sin(wt/2), and N = 2(|C|2 + A2 + B2) is the
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normalization constant. We focus on the stable state in the
broken phase with ρss

B = 1
2 I +

√
r2−1
2r σz. At the exceptional

point, the density matrix of the stable state is a maximally
mixed state with entropy S(ρB) = 1. However, with the
increase of non-Hermiticity, the stable state will tend to be
ρss

B = |0〉〈0|, a pure state with entropy S(ρB) = 0. It can serve
as a quantum state purification phenomenon induced by the
non-Hermiticity increase, and the pure state is a stable state
with time. Then we can calculate the analytical expression
of the von Neumann entropy for the Bob qubit in ADP as
follows:

S
(
ρss

B

) = log2
2

cos θ (sec θ + tan θ )sin θ
> 0 , (4)

where cos θ = 1/r and θ ∈ [0, π/2). The entropy will not be
zero unless θ = π/2, which means the non-Hermiticity of the
system is infinity. Moreover, we plot the Bloch vectors of
stable states of Bob in the Bloch sphere, just as in Fig. 2(c).
The norm of the Bloch vector of Bob in stable states is ||�rB|| =
sin θ � 1, which starts at the center of the Bloch sphere at
the exceptional point and moves towards the top point with
increasing non-Hermiticity.

As for the entropy evolution in NDP, the density matrix
of Alice in a stable state with broken PT symmetry is ρss

A =
ρss

B − D(r)σy. It can be found that the stable states of Alice
and Bob have the same population distribution, but the ρss

A
has off-diagonal elements which decrease in power law with
a damping function D(r) = 1/(2r). Such effects can be mod-
eled as a phase damping process induced by non-Hermiticity,
leading to the loss of quantum information to the environment.
When r increases from the exceptional point to a large enough
value, the Bloch vector of Alice’s stable state rotates along the
Bloch sphere surface from point (0,−1, 0) towards the north
point of the z axis with norm ||�rA|| = 1 for all of the process.
Therefore the entropy of the stable state in NDP is

S
(
ρss

A

) = −
∑
i=1,2

λA
i log2 λA

i ≡ 0 , (5)

with eigenvalues λA
1,2 = 0, 1 which are not related to the

non-Hermiticity parameter, and this is what happens in the
evolution process obeying the NDP. Moreover, besides the sta-
ble states, there exists another kind of non-Hermiticity-related
quantum state satisfying dS(t )/dt = 0 at the specific points
P = (tP(r), SP(r)), labeled by gray dashed line in Fig. 2(b).
During the evolution from point P to the stable state in ADP
the entropy increases, and this turning point does not exist
in NDP. With the increase of the non-Hermiticity parameter,
the entropy of a quantum state at time point tP will gradually
approach S(ρss

B ), and the duration and intensity of the entropy
increase process will gradually weaken until it disappears.

III. ENTANGLEMENT EVOLUTION

We now investigate the dynamical features of interaction
and entanglement in the triple-party PT -symmetric system.
Entropic quantities are generally used to quantify correlations
and for a two-body system with density matrix ρi j , the amount
of information shared between the two parts can be character-
ized by the mutual information defined as I(i : j) = S(ρi ) +
S(ρ j ) − S(ρi j ) � 0. The mutual information is always non-

negative and cannot be zero unless i and j are in a separable
state, ensuring that I(i : j) is a genuine measure of correlations
[29]. It is usually believed that local trace-preserving quantum
operations can never increase mutual information [1], but
this can be violated in the two-qubit PT -symmetric system
without exceeding the initial value [11,13].

In the triple-qubit PT -symmetric system, this property
still can be held in the subsystem (Alice-Bob) under NDP,
just as in Fig. 3(a). However, we find that evolution in the
ADP of I(B : C), which has nonzero mutual information in
the broken phase, can present mutual information beyond
the initial value. Moreover, the mutual information I(B : C)
oscillates with a maximum deviation Imd from the initial
values at a series of discrete time points but tends to be
stable at value Is after passing the exceptional point. We
define a variation measure �I(r) = O(rep − r)Imd + O(r −
rep)Is − I(t0) to quantify the increase of mutual information,
where O(·) is the Heaviside step function. We can conclude
from Fig. 3(b) that the stable value Is decreases with r
and the subsystem (Bob-Charlie) has the maximal available
information at the exceptional point. However, the increas-
ing process of mutual information stops at rMI ≈ 1.597 8, a
critical point for increase of mutual information, which is
different from the exceptional point of the PT symmetry. In
other words, the critical point for transition of phase is not
that for the increase of accessible information in triple-qubit
PT -symmetric systems. It is noted that there exists an anticor-
responding relation between entropy and mutual information
evolution because I(B : C, t∞) = 2S(ρss

B ): The two-body sub-
systems, which have NDP in entropy evolution, can present
ADP in mutual information evolution and vice versa.

To evaluate the degree of entanglement in the two-body
subsystem, we can also use concurrence [30],

C(ρi j ) = Max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, (6)

where λi represents the eigenvalues of ρi j (σyσy)ρ∗
i j (σyσy) in

decreasing order. We numerically calculate the dynamical
evolution and find that C(ρAB) = C(ρAC ) = 0 all the time,
which does not show evolution. It is Alice’s PT -symmetric
operators that introduce the non-Hermiticity, but the systems
including the Alice qubit do not show entanglement oscil-
lation, and this is different from the two-qubit counterparts.
For C(ρBC ) the concurrence will emerge both in the unbro-
ken and broken phases, although their local Hamiltonians
are Hermitian. This evolution pattern is consistent with the
entropic quantities of mutual information, which both present
oscillation phenomenon in symmetry-unbroken phase while
stabilizing at a non-Hermiticity-related nonzero value under
broken PT symmetry. We identify the amplitude of con-
currence during the evolution by A(r) = Cmax, and it can be
concluded from Fig. 3(c) that the concurrence of ρss

BC will
decrease and tend to be stable at Cs = 1/r, which presents
a power-law decay with the increase of non-Hermiticity after
the exceptional point.

IV. EXPERIMENTAL OBSERVATION OF STABLE STATES

In the experiment we focus on demonstrating the entropy
dynamic evolution of stable states in the triple-qubit sys-
tem with local PT -symmetric operators on a liquid nuclear
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FIG. 3. (a) Mutual information of I(A : B) (left) and I(B : C) (right) with time under different non-Hermiticity. (b) Increase of mutual
information �I(A : B) and �I(B : C) of stable states with the degree of non-Hermiticity. (c) Concurrence of two-body subsystem (Bob-Charlie)
in the different PT phases. The gray dashed line is the amplitude of concurrence with non-Hermiticity whose range is shown on the top, while
the other solid lines are concurrence evolution with time in an unbroken phase (r = 0.8) and broken phase (r = 1.2).

magnetic resonance quantum simulator. The sample used is
13C-labeled iodotrifluoroethylene (C2F3I), and the qubits in
the blue box of Fig. 4 encode the work system while another
nucleus 19F3 is chosen as an ancillary system to realize the
PT -symmetric operator [11]. The operators in the dotted
box initialize the work system to the GHZ state. To realize
the quantum simulation of the nonunitary evolution induced
by PT -symmetric Hamiltonian on Alice, we decompose the
non-Hermitian Hamiltonian evolution into a linear combi-
nation of unitary operators and realize the simulation in an
enlarged Hilbert space with postselection [31–34]. Notations
H in the quantum circuit represent Hadamard gates and the
1-controlled gate V2 = σz. The single-qubit operator V0 and
0-controlled V1 are parameter-dependent quantum gates, and
the concrete forms are

V0 =
(

cos φ − sin φ

sin φ cos φ

)
, V1 =

(
cos φ1 i sin φ1

i sin φ1 cos φ1

)
, (7)

where φ = arcsin r sin (wt/2)
M1

, φ1 = arcsin − sin (wt/2)
M2

and M1 =
[1 − r2 cos wt]1/2, M2 = [1 − r2 cos2 (wt/2)]1/2. Then the
evolution can be realized via single-qubit operations and two-
qubit controlled gates. We take several different parameter
points in the experiment, and all the operations are realized
using shaped pulses [35,36], while being robust to the static
field distributions and inhomogeneity, and the durations of the
experimental pulses are within 15 ms. At the end of quantum
circuit, we obtain the density matrix of the work system by ob-

FIG. 4. Experimental sample and quantum circuit. Three of the
four controllable qubits are used as a work system and the last one
is an ancillary qubit. The whole process is divided into initial state
preparation, PT -symmetric evolution, and measurement.

serving the probe spin 13C in the subspace |0〉 of the ancillary
qubit [37]. We trace out different qubits of the experimental
stable states to find the subsystems with different dynamical
patterns.

As shown in Fig. 5(a), the nondiagonal elements of the
density matrix of Alice’s stable states present a power-law
decay with the increase of non-Hermiticity, which is con-
sistent with the damping function D(r). It is how quantum
states behave in the NDP as analyzed above. In ADP we
experimentally determine the entropy of Bob and concurrence
between Bob and Charlie in Fig. 5(b), which both present the
parameter-related nonzero value in stable states with broken
PT symmetry. The experimental results of entropy match
well with the theoretical expectation of Eq. (4) in different

FIG. 5. (a) The off-diagonal elements of stable states ρss
A in the

NDP. The diamond points are experimental results, while the solid
line represents the theoretical expectations. The inset panel shows the
experimentally identified Bloch vectors of Alice. (b) Experimental
results of entropy and concurrence of the stable states in ADP. The
inset panels represent the density matrices of Bob with minimal and
maximal non-Hermiticity in the experimental parameter setup.
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parameter conditions. The inset panels represent the density
matrices of quantum states of Bob with minimal and maximal
non-Hermiticity in an experimental parameter setup with aver-
age fidelities over 0.989, and we can see that with the increase
of non-Hermiticity, ρss

B gradually evolves from the maximally
mixed state to a pure state.

V. CONCLUSION

We investigate the evolution process of entropy and entan-
glement in a triple-qubit system with local PT -symmetric
operation from theoretical and experimental perspectives.
Two kinds of dynamic pattern, named ADP and NDP, are
found in this system, where entropy and entanglement tend
to be stable at a non-Hermiticity-related nonzero value in the
ADP which does not exist in the two-qubit counterparts. Two-
body subsystems in ADP present a maximum entanglement
increase at the exceptional point, and mutual information can
increase beyond the initial values. A new critical point rMI is
determined in the broken phase, where the transition of ac-
cessible information from increase to decrease compared with
the initial condition happens. Based on the four-qubit quan-
tum simulator, we experimentally observe the stable states
in a non-Hermitian system with nuclear spins and the re-
sults confirmed the theoretical analysis. Our work shows that
when the PT -symmetric system is extended from two body
to triple body, some different physical properties occur and
the enhancement of entanglement and mutual information has
important physical significance. Specifically, there are some
potential applications in quantum communication and quan-
tum eavesdropping by regulating and controlling the channel
capacity of the system with local PT -symmetric operators on
the third party.
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APPENDIX A: DERIVATION OF ENTROPY
EVOLUTION OF STABLE STATES

In the triple-qubit system, the nonunitary operator on Alice
induced by the PT -symmetric Hamiltonian is

UA = eiφ

(
cos wt

2h̄ + 2rs
w

sin wt
2h̄

−2is
w

sin wt
2h̄

2is
w

sin wt
2h̄ cos wt

2h̄ − 2rs
w

sin wt
2h̄

)
, (A1)

where φ is a phase factor. Because the triple-qubit Hamilto-
nian is a direct product of each single-body Hamiltonian, the
operator on the whole system can be expressed as U3 = UA ⊗

IB ⊗ IC . Then the time-dependent quantum state of the triple-
qubit system without considering the normalization constant
is ρ(t ) = U3ρ(0)U †

3 . We need to trace out the other qubits
to find the density matrix of Bob, which presents an ADP in
entropy evolution and can be realized by

ρB(t ) =
∑

i, j=0,1

(〈i| ⊗ I ⊗ 〈 j|)ρ(t )(| j〉 ⊗ I ⊗ |i〉)

= 1

N

(|C|2 + (A − B)2 0
0 |C|2 + (A + B)2

)
, (A2)

where A = cos(wt/2h̄), B = (−2rs/w) sin(wt/2h̄), C =
(−2is/w) sin(wt/2h̄), and N = 2(|C|2 + A2 + B2) is the nor-
malization constant. In the unbroken phase of the PT
symmetry, each item in the quantum state oscillates with
time periodically. However, when the symmetry is broken,
the energy gap will become a pure imaginary number and we
set w/2h̄ = ik, where k is a positive real number. According
to the Euler equations, we can decompose each item in the
quantum state into exponentially increasing item and expo-
nentially decreasing item, where the latter can be abandoned
in the long-time limit:

lim
t→∞

⎧⎪⎨
⎪⎩

cos2 wt
2h̄ = e2kt/4

sin2 wt
2h̄ = −e2kt/4

cos wt
2h̄ sin wt

2h̄ = ie2kt/4

. (A3)

Then the eigenvalues of the renormalized density matrix
ρss

B is λB
1,2 = r±√

r2−1
2r , and we can calculate the analytical

expression of the von Neumann entropy of the stable state in
ADP,

S
(
ρss

B

) = −
∑
i=1,2

λB
i log2 λB

i

= log2 2r −
√

r2 − 1

r
log2(r +

√
r2 − 1)

= log2
2

cos θ (sec θ + tan θ )sin θ
, (A4)

where cos θ = 1/r and θ ∈ [0, π/2). Based on the variable
substitution, we can rewrite the quantum state as

ρss
B = I + sin θσz

2
, (A5)

and the Bloch vector is �rB = (0, 0, sin θ ). So we can see that
the purity of the stable state is parameter dependent, and the
stable state will evolve from a maximally mixed state to a pure
state |0〉 with increasing non-Hermiticity. However, when we
turn to the quantum stable state of the Alice qubit, the density
matrix have off-diagonal elements and the stable state in the
broken phase is

ρss
A = lim

t→∞
1

N

(|C|2 + (A − B)2 2BC
−2BC |C|2 + (A + B)2

)

=
(

r+√
r2−1

2r
−i
2r

i
2r

r−√
r2−1

2r

)

= I − cos θσy + sin θσz

2
, (A6)
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where the damping function D(r) = cos θ/2 = 1/2r and the
norm of the Bloch vector is ||�rA|| = cos2 θ + sin2 θ = 1,
which is parameter independent. The eigenvalues of the stable
state of Alice are

λA
1,2 = ρss

A(11) + ρss
A(22)

2
±√(

ρss
A(11) − ρss

A(22)

)2 + 4ρss
A(12)ρ

ss
A(21)

2

= 1 ±
√

(r2 − 1)/r2 + 1/r2

2

= 0, 1, (A7)

and this results that the entropy of stable states in the NDP
stays zero all the time and is parameter independent. This
leads to the fact that in the broken phase, the mutual infor-
mation of subsystem Bob and Charlie is I (B : C, t → ∞) =
S(ρss

B ) + S(ρss
C ) − S(ρss

BC ) = 2S(ρss
B ). So by numerically solv-

ing the equation S(ρss
B ) = 1/2, we can determine the critical

point rMI in the broken phase.

APPENDIX B: EXPERIMENTAL SIMULATION
OF THE STABLE STATES

1. Initialization

The experiments for simulating the stable states in a triple-
qubit system with local PT -symmetric operator are carried
out on a 600-MHz nuclear magnetic resonance platform at
room temperature (298 K) with a four-qubit sample 13C-
labeled iodotrifluoroethylene dissolved in d-chloroform. The
spectrometer is equipped with a superconducting magnet
which creates a strong magnetic field (14.1T). The sample
is placed in the static magnetic field along the z direc-
tion, and the internal Hamiltonian under the weak-coupling
approximation is

Hint = −
4∑

i=1

πνiσ
i
z +

4∑
i< j

π

2
Ji jσ

i
zσ

j
z , (B1)

FIG. 6. Molecule structure and molecule parameters of the sam-
ple. 13C, 19F1, 19F2, and 19F3 are used as four qubits in the experiment.
The chemical shifts and J couplings (in units of Hz) are listed by
the diagonal and off-diagonal elements, respectively. The transversal
relaxation times T2 (in seconds) are also shown at the bottom.

FIG. 7. Quantum gate decomposition for the simulation of the
triple-qubit system with local PT -symmetric operator. The concrete
forms of the single-qubit gates are shown in Table I.

where νi is the chemical shift and Ji j is the J-coupling strength
between the ith and jth nuclei. The experimentally identified
parameters of this molecule are shown in Fig. 6. The initial-
ization process of quantum computation in the liquid nuclear
magnetic resonance system starts from a thermal equilibrium
state obeying Boltzmann distribution:

ρeq = e−Hint/kBT

tr(e−Hint/kBT )
, (B2)

where kB is the Boltzmann constant and T is the thermody-
namic temperature. Under the condition that ‖Hint/kBT ‖ � 1
and Jkl � ωi, the thermal equilibrium state in our platform
can be approximated as

ρeq ≈ 1

24

(
I⊗4 +

4∑
i

h̄wiσ
i
z

2kBT

)
, (B3)

where the notation I is the identity matrix and σz is a Pauli
matrix. To initialize the system, we generally need to drive the
quantum system from the highly mixed state ρeq, which can
not be used as an initial state to the pseudopure state (PPS),

|ρpps〉 = 1 − ε

24
I⊗4 + ε|0000〉〈0000|, (B4)

where ε ≈ 10−5 is polarization. The first term can be ne-
glected, since the identity matrix does not evolve under
any unitary propagator and cannot be observed. We pre-
pared the PPS from the thermal equilibrium state with the
selective-transition method [37,38], which is realized by uni-
tary operators and field gradient pulses in the z direction (Gz).
The unitary operators redistribute the diagonal elements, and
the Gz pulse is used to eliminate the undesired coherence,
except the zero-quantum coherence of spins. After these pro-
cesses the PPS is prepared, and this state serves as the starting
point for subsequent computation tasks.

TABLE I. Decomposition scheme of quantum algorithm with
single-qubit gates and CNOT gate according to the parameter setting
in experiment. The Ri(α) (i = y, z) is a rotation operator along the i
axis with angle α.

A1: Rz(1.5π )Ry(φ1) A2: Rz(1.5π )Ry(π ) V0: Ry(0.5π )

B1: Ry(−φ1)Rz(−π ) B2: Ry(−π )Rz(−1.5π ) P: (
1 0
0 −i

)

C1: Rz(−0.5π ) X: Rz(−0.5π )Ry(π )Rz(0.5π )
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FIG. 8. Fidelities of subsystems between the experimental sta-
ble states and the theoretical expectations under different non-
Hermiticity. The average fidelities are labeled by lines with
corresponding colors.

2. Quantum Simulation of PT -Symmetric Operator

To realize the simulation of a nonunitary dynamical pro-
cess induced by PT -symmetric Hamiltonian, we encode the
nonunitary evolution into a unitary process by adding an an-
cillary qubit and form a gate-based quantum circuit, which
is friendly for experimentation. It is called a linear combina-
tion of unitaries, which is a universal subroutine in designing
and developing quantum algorithms [31]. We first create
superposition states on the ancillary system and then per-
form controlled operations on the work system. The physical
picture is that different unitary operations are implemented
simultaneously on the work system but in different subspaces,
and the final results can be obtained in a specific subspace
of ancillary systems according to the practical algorithm
design.

Specifically, suppose that the operator for creating super-
position states is V0 = [cos φ,− sin φ; sin φ, cos φ] and the
nonunitary evolution operator can be decomposed into the

form UA = cos φV1 + sin φV2, where

V1 =
(

cos φ1 i sin φ1

i sin φ1 cos φ1

)
, V2 =

(
cos φ2 −i sin φ2

i sin φ2 − cos φ2

)
.

(B5)

Under the unitary limitation on Vi (i = 0, 1, 2), the choice of
these operators is not unique. This construction leads to four
equations as follows:

cos φ cos φ1 = cos
wt

2h̄

sin φ cos φ2 = 2rs

w
sin

wt

2h̄

cos φ sin φ1 = −2s

w
sin

wt

2h̄
sin φ sin φ2 = 0. (B6)

By solving these equations, we can determine the angles
φ and φ1,2 as shown in the main text. It worth noting that
tan φ2 = 0, and this leads to V2 = σz. Single-qubit operator V0

and two-qubit operator V1 are parameter-dependent quantum
gates, while the other unitary quantum gates do not vary with
the parameters in the PT -symmetric Hamiltonian. In the bro-
ken phase of PT symmetry, the operators can be determined
based on the experimental parameter setup and decomposed
into single-qubit operations and controlled-NOT (CNOT) gates,
as shown in Fig. 7. Quantum evolution according to the quan-
tum circuit we constructed is optimized by gradient-ascent
pulse engineering [35,36]. Each shaped pulse is simulated to
be over 99.5% fidelity [39] while being robust to the static
field distributions and inhomogeneity, and the durations of the
experimental pulses are within 15 ms.

3. Measurement and Results

After the entanglement creation and PT -symmetric evolu-
tion, quantum measurement is performed on a bulk ensemble

FIG. 9. The experimentally identified density matrix of stable states under different degrees of non-Hermiticity. Figures in the first row
from (a) to (d) represent the quantum state of Alice in NDP (r1 → r4), while figures in the second row from (e) to (h) show the density matrix
of Bob in ADP. The external transparent bars represent the experimental results, while the internal solid bars represent the corresponding
theoretical values of the density matrices. The quantum states are taken as absolute values for better display.
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of molecules, which means the readout is an ensemble-
averaged macroscopic measurement. At the end of the
quantum circuit, all experimental data are extracted from the
free-induction decay (FID), which is the signal induced by
the precessing magnetization of the sample in a surrounding
detection coil. The signal is then subjected to Fourier transfor-
mation, and the resulting spectral lines are fitted, yielding a set
of measurement data. As the precession frequencies of differ-
ent spins are distinguishable, they can be individually detected
and all the observations are made on the probe spin 13C [37].
By fitting the 13C spectrum, the real parts and the imaginary

parts of the peaks are extracted, which correspond to 〈σ̂ x
1 〉 and

〈σ̂ y
1 〉, respectively. Then we can reconstruct all the density

matrix elements in the subspace where the ancillary qubit
is |0〉 to get the target stable states of the triple-qubit work
system under different experimental parameter setup. We plot
the fidelities of different subsystems between the experimental
results and theoretical expectations in Fig. 8 with average
fidelities over 0.98. The corresponding density matrices of sta-
ble states, which evolve under NDP and ADP, respectively, are
shown in Fig. 9, and both of them present a quantum state pu-
rification phenomenon with the increase of non-Hermiticity.
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