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Spectroscopic fingerprints of gapped quantum spin liquids, both conventional and fractonic
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We explain how gapped quantum spin liquids, both conventional and “fractonic,” may be unambiguously diag-
nosed experimentally using the technique of multidimensional coherent spectroscopy. “Conventional” nonchiral
gapped quantum spin liquids (e.g., Z2 spin liquid) do not have sharp signatures in linear response, but they do
have clear fingerprints in nonlinear response, accessible through the already existing experimental technique of
two-dimensional coherent spectroscopy. Type I fracton phases (e.g., X-cube) are (surprisingly) even easier to
distinguish, with strongly suggestive features even in linear response, and unambiguous signatures in nonlinear
response. Type II fracton systems, like Haah’s code, are most subtle, and they may require consideration of
high-order nonlinear response for unambiguous diagnosis.
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I. INTRODUCTION

Quantum spin liquids are phases of quantum matter that
feature fractionalized excitations and emergent deconfined
gauge fields (for reviews, see [1,2]). Recently, an exotic “frac-
tonic” variant of quantum spin liquids has been proposed,
which additionally hosts emergent excitations with restricted
mobility (for reviews, see [3,4]). The most stable and the-
oretically best understood examples of spin liquids, both
conventional and fractonic, have the ground-state manifold
separated from the rest of the spectrum by an energy gap. The
Z2 spin liquid provides a paradigmatic example of a conven-
tional gapped quantum spin liquid, while the X-cube model
and Haah code provide paradigmatic examples of gapped
fractonic spin liquids of type I and type II, respectively.

While great strides have been made in the theoretical un-
derstanding of gapped quantum spin liquids, these phases
have not yet been unambiguously observed in any experi-
mental system. Part of the challenge here is that it is hard
to find unambiguous experimental diagnostics for these ex-
otic phases, which are accessible using currently available
experimental techniques [5]. This is in contrast to gapless spin
liquids (both conventional and fractonic), which do have clean
signatures, e.g., in the form of “pinch points” in the dynamical
structure factor, which may be probed via neutron scattering
[6,7].

In this paper, we explain how gapped quantum spin liq-
uids, both conventional and fractonic, may be unambiguously
diagnosed using already existing spectroscopic tools. Gapped
conventional spin liquids do not have clear diagnostics in
linear response, but they do have unambiguous fingerprints
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in nonlinear response. These may be identified through the
technique of two-dimensional coherent spectroscopy (2DCS),
originally pioneered in the context of nuclear magnetic res-
onance and physical chemistry [8–11], and recently applied
also to solid-state systems [12–15]. Gapped fracton phases of
type I are actually easier to identify, with strongly suggestive
features even in linear response, and unambiguous fingerprints
in nonlinear response. Fracton phases of type II are most
subtle, and may require consideration of high-order nonlinear
response for unambiguous diagnosis.

The rest of this paper is structured as follows. In Sec. II we
introduce the paradigmatic models that we use as examples of
gapped spin liquid, type I fracton, and type II fracton phases,
respectively. In Sec. III we explain the properties of the re-
spective phases in linear response, and we point out how type
I fracton phases (and only type I fracton phases) have clear
signatures therein. In Sec. IV we explain how to calculate the
nonlinear susceptibility measured in a 2DCS experiment. In
Sec. V we explain the key signatures of each of the phases
considered within 2DCS. We conclude in Sec. VI with a
discussion of outlook and implications. Technical details are
relegated to the Appendixes.

II. PHASES OF INTEREST

We are interested in three types of phases: conventional
gapped spin liquids, type I fractons, and type II fractons.
We consider a paradigmatic example of each, as well as a
“control” example that is not a spin liquid. Starting from the
weakly perturbed exactly solvable model Hamiltonians, we
investigate features of the phases that are robust to generic
local perturbations η(· · · ) with a small parameter controlling
the strength of perturbations, η � 1. Therefore, the solvable
Hamiltonians with η = 0 represent “fixed point Hamiltoni-
ans” that characterize the respective phases.

As a non-spin-liquid control example, we consider the
quantum Ising model in two or three spatial dimensions. This
is defined on a two- (three-) dimensional square (cubic) lattice
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with spin-1/2 variables living on the vertices. The Hamilto-
nian is

H = −1

2

∑
〈i, j〉

ZiZ j + η(· · · ), (1)

where 〈·, ·〉 denotes the nearest neighbors, and Z and X are
Pauli operators. Here (· · · ) denotes arbitrary local pertur-
bations that fail to commute with the ZZ term but respect
Ising symmetry, e.g., a transverse field,

∑
k Xk . The periodic

boundary condition is assumed for all models discussed in this
paper. Note that in two (three) dimensions, the Ising model
is an interacting model in its own right. The ground state is
the ferromagnetic phase with spontaneously broken Z → −Z
symmetry, and the elementary excitations are spin flips. This
is a gapped phase but not a spin liquid phase, and as such it
serves as our control example.

As a paradigmatic example of a gapped conventional spin
liquid, we consider the (perturbed) two-dimensional toric
code [16]. This is defined on the two-dimensional square
lattice with spin-1/2 variables living on the links. The Hamil-
tonian is

H = −1

2

∑
v

Av − J

2

∑
p

Bp − η(· · · ), (2)

where
∑

v indicates a sum over vertices, Av is a product of
four X operators on the four links connected to a vertex v,

∑
p

indicates a sum over square plaquettes, and Bp is a product of
four Z operators around a plaquette. (· · · ) denotes arbitrary
local perturbations such as longitudinal

∑
k Zk or transverse

fields
∑

k Xk .
As a paradigmatic example of a type I fracton phase,

we consider the (perturbed) X-cube model [17,18]. This is
defined on a three-dimensional cubic lattice with spin-1/2
variables living on the links. The Hamiltonian is

H = −1

2

∑
v

(
Axy

v + Ayz
v + Azx

v

)− K

2

∑
c

Bc − η(· · · ), (3)

where
∑

v denotes a sum over vertices, Aab
v is a product over

four Z operators on links connected to vertex v lying in the ab
plane,

∑
c denotes a sum over cubes, and Bc is a product over

12 X operators framing an elementary cube. The elementary
excitations consist of lineons, planons, and fractons. Lineons
are created at the end of a string of X operators, and they
are one-dimensional particles (i.e., able to move in only one
direction because the string can change its length but can-
not change its direction without creating additional lineons).
Planons are created at the end of a string of Z operators, and
they are two-dimensional particles (i.e., able to move in a
two-dimensional plane). Fractons are created at the corners
of a rectangular membrane of Z operators, and they are totally
immobile under local perturbations. All these properties are
explained at length in [3,18].

As a paradigmatic example of a type II fracton phase, we
consider the (perturbed) Haah code [19]. This is defined on
a three-dimensional cubic lattice with two spin-1/2 variables
on every vertex. The Hamiltonian is

H = −1

2

∑
c

A − �

2

∑
c

B − η(· · · ), (4)

where A is a particular product of X type Pauli’s and identities
around a cube, and B is likewise with X → Z , and � ≈ 1. The
elementary excitations are fractons (totally immobile excita-
tions). There are no subdimensional particles, but a composite
of four fractons in a tetrahedral arrangement is locally creat-
able (and therefore mobile).

It should be emphasized that while these model Hamilto-
nians appear exceedingly baroque, nonetheless the phases are
robust. The value of these model Hamiltonians is that they
allow exact calculations. While we will present some exact
results obtained at the solvable points (η = 0), our emphasis
in what follows will be on universal features that should
be present throughout the phase, and not just at the solv-
able points. Also, while we have chosen periodic boundary
conditions for analytic convenience, experiments of course
will have open boundary conditions. However, since the non-
linear response we are discussing does not connect distinct
topological sectors, the choice of boundary conditions should
not make a difference. Indeed, even with periodic boundary
conditions, topologically distinct ground states must be indis-
tinguishable under local probes, like 2DCS. Thus the choice
of ground state is immaterial. However, for specificity, we
always consider the ground state with no fluxes through any
circle of the (two- or three-dimensional) torus on which the
system is placed.

III. LINEAR RESPONSE

We consider linear-response spectroscopy via light nor-
mally incident to slabs of the magnetic systems. Due to large
(effectively infinite) speed of light, the normally incident light
couples to all spins almost simultaneously. Hence, we assume
the light-matter interaction

V (t ) = −
∑

α=x,y,z

Bα (t )Mα, (5)

where B(t ) = êαBα (t ) is the magnetic field, Mz = ∑
k Zk is

the total magnetization along the z direction, and Mx and
My are defined analogously. The quantities of interest are
correlators 〈Mz(t )Mz(0)〉, 〈Mx(t )Mx(0)〉, and 〈My(t )My(0)〉.
All of these are measurable with the suitable polarization of
the incident light. The expectation values are taken on the
ground state. Inserting a resolution of the identity in terms of
eigenstates of the Hamiltonian, these correlators take the form

〈Mz(t )Mz(0)〉 =
∑

α

〈0|
∑

Z|α〉〈α|
∑

Z|0〉 exp(iEαt ),

〈Mx(t )Mx(0)〉 =
∑

α

〈0|
∑

X |α〉〈α|
∑

X |0〉 exp(iEαt ),

〈My(t )My(0)〉 =
∑

α

〈0|
∑

Y |α〉〈α|
∑

Y |0〉 exp(iEαt ).

Now let us evaluate these for each of our models of inter-
est, working close to the solvable points. We emphasize that
while in principle the light gives the sample both energy and
momentum, the largeness of the speed of light (compared to
characteristic velocity scales for excitations in the sample)
means that a finite energy transfer is only associated with an
infinitesimal momentum transfer—thus we assume that the
light gives the sample energy but not momentum.
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A. Ising model

At the exactly solvable point, 〈Mz(t )Mz(0)〉 will only have
a Fourier component at zero frequency, because Z operators
will not produce any transitions between states. However, X
and Y operators will produce spin flips. |α〉 will thus be a
state with a single flipped spin. The energy cost at the exactly
solvable point will be s, where s is the coordination number
of the lattice, producing a sharp δ-function peak at frequency
ω = s. Away from the exactly solvable point, the spins will
acquire dispersion E (�k). Since the light is coupled to the bulk
magnetization in Eq. (5), the light can supply energy but it
cannot supply momentum to the system. So the transitions in-
volved can only be to states with zero total momentum. For the
Ising model, |α〉 has to be the k = 0 spin-flip state, in which
case we will observe a sharp feature in linear response at the
corresponding frequency. This sharp feature is indicative of
the existence of a sharp excitation at zero momentum. This
assumes that the energy of a single k = 0 spin flip does not
overlap the multiexcitation continuum, so there is no decay
channel available for the single spin-flip state. This assump-
tion should be safe as long as we are away from the critical
point.

B. Two-dimensional toric code

Let us start by examining the Mz correlator. A Z operator
will anticommute with two A operators. Thus, |α〉 will be a
state with two “spinons.” At the exactly solvable point, it will
have energy 2 and a sharp signal in the spectrum at frequency
2. If we perturb about the exactly solvable point, the spinons
will acquire dispersion E (�k). Let us assume as before that the
light does not supply appreciable momentum, so |α〉 has to
be a state with zero total momentum. Nonetheless, the two
spinons can have momentum ±k and so the state can have
energy 2E (k) [20]. So away from the exactly solvable point
there will be no sharp signature in linear response, but only a
broad continuum. The behavior of the Mx correlator is anal-
ogous, with the only difference being an altered dispersion
relation. Finally, a Y operator will create two A spinons and
two B spinons. At the solvable point there will be a sharp
signal at frequency 2 + 2J . Away from the solvable point it
will blur into a continuum.

The observation of a broad continuum in linear response
(with any polarization) indicates that light does not create a
single sharp excitation at zero momentum. However, it cannot
distinguish between the case in which it creates a pair of sharp
quasiparticles (as is the case here, at least in the frequency
range where the two-spinon state does not overlap the mul-
tispinon continuum), and the case in which there is no sharp
excitation because, e.g., there are no good quasiparticles. We
will see in Sec. V how 2DCS can disambiguate between these
possibilities.

C. X-cube

A Z operator will anticommute with the four B operators
containing that link. Let us suppose it is an x̂ directed link
for specificity. It will thus create a multiplet of four cube
excitations (fractons). At the exactly solvable point, this will
produce a sharp signal at frequency 4K . Now let us consider

the generic case, where we perturb about the solvable point.
As before, we restrict ourselves to states |α〉 with total mo-
mentum zero. Now pairs of two fractons are planons (mobile
excitations restricted to move in either the xy plane or the xz
plane, depending on how we group the fractons). These will
acquire dispersion upon turning on perturbations so there will
be a range of possible energies for |α〉. As before, there will
be nothing sharp in linear response.

Now let us consider the Mx correlator. An X -type operator
will anticommute with four A-type operators (two for each
vertex sharing that link). The excitation at each vertex is a
lineon, i.e., when we turn on perturbations each lineon can
move freely, but only in the direction of the link. Nevertheless,
the lineons will acquire dispersion. Naively we might think
that this means there will not be any sharp signal in linear
response, but this is too fast—actually, there is a sharp signal
here. Namely, the lineons, being one-dimensional particles,
will have a one-dimensional Van Hove singularity in their
density of states, which will diverge near the gap edge as
1/

√
E . This should be readily observable in linear-response

spectroscopy, and it should provide a clean signature of the
existence of one-dimensional excitations in this (otherwise
three-dimensional) system. We emphasize that the existence
of a Van Hove singularity at the band edge is a generic
property of one-dimensional band structures, and it is not
particular to our choice of perturbation.

Finally, a Y operator will anticommute with four B op-
erators and four A operators, and will thus excite four
“fractons” (which could be grouped into two planons), as well
as four vertex operators (grouped into two lineons). Again,
the lineons will have a crisp signature through their one-
dimensional density of states, and so the My correlator will
also have clear signatures of the existence of one-dimensional
particles.

In all the above, we have implicitly worked in the infinites-
imal neighborhood of the exactly solvable point where, e.g.,
an X operator only creates a single pair of lineons. Away from
the solvable point, there will also be some admixture of four
lineon creation and higher multiparticle processes. (One way
to see this is to perform a Schrieffer-Wolff transformation [21]
to remove the perturbation, and to note that the new “A” oper-
ators have some admixture of highly multiparticle operators in
the original basis.) These “multiparticle absorbtion” channels
should be added to the absorbtion spectrum discussed above,
and they will give rise to additional multiparticle continua.
However, the existence of multiparticle continua will not alter
the fact that there is a one-dimensional Van Hove singularity,
which should be clearly detectable in absorbtion experiments.
(In addition, the threshold frequency for the multiparticle con-
tinua will generically be higher than the threshold frequency
for the two lineon continuum, so the above analysis will be
strictly accurate in the frequency range where the light sup-
plies enough energy to create two lineons, but not to create
more than two excitations.)

Thus, type I gapped fracton phases which support one-
dimensional (i.e., lineon) excitations will have a clear
signature in linear response, in the form of a one-dimensional
Van Hove singularity in the absorption spectrum of an oth-
erwise three-dimensional material. The only challenge (for
crisply identifying this signature as coming from lineons) is
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to show that the signature does not come because, e.g., the
material has the structure of a system of weakly coupled one-
dimensional wires. This should be straightforward to do in
combination with some alternative experiment, e.g., transport.
In transport experiments (performed at nonzero temperature,
so that there is transport) a system of coupled wires would
have a clear preferred axis, whereas a fracton system with
lineons would not, since there are lineons that can move
along any lattice axis. An alternative (purely spectroscopic)
way to tell is that there will not be any signature of “one-
dimensional” physics in the Mz correlator.

D. Haah code

To define the Haah code, we need two species of spin-1/2
variables at each vertex. We assume that only the first spin-
1/2 can be coupled to the magnetic field. The second spin-
1/2 remains as a spectator. Hence, the light-matter interaction
term can be written as

V (t ) = −
∑

α=x,y,z

Bα (t )(Mα ⊗ I). (6)

X and Z correlators behave the same way in the Haah code.
Acting with either XI = X ⊗ I or ZI = Z ⊗ I creates four ex-
citations in a “tetrahedral” arrangement (four fractons), with
energy cost 4 (or 4�) at the exactly solvable point. These
cannot be grouped into mobile excitations (away from the
solvable point), so we continue to have a sharp “δ function”
signature at frequency 4 even away from the exactly solvable
point. This remains the case even if we, e.g., turn on a mag-
netic field and sweep the angle.

The existence of a sharp robust signature in linear response
is tempting to identify as diagnostic of a type II fracton phase.

However, we should bear in mind that something similar could
show up if we had, e.g., well isolated two-level systems in
the problem, or indeed if local fields created sharp individual
excitations (as in the Ising model) which are then constrained
to have zero momentum. As such, the observation of a sharp
robust signal in linear response alone is not sufficient to con-
clude that one is dealing with a type II fracton phase.

E. Summary of linear response

To conclude: type I fracton phases (X-cube) do have a crisp
diagnostic in linear response, in the form of a one-dimensional
Van Hove singularity in the absorbtion spectrum, which is
present only for certain polarizations of the incident light. This
is a signature that the phase contains fractionalized “lineon”
excitations, i.e., excitations that can only move in one di-
mension. In contrast, neither conventional gapped spin liquids
(toric code) nor type II fracton phases (Haah code) have crisp
signatures in linear response. To diagnose these phases, we
will need to turn to 2DCS and nonlinear response.

IV. 2DCS AND NONLINEAR RESPONSE

We consider a 2DCS experiment where two δ-function
pulses of magnetic fields are applied at time 0 and τ . Two
magnetic fields are linearly polarized along the α and β direc-
tion, respectively:

B(s) = êαBαδ(s) + êβBβδ(s − τ ). (7)

The pulse induced magnetization Mγ (t + τ ) is measured at a
later time t + τ :

Mγ (t + τ )/Nspin

= χγα (t + τ )Bα + χγβ (t )Bβ + χγαα (t + τ, t + τ )BαBα + χγββ (t, t )BβBβ + χγαβ (t, t + τ )BαBβ

+ χγααα (t + τ )BαBαBα + χγβββ (t )BβBβBβ + χγααβ (t, t + τ, t + τ )BαBαBβ + χγαββ (t, t, t + τ )BαBβBβ + O(B4), (8)

where Nspin is the total number of spins on a lattice. There is no sum over repeated indices. The canonical 2DCS experiment
extracts the nonlinear response by subtracting off the signal observed in the presence of either pulse alone. This leaves us with

Mnonlinear
γ (t + τ )/Nspin = χγαβ (t, t + τ )BαBβ + χγααβ (t, t + τ, t + τ )BαBαBβ + χγαββ (t, t, t + τ )BαBβBβ + O(B4). (9)

Now let us consider two possible experiments. Experiment I has (α, β, γ ) = (x, x, x). Experiment II has (α, β, γ ) = (z, z, z).
Other combinations of polarizations are of course possible, and may be interesting to consider, but these two are sufficient to
provide an unambiguous diagnostic of spin liquids, both conventional and fractonic. If we consider the models on a square and
cubic lattice, the second-order susceptibility χγαβ (t, t + τ ) = 0 for those two experiments because we need an even number of
X or Z operators to pair up creation and annihilation of excitations. Then, the leading contributions to the nonlinear signals are
the third-order susceptibilities, χγααβ (t, t + τ, t + τ ) and χγαββ (t, t, t + τ ). They are related to four-point correlation functions
via the generalized Kubo formula [14]

χγααβ (t, t + τ, t + τ ) = − i

Nspin
�(t )�(τ )〈[[[Mγ (t + τ ), Mβ (τ )], Mα (0)], Mα (0)]〉, (10)

χγαββ (t, t, t + τ ) = − i

Nspin
�(t )�(τ )〈[[[Mγ (t + τ ), Mβ (τ )], Mβ (τ )], Mα (0)]〉, (11)

where � is the Heaviside step function (equal to 1 when the argument is larger than 0), and the operators have been time-evolved
(Heisenberg picture) with respect to the system Hamiltonian. Note that Mβ is always applied at time τ , Mα at time 0, and Mγ at
time t + τ .
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Let us define

Rabcd = 〈Ma(ta)Mb(tb)Mc(tc)Md (td )〉

=
∑
μνλ

〈0|Ma|μ〉〈μ|Mb|ν〉〈ν|Mc|λ〉〈λ|Md |0〉 exp

(
i

h̄
[Eμ(tb − ta) + Eν (tc − tb) + Eλ(td − tc)]

)
, (12)

where in the last line we have reverted to the Schrödinger picture, and Eμ,ν,λ are the energy difference between the excited state
and the ground state. Now we can write

χγααβ (t, t + τ, t + τ ) = − i

Nspin
�(t )�(τ )[Rγ βαα − Rβγαα − 2Rαγβα + 2Rαβγα + Rααγβ − Rααβγ ], (13)

χγαββ (t, t, t + τ ) = − i

Nspin
�(t )�(τ )[Rγ ββα − 2Rβγβα + Rββγα − Rαγββ + 2Rαβγβ − Rαββγ ]. (14)

We always have tγ = t + τ , tβ = τ , and tα = 0. Let Sabcd be just the matrix element part of Rabcd [i.e., without the phases in
Eq. (12)]. Then we can write

χγααβ (t, t + τ, t + τ ) = − i

Nspin
�(t )�(τ )

∑
μνλ

[Sγ βααe−i(Eμt+Eν τ ) − Sβγααei[(Eμ−Eν )t−Eν τ ] − 2Sαγβαei[(Eμ−Eν )t+(Eμ−Eλ )τ ]

+ 2Sαβγαei[(Eν−Eλ )t+(Eμ−Eλ )τ ] + Sααγβei[(Eν−Eλ )t+Eν τ ] − Sααβγ ei(Eλt+Eντ )], (15)

χγαββ (t, t, t + τ ) = − i

Nspin
�(t )�(τ )

∑
μνλ

[Sγ ββαe−i(Eμt+Eλτ ) − 2Sβγβαei[(Eμ−Eν )t−Eλτ ] + Sββγαei[(Eν−Eλ )t−Eλτ ]

− Sαγββei[(Eμ−Eν )t+Eμτ ] + 2Sαβγβei[(Eν−Eλ )t+Eμτ ] − Sαββγ ei(Eλt+Eμτ )], (16)

where we have set h̄ = 1, and the expressions are now in the
Schrödinger picture. Here Sabcd is the implicit function of μ,
ν, and λ. We note that the experimentally observed signal
will be χγααβ (t, t + τ, t + τ )B2

αBβ + χγαββ (t, t, t + τ )BαB2
β .

Thus both third-order susceptibilities could, in principle, be
extracted by individually varying the strength of the two
applied pulses. We will thus generally present the two third-
order susceptibilities separately, even though what will be
observed will of course be the sum of the two.

There is one subtlety to note here. In what follows, we
will generally be looking at the response in frequency space,
and the Fourier transform of the terms in square brackets
is the quantity of interest. However, because the suscepti-
bility is multiplied by step functions, the observable signal
will consist of the “interesting” signal (the terms in square
brackets) convolved with [δ(ωt ) + Pi/ωt ][δ(ωτ ) + Pi/ωτ ] =
δ(ωt )δ(ωτ ) − P 1

ωt ωτ
+ i[δ(ωt )P 1

ωτ
+ δ(ωτ )P 1

ωt
], where P

denotes the principal value. How this effects the observable
signal will be noted below, where appropriate.

V. RESULTS

We now consider each of our models, in each of the two
potential polarizations, (α, β, γ ) = (x, x, x) and (α, β, γ ) =
(z, z, z). We will present results both at the exactly solvable
points η = 0 and in the presence of weak perturbations. It
is useful at this point to discuss how perturbations will be
treated.

We begin by noting that all the models we discuss have
gapped ground states that are robust to weak perturbations,
i.e., weak local perturbations do not produce phase transi-
tions. Next, we note that we are working at zero temperature,
such that excitations are present at zero density. As a result,

dephasing coming from, e.g., scattering between perturbations
can also be neglected. Finally, the models we study are all
gapped, so there is a clear separation of energies between the
gap scale corresponding to the lowest energy locally creatable
excitations, and multiexcitation processes. The treatment of
perturbations we will present will be well controlled at fre-
quencies below the multiexcitation continuum, where decay
of excitations into multiexcitation states can also be neglected.
So what do the perturbations do?

At the “exactly solvable” points η = 0 elementary excita-
tions are static and localized, and they have the same energy
wherever they sit—the manifold of excited states is thus
highly degenerate. Excitations lift this degeneracy, endowing
the excitations with a nontrivial band structure. We account
for this, and also for the associated reconstruction of the
wave functions (and hence matrix elements)—for details, see
the Appendixes. While the precise band structure and wave
functions will depend on the details of the perturbations, our
interest is in universal properties that are present regardless of
the precise choice of perturbation, or associated band struc-
ture. We emphasize again that reconstruction of the band
structure, wave functions, and matrix elements is expected
to be the only effect of perturbations in the regime where
we are doing our calculations, i.e., zero temperature and at
frequencies below the multiexcitation continuum, such that
scattering and decay of excitations can be neglected.

A. Ising model

We start by working in two spatial dimensions. In this case,
at leading order close to the solvable point, the experiment II
with zzz polarization does not produce any transitions or lead
to any nonlinear signal. So we can focus on the experiment I
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FIG. 1. Imaginary part of 2D Fourier transform Ft,τ of the third-order susceptibilities χxxxx for the 2D Ising model (a,b) without
perturbations and (c,d) with generic perturbations. (a) Im Ft,τ [χxxxx (t, t + τ, t + τ )] and (b) Im Ft,τ [χxxxx (t, t, t + τ )] of the 2D Ising model
show sharp pointlike signals due to the bound state of two magnons (marked with blue circles) and two separated magnons (marked with red
circles). (c) Im Ft,τ [χxxxx (t, t + τ, t + τ )] and (d) Im Ft,τ [χxxxx (t, t, t + τ )] of the perturbed Ising model exhibit finite shift of the location of
the signals by the half-bandwidth 2w = 0.4. The dotted lines guide the location of unperturbed signals. The perturbations also broaden the red
circled signals coming from two magnons with nonzero momenta ±k.

with xxx polarization. There is only one matrix element to be
evaluated. The states |μ〉 and |λ〉 both contain a single flipped
spin with zero momentum, with energy Eμ = Eλ = 4 + δ0,
where δ0 denotes corrections to the energy coming from per-
turbations [22]. Meanwhile, |ν〉 contains either zero or two
flipped spins which may be adjacent but do not need to be.
Thus we have Eν = 0, Eν = 8 + δk , or Eν = 6 + δ′, where the
correction δk is the kinetic energy contributions coming from
configurations where the two flipped spins have momentum
±�k, and δ′ − 2δ0 is the “binding energy” for two adjacent
spin flips (with zero momentum). In the former case, we need
to sum over �k. Note that because Eν is dispersive, the signal
will be broadened in the frequency directions corresponding
to Eν . However, it will be sharp in all other directions, modulo
the broadening from convolution discussed above. We further
note that the pathway with Eν = 0 just corresponds to linear
response done twice, and it cannot contribute to the nonlinear
response (see the Appendix A for detailed justification, but
one can also simply note that the contribution coming from
such a pathway would scale as the system size, whereas the
nonlinear susceptibility must of course be independent of

the system size). We can therefore focus on the terms with
Eν = 8 + δk or Eν = 6 + δ′.

Let (ωt , ωτ ) be the frequencies conjugate to t and τ , re-
spectively. Then the channel with Eν = 6 + δ′ will give rise
to sharp (δ function) signals at frequencies ωt,τ equal to
2 + δ′ − δ0, 4 + δ0, or 6 + δ′ + δ0. Thus, signals will appear
with a spacing in frequency space equal to roughly half the
linear-response gap. It is important to bear in mind that this
occurs in a clearly non-spin-liquid system, so the appearance
of signals at a fraction of the linear-response gap is not in itself
a signal of fractionalization.

There will also be contributions from intermediate states
with Eν = 8 + δk . These will be broadened along one direc-
tion (that corresponding to Eν) but will be sharp in the other
direction. This will give rise to streaks in the ωt direction,
with and without offset 4 in the ωτ direction, to a streak in
the ωτ direction with offset 4 in the ωt direction, and also
to a diagonal streak with offset 4 in the ωt direction; see
Fig. 1 for an illustration. This is our “control” example of a
non-spin-liquid. Features that appear herein cannot be viewed
as spin-liquid signatures.
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Meanwhile in three dimensions, the possible energies are
shifted to Eμ = 6 = Eλ and Eν = {0, 10 + δ′, 12 + δk} and
the signatures are analogous to the two-dimensional case.

The actual results in Fig. 1 are produced via a direct calcu-
lation from Eqs. (15) and (16) in two dimensions, including
matrix elements. Subfigures (a) and (b) correspond to the
exactly solvable point λ = 0. In subfigures (c) and (d) we
have assumed that the excited states are plane waves, and we
have calculated matrix elements accordingly. Excited states
containing two flipped spins are a symmetrized product of
two plane waves, as appropriate for bosonic excitations. For
a detailed discussion of the calculation, see the Appendixes.

We now have to discuss an annoying subtlety associ-
ated with the fact that the experimentally observed signal
gets convolved with δ(ωt )δ(ωτ ) − P 1

ωt ωτ
+ i[δ(ωt )P 1

ωτ
+

δ(ωτ )P 1
ωt

], because the Fourier transforms only run over the
positive time axes. This produces a weak 1/ω broadening in
both directions (from convolution with the second term), and
a somewhat stronger 1/ω broadening along both axes (from
convolution with the third and fourth terms). This “broadening
from convolution” can make it hard to see the more physical
broadening from dispersion. Within our present approxima-
tions, the physical part of the spectrum is pure imaginary
in Fourier space (see the Appendixes), and given that the
strongest part of the broadening from convolution comes with
an extra factor of i, it may simply be removed by taking the
imaginary part of the nonlinear susceptibility—this is done
in Fig. 1, and will be done throughout for all the models we
study. However, once decay of the excitations is reintroduced,
whether through coupling to extraneous degrees of freedom
such as phonons, or through decay into multiexcitation sec-
tors (at frequencies overlapping the multimagnon continuum),
then the “physical” part of the signal will in general become
complex, and the “broadening from convolution” problem
will become unavoidable. However, the 1/ω broadening from
convolution still leaves the intensity of the signal sharply
peaked where it would have been, so if one simply applies a
high-pass filter on intensity, then this may suffice to deal with
the problem.

B. Toric code

For the toric code (our paradigmatic example of a conven-
tional gapped spin liquid), both polarization configurations
yield interesting results. A Z operator applied to any link
creates a pair of vertex excitations residing on the two vertices
adjacent to that link. (More generally, the end points of strings
of Z operators produce vertex excitations.) Meanwhile, X
operators applied to a link create a pair of plaquette excitations
on the two plaquettes containing that link. More generally,
strings of X operators create plaquette excitations are the
ends. Both vertex and plaquette excitations are mobile but are
not locally creatable (the locally creatable things are pairs of
vertex or plaquette excitations). We will restrict the analysis
to the sector where each Z or X operator locally creates only
two plaquette or vertex excitations and will ignore mixing
with the “many excitation” sector. “Multiexcitation” channels
will make additional contributions to the signal, but as we will
see, unambiguous diagnostics appear already at leading order
(and will be there regardless of what additional signatures

appear from multiexcitation pathways). As usual, neglect of
multiexcitation pathways should also be safe at frequencies
below the multiexcitation gap. We will allow all excitations
to have dispersion (i.e., we will implicitly perturb about the
solvable point).

(α, β, γ ) = (x, x, x)

Here |λ〉 and |μ〉 contain a pair of plaquette excitations with
net momentum zero. We have Eμ = 2J + 2δk and Eλ = 2J +
2δk′ , where the plaquette excitations have momenta ±k and
±k′, respectively, and a corresponding kinetic energy δk (δk′ ).
Meanwhile, |ν〉 could contain any of the following: zero pla-
quette excitations (Eν = 0), two plaquette excitations (Eν =
Eμ = Eλ), or four plaquette excitations (Eν = Eμ + Eλ). All
momenta have to be summed over. As before, the channel with
Eν = 0 corresponds to linear response done twice and cannot
make a (properly extensive) contribution to the nonlinear re-
sponse, and it will therefore be ignored. (In the Appendixes,
we explicitly show how this channel cancels to give zero con-
tribution to the nonlinear response.) We will therefore focus
on the channels with Eν = Eμ = Eλ or Eν = Eμ + Eλ. We
are interested only in signals that are sharp in at least one
direction, after allowing dispersion.

We begin by considering the sequence with Eν = Eμ = Eλ.
This channel corresponds to the creation of a string with
visons (plaquette excitations) at the two ends, followed by
elongation of the string, followed by annihilation of the string;
the fact that all states have the same energy is a consequence
of the string having zero line tension. Since zero line tension
for strings is equivalent to deconfinement, we can reason-
ably expect signals from this channel to contain signatures
of deconfinement. Now the first and last terms in Eqs. (15)
and (16) give rise to diagonal stripes (outside the two vison
gap), whereas the second and fifth terms in Eq. (15), together
with the second, third, fourth, and fifth terms in Eq. (16),
collectively give rise to a sharp signal along the ωτ axis in
the two-dimensional Fourier transform (again, above the two
vison gap). Both of these features (the sharp streak along the
ωτ axis and the streak along the diagonals with no offset) are
signatures of deconfinement, at least in conjunction with the
lack of a sharp signal in linear response. The crucial aspect
here is that the streaks have no offset—while the signal is
only present outside the two-vison gap, the extrapolation of
the streak goes through the origin. This is a consequence of
the fact that, as mentioned, a “string” hosting visons at the
two ends can change length with no change in energy—a
signature of deconfinement. Another way to view it is that
each X operator creates a pair of visons, but the visons are
their own antiparticles, so the application of an X operator to
a two-vison state can leave us in a two-vison state. That is,
the first pulse creates a pair of visons with momentum ±k,
the second creates another pair of visons with momentum ±k
(one of which annihilates one of the visons in the original
pair), and the third pulse then returns us to the ground state.
Again, the fact that a local operator creates a pair of sharply
defined Z2 charged excitations is a signature of fractional-
ization. In contrast, in the two-dimensional Ising model the
equivalent streaks had an offset, indicating that the second
X operator necessarily changed the energy of the state. In
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FIG. 2. Imaginary part of 2D Fourier transform Ft,τ of the third-order susceptibilities χxxxx for 2D toric code (a,b) without perturbations
and (c) with generic perturbations. (a) Im Ft,τ [χxxxx (t, t + τ, t + τ )] and (b) Im Ft,τ [χxxxx (t, t, t + τ )] of the toric code show sharp pointlike
signals due to plain motion of a pair of two plaquettes (marked with green circles, Eμ = Eν = Eλ process in Sec. V B) and quantum processes
involving two pairs of plaquettes (marked with red circles, Eν = Eμ + Eλ process in Sec. V B). The signals at (ωτ , ωt ) = (±2, 0) are the
distinct signatures of the model having deconfined excitations because the signals suggest vanishing string tension between two plaquettes of
the toric code. (c) Im Ft,τ [χxxxx (t, t + τ, t + τ )] of the perturbed toric code. Im Ft,τ [χxxxx (t, t, t + τ )] shows the qualitatively same result. The
nonlinear signals due to the process involving only two plaquettes (Eμ = Eν = Eλ) are shown. Unlike the Ising model, the presence of the
dispersive deconfined excitations yields a clear spread of the signals by the full bandwidth of the single plaquette dispersion 4w = 0.8. Green
stars mark the locations of the signals without the perturbations.

the one-dimensional Ising model, equivalent signals do arise
[13]—but then the one-dimensional Ising model also has de-
confined fractionalized excitations (the domain walls).

In Fig. 2, we present computations of the signal including
appropriate matrix elements in Eqs. (15) and (16), both at
and away from the solvable point. The wave functions are
taken in real space at the exactly solvable point, and they are
assumed to be symmetrized products of plane waves away
from the solvable point. Full details of the calculation are
presented in the Appendixes. As we see, the features present
in the explicit calculation are precisely those expected by
inspection of Eqs. (15) and (16), and knowledge of the toric
code.

Now there is the channel with Eν = Eμ + Eλ, where Eμ

and Eλ may be individually varied. Naively, this produces a
contribution that scales like the square of the volume, so to
leading order the contributions from this channel must cancel.
However, this may leave a nontrivial extensive piece behind—
after all, this channel is not just linear response done twice.
Explicit calculation of this channel is impractically tedious
away from the exactly solvable point—the states |μ〉 and |λ〉
are a symmetrized product of two plane waves, whereas the
state |ν〉 is a symmetrized product of four plane waves (4!
terms in the sum), and altogether there are 2 ∗ 4! ∗ 2 = 96
possible terms to evaluate and sum. However, there is also
no good reason to believe this channel should have clear
diagnostics of deconfinement, and we have already found
clear signatures of deconfinement from the channel with Eμ =
Eν = Eλ. The only concern might be that the channel with
Eν = Eν + Eλ might somehow cancel the clear signatures
we found coming from the channel with Eμ = Eν = Eλ. We
have verified that this does not happen at the exactly solv-
able point by explicit calculation [see the Appendixes, and
also Fig. 2(a)]. Accordingly, we believe it is safe to ignore
the contributions from this channel—there may be additional
contributions to the nonlinear response from it, but they do not
cancel the contributions from the Eμ = Eν = Eλ channel, and
those already contain clear signatures of deconfinement.

Thus, the combination of linear response and 2DCS data
can provide clean fingerprints of deconfined fractionalized
excitations. If linear response does not show any sharp fea-
tures, this could be because local fields create multiplets of
dispersive fractionalized excitations (as in the toric code), or
it could just mean that they create excitations that are not
good quasiparticles. However, if 2DCS also shows a sharp
stripe along the ωτ axis and along the diagonal, then this
indicates that local fields in fact create a pair of quasipar-
ticles which are their own antiparticles, such that a second
pulse can leave us in the “two-quasiparticle” sector. This is
the case for deconfined fractionalized excitations that live
at the ends of strings with zero line tension—the second
pulse just elongates the string—but it is not the case if there
are nonfractionalized excitations which are just not good
quasiparticles.

The analysis of the experiment for fields in the z direc-
tion proceeds analogously—fields create vertex excitations
instead of plaquette excitations, but we obtain identical re-
sults. Thus, from linear response, we can learn whether local
fields can create sharply defined individual quasiparticles.
If the answer is no, then using 2DCS we can determine if
local fields actually create pairs of deconfined fractionalized
quasiparticles.

C. X-cube

We now consider 2DCS on the X-cube phase. Now an
X operator applied to a link creates a pair of vertex exci-
tations (lineons) on the two vertices adjacent to that link.
These lineons can move freely, but only in one dimension (the
dimension of the link).

A Z operator applied to a link creates a quartet of cube ex-
citations (fractons) on the four cubes sharing that link. These
fractons are individually immobile, but they can move in pairs
as planons (i.e., they can move freely in the plane orthogonal
to the long axis of the planon).
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FIG. 3. Imaginary part of the 2D Fourier transform Ft,τ of the third-order susceptibilities χxxxx for the X-cube model (a,b) without
perturbations and (c) with generic perturbations. Qualitatively, the Fourier-transformed χxxxx of the X-cube model is similar to those of the
toric code. (a) Im Ft,τ [χxxxx (t, t + τ, t + τ )] and (b) Im Ft,τ [χxxxx (t, t, t + τ )] of the X-cube model show sharp pointlike signals suggesting the
deconfinement, i.e., a pair of two lineons move with zero string tension (marked with green circles, Eμ = Eν = Eλ process in Sec. V C 1). Red
circled signals are due to quantum processes involving four lineons (Eν = Eμ + Eλ process in Sec. V C 1). (c) Im Ft,τ [χxxxx (t, t + τ, t + τ )] of
the perturbed X-cube model. Im Ft,τ [χxxxx (t, t, t + τ )] is almost the same. Only the signals relevant to the Eμ = Eν = Eλ process are shown.
Similar to the toric code, dispersive lineons exhibit a clear spread of the signals by the full bandwidth of a lineon dispersion 2w = 1. Green
stars mark the locations of the peaks without the perturbations.

1. (α, β, γ ) = (x, x, x)

Now |μ〉 and |λ〉 both contain a single pair of lineons with
zero total momentum (and with associated Van Hove singu-
larity in the DOS). Meanwhile, |ν〉 can contain either zero
lineons, a single pair of lineons (in which case Eμ = Eν =
Eλ), or two pairs of lineons. The lineons are deconfined frac-
tionalized excitations that are their own antiparticles, much
like the visons in the toric code. The analysis parallels the
analysis of the toric code, with the one exception being that
the DOS is that of a one-dimensional system. In particular,
we will have the same diagnostics of deconfinement as in
the toric code. These include streaks along the ωτ axis and
along the diagonal, with no offset. This is illustrated in Fig. 3.
Full calculations are in the Appendixes—we have performed
exact calculations at the solvable point, and away from the
solvable point we have calculated the signal from the channel
with Eμ = Eν = Eλ, which is the channel expected to give
rise to signatures of deconfinement. We have also verified
that the contribution from the intermediate channel with Eν =
Eμ + Eλ does not cancel the signal of interest at the solvable
point, where this extra (more complicated) channel can be
analytically treated. Thus, linear response on the X-cube can
show that a local field creates one-dimensional excitations
(lineons) through DOS. 2DCS can then verify that the lineons
are deconfined.

2. (α, β, γ ) = (z, z, z)

Now μ and λ both contain a pair of planons with zero net
momentum. Since the planons are mobile, there is an associ-
ated continuum of energies. Meanwhile options for ν include
zero planons (Eν = 0), one pair of planons (Eμ = Eν = Eλ),
or two pairs of planons (Eν = Eμ + Eλ). Thus far the analysis
parallels the toric code case, with planons taking the place
of visons. In particular, there will be a diagonal streak in the
two-dimensional Fourier transform, with no offset, as well
as a streak along the ωτ axis with no offset, as a signature
of deconfined fractionalized excitations which are their own

antiparticles. However, there is one additional intermediate
option, whereby ν contains one pair of planons and also
two fractons (which each have zero momentum), such that
Eμ = Eλ but Eν = Eμ + 2K . Let us explore the consequences
of this additional channel, bearing in mind that Eμ can take
a continuum of values (outside the two planon gap), and that
we are only interested in features that are sharp in at least one
direction.

The first and sixth terms in Eq. (15) will give rise to
diagonal streaks with offset 2K in the ωt direction, outside the
two planon gap, while the second and fifth terms will give rise
to streaks along ωτ with offset 2K in the ωt direction outside
the two planon gap. Meanwhile the first and sixth terms in
Eq. (16) will again produce diagonal streaks with no offset,
while the middle four terms in Eq. (16) generate streaks in
the ωτ direction with offset 2K in the ωt direction outside
the planon gap. Thus, the main “new” consequence is offset
stripes. Now, offset stripes also appeared in the TFIM, but
there the offset was equal to the linear-response gap. Here
the offset is equal to half the linear-response gap. Altogether
this is quite informative. The lack of any sharp features in
linear response (besides the gap) tells us that local fields do not
create individual local sharp quasiparticles. The appearance of
vertical streaks along the axis in the two-dimensional Fourier
transform tells us that local fields do create deconfined pairs of
quasiparticles (planons). The additional appearance of sharp
streaks at an offset that is a fraction of the linear-response
gap tells us that the planons can further fractionalize, but
also that the objects generated by planon fractionalization are
nondispersive (fractons). Altogether 2DCS provides a crisp
diagnostic for planons, fractons, and lineons in the X-cube
phase.

In the Appendixes, we have provided explicit calculations
for the X-cube model in the z polarization. Calculations are
exact at the solvable point, whereas away from the solvable
point they include the channels with Eν = Eμ = Eλ and Eν =
Eμ + 2K , which produce the key signals of interest. Figure 4
plots the results.

013254-9



NANDKISHORE, CHOI, AND KIM PHYSICAL REVIEW RESEARCH 3, 013254 (2021)

FIG. 4. Imaginary part of the 2D Fourier transform Ft,τ of the third-order susceptibilities χzzzz for the X-cube model (K = 1) (a,b) without
perturbations and (c,d) with generic perturbations. (a) Im Ft,τ [χzzzz(t, t + τ, t + τ )] and (b) Im Ft,τ [χzzzz(t, t, t + τ )] of the X-cube model are
qualitatively similar to those of the Ising model except the signals marked with green circles. The green circled signals are coming from
the free motion of a pair of planons having restricted mobility within two-dimensional planes (Eμ = Eν = Eλ process in Sec. V C 2). Again,
the signals at (ωτ , ωt ) = (±4, 0) suggest deconfined excitations of the X-cube model. Red circled signals are due to quantum processes
involving four planons (Eν = Eμ + Eλ process in Sec. V C 2), and blue circled signals are originating from the process with two planons and
two immobile fractons (Eν = Eμ + 2K = Eλ + 2K process in Sec. V C 2). (c) Im Ft,τ [χzzzz(t, t + τ, t + τ )] and (d) Im Ft,τ [χzzzz(t, t, t + τ )]
of the perturbed X-cube model. The nonlinear signals from the dispersive two-planon (Eμ = Eν = Eλ) and two-planon–two-fracton (Eν =
Eμ + 2K = Eλ + 2K) processes are shown. Recall that the blue circled signals of the Ising model (Fig. 1) are coming from a single zero-
momentum excitation of the two-magnon bound state. Hence, they do not show significant spreading in the presence of perturbations. However,
the blue circled signals of the X-cube model are originating from the nonlinear dynamics of two finite momentum carrying planons scattering
with two immobile fractons. Thus, we can see the clear spread of the signals by the full bandwidth of the single planon dispersion 4w = 0.8.
Blue and green stars mark the locations of the signals without the perturbations.

D. Haah code

We will consider here only the xxx experimental
geometry—the zzz geometry has analogous behavior. Now
both |μ〉 and |λ〉 are produced by acting on the ground
state with a singe X operator, and hence they contain a
“tetrahedron” of four fractons, with energy Eμ = Eν = 4.
This cannot be subdivided into two (or more) mobile exci-
tations, so given the constraint that |μ〉 and |λ〉 have zero
momentum, it follows that they also have a sharply defined
energy, rather than a continuum. What about |ν〉? This can
contain zero fractons (Eν = 0), six fractons (Eν = 6 + δ′),
or eight fractons (Eν = 8 + 2Ek ). In the last we have taken
account of the fact that composites of four fractons are lo-
cally creatable and hence mobile objects, which can carry
momentum.

Let us compare to the Ising model in three dimensions
(i.e., the same spatial dimensionality as the Haah code). In
the Ising model, we have Eμ = Eν = 6 (equal to the linear-
response gap) and Eν = 0 or Eν = 12 + 2Ek (two spin flips
with equal and opposite momentum), or Eν = 10 + δ′ (bound
state of two adjacent spin flips). While there is a quantita-
tive difference to the Haah code, there is not a qualitative
difference—each time we act with an X operator we create
a single mobile excitation (a single spin flip in the Ising
model, a tetrad of excited cubes in the Haah code), and two
adjacent mobile excitations can form a bound state. While the
quantitative differences are suggestive that what is going on
in the Haah code may be different, there is not therefore an
unambiguous diagnostic in 2DCS.

It should, however, be possible to diagnose the Haah code
in higher order nonlinear response. A key property of the Haah
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code is that acting with an appropriate fractal membrane of X
operators only produces four cube excitations at the “corners”
[18]. Thus, while acting with a single X operator produces a
state with energy equal to the linear response gap, acting with
four X operators in a tetrahedral arrangement also produces
a state with the same energy gap. In contrast, in the Ising
model there is no way to produce a state with energy equal
to the linear-response gap by acting with four operators. If
we go to sufficiently high order to access this intermediate
state, then we should be able to qualitatively distinguish the
Haah code from the trivial case of the Ising model. However,
this will require consideration of at least the seventh-order
nonlinear response, which is beyond the scope of the present
paper. Experimentally also measurement of a seventh-order
nonlinear response may be challenging—although it could
certainly be accomplished in principle, e.g., with a seven-
pulse experiment. Unambiguous diagnosis of the Haah code
is therefore a more challenging task than identification of its
conventional spin liquid or type-I fracton counterparts.

VI. CONCLUSIONS

We have identified purely spectroscopic fingerprints of
both conventional gapped spin liquids and gapped fractonic
phases using the technique of 2DCS spectroscopy. The easiest
to diagnose are type I fracton phases with lineon (one-
dimensional) excitations—these can be diagnosed even in
linear response through the existence of one-dimensional Van
Hove singularities in the absorbtion spectrum. If we turn
to nonlinear response and the 2DCS spectrum, then type I
fracton phases have further fingerprints of deconfinement,
of the existence of lineon excitations, and also of the exis-
tence of totally immobile fracton excitations. Conventional
gapped spin liquids are intermediate in subtlety to detect. In
linear response there are no sharp features besides the bulk
gap. However, in nonlinear response and the 2DCS spectrum,
there appear sharp signatures of the existence of deconfined
quasiparticles. Finally, type II fracton phases (such as the
Haah code) are most subtle to diagnose. Linear response has
no clear signatures, and even 2DCS gives only quantitative
(but not qualitative) distinctions from trivial possibilities. An
unambiguous diagnosis of the Haah code likely requires a
consideration of high-order nonlinear response (seventh-order
susceptibility should suffice), which may be challenging to
access experimentally.

A number of future directions present themselves for con-
sideration. For instance, thus far we have considered only the
simplest version of the experiment, where each of the pulses
(and the observed signal) has the same polarization. Crossed
polarizations would be interesting to consider in future work,
and could yield additional information beyond the “single
polarization” experiments discussed herein. Additionally, the
calculations presented herein have been for a system prepared
in the ground state. Extension to low-temperature Gibbs states
would also be a natural problem for future work. Perhaps
most significantly, we have thus far ignored dissipative line
broadening. However, dissipation will inevitably be present,
whether extrinsic (due to coupling to, e.g., phonons) or in-
trinsic (due to decay to the multiexcitation continuum). This
will produce line broadening, and a quantitative understanding

thereof could be a fruitful endeavor. Indeed, it seems plausible
[23] that a careful analysis of the temperature dependence
of line broadening might itself provide a clean diagnostic
for otherwise difficult to detect phases like the Haah code.
The ability of 2DCS to distinguish between energy relaxation
(T1 time) and dephasing (T2 time) may also be useful in this
regard.

We have thus far also assumed that we are dealing with
clean systems, whereas realistic experimental systems will
inevitably be disordered. Disorder is not expected to be im-
portant for the signals discussed herein, but it would certainly
be important for any analysis of dissipative line shapes, where
the ability of 2DCS to distinguish “intrinsic” line broadening
from inhomogeneous broadening could be particularly useful.
Incorporating disorder into the analysis would thus also be a
fruitful project for the future.

Furthermore, thus far we have identified sharp signatures
of deconfinement, lineons, fractons, etc., but while these serve
as crisp diagnostics for a fractionalized phase (or a fracton
phase), they do not establish which fractionalized (or frac-
tonic) phase we are dealing with. For example, the diagnostics
we identified would not be able to distinguish between the Z2

spin liquid represented by the toric code and that represented
by the doubled semion model [24], nor between the X-cube
phase and the semionic X-cube phase [25]. Identifying di-
agnostics able to unambiguously identify which phase within
each class we were dealing with would also be a fruitful topic
for future work. Similarly, diagnostics capable of identifying
symmetry-enriched phases, akin to [26], would also be worth
identifying.

Finally, thus far we have considered only the third-order
nonlinear response, probed in a two-pulse experiment with
2DCS. There are other possibilities. For instance, one could
consider the third-order response probed through a three-
pulse experiment, and analyzed via the three-dimensional
Fourier transform, or we could consider fifth- (or higher-)
order nonlinear susceptibilities. Indeed, we have argued that
the seventh-order nonlinear response should be particularly
interesting, as it likely offers a clean diagnostic for the Haah
code. All these would no doubt yield additional information,
at the cost of complicating the necessary experiment. Regard-
less, it appears clear that the multidimensional spectroscopy
technique places a powerful new tool at our disposal, which
can be used to identify exotic phases that would be difficult to
diagnose via conventional techniques.
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APPENDIX A: NONLINEAR SUSCEPTIBILITIES OF THE STABILIZER CODES

In this Appendix, we provide detailed calculations for the nonlinear susceptibilities of the toric code and the X-cube model.
Since we can find the exact energy eigenvalues and eigenstates of the models, the dynamical four-point correlation functions
[Eq. (12)] can be exactly calculated. In the presence of small perturbations, the model is no longer exactly solvable. However,
we can perform further analysis by introducing appropriate dispersion to the elementary excitations in the plane-wave basis.

We first note that the unperturbed stabilizer codes have nonvanishing nonlinear susceptibilities χγααβ (t, t + τ, t + τ ) and
χγαββ (t, t, t + τ ) only if α = β = γ . Since different Pauli operators create/annihilate different types of excitations, nonvanish-
ing correlation functions must have an even number of each type of Pauli operators on a cubic lattice. For example, 〈ZZZZ〉
and 〈XXZZ〉 can be (not necessarily but possibly) finite, but correlation functions like 〈XZZZ〉 must be zero because excitations
created by X cannot be annihilated by Z . Therefore, χγααβ (t, t + τ, t + τ ) = 0 when γ �= β and χγαββ (t, t, t + τ ) = 0 when
γ �= α.

From the explicit calculations, one can further confirm that χβααβ (t, t + τ, t + τ ) = χααββ (t, t, t + τ ) = 0 if α �= β. Al-
though the matrix elements S are finite, the quantum phases destructively interfere so that all terms in Eqs. (15) and (16) add up
to zero. This cancellation has to happen because the nonlinear susceptibility should be independent of the system size [Eq. (9)]
while the matrix elements S ∝ L2d if α �= β. Since the dynamics of different types of excitations are completely decoupled, the
creation and annihilation of each type of excitation gives a factor of N to the matrix element S. For example,

Szzxx(μ, ν, λ) = 〈0|Mz|μ〉〈μ|Mz|ν〉〈ν|Mx|λ〉〈λ|Mx|0〉 =
N∑

j,k=1

〈0|Zj |μ〉〈μ|Zj |ν〉〈ν|Xk|λ〉〈λ|Xk|0〉 (A1)

=
(

N∑
j=1

〈0|Zj |μ〉〈μ|Zj |ν〉
)(

N∑
k=1

〈ν|Xk|λ〉〈λ|Xk|0〉
)

∝ N2 ∝ L2d , (A2)

where N is the total number of spins on a lattice. As χ ∝ 1
Ld S ∝ Ld �= O(1) is inconsistent with the definition of the nonlinear

susceptibility, we can expect that the susceptibility must be vanishing when α �= β.
With the nonvanishing condition α = β = γ , Eqs. (15) and (16) can be simplified as

χαααα (t, t + τ, t + τ ) ≡ χ (a)
α (t, τ ) = 2

N

∑
μνλ

Im[R(a)(μ, ν, λ; t, τ )〈0|Mα|μ〉〈μ|Mα|ν〉〈ν|Mα|λ〉〈λ|Mα|0〉], (A3)

χαααα (t, t + τ, t + τ ) ≡ χ (b)
α (t, τ ) = 2

N

∑
μνλ

Im[R(b)(μ, ν, λ; t, τ )〈0|Mα|μ〉〈μ|Mα|ν〉〈ν|Mα|λ〉〈λ|Mα|0〉], (A4)

where

R(a)(μ, ν, λ; t, τ ) = 2ei(Eμ−Eλ )τ ei(Eν−Eλ )t + ei(Eν−E0 )τ ei(Eν−Eλ )t + ei(E0−Eν )τ ei(E0−Eμ )t , (A5)

R(b)(μ, ν, λ; t, τ ) = ei(E0−Eλ )τ ei(Eν−Eλ )t + 2ei(Eμ−E0 )τ ei(Eν−Eλ )t + ei(E0−Eλ )τ ei(E0−Eμ )t , (A6)

and Eμ, Eν, Eλ and |μ〉, |ν〉, |λ〉 are the energy eigenvalues and eigenstates of the stabilizer codes.

1. 2D Ising ferromagnet

We use the 2D ferromagnetic Ising model as a reference model for conventional magnetic systems. The model has a
ferromagnetic ground state, and each spin flip (X operator) results in a gapped magnon excitation. On a square lattice, a single
spin flip has energy cost ε = 4, and non-neighboring two spin flips cost ε = 8. When two neighboring spins are flipped, then the
energy cost is ε = 6.

By plugging in the energy cost into Eqs. (A3) and (A4), we can calculate the third-order susceptibilities χ (a/b)
x (t, τ ) for the

Ising model on a square lattice:

χ (a/b)
x (t, τ ) = 2

L2
�(t )�(τ )

∑
l,l ′

∑
μλ

Im[R(a/b)(μ, 0, λ; t, τ )〈0|Xl |μ〉〈μ|Xl |0〉〈0|Xl ′ |λ〉〈λ|Xl ′ |0〉] (A7)

+ 2

L2
�(t )�(τ )

∑
l

∑
η=±x̂,±ŷ

∑
μνλ

Im[R(a/b)(μ, ν, λ; t, τ )〈0|Xl |μ〉〈μ|Xl+η|ν〉〈ν|Xl+η|λ〉〈λ|Xl |0〉] (A8)

+ 2

L2
�(t )�(τ )

∑
l

∑
η=±x̂,±ŷ

∑
μνλ

Im[R(a/b)(μ, ν, λ; t, τ )〈0|Xl |μ〉〈μ|Xl+η|ν〉〈ν|Xl |λ〉〈λ|Xl+η|0〉] (A9)

+ 2

L2
�(t )�(τ )

∑
l

∑
l ′ �=l,l±x̂,l±ŷ

∑
μνλ

Im[R(a/b)(μ, ν, λ; t, τ )〈0|Xl |μ〉〈μ|Xl ′ |ν〉〈ν|Xl ′ |λ〉〈λ|Xl |0〉] (A10)
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+ 2

L2
�(t )�(τ )

∑
l

∑
l ′ �=l,l±x̂,l±ŷ

∑
μνλ

Im[R(a/b)(μ, ν, λ; t, τ )〈0|Xl |μ〉〈μ|Xl ′ |ν〉〈ν|Xl |λ〉〈λ|Xl ′ |0〉] (A11)

= 2L2 �(t )�(τ )Im R(a/b)(εμ = 4, εν = 0, ελ = 4; t, τ ) (A12)

+ 16 �(t )�(τ )Im R(a/b)(εμ = 4, εν = 6, ελ = 4; t, τ ) (A13)

+ 4(L2 − 5) �(t )�(τ )Im R(a/b)(εμ = 4, εν = 8, ελ = 4; t, τ ) (A14)

= 2L2 �(t )�(τ )Im[R(a/b)(εμ = 4, εν = 0, ελ = 4; t, τ ) + 2R(a/b)(εμ = 4, εν = 8, ελ = 4; t, τ )] (A15)

+ 4 �(t )�(τ )Im[4R(a/b)(εμ = 4, εν = 6, ελ = 4; t, τ ) − 5R(a/b)(εμ = 4, εν = 8, ελ = 4; t, τ )]. (A16)

The terms proportional to L2 are precisely canceled, which is consistent with the nonextensive definition of the nonlinear
susceptibilities. Then

χ (a)
x (t, τ ) = 8 �(t )�(τ )[4 sin 2t − 5 sin 4t − 2 sin(4t + 6τ ) + 2 sin(2t + 6τ )], (A17)

χ (b)
x (t, τ ) = 4 �(t )�(τ )[4 sin(2t − 4τ ) + 8 sin(2t + 4τ ) − 5 sin 4(t − τ ) − 9 sin 4(t + τ )]. (A18)

Under generic perturbations, a single spin-flip excitation (magnon) becomes dispersive. Since the contribution from the
perturbative process involving |ν〉 = |0〉 is eventually canceled, we only need to consider the nonlinear dynamics of two
neighboring spin-flip composite (εν = 6 + δ) and dispersive motion of two separated magnons (εν = 8 + εq1 + εq2 ), where δ

and εq1,2 are perturbative corrections to the static energy cost.
Let us first consider the process with two separated magnons. With the resolution of identity in the plane-wave basis |p〉 =

a†
p|0〉 = 1

L

∑
ξ eip·ξ a†

ξ |0〉,

χ (a/b)
x (t, τ ) = 2

L2
�(t )�(τ ) Im

⎡⎣1

2

∑
p

∑
q1,q2

∑
r

R(a/b)(p, q1, q2, r; t, τ )
∑
jklm

〈0|Xj |p〉〈p|Xk|q1, q2〉〈q1, q2|Xl |r〉〈r|Xm|0〉
⎤⎦.

(A19)

The matrix element is calculated using the standard Holstein-Primakoff transformation,

Xj =
√

1 − a†
j a ja j + a†

j

√
1 − a†

j a j . (A20)

Then, ∑
j

〈0|Xj |p〉 = 1

L

∑
j

∑
ξ

eip·ξ 〈0|(
√

1 − a†
j a ja j + a†

j

√
1 − a†

j a j )a
†
ξ |0〉 = 1

L

∑
j

∑
ξ

eip·ξ 〈0|
√

1 − a†
j a ja ja

†
ξ |0〉 (A21)

= 1

L

∑
j,ξ

eip·ξ δ jξ =
∑

j

eip·Rj = Lδp,0. (A22)

For the matrix element with the two-magnon state, the restricted summation
∑′ carefully excludes the case in which two

spin-flips are right next to each other:∑
k

〈p|Xk|q1, q2〉 = 1

L3

∑
k

∑
ξ

∑
ζ1,ζ2

′
e−ip·ξ+iq1·ζ1+iq2·ζ2〈0|aξ (

√
1 − a†

kakak + a†
k

√
1 − a†

kak )a†
ζ1

a†
ζ2
|0〉

= 1

L3

∑
k

∑
ξ

′ ∑
ζ1,ζ2

e−ip·ξ+iq1·ζ1+iq2·ζ2〈0|aξ

√
1 − a†

kakaka†
ζ1

a†
ζ2
|0〉

= 1

L3

∑
k

∑
ξ �=k

′ ∑
ζ1,ζ2

e−ip·ξ+iq1·ζ1+iq2·ζ2〈0|aξ aka†
ζ1

a†
ζ2
|0〉

= 1

L3

∑
k

∑
ξ �=k

′ ∑
ζ1,ζ2

e−ip·ξ+iq1·ζ1+iq2·ζ2
(
δζ1,ξ δζ2,k + δζ1,kδζ2,ξ

)
= 1

L3

∑
k

∑
ξ �=k,k±x̂,k±ŷ

ei(q1−p)·ξ+iq2·Rk + ei(q2−p)·ξ+iq1·Rk

013254-13



NANDKISHORE, CHOI, AND KIM PHYSICAL REVIEW RESEARCH 3, 013254 (2021)

= 1

L3

∑
k

∑
ξ

ei(q1−p)·ξ+iq2·Rk + ei(q2−p)·ξ+iq1·Rk

− 1

L3

∑
k

ei(q1+q2−p)·Rk

[
2 +

∑
η=±x̂,±ŷ

ei(q1−p)·η + ei(q2−p)·η
]

= L
(
δq1,pδq2,0 + δq1,0δq2,p

)− 2

L
δq1+q2,p(1 + cos q1x + cos q1y + cos q2x + cos q2y). (A23)

Due to the Kronecker δ in Eq. (A22), the only relevant matrix elements are∑
k

〈0|Xk|q,−q〉 = 2Lδq,0 − 2

L
(1 + 2 cos qx + 2 cos qy). (A24)

When two spin flips are neighboring, the energy cost is smaller than the cost for two separated magnons. So we treat this
case separately. Since two magnons are moving altogether, both magnons have the same momentum. So the relevant matrix
element is ∑

k

〈p|Xk|q, q〉 = 1

L2

∑
k

∑
ξ,ζ

∑
η=x̂,ŷ

e−ip·ξ+iq·(2ζ+η)〈0|aξ (
√

1 − a†
kakak + a†

k

√
1 − a†

kak )a†
ζ a†

ζ+η|0〉

= 1

L2

∑
k

∑
ξ �=k

∑
ζ

∑
η=x̂,ŷ

e−ip·ξ+iq·(2ζ+η)〈0|aξ aka†
ζ a†

ζ+η|0〉

= 1

L2

∑
k

∑
ξ �=k

∑
ζ

∑
η=x̂,ŷ

e−ip·ξ+iq·(2ζ+η)(δζ ,ξ δζ+η,k + δζ ,kδζ+η,ξ )

= 1

L2

∑
k

ei(2q−p)·Rk
∑
η=x̂,ŷ

[e−i(q−p)·η + ei(q−p)·η] = 2δ2q,p(cos qx + cos qy). (A25)

Due to the momentum conservation constraint imposed by the Kronecker δ’s, we only need to consider the case p = q = 0.
If we add up those two contributions,

χ (a/b)
x (t, τ ) = 4 �(t )�(τ ) Im

[
R(a/b)(0; t, τ )(L2 − 10) + 1

L2

∑
q

R(a/b)(q; t, τ )(1 + 2 cos qx + 2 cos qy)2

]
(A26)

+ 16 �(t )�(τ ) Im R̃(a/b)(0; t, τ ) (A27)

= 4L2 �(t )�(τ ) Im R(a/b)(0; t, τ ) (A28)

+ 16 �(t )�(τ ) Im R̃(a/b)(0; t, τ ) (A29)

+ 4 �(t )�(τ )

[
1

L2

∑
q

(1 + 2 cos qx + 2 cos qy)2 Im R(a/b)(q; t, τ ) − 10 Im R(a/b)(0; t, τ )

]
, (A30)

where R(a/b(q; t, τ ) ≡ R(a/b)(p = 0, q,−q, r = 0; t, τ ) and R̃(a/b)(0; t, τ ) are

R(a)(q; t, τ ) = e−iε0t [2eiεqt + eiεq (t+τ ) + e−iεqτ ], (A31)

R(b)(q; t, τ ) = e−iε0(t+τ )eiεqt + 2e−iε0(t−τ )eiεqt + e−iε0 (t+τ ), (A32)

R̃(a)(0; t, τ ) = e−iε0t [2eĩε0t + eĩε0(t+τ ) + e−ĩε0τ ], (A33)

R̃(b)(0; t, τ ) = e−iε0(t+τ )eĩε0t + 2e−iε0(t−τ )eĩε0t + e−iε0(t+τ ), (A34)

with ε0 = 4 + w(cos 0 + cos 0) = 4 + 2w, εq = 8 + 2w(cos qx + cos qy), and ε̃0 = 6 + 4w.
The extensive term, Eq. (A28), is responsible for the cancellation of the other extensive term from the process involving

|ν〉 = |0〉. Hence, we only take the system-size-independent terms. Note that the expression [Eqs. (A29) + (A30)] reproduces
the exact susceptibility [Eq. (A16)] without perturbations (i.e., w = 0).

2. 2D toric code

Magnetic fields along the x- and z-axis excite e (vertex excitation, i.e., bosonic charge) and m (plaquette excitation, i.e., Z2

flux) particles of the two-dimensional toric code, respectively. y-polarized fields excite both e and m particles. On a square lattice,
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the dynamics of the fluxes (χxxxx) and the bosonic charges (χzzzz) are the same. So let us focus on the nonlinear response of the
bosonic charges under two z-polarized incident pulses:

χ (a/b)
z (t, τ ) = 1

L2
�(t )�(τ )

∑
l,l ′

∑
μλ

Im[R(a/b)(μ, 0, λ; t, τ )〈0|Zl |μ〉〈μ|Zl |0〉〈0|Zl ′ |λ〉〈λ|Zl ′ |0〉] (A35)

+ 1

L2
�(t )�(τ )

∑
l �=l ′

∑
μλ

∑
ν∈2

Im[R(a/b)(μ, ν, λ; t, τ )〈0|Zl |μ〉〈μ|Zl ′ |ν〉〈ν|Zl ′ |λ〉〈λ|Zl |0〉] (A36)

+ 1

L2
�(t )�(τ )

∑
l �=l ′

∑
μλ

∑
ν∈2

Im[R(a/b)(μ, ν, λ; t, τ )〈0|Zl |μ〉〈μ|Zl ′ |ν〉〈ν|Zl |λ〉〈λ|Zl ′ |0〉] (A37)

+ 1

L2
�(t )�(τ )

∑
l �=l ′

∑
μλ

∑
ν∈4

Im[R(a/b)(μ, ν, λ; t, τ )〈0|Zl |μ〉〈μ|Zl ′ |ν〉〈ν|Zl ′ |λ〉〈λ|Zl |0〉] (A38)

+ 1

L2
�(t )�(τ )

∑
l �=l ′

∑
μλ

∑
ν∈4

Im[R(a/b)(μ, ν, λ; t, τ )〈0|Zl |μ〉〈μ|Zl ′ |ν〉〈ν|Zl |λ〉〈λ|Zl ′ |0〉] (A39)

+ 1

L2
�(t )�(τ )

∑
l1l2l3l4∈�

∑
μλ

∑
ν∈2

Im
[
R(a/b)(μ, ν, λ; t, τ )〈0|Zl1 |μ〉〈μ|Zl2 |ν〉〈ν|Zl3 |λ〉〈λ|Zl4 |0〉] (A40)

+ 1

L2
�(t )�(τ )

∑
l1l2l3l4∈�

∑
μλ

∑
ν∈4

Im
[
R(a/b)(μ, ν, λ; t, τ )〈0|Zl1 |μ〉〈μ|Zl2 |ν〉〈ν|Zl3 |λ〉〈λ|Zl4 |0〉], (A41)

where � denotes the four edges of a plaquette, and 2 and 4 denote the sets of all two-particle states and four-particle states,
respectively. The last two sums, Eqs. (A40) and (A41), are a consequence of the ground state being a symmetric superposition
of all possible closed loops.

Since a Zl operator creates or annihilates a pair of two bosonic charges at two ends of the link l , |μ〉 and |λ〉 must be the
two-particle states. Without any perturbations, the phase factors are simplified to

R(a)(2, ν, 2; t, τ ) = 2ei(εν−2)t + eiεντ ei(εν−2)t + e−iεντ e−2it , (A42)

R(b)(2, ν, 2; t, τ ) = e−2iτ ei(εν−2)t + 2e2iτ ei(εν−2)t + e−2iτ e−2it , (A43)

where

εν = Eν − E0 =
⎧⎨⎩0 if |ν〉 = |0〉,

2 if |ν〉 ∈ 2,

4 if |ν〉 ∈ 4.

(A44)

Then

χ (a/b)
z (t, τ ) = �(t )�(τ )Im[(2L2)R(a/b)(2, 0, 2; t, τ ) + 6R(a/b)(2, 2, 2; t, τ ) + 6R(a/b)(2, 2, 2; t, τ ) (A45)

+ (2L2 − 7)R(a/b)(2, 4, 2; t, τ ) + (2L2 − 7)R(a/b)(2, 4, 2; t, τ ) (A46)

+ 8R(a/b)(2, 2, 2; t, τ ) + 4R(a/b)(2, 4, 2; t, τ )] (A47)

= (2L2)�(t )�(τ ) Im[R(a/b)(2, 0, 2; t, τ ) + 2R(a/b)(2, 4, 2; t, τ )] (A48)

+ 10�(t )�(τ )[2 Im R(a/b)(2, 2, 2; t, τ ) − Im R(a/b)(2, 4, 2; t, τ )]. (A49)

As we discussed previously, extensive terms in Eq. (A48) need to be canceled to be consistent with the definition of the
nonlinear susceptibility. One can confirm the cancellation by substituting Eqs. (A42) and (A43) to Eq. (A48). Therefore,

χ (a)
z (t, τ ) = 40 �(t )�(τ )[sin 2τ − sin 2t − sin 2(t + τ )], (A50)

χ (b)
z (t, τ ) = 20 �(t )�(τ )[2 sin 2τ − sin 2(t − τ ) − 3 sin 2(t + τ )]. (A51)

We can get the expression for χ (a/b)
x (t, τ ) by redefining the energy cost for a pair of excitations, 2 → 2J .

In the presence of weak perturbations, e and m particles become dynamical and dispersive. For simplicity, let us assume that
the elementary excitations have the two-dimensional tight-binding dispersion, Ee/m(qx, qy) = εe/m + w(cos qx + cos qy), with
the full bandwidth w and the single-particle energy gap εe = 1 and εm = J for e and m particles, respectively. Since the particles
are no longer static, we use the resolution of identity in a plane-wave basis:

1

2

∑
p1 p2

|p1, p2〉〈p1, p2| = 1. (A52)
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We focus on χ (a/b)
z (t, τ ) with |ν〉 ∈ 2 because it is the nonlinear response from a pair of deconfined charges without creating

additional charges in the middle, which is the important process to diagnose the deconfinement, as discussed in the main text:

χ (a/b)
z (ν ∈ 2; t, τ ) = 1

2L2
�(t )�(τ )Im

[
1

23

∑
p1 p2

∑
q1q2

∑
r1r2

R(a/b)(p1, p2, q1, q2, r1, r2; t, τ )

× 1

24

∑
jklm

∑
η jηkηl ηm

〈0|Zj, j+η j |p1, p2〉〈p1, p2|Zk,k+ηk |q1, q2〉〈q1, q2|Zl,l+ηl |r1, r2〉〈r1, r2|Zm,m+ηm |0〉
]
, (A53)

where we label the link l = 〈 j, j + η j〉 with the two ends of the link.
Since Zj, j+η j creates or annihilates two hard-core bosons at the two ends j and j + η j (η j = ±x̂,±ŷ), we represent the Z

operator with bosonic creation operators:

Zj, j+η j | · 〉 → a†
j a

†
j+η j

| · 〉. (A54)

However, the above representation needs to be carefully modified when Zj, j+η j is acting on a state that already has a boson at
either j or j + η j . To properly represent the spin operator in terms of bosons, we introduce the constraint

(a†
j )

2 → a ja
†
j = 1 (A55)

because the Zj, j+η j operator annihilates the boson at site j if the site is already occupied. Therefore,∑
j,η j

〈ξ1, ξ2|Zj, j+η j |0〉 →
∑
j,η j

〈ξ1, ξ2|a†
j a

†
j+η j

|0〉 =
∑
j,η j

〈0|aξ1 aξ2 a†
j a

†
j+η j

|0〉 =
∑
j,η j

δξ1, jδξ2, j+η j + δξ1, j+η j δξ2, j

=
∑
j,η j

2δξ1, jδξ2, j+η j (A56)

and ∑
k,ηk

〈ξ1, ξ2|Zk,k+ηk |ζ1, ζ2〉 →
∑
k,ηk

〈0|aξ1 aξ2 a†
ka†

k+ηk
a†

ζ1
a†

ζ2
|0〉 (A57)

→
∑
k,ηk

δζ1,k
〈
aξ1 aξ2 a†

k+ηk
a†

ζ2

〉+ δζ2,k
〈
aξ1 aξ2 a†

k+ηk
a†

ζ1

〉+ δζ1,k+ηk

〈
aξ1 aξ2 a†

ka†
ζ2

〉+ δζ2,k+ηk

〈
aξ1 aξ2 a†

ka†
ζ1

〉
=
∑
k,ηk

δζ1,k
(
δξ1,k+ηk δξ2,ζ2 + δξ1,ζ2δξ2,k+ηk

)+ δζ2,k (δξ1,k+ηk δξ2,ζ1 + δξ1,ζ1δξ2,k+ηk )

+ δζ1,k+ηk

(
δξ1,kδξ2,ζ2 + δξ1,ζ2δξ2,k

)+ δζ2,k+ηk

(
δξ1,kδξ2,ζ1 + δξ1,ζ1δξ2,k

)
=
∑
k,ηk

2
[
δζ1,k

(
δξ1,k+ηk δξ2,ζ2 + δξ1,ζ2δξ2,k+ηk

)+ δζ2,k
(
δξ1,k+ηk δξ2,ζ1 + δξ1,ζ1δξ2,k+ηk

)]
. (A58)

Using Eqs. and , we can calculate the matrix elements to calculate the susceptibility in Eq. (A53),

1

2

∑
j,η j

〈0|Zj, j+η j |p1, p2〉 = 1

2L2

∑
j,η j

∑
ξ1 �=ξ2

eip1·ξ1+ip2·ξ2〈0|Zj, j+η j |ξ1, ξ2〉

= 1

L2

∑
j,η j

∑
ξ1 �=ξ2

eip1·ξ1+ip2·ξ2δξ1, jδξ2, j+η j

= 1

L2

∑
j,η j

ei(p1+p2 )·Rj eip2·η j = 2(cos p1x + cos p1y)δp1+p2,0, (A59)

and

1

2

∑
k,ηk

〈p1, p2|Zk,k+ηk |q1, q2〉 = 1

2

(
1

L2

)2 ∑
k,k+ηk

∑
ξ1 �=ξ2

∑
ζ1,ζ2

′
e−ip1·ξ1−ip2·ξ2 eiq1·ζ1+iq2·ζ2〈ξ1, ξ2|Zk,k+ηk |ζ1, ζ2〉

=
(

1

L2

)2 ∑
k,ηk

∑
ξ1 �=ξ2

′ ∑
ζ1,ζ2

e−ip1·ξ1−ip2·ξ2 eiq1·ζ1+iq2·ζ2
[
δζ1,k

(
δξ1,k+ηk δξ2,ζ2 + δξ1,ζ2δξ2,k+ηk

)
+ δζ2,k

(
δξ1,k+ηk δξ2,ζ1 + δξ1,ζ1δξ2,k+ηk

)]
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= 1

L4

∑
k,ηk

∑
ζ1 �=k,k+ηk

ei(q2−p1 )·Rk e−ip1·ηk ei(q1−p2 )·ζ1 + ei(q2−p2 )·Rk e−ip2·ηk ei(q1−p1 )·ζ1

+ 1

L4

∑
k,ηk

∑
ζ2 �=k,k+ηk

ei(q1−p1 )·Rk e−ip1·ηk ei(q2−p2 )·ζ2 + ei(q1−p2 )·Rk e−ip2·ηk ei(q2−p1 )·ζ2

= δq2 p1δq1 p2 e−ip1·ηk + δq2 p2δq1 p1 e−ip2·ηk + δq1 p1δq2 p2 e−ip1·ηk + δq1 p2δq2 p1 e−ip2·ηk

− 1

L4

∑
k,ηk

ei(q1+q2−p1−p2 )·Rk [e−ip1·ηk (2 + ei(q1−p2 )·ηk ) + e−ip2·ηk (2 + ei(q1−p1 )·ηk )

+ e−ip1·ηk (2 + ei(q2−p2 )·ηk ) + e−ip2·ηk (2 + ei(q2−p1 )·ηk )] (A60)

= 2
(
δq1 p1δq2 p2 + δq1 p2δq2 p1

)
(cos p1x + cos p1y + cos p2x + cos p2y) (A61)

− 4

L2
δq1+q2,p1+p2 (cos p1x + cos p1y + cos p2x + cos p2y + cos q1x + cos q1y + cos q2x + cos q2y).

(A62)

Equation (A61) represents the freely propagating process of two hard-core bosons while Eq. (A62) illustrates the elastic
scattering of two hard-core bosons without creating additional particles.

Since the Kronecker δ’s are imposing the conservation of total momentum, let us denote p ≡ p1, p2 = −p, q ≡ q1, and
q2 = −q. Also note that the phase factor R(p,−p, q,−q, r,−r; t, τ ) does not depend on the overall sign of momenta, i.e.,
R(p,−p, q,−q, r,−r; t, τ ) = R(−p, p, q,−q, r,−r; t, τ ) = · · · = R(−p, p,−q, q,−r, r; t, τ ). Hence, for concise notation,
let us write R(p, q, r; t, τ ) ≡ R(p,−p, q,−q, r,−r; t, τ ). Then

χ (a/b)
z (ν ∈ 2; t, τ ) = 16

L2

∑
p

R(p, p, p; t, τ )(cos px + cos py)4

− 16

L4

∑
p,r

R(p, p, r; t, τ )(cos px + cos py)2(cos px + cos py + cos rx + cos ry)(cos rx + cos ry)

− 16

L4

∑
p,r

R(p, r, r; t, τ )(cos px + cos py)(cos px + cos py + cos rx + cos ry)(cos rx + cos ry)2

+ 16

L6

∑
p,q,r

R(p, q, r; t, τ )(cos px + cos py)(cos px + cos py + cos qx + cos qy)

× (cos qx + cos qy + cos rx + cos ry)(cos rx + cos ry), (A63)

with

R(a)(p, q, r; t, τ ) = 2e2i(εp−εr )τ e2i(εq−εr )t + e2iεqτ e2i(εq−εr )t + e−2iεqτ e−2iεpt , (A64)

R(b)(p, q, r; t, τ ) = e−2iεrτ e2i(εq−εr )t + 2e2iεpτ e2i(εq−εr )t + e−2iεrτ e−2iεpt , (A65)

where εp = 1 + w(cos px + cos py). If w = 0, Eq. (A63) reproduces the third-order susceptibilities of the unperturbed toric code
for ν ∈ 2:

χ (a)
z (ν ∈ 2; t, τ ) = χ (b)

z (ν ∈ 2; t, τ ) = 40 �(t )�(τ )[sin 2τ − sin 2(t + τ )]. (A66)

3. X-cube model

The X-cube model is one of the prototypical lattice models for the type-I fracton system. The magnetic fields along the x-axis
excite a pair of lineons lα at two vertices, whose motion is constrained to the one-dimensional line along the α-axis. The fields
along the z-axis excite cubes called fractons, which cannot move unless two fractons pair up to a composite object called planons
Pαβ . Planons Pαβ also have restricted mobility within a two-dimensional αβ plane.

a. Nonlinear dynamics of lineons

The third-order susceptibilities χxxxx(t, t + τ, t + τ ) ≡ χ (a)
x (t, τ ) and χxxxx(t, t, t + τ ) ≡ χ (b)

x (t, τ ) are quantifying nonlinear
responses of the lineons. Without any perturbations, the susceptibilities can be exactly calculated with the resolution of identity
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in the real-space basis:

χ (a/b)
x (t, τ ) = 2

3L3
�(t )�(τ )

∑
l,l ′

∑
μλ

Im[R(a/b)(μ, 0, λ; t, τ )〈0|Xl |μ〉〈μ|Xl |0〉〈0|Xl ′ |λ〉〈λ|Xl ′ |0〉] (A67)

+ 2

3L3
�(t )�(τ )

∑
l �=l ′

∑
μλ

∑
ν∈2

Im[R(a/b)(μ, ν, λ; t, τ )〈0|Xl |μ〉〈μ|Xl ′ |ν〉〈ν|Xl ′ |λ〉〈λ|Xl |0〉] (A68)

+ 2

3L3
�(t )�(τ )

∑
l �=l ′

∑
μλ

∑
ν∈2

Im[R(a/b)(μ, ν, λ; t, τ )〈0|Xl |μ〉〈μ|Xl ′ |ν〉〈ν|Xl |λ〉〈λ|Xl ′ |0〉] (A69)

+ 2

3L3
�(t )�(τ )

∑
l �=l ′

∑
μλ

∑
ν∈4

Im[R(a/b)(μ, ν, λ; t, τ )〈0|Xl |μ〉〈μ|Xl ′ |ν〉〈ν|Xl ′ |λ〉〈λ|Xl |0〉] (A70)

+ 2

3L3
�(t )�(τ )

∑
l �=l ′

∑
μλ

∑
ν∈4

Im[R(a/b)(μ, ν, λ; t, τ )〈0|Xl |μ〉〈μ|Xl ′ |ν〉〈ν|Xl |λ〉〈λ|Xl ′ |0〉] (A71)

= 6L3�(t )�(τ )Im R(a/b)(2, 0, 2; t, τ ) (A72)

+ 4�(t )�(τ )Im R(a/b)(2, 2, 2; t, τ ) + 4�(t )�(τ )Im R(a/b)(2, 2, 2; t, τ ) (A73)

+ 2(3L3 − 3)�(t )�(τ )Im R(a/b)(2, 4, 2; t, τ ) + 2(3L3 − 3)�(t )�(τ )Im R(a/b)(2, 4, 2; t, τ ) (A74)

= 6L3�(t )�(τ )Im[R(a/b)(2, 0, 2; t, τ ) + 2R(a/b)(2, 4, 2; t, τ )] (A75)

+ 4�(t )�(τ )Im[2R(a/b)(2, 2, 2; t, τ ) − 3R(a/b)(2, 4, 2; t, τ )]. (A76)

Like 2D toric code, the terms proportional to the system size L3 are vanishing [Eq. (A75) = 0]. With a single lineon excitation
energy εl = 2, the third-order susceptibilities are

χ (a)
x (t, τ ) = 8θ (t )θ (τ )[sin 4τ − sin 4(t + τ ) − 3 sin 4t], (A77)

χ (b)
x (t, τ ) = 4θ (t )θ (τ )[2 sin 4τ − 5 sin 4(t + τ ) − 3 sin 4(t − τ )]. (A78)

In the presence of weak perturbations, the nonlinear susceptibilities can be derived by following similar calculations done for
the toric code. Again, we focus on the case in which |ν〉 ∈ 2:

χ (a/b)(ν ∈ 2; t, τ ) = 64

L

∑
p

R(a/b)(p, p, p; t, τ ) cos4 p (A79)

− 64

L2

∑
p,r

[R(a/b)(p, p, r; t, τ ) cos2 p(cos p + cos r) cos r + R(a/b)(p, r, r; t, τ ) cos p(cos p + cos r) cos2 r] (A80)

+ 64

L3

∑
p,q,r

R(a/b)(p, q, r; t, τ ) cos p(cos p + cos q)(cos q + cos r) cos r, (A81)

where R(a/b)(p, q, r; t, τ ) are calculated from Eqs. (A64) and (A65) with the one-dimensional dispersion for lineons, εl (p) =
2 + w cos p. This reproduces ν ∈ 2 contributions of Eqs. (A77) and (A78) when w = 0.

b. Nonlinear dynamics of planons and fractons

An action of a single Z operator on the ground state excites four fractons which can be grouped into a pair of two planons
[Fig. 6(a)]. Nonlinear dynamics of the planons and immobile fractons are characterized with the third-order susceptibilities
χzzzz(t, t + τ, t + τ ) ≡ χ (a)

z (t, τ ) and χzzzz(t, t, t + τ ) ≡ χ (b)
z (t, τ ).

In the absence of perturbations, we again calculate the exact nonlinear susceptibilities with the real-space basis:

χ (a/b)
z (t, τ ) = 2

3L3
�(t )�(τ )

∑
l,l ′

∑
μλ

Im[R(a/b)(μ, 0, λ; t, τ )〈0|Zl |μ〉〈μ|Zl |0〉〈0|Zl ′ |λ〉〈λ|Zl ′ |0〉] (A82)

+ 2

3L3
�(t )�(τ )

∑
l

∑
l ′∈B

∑
μνλ

Im[R(a/b)(μ, ν, λ; t, τ )〈0|Zl |μ〉〈μ|Zl ′ |ν〉〈ν|Zl ′ |λ〉〈λ|Zl |0〉] (A83)

+ 2

3L3
�(t )�(τ )

∑
l

∑
l ′∈B

∑
μνλ

Im
[
R(a/b)(μ, ν, λ; t, τ )〈0|Zl |μ〉〈μ|Zl ′ |ν〉〈ν|Zl |λ〉〈λ|Zl ′ |0〉] (A84)
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FIG. 5. (a) After Z acts on the red link, different fracton configurations are available depending on which link is flipped subsequently. (b) If
a blue link l ∈ B is flipped, a planon (face-sharing two-cube composite) is displaced by a unit distance. When (c) an orange link l ∈ O or (f) a
green link l ∈ G is flipped, six fractons are excited. (d,e,g,h) These fractons can be grouped into two mobile planons (blue face-sharing cubes)
and two immobile fractons (green cubes). While the two planons in (g) have restricted mobility within two parallel planes, the planons in (d,e,h)
are constrained to two planes perpendicular to each other. If the second flipped link does not belong to the set of nearby links B ∪ O ∪ G, then
a total of eight fractons are excited by the two spin flips.

+ 2

3L3
�(t )�(τ )

∑
l

∑
l ′∈G

∑
μνλ

Im
[
R(a/b)(μ, ν, λ; t, τ )〈0|Zl |μ〉〈μ|Zl ′ |ν〉〈ν|Zl ′ |λ〉〈λ|Zl |0〉] (A85)

+ 2

3L3
�(t )�(τ )

∑
l

∑
l ′∈G

∑
μνλ

Im
[
R(a/b)(μ, ν, λ; t, τ )〈0|Zl |μ〉〈μ|Zl ′ |ν〉〈ν|Zl |λ〉〈λ|Zl ′ |0〉] (A86)

+ 2

3L3
�(t )�(τ )

∑
l

∑
l ′∈O

∑
μνλ

Im
[
R(a/b)(μ, ν, λ; t, τ )〈0|Zl |μ〉〈μ|Zl ′ |ν〉〈ν|Zl ′ |λ〉〈λ|Zl |0〉] (A87)

+ 2

3L3
�(t )�(τ )

∑
l

∑
l ′∈O

∑
μνλ

Im
[
R(a/b)(μ, ν, λ; t, τ )〈0|Zl |μ〉〈μ|Zl ′ |ν〉〈ν|Zl |λ〉〈λ|Zl ′ |0〉] (A88)

+ 2

3L3
�(t )�(τ )

∑
l

∑
l ′ �=l,l ′ /∈B∪O∪G

∑
μνλ

Im
[
R(a/b)(μ, ν, λ; t, τ )〈0|Zl |μ〉〈μ|Zl ′ |ν〉〈ν|Zl ′ |λ〉〈λ|Zl |0〉] (A89)

+ 2

3L3
�(t )�(τ )

∑
l

∑
l ′ �=l,l ′ /∈B∪O∪G

∑
μνλ

Im
[
R(a/b)(μ, ν, λ; t, τ )〈0|Zl |μ〉〈μ|Zl ′ |ν〉〈ν|Zl |λ〉〈λ|Zl ′ |0〉] (A90)

+ 2

3L3
�(t )�(τ )

∑
l1l2l3l4∈+

∑
μλ

∑
ν∈4

Im
[
R(a/b)(μ, ν, λ; t, τ )〈0|Zl1 |μ〉〈μ|Zl2 |ν〉〈ν|Zl3 |λ〉〈λ|Zl4 |0〉] (A91)

+ 2

3L3
�(t )�(τ )

∑
l1l2l3l4∈+

∑
μλ

∑
ν∈8

Im
[
R(a/b)(μ, ν, λ; t, τ )〈0|Zl1 |μ〉〈μ|Zl2 |ν〉〈ν|Zl3 |λ〉〈λ|Zl4 |0〉], (A92)

where the sets B, O, and G are indicated in Fig. 5(a), and n is a set of all n-cube states. The last two terms, Eqs. (A91) and (A92),
are consequences of the ground state of the X-cube model being a symmetric sum of all inequivalent spin configurations without
any excitation (Fig. 6).

FIG. 6. The ground state of the X-cube model is the symmetric sum of all possible spin configurations having zero excitation. So there are
four-spin-flip processes that connect two inequivalent vacuum spin configurations. In the middle of the perturbative process, (a) only four-cube
excited states can be involved, or (b) an eight-cube excited state can be involved.
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Since the Z operator excites four cubes, |μ〉 and |λ〉 must be the four-cube states. The state |ν〉 depends on the link l ′:

|ν〉 ∈
⎧⎨⎩4, l ′ ∈ B,

6, l ′ ∈ O ∪ G,

8, l ′ �= l, l ′ /∈ B ∪ O ∪ G.

(A93)

Hence,

χ (a/b)
z (t, τ ) = 2�(t )�(τ )[(3L3) Im R(a/b)(4, 0, 4; t, τ )] (A94)

+ 2�(t )�(τ )[12 Im R(a/b)(4, 4, 4; t, τ )] (A95)

+ 2�(t )�(τ )[12 Im R(a/b)(4, 4, 4; t, τ )] (A96)

+ 2�(t )�(τ )[12 Im R(a/b)(4, 6, 4; t, τ )] (A97)

+ 2�(t )�(τ )[12 Im R(a/b)(4, 6, 4; t, τ )] (A98)

+ 2�(t )�(τ )[8 Im R(a/b)(4, 6, 4; t, τ )] (A99)

+ 2�(t )�(τ )[8 Im R(a/b)(4, 6, 4; t, τ )] (A100)

+ 2�(t )�(τ )[(3L3 − 33) Im R(a/b)(4, 8, 4; t, τ )] (A101)

+ 2�(t )�(τ )[(3L3 − 33) Im R(a/b)(4, 8, 4; t, τ )] (A102)

+ 2�(t )�(τ )[16 Im R(a/b)(4, 4, 4; t, τ )] (A103)

+ 2�(t )�(τ )[8 Im R(a/b)(4, 8, 4; t, τ )] (A104)

= 6L3 �(t )�(τ ) Im[R(a/b)(4, 0, 4; t, τ ) + 2R(a/b)(4, 8, 4; t, τ )] (A105)

+ 80 Im R(a/b)(4, 4, 4; t, τ ) + 80 Im R(a/b)(4, 6, 4; t, τ ) − 116 Im R(a/b)(4, 8, 4; t, τ ), (A106)

where

R(a)(4, n, 4; t, τ ) = 2ei(n−4)Kt + einKτ ei(n−4)Kt + e−inKτ e−4iKt , (A107)

R(b)(4, n, 4; t, τ ) = e−4iKτ ei(n−4)Kt + 2e4iKτ ei(n−4)Kt + e−4iKτ e−4iKt . (A108)

We can check that the extensive term, Eq. (A105), is vanishing and only the system-size-independent terms survive. Therefore,

χ (a)
z (t, τ ) = χ (a)

z (ν ∈ 4; t, τ ) + χ (a)
z (ν ∈ 6; t, τ ) + χ (a)

z (ν ∈ 8; t, τ ) (A109)

= 80 �(t )�(τ )[sin 4Kτ − sin 4K (t + τ )] (A110)

+ 80 �(t )�(τ )[2 sin 2Kt + sin K (2t + 6τ ) − sin K (4t + 6τ )] (A111)

− 232 �(t )�(τ ) sin 4Kt, (A112)

χ (b)
z (t, τ ) = χ (b)

z (ν ∈ 4; t, τ ) + χ (b)
z (ν ∈ 6; t, τ ) + χ (b)

z (ν ∈ 8; t, τ ) (A113)

= 80 �(t )�(τ )[sin 4Kτ − sin 4K (t + τ )] (A114)

+ 80 �(t )�(τ )[sin K (2t − 4τ ) + 2 sin K (2t + 4τ ) − sin 4K (t + τ )] (A115)

− 116 �(t )�(τ )[sin 4K (t − τ ) + sin 4K (t + τ )]. (A116)

In the presence of generic perturbations, the planons become dynamical and gain nonflat dispersion. We focus on the processes
for ν ∈ 4 and ν ∈ 6; the ν ∈ 4 process is important to identify deconfinement, and the ν ∈ 6 process distinguishes the X-cube
model from the toric code. For the four-cube state |ν〉, we can use the expression derived for the toric code, Eq. (A63), with εp =
2K + w(cos px + cos py). Since the planons are restricted to a two-dimensional plane, nonlinear dynamics of two dispersive
planons is equivalent to that of 2 × 3L copies of toric codes. The factor 3L comes from 3L distinct two-dimensional planes of
the cubic lattice, and the factor of 2 comes from two different ways to pair up four fractons (four edge sharing cubes excited by
an action of Z to the ground state; see the second figure in Fig. 6) into two planons. Hence, we only need to newly derive the
expression for |ν〉 ∈ 6.

When there are six fractons, four fractons can be paired up to two planons moving in two-dimensional planes (Fig. 5). The
remaining two fractons stay immobile. The two planons can be confined to the planes either parallel [Fig. 5(g)] or perpendicular
[Figs. 5(d), 5(e), and 5(h)] to each other. For simplicity, we focus on the case in which two planons are moving in two parallel
planes [Fig. 5(g)]. Then we can describe the motion of both planons in the two-dimensional plane (the bird’s-eye view to the two
parallel planes) [Fig. 7(b)]. Since a planon is a composite of two face-sharing cubes, let us label the location of the planon by the
center of the face shared by both cubes [Fig. 7(a)]. Note that two planons are not confined in the same plane. If we think of the
cubic lattice as a multilayered square lattice, one planon is moving in a plane one “floor” higher than the other planon. Hence,
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FIG. 7. (a) The location of a planon is labeled with the center of the face (marked as dark blue) shared by two neighboring cubes. (b) Bird’s-
eye view of Fig. 5(g). The planons and fractons are marked as blue and green squares, respectively. Note that the planons are not restricted to
the same plane; one planon is located one “floor” higher than the other. Immobile fractons are also blocking motions of both planons because
they are occupying two separated floors. The link can be uniquely specified with two neighboring squares sharing the link (e.g., 〈r, r + x̂〉) and
to which “floor” those two squares belong.

we will also label the planon with the floor index n. Then we can label Z operators acting on the red and green links in Fig. 7(b)
as Z (n)

r,r+x̂ and Z (n+1)
r+x̂,r+2x̂, respectively [if two planons are moving in the n and (n + 1)th floors].

Then

χ (a/b)
z (ν ∈ 6; t, τ )

= 2

3L3
�(t )�(τ ) Im

[
1

22

∑
p1 p2

∑
q,q̃,q′

∑
r1r2

R(a/b)(p1, p2, q, q̃, r1, r2; t, τ )

×
⎛⎝3

L∑
n=1

∑
δ=±1

1

24

∑
jklm

∑
η jηkηl ηm

〈0|Z (n)
j, j+η j

|p1, p2〉〈p1, p2|Z (n+δ)
k,k+ηk

|q, q̃, q′〉〈q, q̃, q′|Z (n+δ)
l,l+ηl

|r1, r2〉〈r1, r2|Z (n)
m,m+ηm

|0〉

+ 3
L∑

n=1

∑
δ=±1

1

24

∑
jklm

∑
η jηkηl ηm

〈0|Z (n)
j, j+η j

|p1, p2〉〈p1, p2|Z (n+δ)
k,k+ηk

|q, q̃, q′〉〈q, q̃, q′|Z (n)
l,l+ηl

|r1, r2〉〈r1, r2|Z (n+δ)
m,m+ηm

|0〉
⎞⎠⎤⎦,

(A117)

where η j, ηk, ηl , ηm = ±x̂,±ŷ, and q, q̃ are the two-dimensional momenta of two planons. Since the fractons are immobile,
the resolution of identity with the real-space basis is physically more intuitive. However, we use the momentum basis also for
fractons for simpler calculations. Recall that |x〉 = 1

L

∑
q′ eiq′ ·x|q′〉; assigning momentum label q′ to the fracton does not imply

mobility of a fracton. The mobility information is included in the Hamiltonian, which is relevant to the phase factors R(a/b); the
phase factors R(a/b) are independent of q′ because the fractons are immobile.

Due to the momentum conservation imposed by the Kronecker δ in Eq. , we can simplify the notation R(a/b)(p, q, q̃, r; t, τ ) ≡
R(a/b)(p,−p, q, q̃, r,−r; t, τ ) with p1 ≡ p, p2 = −p, and r1 ≡ r, r2 = −r. Also the product of the matrix elements inside the
square bracket of Eq. (A117) is independent of the floor/layer index n and δ = ±1. For concise notation, let us write Zj, j+η j ≡
Z (n)

j, j+η j
and Z̃ (±)

j, j+η j
≡ Z (n±1)

j, j+η j
. Then

χ (a/b)
z (ν ∈ 6; t, τ ) = 1

L2
�(t )�(τ ) Im

[∑
p,r

∑
q,q̃,q′

R(a/b)(p, q, q̃, r; t, τ )

×
⎛⎝ 1

24

∑
jklm

∑
η jηkηl ηm

〈0|Zj, j+η j |p,−p〉〈p,−p|Z̃ (+)
k,k+ηk

|q, q̃, q′〉〈q, q̃, q′|Z̃ (+)
l,l+ηl

|r,−r〉〈r,−r|Zm,m+ηm |0〉

(A118)

+ 1

24

∑
jklm

∑
η jηkηl ηm

〈0|Zj, j+η j |p,−p〉〈p,−p|Z̃ (+)
k,k+ηk

|q, q̃, q′〉〈q, q̃, q′|Zl,l+ηl |r,−r〉〈r,−r|Z̃ (+)
m,m+ηm

|0〉
⎞⎠⎤⎦.

(A119)
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To calculate the matrix element,

1

2

∑
k,ηk

〈p,−p|Z̃ (+)
k,k+ηk

|q, q̃, q′〉 = 1

2L5

∑
k,ηk

′ ∑
ξ1ξ2

′ ∑
ζ ζ̃ ζ ′

e−ip·(ξ1−ξ2 )eiq·ζ+iq̃·ζ̃+iq′ ·ζ ′ 〈ξ1, ξ2|Z̃ (+)
k,k+ηk

|ζ , ζ̃ , ζ ′〉, (A120)

we need to calculate 〈ξ1, ξ2|Z̃ (+)
k,k+ηk

|ζ , ζ̃ , ζ ′〉. Here ξ1, ξ2 are the positions of two planons having momentum p and −p, and ζ , ζ̃

are the positions of two planons having momentum q and q̃. ζ ′ is the position of the immobile fractons. The restricted sum
excludes the cases where planons and fractons are overlapping, i.e., the planons and fractons are treated as hardcore bosons.

Note that Z̃ (+)
k,k+ηk

creates/annihilates two planons living in the (n + 1)th layer of the cubic lattice. Within the layer, they are
located at Rk and Rk + ηk . So we can identify

Z̃ (+)
k,k+ηk

→ ãk ãk+ηk . (A121)

When a planon at the nth floor overlaps with a planon at the (n ± 1)th floor, then we get two immobile fractons. Therefore, we
can identify

a jã j → f j, (A122)

where f j is the annihilation operator of two immobile fractons. These two immobile fractons are located at the same location R j

in the two-dimensional plane, they but belong to different layers [Fig. 5(g)]. Therefore,

1

2

∑
k

〈ξ1, ξ2|Z̃ (+)
k,k+ηk

|ζ , ζ̃ , ζ ′〉 → 1

2

∑
k

〈0|aξ1 aξ2 ãk ãk+ηk a†
ζ a†

ζ̃
f †
ζ ′ |0〉 (A123)

→ 1

2

∑
k

δξ1,k〈0|aξ2 ãk+ηk fka†
ζ a†

ζ̃
f †
ζ ′ |0〉 + δξ2,k〈0|aξ1 ãk+ηk fka†

ζ a†
ζ̃

f †
ζ ′ |0〉

+ 1

2

∑
k

δξ1,k+ηk 〈0|aξ2 ãk fka†
ζ a†

ζ̃
f †
ζ ′ |0〉 + δξ2,k+ηk 〈0|aξ1 ãk fka†

ζ a†
ζ̃

f †
ζ ′ |0〉 (A124)

=
∑

k

(
δξ1,kδξ2,ζ + δξ1,ζ δξ2,k

)
δζ̃ ,k+ηk

δζ ′,k, (A125)

so that

1

2

∑
k,ηk

〈p,−p|Z̃ (+)
k,k+ηk

|q, q̃, q′〉 = 1

L5

∑
k,ηk

′ ∑
ξ1ξ2

′ ∑
ζ ζ̃ ζ ′

e−ip·(ξ1−ξ2 )eiq·ζ+iq̃·ζ̃+iq′ ·ζ ′(
δξ1,kδξ2,ζ + δξ1,ζ δξ2,k

)
δζ̃ ,k+ηk

δζ ′,k

= 1

L5

∑
k,ηk

∑
ζ �=k,k+ηk

(e−ip·(Rk−ζ ) + e−ip·(ζ−Rk ) )eiq·ζ+i(q̃+q′ )·Rk+iq̃·ηk

= 1

L5

∑
k,ηk

∑
ζ

eiq̃·ηk (ei(q̃+q′−p)·Rk ei(q+p)·ζ + ei(q̃+q′+p)·Rk ei(q−p)·ζ )

− 1

L5

∑
k,ηk

ei(q+q̃+q′ )·Rk eiq̃·ηk (2 + ei(q+p)·ηk + ei(q−p)·ηk )

= 1

L

∑
ηk

eiq̃·ηk (δq̃+q′,pδq,−p + δq̃+q′,−pδq,p) − 1

L3
δq+q̃+q′,0

∑
ηk

2eiq̃·ηk + ei(q+q̃+p)·ηk + ei(q+q̃−p)·ηk

(A126)

= 2

L
(cos q̃x + cos q̃y)(δq̃+q′,pδq,−p + δq̃+q′,−pδq,p)

− 2

L3
[2 cos q̃x + 2 cos q̃y + cos(qx + q̃x + px ) + cos(qy + q̃y + py) + cos(qx + q̃x − px ) + cos(qy + q̃y − py)]. (A127)

With similar calculations, we can get the expression for the third-order susceptibilities

χ (a/b)
z (ν ∈ 6; t, τ ) = 8

L4
�(t )�(τ )[A(t, τ ) + B(t, τ )], (A128)

where

A(t, τ ) =
∑
p,q̃

Im
[
R(a/b)(p, p, q̃, p; t, τ ) + R(a/b)(p,−p, q̃, p; t, τ ) + R(a/b)(p, p, q̃,−p; t, τ ) + R(a/b)(p,−p, q̃,−p; t, τ )

]
× (cos px + cos py)2(cos q̃x + cos q̃y)2
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− 1

L2

∑
p,q̃,r

Im
[
R(a/b)(p, p, q̃, r; t, τ )

]
(cos px + cos py)(cos rx + cos ry)(cos q̃x + cos q̃y)

× [2 cos q̃x + 2 cos q̃y + cos(q̃x + px + rx ) + cos(q̃y + py + ry) + cos(q̃x + px − rx ) + cos(q̃y + py − ry)]

− 1

L2

∑
p,q̃,r

Im
[
R(a/b)(p,−p, q̃, r; t, τ )

]
(cos px + cos py)(cos rx + cos ry)(cos q̃x + cos q̃y)

× [2 cos q̃x + 2 cos q̃y + cos(q̃x − px + rx ) + cos(q̃y − py + ry) + cos(q̃x − px − rx ) + cos(q̃y − py − ry)]

− 1

L2

∑
p,q̃,r

Im
[
R(a/b)(p, r, q̃, r; t, τ )

]
(cos px + cos py)(cos rx + cos ry)(cos q̃x + cos q̃y)

× [2 cos q̃x + 2 cos q̃y + cos(q̃x + px + rx ) + cos(q̃y + py + ry) + cos(q̃x − px + rx ) + cos(q̃y − py + ry)]

− 1

L2

∑
p,q̃,r

Im
[
R(a/b)(p,−r, q̃, r; t, τ )

]
(cos px + cos py)(cos rx + cos ry)(cos q̃x + cos q̃y)

× [2 cos q̃x + 2 cos q̃y + cos(q̃x + px − rx ) + cos(q̃y + py − ry) + cos(q̃x − px − rx ) + cos(q̃y − py − ry)]

+ 1

L4

∑
p,q,q̃,r

Im
[
R(a/b)(p, q, q̃, r; t, τ )

]
(cos px + cos py)(cos rx + cos ry)

× [2 cos q̃x + 2 cos q̃y + cos(qx + q̃x + px ) + cos(qy + q̃y + py) + cos(qx + q̃x − px ) + cos(qy + q̃y − py)]

× [2 cos q̃x + 2 cos q̃y + cos(qx + q̃x + rx ) + cos(qy + q̃y + ry) + cos(qx + q̃x − rx ) + cos(qy + q̃y − ry)], (A129)

B(t, τ ) =
∑
p,r

Im
[
R(a/b)(p, p, r, r; t, τ ) + R(a/b)(p, p,−r, r; t, τ ) + R(a/b)(p,−p, r, r; t, τ ) + R(a/b)(p,−p,−r, r; t, τ )

]
× (cos px + cos py)2(cos rx + cos ry)2

− 1

L2

∑
p,q̃,r

Im
[
R(a/b)(p, p, q̃, r; t, τ )

]
(cos px + cos py)(cos rx + cos ry)(cos q̃x + cos q̃y)

× [2 cos px + 2 cos py + cos(q̃x + px + rx ) + cos(q̃y + py + ry) + cos(q̃x + px − rx ) + cos(q̃y + py − ry)]

− 1

L2

∑
p,q̃,r

Im
[
R(a/b)(p,−p, q̃, r; t, τ )

]
(cos px + cos py)(cos rx + cos ry)(cos q̃x + cos q̃y)

× [2 cos px + 2 cos py + cos(q̃x − px + rx ) + cos(q̃y − py + ry) + cos(q̃x − px − rx ) + cos(q̃y − py − ry)]

− 1

L2

∑
p,q,r

Im
[
R(a/b)(p, q, r, r; t, τ )

]
(cos px + cos py)(cos rx + cos ry)(cos qx + cos qy)

× [2 cos rx + 2 cos ry + cos(qx + px + rx ) + cos(qy + py + ry) + cos(qx − px + rx ) + cos(qy − py + ry)]

− 1

L2

∑
p,q,r

Im
[
R(a/b)(p, q,−r, r; t, τ )

]
(cos px + cos py)(cos rx + cos ry)(cos qx + cos qy)

× [2 cos rx + 2 cos ry + cos(qx + px − rx ) + cos(qy + py − ry) + cos(qx − px − rx ) + cos(qy − py − ry)]

+ 1

L4

∑
p,q,q̃,r

Im
[
R(a/b)(p, q, q̃, r; t, τ )

]
(cos px + cos py)(cos rx + cos ry)

× [2 cos q̃x + 2 cos q̃y + cos(qx + q̃x + px ) + cos(qy + q̃y + py) + cos(qx + q̃x − px ) + cos(qy + q̃y − py)]

× [2 cos qx + 2 cos qy + cos(qx + q̃x + rx ) + cos(qy + q̃y + ry) + cos(qx + q̃x − rx ) + cos(qy + q̃y − ry)], (A130)

with

R(a)(p, q, q̃, r; t, τ ) = 2e2i(εp−εr )τ ei(εq+εq̃+2K−2εr )t + ei(εq+εq̃+2K )τ ei(εq+εq̃+2K−2εr )t + e−i(εq+εq̃+2K )τ e−2iεpt , (A131)

R(b)(p, q, q̃, r; t, τ ) = e−2iεrτ ei(εq+εq̃+2K−2εr )t + 2e2iεpτ ei(εq+εq̃+2K−2εr )t + e−2iεrτ e−2iεpt . (A132)

The dispersion for a single planon εs = 2K + w(cos sx + cos sy) for s = p, q, q̃, r. The above expressions reproduce the exact
result, χ (a/b)

z (ν ∈ 6; t, τ ) = 80 Im R(a/b)(4, 6, 4; t, τ ) in Eq. (A106), when w = 0.
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APPENDIX B: ONE-SIDED FOURIER TRANSFORMATION

After we calculate the nonlinear susceptibilities χ (t, τ ) as a function of two times, we use the two-dimensional Fourier
transformation Ft,τ to obtain the two-dimensional nonlinear spectrum χ̃ (ωt , ωτ ) = Ft,τ [χ (t, τ )]. Due to the causality, the time
t and τ cannot be negative; we cannot think of the second pulse before the first pulse or the nonlinear response of matter before
the pulse stimulates the system. Hence, the nonlinear susceptibilities [Eqs. (15) and (16)] include the Heaviside step functions
to make sure that both times are always positive. So the Fourier transformation of the susceptibilities is essentially one-sided,
i.e., the Fourier integral is applied only along the positive time direction. In this Appendix, we discuss the consequence of this
one-sided nature of Fourier transformation in order to discriminate more interesting and intrinsic information about the system
from the Fourier-transformed susceptibilities.

Since the general forms of the third-order susceptibilities in Eqs. (15) and (16) are too complex, let us consider a simplified
expression for a better understanding:

χ (t, τ ) = i�(t )�(τ )
∑
a,b

Sabe−iλabt e−iλ̃abτ . (B1)

Then the Fourier transformation with respect to t and τ is

χ̃ (ωt , ωτ ) =
∑
a,b

iSab

[
1

2π

∫ ∞

−∞
�(t )e−iλabt eiωt t dt

][
1

2π

∫ ∞

−∞
�(τ )e−iλ̃abτ eiωτ τ dτ

]
. (B2)

By the convolution theorem,

1

2π

∫ ∞

−∞
�(t )e−iλabt eiωt t dt =

∫ ∞

−∞

[
1

2π

∫ ∞

−∞
�(u)eixu du

][
1

2π

∫ ∞

−∞
e−iλabvei(ωt −x)v dv

]
dx (B3)

=
∫ ∞

−∞

1

2

[
δ(x) + 1

iπ
P
(

1

x

)]
δ(ωt − λab − x) dx (B4)

= 1

2
δ(ωt − λab) + 1

2π i
P
(

1

ωt − λab

)
. (B5)

Therefore,

χ̃ (ωt , ωτ ) =
∑
a,b

iSab

[
1

2
δ(ωt − λab) + 1

2π i
P
(

1

ωt − λab

)][
1

2
δ(ωτ − λ̃ab) + 1

2π i
P
(

1

ωτ − λ̃ab

)]
(B6)

= 1

4

∑
a,b

Sab

{
1

π

[
δ(ωt − λab)P

(
1

ωτ − λ̃ab

)
+ δ(ωτ − λ̃ab)P

(
1

ωt − λab

)]
(B7)

+i

[
δ(ωt − λab)δ(ωτ − λ̃ab) − 1

π2
P
(

1

(ωt − λab)(ωτ − λ̃ab)

)]}
. (B8)

If we take the imaginary part of the Fourier spectrum,

Im[χ̃ (ωt , ωτ )] = 1

4

∑
a,b

Sab

[
δ(ωt − λab)δ(ωτ − λ̃ab) − 1

π2
P
(

1

(ωt − λab)(ωτ − λ̃ab)

)]
, (B9)

then the first product of the δ functions provides information on how two energy levels |a〉 and |b〉 are correlated. The principal
values are responsible for the horizontal and vertical line signals in the two-dimensional nonlinear spectrum. Those lines are
asymptotes of 1/(ωt − λab) and 1/(ωτ − λ̃ab).
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