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Conservation principles are essential to describe and quantify dynamical processes in all areas of physics.
Classically, a conservation law holds because the description of reality can be considered independent of an
observation (measurement). In quantum mechanics, however, invasive observations change quantities drastically,
irrespective of any classical conservation law. One may hope to overcome this nonconservation by performing
a weak, almost noninvasive measurement. Interestingly, we find that the nonconservation is manifest even in
weakly measured correlations if some of the other observables do not commute with the conserved quantity.
Our observations show that conservation laws in quantum mechanics should be considered in their specific
measurement context. We provide experimentally feasible examples to observe the apparent nonconservation of
energy and angular momentum.
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I. INTRODUCTION

Conserved quantities play an important role in both clas-
sical and quantum mechanics. According to the classical
Noether theorem, the invariance of the dynamics of a system
under specific transformations [1] implies the conservation of
certain quantities: Translation symmetry in time and space
results in energy and momentum conservation, respectively,
and rotational symmetry in angular momentum conservation
and gauge invariance in a conserved charge. In quantum
mechanics, the observables (in the Heisenberg picture) are
time independent when they commute with the Hamilto-
nian. Furthermore, some conserved quantities, like the total
charge, commute also with all observables. We shall call
them superconserved. Classically, all conserved quantities
are also superconserved. In high energy nomenclature, the
former are known as on-shell conserved, whereas the latter
are called off-shell conserved [2]. The concept of supercon-
servation is closely related to the superselection rule, which
constitutes an additional postulate that the set of observables
is restricted to those commuting with the superconserved
operators [3].

Conservation principles become less obvious when one
tries to verify them experimentally. While an ideal classical
measurement will keep the relevant quantities unchanged, nei-
ther a nonideal classical nor any quantum measurement will
necessarily reflect the conservation exactly. Even the small-
est interaction between the system and the measuring device
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(detector) may involve a transfer of the conserved quantity.
The system might become a coherent superposition of states
with different values of a conserved quantity (e.g., energy),
or in the case of a superconserved quantity, an incoherent
mixture (e.g., charge). The problem of proper modeling of
the measurement of quantities incompatible with conserved
ones was noticed long ago by Wigner, Araki, and Yanase
(WAY) [4–6], later discussed in the context of consistent
histories [7], modular values [8], and the quantum clock
[9]. The generation, measurement, and control of quantum
conserved quantities, in particular, angular momentum, has
become interesting recently, both experimentally and theoret-
ically [10–12]. Measurements incompatible with energy lead
to thermodynamic cost [13–15].

The quantum objectivity is one aspect of the general con-
cern of Einstein [16] and Mermin [17]—if the (quantum)
moon exists when nobody looks. The randomness of quantum
mechanics does not exclude objective reality [18]. Here, we
assume that objective observations should be noninvasive, i.e.,
leaving the probed system unchanged. Unfortunately, unlike
the classical case, the fundamental uncertainty prevents a
completely noninvasive measurement in quantum mechanics
[19]. Hence, the only remaining possibility seems to be to
consider the limit of weak measurements, which are almost
noninvasive. The objectivity based on weak measurements
can lead to unexpected results, such as weak values [20] or the
violation of the Leggett-Garg inequality [21–23]. Unlike the
standard projection, which is highly invasive, the extraction of
objective values from weak measurements requires a special
protocol involving the subtraction of a large detection noise.
Therefore, such objectivity is debatable [24,25]. In our opin-
ion, weak quantum measurements are the closest counterparts
of classical measurements [26], so they are prime candidates
to define objective reality and, consequently, conservation
principles are expected to hold in systems with an appropriate
invariance.
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FIG. 1. (Top) Three weak measurements. The detectors are ini-
tially independent and couple instantly to the system at t1 (or t ′

1), t2,

and t3. The conserved quantity is measured (empty circles) either
at time t1 < t2 or t ′

1 > t2. The outcomes 1 and 1′ inferred from
the three-point correlator might differ, even for a conserved quan-
tity in the quantum case. (Bottom) Failure of conservation in the
weak measurement. The transfer �q of the conserved quantity q be-
tween the system and detector does not scale with the measurement
strength g.

In this paper, we show that for quantum measurements in
the weak limit superconservation holds, but quantities such
as energy, momentum, and angular momentum apparently
violate conservation even if an appropriate symmetry results
in classical conservation law. The violation of conservation
appears in third-order time correlations as we illustrate in sim-
ple model systems (Fig. 1). The violation is caused by (at least
two) other observables that are not commuting with the con-
served one. We formulate an operational criterion to witness
the violation of a conservation principle and discuss when it
is satisfied. Then, we propose a feasible experiment probing
position and magnetic moment of a charge in a circular trap.
Lastly, considering an imperfect conservation or measurement
of the quantity, we develop then a Leggett-Garg-type test of
objective realism.

II. SUPERCONSERVATION

The physical Hermitian quantity Q̂ defined within the
system is conserved when [Ĥ , Q̂] = 0 for the system’s Hamil-
tonian Ĥ . The quantity Q̂ can be superconserved if there exists
a set A of allowed Hermitian observables such that [Â, Q̂] = 0
for every Â ∈ A. In principle, one could make every conserved
quantity superconserved by a proper choice of the set A. How-
ever, for instance, for a component of angular momentum,
we would have to exclude position and momentum or even
other components of angular momentum. Instead, we will dis-
tinguish quantities that are conserved but not superconserved
by allowing measurement of observables not commuting with
them. An example of a superconserved quantity is the total
electric charge, while the set of observables and possible
initial state density matrices is restricted to those that do
not change the charge. This is also known as superselection
rule. Whether this rule is an axiom or a practical assump-
tion, depending on the Hamiltonian considered, is a matter of
debate [3], because one can, in principle, imagine dynamics

without, e.g., charge superselection. Nevertheless, here we
treat superselection and superconservation as an axiom for
certain quantities, like charge. Let us assume the decompo-
sition of a superconserved quantity Q̂ = ∑

q qP̂q, where P̂q

are (mutually commuting) projections onto the eigenspace
of the value q (i.e., Q̂|ψq〉 = q|ψq〉). Now, the superselection
postulate says that the state of the system ρ̂ is always an inco-
herent mixture

∑
q P̂qρ̂P̂q, if Q̂ is superconserved. Then, the

projective measurement of Â will not alter the q−eigenspace
as there exists a decomposition Â = ∑

q,a aP̂qa with P̂qa being
the projection onto the joint eigenspace of Q̂ and Â with
respective eigenvalues q and a. For instance, if the initial
state is already a q−eigenstate then it will remain such an
eigenstate after the projection. For general measurements,
positive operator-valued measures (POVM), represented by
Kraus operators K̂c (the index c can represent an eigenvalue
of Â, Q̂, or both, but in general it can be arbitrary) such
that

∑
c K̂†

c K̂c = 1̂, the state ρ̂ will collapse to ρ̂c = K̂cρ̂K̂†
c ,

normalized by the probability Trρ̂c. In principle, K̂c can act
within q-eigenspaces, i.e., c = qa and K̂qa = P̂qK̂aP̂q. In the
most general case, the superconserving Kraus operator reads

K̂q′aq = P̂q′ K̂aP̂q. (1)

It means that the superconserved value can change but the
system remains an incoherent mixture of q-eigenstates. This
applies, e.g., to a charge measurement in a quantum dot
(which is superconserved), where the charge can leak out
into an incoherent bath. The (normally) conserved quantities
do not impose any additional postulates, so the state can be
a coherent superposition of the states of different values of
energy, angular momentum, etc. A projective measurement
of Â, which does not commute with Q is enough to turn a
q-eigenstate into a superposition. Now, if we try to postu-
late a POVM with superconserving Kraus operators then the
actually measured operator involves a linear combination of∑

qq′ P̂qK̂†
a P̂q′ K̂aP̂q, so it must commute with Q̂, which would

become superconserved. This is a modern version of the WAY
theorem [4–6] in that the measurement of Â = ∑

a aK̂†
a K̂a not

commuting with Q̂, cannot consist of only K̂q′aq defined above
with q−eigenspaces of Q̂. Such a formulation is simpler than
the original WAY theorem, as is does not need the discussion
of an auxiliary detector. On the other hand, both approaches
are equivalent because of the Naimark theorem [27].

The unavoidability of coherent superpositions of only con-
served values is the key problem considered here.

III. WEAK MEASUREMENTS AND OBJECTIVE REALISM

Strong projections are highly invasive, i.e., ρ̂ → ∑
P P̂ρ̂P̂

changes the state ρ very much. On the other hand, unlike clas-
sical physics, quantum mechanics does not offer completely
noninvasive measurements. The only possibility is weak mea-
surement [20], where we apply Kraus operators

K̂g(a) = (2g/π )1/4 exp(−g(Â − a)2) , (2)

with the measurement strength g → 0+ so that the state almost
does not change

ρ̂ →
∫

daK̂ (a)ρ̂K̂ (a) ≈ ρ̂ − g[Â, [Â, ρ̂]]/2. (3)
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The actually measured probability p′(a) = TrK̂ (a)ρ̂K̂†(a) of
the outcome a at the state ρ̂ has a form of convolution

p′(a) =
∫

D(a − A)p(A)dA,

p(A) = 〈δ(A − Â)〉 = Trδ(A − Â)ρ̂, (4)

with the dominating detection noise D(a) = √
2g/πe−2ga2

,
and with 〈a2〉D = 1/4g, diverging for g → 0. The quantity
p(A) is the probability of the outcome A in the case of a strong,
projective measurement g → ∞ (p(A) = limg→∞ p′(A)), to
which the noise D is added. Therefore, we can expect that
p(A) is in fact the probability that the quantity Â has ob-
jectively the value A. Unfortunately, such an idea fails in
sequential measurements, as shown already [20], because
p(A, B) can be negative when measuring first Â and then
B̂, such that [Â, B̂] 
= 0. The original concept [20] involved
postselection, i.e., the last measurement is strong, not weak,
and the conditional probability p(A, B)/p(B) is considered.
However, the strength of the last measurement is irrelevant,
as the system is not touched any more. In our approach, all
measurements, including the last one, can be assumed weak.

We shall discuss the problem of a negative p in Sec. VI.
Nevertheless, p(A, B, ...) is well defined in the limit g → 0
and we can probe it, hence, assuming that it reflects a property
of the system. Note that this construction is still correct in
the superconserved case because Â, K̂a, and the state ρ̂ is
commuting with Q̂ so K̂a splits into a simple sum of K̂qa.
The actual form of K̂a can be different but the outcome is
almost independent in the limit g → 0. In the lowest order,
we can also neglect all K̂q′aq. In the g → 0 limit, the nth-order
correlation of a sequence of measurements Â, B̂, Ĉ, and D̂ with
respect to p (or also p′ if the quantities are different) reads
[26,28,29]

〈a(t )〉 = 〈Â(t )〉, (5)

〈a(t1)b(t2)〉 = 〈{Â(t1), B̂(t2)}〉/2, (6)

〈a(t1)b(t2)c(t3)〉 = 〈{Â(t1), {B̂(t2), Ĉ(t3)}}〉/4, (7)

〈a(t1)b(t2)c(t3)d (t4)〉
= 〈{Â(t1), {B̂(t2), {Ĉ(t3), D̂(t4)}}}〉/8, (8)

for t1 < t2 < t3 < t4 with the anticommutator {Â, B̂} = ÂB̂ +
B̂Â and quantum averages 〈X̂ 〉 = TrX̂ ρ̂.

At this stage, we would like to note that the classical
counterpart of this protocol replaces the anticommutators like
{Â, B̂} by simple products of phase-space functions A(q, p)
and B(q, p). The invasiveness (3) can be reduced to zero and
the time order of observables is irrelevant. For a more detailed
analysis of classical-to-quantum correspondence, we refer the
reader to Ref. [26].

IV. CONSERVATION IN WEAK MEASUREMENTS

The conservation means that the measurable correlations
(7) involving the conserved quantity q(t ) corresponding to
Q̂(t ) = Q̂ will not depend on t . It is true at the single aver-
age, where 〈q(t )〉 = 〈Q̂〉. Interestingly, also for second-order

correlations, the order of measurements has no influence on
the result since 〈q(t1)a(t2)〉 = 〈{Q, A(t2)}〉/2 is independent
of t1. However, the situation changes for three consecutive
measurements (see Fig. 1), since in the last line of (7) the
time order of operators matters, which has also been demon-
strated experimentally [30]. Considering the difference of two
measurement sequences Q → A → B and A → Q → B, we
obtain the jump (which is absent in perfectly noninvasive
classical measurements [26])

〈{Q̂, {Â(t2), B̂(t3)}} − {Â(t2), {Q̂, B̂(t3)}}〉
= 〈[[Q̂, Â(t2)], B̂(t3)]〉 ≡ 4〈�qa(t2)b(t3)〉. (9)

This quantity will show up as jump �q = q(t1) − q(t2) at
t1 = t2 when measuring 〈q(t1)a(t2)b(t3)〉. The jump will be
nonzero for Q not commuting with A and B. Obviously, for
superconserved quantities Q (commuting with every measur-
able observable), the jump is absent. The violation of the
conservation principle is caused by the measurement of Â,
not commuting with Q̂, which allows transitions between
spaces of different q with the jump size �q not scaled by the
measurement strength g (see Fig. 1). This difference is trans-
ferred to the detector, assuming that the total quantity (of the
system and detector) is conserved regardless of the system-
detector interaction. This observation can be compared to the
WAY theorem, which applies to projective or general mea-
surements. Here, we have shown that even taking the special
limit of noninvasive measurement, the noncommuting quan-
tity causes a jump in third-order (and higher) correlations. We
can call it weak-WAY theorem, as both the input (the special
construction of g-dependent measurements) and the output
(correlations) are based on weak measurements. Note that
imposing the condition that the jump (9) vanishes, equivalent
conservation of Q̂ at the level of third-order correlation for
an arbitrary state ρ̂ (allowed by superselection rules, if any
apply), namely,

[[Q̂, Â], B̂] = 0, (10)

for all allowed observables Â and B̂ suffices to keep con-
servation also at all higher-order correlations. Then, Q̂ is
not necessarily superconserved, it can commute with observ-
ables to identity, like momentum and position. This subtle
difference between the weak-WAY and the traditional WAY
theorem in sketched in Fig. 2.

As an example, we can take the basic two-level sys-
tem (|±〉 basis) with the Hamiltonian Ĥ = Q̂ = h̄ω|+〉〈+|
and Â = B̂ = X̂ = |+〉〈−| + |−〉〈+|. Then, with ω > 0
the ground state is |−〉 and the third-order correlation
〈h(t1)x(t2)x(t3)〉 for the ground state for t3 > t1,2 reads h̄ω(1 −
θ (t2 − t1)) cos(ω(t2 − t3))/2. The jump is 〈�hx(0)x(τ )〉 =
h̄ω cos(ωτ )/2 for �h = h(0−) − h(0+). The result can be
generalized to a thermodynamical ensemble with a finite tem-
perature T and reads (see Appendix A)

〈�hx(0)x(τ )〉 = h̄ω cos(ωτ ) tanh(h̄ω/2kT )/2. (11)

For increasing temperature, the jump diminishes as illustrated
in Fig. 3.

Another basic example is the harmonic oscillator with
Ĥ = Q̂ = h̄ωâ†â with [â, â†] = 1. Taking the dimension-
less position

√
2X̂ = â† + â = Â = B̂, we find for the jump
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FIG. 2. The difference between the WAY and the weak-WAY
theorem. The former applies to general measurement and shows that
the lack of coherence between eigenstates of Q̂ in the Kraus operators
(1) leads to superconservation of the measured quantity. The latter
applies to weak measurements (2), leading to a weaker condition for
the observed conservation.

〈�hx(0)x(t )〉 = −h̄ω cos(ωt )/4, independent of the state of
the system (see Appendix A). As illustrated in Fig. 3, the
jump becomes unobservable at high temperatures since the
average energy 〈h〉 = h̄ω/[exp(h̄ω/kT ) − 1] increases with
temperature.

The previously discussed very simple examples illustrate
the fundamental finding of our paper. If one tries to verify the
conservation of energy while measuring another observable
that is not commuting with the Hamiltonian, it is possible
to find a violation of the energy conservation. It constitutes
a pure quantum effect since it vanishes at high tempera-
ture, where the classically expected conservation holds. One
could object that performing a series of measurements al-
ready breaks time-translational symmetry and, therefore, the
total energy is not conserved. However, one can keep the
time symmetry by replacing the detector-system interaction
by a clock-based detection scheme [9] (see Fig. 4). The total

FIG. 3. The nonconserving jump for τ = 0+ (thick lines) com-
pared to the average energy (thin lines) for the two-level system
with level spacing h̄ω (red) and the harmonic oscillator with
eigenfrequency ω (blue). At high temperatures, the jump becomes
unobservable and the classical conservation is restored. All quantities
are normalized to h̄ω.

FIG. 4. Detection model based on a clock. The clock is a lo-
calized particle traveling with a constant speed v. The interaction
between the detector and system takes place only when the clock is
passing the interaction point.

Hamiltonian reads

Ĥ + Ĥx + Ĥz + ĤI , (12)

where Ĥ is the system’s part, Ĥx is the detector’s part, Ĥz is
the clock’s part, and ĤI is the interaction between the clock,
the system, and detector. Each part is time-independent so the
time-translation symmetry is preserved. Both the detector and
the clock can be represented by single real variables, x and z.
Now, to measure the system’s Â at time t1, we set Ĥx = 0 and

Ĥz = v p̂z, ĤI = gÂδ(ẑ) p̂x, (13)

where p̂x,z are conjugate (momenta), i.e., p̂x = −ih̄∂/∂x and
g → 0 is a weak coupling constant. The initial state (at t = 0)
reads ρ̂ρ̂xρ̂z, where both ρ̂x,z = |ψx,z〉〈ψx,z| are taken as Gaus-
sian states

ψz(z) = (2πσ )−1/4 exp(−(z + vt1)2/4σ ),

ψx(x) = (π/2)−1/4 exp(−x2) , (14)

respectively. For small g and σ, the interaction effectively
occurs at time t = t1 and, in the end (after the clock decouples
the system and the detector again) to lowest order we find (see
details in Appendix B)

〈x〉 � g〈Â〉 = g〈a(t1)〉 . (15)

For sequential measurements, one simply adds more indepen-
dent detectors and clocks, obtaining in the lowest order of g

〈xAxB〉 � g2〈a(t1)b(t2)〉,
〈xAxBxC〉 � g3〈a(t1)b(t2)c(t3)〉,

〈xAxBxCxD〉 � g4〈a(t1)b(t2)c(t3)d (t4)〉, (16)

with the right-hand sides are given by the quantum expres-
sions (7).

Although the above detection model is based on time-
invariant dynamics, the initial state of the clock spoils the
symmetry. The time-invariant state would require a constant
flow of particles or field at a constant velocity, so that the
position on the tape imprints time of measurement (see [31]
for detailed construction). However, such a constant interac-
tion between the detector (clock) and the system leads to a
backaction and makes the measurement invasiveness growing
with time, which needs to be reduced by additional resources,
e.g., additional coupling to a heat bath.

In order to show that the nonconservation can also occur
independently from the time-translation asymmetry present
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FIG. 5. A trap for a charged particle invariant under rotation
about z axis with a detector weakly coupled to angular momentum Lz

and the position in the x − y plane detected by appropriate capacitors.
The magnetic moment of the particle can be measured by a sensitive
magnetometer, e.g., a SQUID.

either intrinsically or induced by a quantum clock, one can
look at other quantities that are conserved, e.g., due to spatial
symmetries. As an example, we will use one component of
the angular momentum in a rotationally invariant system in
the following.

V. ANGULAR MOMENTUM CONSERVATION

We propose an experiment to demonstrate the failure of
the conservation principle for angular momentum in third-
order correlations in weak measurements. Instead of energy,
we consider one component of angular momentum, say L̂z =
X̂ P̂y − Ŷ P̂x, which can be measured in principle by a sensitive
magnetometer (e.g., a superconducting quantum interferome-
ter device). The other two observables will be the particle’s
positions X̂ and Ŷ , with the readouts x and y respectively,
which can be measured, e.g., by the voltage of a capacitor
depending linearly on x and y for small changes in position
(see the setup sketch in Fig. 5). The two positions x and y will
be measured at times t2 and t3, respectively.

The quantity of matter is 〈lz(t1)x(t2)y(t3)〉. Suppose the
particle is in a harmonic trap rotationally invariant about
the z axis. The xy part of the trap Hamiltonian reads Ĥ⊥ =
h̄ω(â†

x âx + â†
y ây), with [âx,y, â†

x,y] = 1, [âx, ây] = [â†
x, ây] =

0. Then
√

2X̂ = â†
x + âx and

√
2P̂x/ih̄ = â†

x − âx (rescaled
by a length unit), similarly for y, and L̂z = ih̄(âxâ†

y −
âyâ†

x ). In the ground state |0〉, we have L̂z|0〉 = 0, so only
〈Ŷ (t3)L̂z(t1)X̂ (t2)〉 and 〈X̂ (t2)L̂z(t1)Ŷ (t3)〉 contribute in (7).
These terms can appear only when t2 < t1 or t3 < t1. We find

〈lz(t1)x(t2)y(t3)〉 = (1 − θ (t2 − t1)θ (t3 − t1))

×〈X̂ (t2)L̂z(t1)Ŷ (t3) + Ŷ (t3)L̂z(t1)X̂ (t2)〉/4

= (1 − θ (t2 − t1)θ (t3 − t1))h̄ sin ω(t2 − t3)/4.

(17)

The jump is therefore given by

〈�lzx(t2)y(t3)〉0 = h̄ sin [ω(t2 − t3)]/4 (18)

and is again state-independent as in the case of the har-
monic oscillator. It illustrates that the angular momentum
conservation is violated by this experiment. At finite tempera-
ture T for t1 < t2,3, the correlator 〈lzx(t2)y(t3)〉 = h̄ sin[ω(t2 −
t3)]/4 sinh2(h̄ω/2kBT ) increases with temperature and makes
the (temperature-independent) jump unobservable.

Since in this setup the detectors are coupled permanently,
a frequency-domain measurement might be more appropri-
ate. In the frequency domain, the observables are A(α) =∫

dteiαt A(t ). Taking all our previous arguments to frequency
domain, the conservation of a quantity Q̂(α) means that
correlators vanish for α 
= 0. Interestingly, transforming to
frequency domain, we find at zero temperature and for
γ , α, β 
= 0 that

〈lz(γ )x(α)y(β )〉 = iπ h̄ω(β − α)δ(γ + α + β )

2(α2 − ω2)(β2 − ω2)
. (19)

The conservation principle for angular momentum is violated
by (19) because it is nonzero. Hence, either by time- or
frequency-resolved measurements, one should see experimen-
tally the nonconservation of angular momentum.

To realize a time-resolved measurement, we suggest to test
the angular momentum conservation with a charge moving
inside a round tube along z direction, similar to the recent
test of the order of measurements [30]. In the simplest model,
take Ĥ = Ĥz + Ĥ⊥ and we keep the same harmonic potential
in the x − y plane as above and add some Ĥz = v p̂z with
velocity v (like the clock in the previous section). Preparing
a wavepacket as a product of the ground state of Ĥ⊥ and ψ (z)
of sufficiently short width, we can measure essentially the
same quantity (17) by placing a sequence of weak detectors
along the tube (see Fig. 6). The angular momentum can be
measured by the current signature in the coil, like in the
recent experiment [10]. We simplify the coil-electron beam
interaction to λ(z)Î L̂z where λ is only nonzero inside the coil.
Similarly, the measurement of x and y can be modeled by local
capacitive couplings. In this way, the measurement times are
translated into position according to t = z/v, similar to the
time-invariant energy detection in the previous section. The
jump (18) can then be detected by placing the coil at two
different positions (see Fig. 6).

Regarding the rotational invariance of the system, detection
of X and Y can be performed by the detector-system coupling

ĤI = gδ(ẑ)(X̂ p̂xD + Ŷ p̂yD), (20)

FIG. 6. A charged particle (e.g., electron) goes along the tube
with angular momentum measured by current in either of two coils,
I or I ′ while the position in x and y direction is measured by two
perpendicular capacitors.
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with the initial state ρ̂ρ̂D
x,y and the detector’s state ρ̂D

x,y =
|ψ〉〈ψ |,

ψ (xD, yD) = (π/2)−1/2 exp
( − (

x2
D + y2

D

))
. (21)

Then, both the interaction and the initial state of the system
and detector are rotationally invariant so the total angular
momentum is conserved. Only the readout, either x or y of
the detector, prefers one direction, i.e.,

〈xD〉 � g〈x〉, (22)

with straightforward generalization to sequential measure-
ments like (16).

VI. LEGGETT-GARG INEQUALITIES

The above proposals face some practical challenges. The
velocity v should be sufficiently high to ignore decoherence
effects, e.g., due to coupling to a thermal environment. The
decoherence could be modeled by Lindblad-type terms added
to the Hamiltonian dynamics of the density matrix. The test of
conservation makes sense only for times/frequencies within
the coherence timescale. Any observable roughly tracking the
charge in two perpendicular directions will suffice. The tube
may be not perfectly harmonic or not homogeneous in the z
direction, and L̂z can be only approximately conserved or im-
precisely measured. To quantify these considerations, we will
now develop a Leggett-Garg-type test [21]. Let us consider
the measurement of four observables: q = q(t1), q′ = q(t ′

1),
x = x(t2), and y = y(t3) with q being an approximate value
of the conserved quantity and t1 < t2 < t ′

1 < t3. Here, q, q′
can correspond to angular momentum lz, while x, y are the
lateral positions in the test presented in the previous sec-
tion. Note that Leggett-Garg-type tests for angular momentum
were discussed in a different context [32,33]. According to the
objective realism assumption, the values of (q, q′, x, y) exist
independent of the measurement. If there is a correspond-
ing joint positive probability p(q, q′, x, y), then correlations
with respect to p must satisfy the following two Cauchy-
Bunyakovsky-Schwarz inequalities:

〈(q − q′)2〉ρ〈x2y2〉ρ � 〈(q − q′)xy〉2
ρ,

〈(q − q′)2y2〉ρ〈x2〉ρ � 〈(q − q′)xy〉2
ρ . (23)

However, if we test these inequalities using p defined in (4)
and quantum correlations (7) then they could be violated.
Classically, the measurements of the conserved quantity at
two different times should not depend on whether another
observable is measured in between and both sides of Eqs. (23)
vanish. Using Eqs. (7), the left-hand sides of Eqs. (23) van-
ish for a perfectly conserved quantity. First, 〈(q − q′)2〉p =
0 because Q̂(t ) = Q̂ is independent of time. Second, 〈(q −
q′)2y2〉p = 0 because in addition y is measured after both
q and q′. On the other hand, the right-hand side of (23)
exactly corresponds to the quantum mechanical jump in the
third-order correlator as defined in (18). Hence, even if q is
not exactly conserved then the left-hand sides can be small
enough to violate the inequalities. These violations can be
readily tested in the setup suggested in Fig. 6. Note that the
inequalities must involve fourth-order moments because of the

so-called weak positivity [34] stating that lower moments are
insufficient to violate realism for continuous variables.

VII. CONCLUSION

We have shown that conservation laws in quantum mechan-
ics need to be considered with care since their experimental
verification might depend on the measurement context even in
the limit of weak measurements. The conservation is violated
if extracting objective reality from the weak measurements.
It means that either (i) weak measurements cannot be con-
sidered noninvasive, or (ii) the conservation laws do not hold
in quantum objective realism. Exceptions are superconserved
observables, which will be conserved whatever measurement
is performed, and more generally observables that satisfy the
weak-WAY condition (10). The nonconservation can also be
formulated as Leggett-Garg-type test showing the connection
to the absence of objective realism in quantum mechanics.
In the future, it might be interesting to study more realistic
scenarios for quantum measurements taking into account de-
coherence or more general detectors [35]. Furthermore, one
might generalize these findings to more fundamental rela-
tivistic field theories [36,37], testing correlations involving
components of stress-energy-momentum tensor.
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APPENDIX A: DERIVATION OF CORRELATION JUMPS

To derive (11), one needs to take the thermal state

ρ̂ = Z−1(e−h̄ω/kT |+〉〈+| + |−〉〈−|) (A1)

with Z = 1 + e−h̄ω/kT and

X̂ (t ) = e−iωt |+〉〈−| + eiωt |−〉〈+| (A2)

plugged into (9) with Q̂ = Ĥ = h̄ω|+〉〈+| and Â = B̂ = X̂
with t1 = 0±, t2 = 0 and t3 = τ .

The case of harmonic oscillator can be written in Fock
basis |n〉, n = 0, 1, 2, ... with â|n〉 = √

n|n − 1〉, [â, â†] = 1,
n̂ = â†â = ∑

n n|n〉〈n|, n̂|n〉 = n|n〉, and Ĥ = Q̂ = h̄ωn̂, X̂ =
(â + â†)/

√
2. The thermal state

ρ̂ = Z−1e−h̄ωn̂/kT (A3)

with Z = (1 − e−h̄ω/kT )−1 and

Â = B̂ = X̂ (t ) = (eiωt â + e−iωt â†)/
√

2 . (A4)

The independence of the jump of the state follows from the
fact that

[[Ĥ, X̂ (t2)], X̂ (t3)] ∝ 1̂ (A5)

because [Ĥ, X̂ ] is linear (momentum) in â and â† and, hence,
the outer commutator becomes a c-number.

013247-6



CONSERVATION LAWS IN QUANTUM NONINVASIVE … PHYSICAL REVIEW RESEARCH 3, 013247 (2021)

APPENDIX B: WEAK CORRELATIONS WITH A
QUANTUM CLOCK

A single detector and a single clock are defined by (13)
and (14), respectively. The detector position x is measured
(projectively) at some time later than the interaction moment
t1. The average

〈x〉 � Tr
∫

dt[x̂, ĤI (t )]ρ̂/ih̄ (B1)

in the interaction picture, in the lowest order, according to the
decomposition (12). With

ĤI (t ) = gÂ(t )δ(ẑ − vt ) p̂x (B2)

for the initial initial states (14) we have used the identity

[ĈD̂, ρ̂] = {C, [D̂, ρ̂]} + {D̂, [Ĉ, ρ̂]} (B3)

for ĈD̂ = D̂Ĉ, 〈ψx|{x̂, p̂x}|ψx〉 = 0 (anticommutator),
[x̂, p̂] = ih̄, 〈ψz|δ(ẑ − vt )|ψz〉 = |ψz(vt )|2 to get (15). To
extend it to the sequential case (16), we do not apply the trace
over the system space in (B1) (only over x and z), getting the
matrix

{Â(t ), ρ̂}/2. (B4)

Note that it is Hermitian but not positive definite. Neverthe-
less, we can apply the above scheme iteratively, replacing the
initial system’s state by (B4) to get (16).
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