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Construction of Dirac spinors for electron vortex beams in background electromagnetic fields

Andre G. Campos ,* K. Z. Hatsagortsyan, and C. H. Keitel
Max Planck Institute for Nuclear Physics, Heidelberg 69117, Germany

(Received 23 November 2020; accepted 4 March 2021; published 15 March 2021)

Exact solutions of the Dirac equation, a system of four partial differential equations, are rare. The vast majority
of them are for highly symmetric stationary systems. Moreover, only a handful of solutions for time dependent
dynamics exists. Given the growing number of applications of high energy electron beams interacting with a
variety of quantum systems in laser fields, novel methods for finding exact solutions to the Dirac equation are
called for. We present a method for building up solutions to the Dirac equation employing a recently introduced
approach for the description of spinorial fields and their driving electromagnetic fields in terms of geometric
algebras. We illustrate the method by developing several stationary as well as nonstationary solutions of the
Dirac equation with well defined orbital angular momentum along the electron’s propagation direction. The first
set of solutions describe free electron beams in terms of Bessel functions as well as stationary solutions for both
a homogeneous and an inhomogeneous magnetic field. The second set of solutions are new and involve a plane
electromagnetic wave combined with a generally inhomogeneous longitudinal magnetic field. Moreover, the
developed technique allows us to derive general physical properties of the dynamics in such field configurations,
as well as provides physical predictions on the self-consistent electromagnetic fields induced by the dynamics.
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I. INTRODUCTION

Electron beams having a well defined orbital angular
momentum (OAM) along its direction of propagation, also
known as electron vortex beams [1], are now ubiquitous in ex-
perimental physics [2,3], with applications ranging from fine
probing of matter [4] to high energy particle collisions [5] and
radiation processes [6] (see also reviews [7,8] and references
therein). Recent proposals to employ relativistic twisted elec-
tron beams for Compton scattering [9], Mott scattering [10],
and for radiative recombination [11] convert the fundamen-
tal theoretical problem of relativistic twisted electron beams
[12,13] to a practical one. Self-consistent descriptions of the
angular momentum properties of the electron by studying ex-
act solutions to the Dirac equation were reported for cases in
which the electrons are freely propagating [12,14,15], as well
as interacting with a laser field [16,17], a homogeneous mag-
netic field [18], and more general field configurations [19].

In this paper we provide a general method for construct-
ing exact solutions to the Dirac equation for electron vortex
beams using the newly developed approach of relativistic
dynamic inversion (RDI) [20,21], which encompasses several
of the aforementioned studied solutions as well as giving
novel ones, thus providing a unifying method for the con-
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struction of multiple solutions to the Dirac equation. Hence,
each general solution provided by RDI gives rise to a whole
family of solutions to the Dirac equation, each correspond-
ing to an electromagnetic field of distinct symmetry. As an
inverse problem, i.e., for a given Dirac spinor find the elec-
tromagnetic potential which satisfies the Dirac equation, RDI
is mathematically equivalent to the approach described in
Refs. [22–24]. However, RDI is superior to those very abstract
works in that it gives a clear geometrical interpretation of
the Dirac spinors, providing an intuitive description of the
dynamics based on the electron’s trajectories in the desired
electromagnetic field configurations. More specifically, while
the approach proposed in [22–24] treats the Dirac spinor as
abstract mathematical entities that must obey some constraints
imposed by the Dirac equation, RDI defines it as Lorentz
transformations describing the motion of the electron.

The geometrical interpretation of the Dirac spinor em-
ployed here is made possible by Hestenes’ formulation of the
Dirac equation [25,26], which is the starting point of RDI,
describing the electron dynamics in terms of a set of conser-
vation laws and constitutive relations for local observables.
As the definition of local suggests, the method is based on a
fluid dynamics description of the Dirac theory, pioneered by
Takabayasi [27]. An important advantage of such a point of
view is that a clear classical interpretation can be given to the
elements of the theory. For instance, the Dirac current is as-
sociated with the classical 4 velocity of the electron, while its
charge density coincides with the quantum mechanical prob-
ability distribution for normalizable spinors. Moreover, one
assumes that the fluid carries spin density which is associated
with the quantum mechanical expectation value of the Pauli
spin operator. Given that the fluid streamlines correspond to
the electron’s trajectories in the given field, RDI relies on an

2643-1564/2021/3(1)/013245(20) 013245-1 Published by the American Physical Society

https://orcid.org/0000-0003-2923-4647
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.013245&domain=pdf&date_stamp=2021-03-15
https://doi.org/10.1103/PhysRevResearch.3.013245
https://creativecommons.org/licenses/by/4.0/


CAMPOS, HATSAGORTSYAN, AND KEITEL PHYSICAL REVIEW RESEARCH 3, 013245 (2021)

intuition of how the electron in the quasiclassical approxima-
tion is expected to move in the desired field configuration for
which the solutions to the Dirac equation are sought. In a nut-
shell, the geometric properties of the electron’s trajectory in
space-time (i.e., the fluid streamlines) come from the unique
decomposition of the Dirac spinor as a product of Lorentz
boosts and spatial rotations. Then, a set of equations for the
vector potential in terms of the functions parametrizing the
boosts and rotations are derived directly from the Dirac equa-
tion. Unique solutions for those vector potential equations are
found by imposing constraints on them based on an intuitive
picture of the electromagnetic fields required to generate the
prescribed electron’s path. Here we expand on the solutions
presented in Ref. [21], shedding some light on RDI itself
by presenting a full derivation of the technique directly from
the Dirac equation, thus further clarifying important aspects
of RDI that have been hitherto unexplored. In particular, the
intimate relationship between the spinor parametrization and
the appropriate form of the applied electromagnetic fields.

We briefly summarize our main results. In Sec. II we de-
scribe the RDI technique with emphasis on the derivation of
all elements of the method, thus clarifying their relationship
with the components of the standard Dirac four-component
spinor. In Sec. III A the general form of the Dirac spinor
that give rise to stationary solutions to the Dirac equation
with OAM is constructed and its geometrical and physical
meanings thoroughly investigated. Then, starting with the
particular case of zero longitudinal momentum, the solutions
to spinor Bessel beam as well as for the homogeneous and
inhomogeneous magnetic fields along the z axis are derived
in Secs. III A 1, III A 2, and III A 3, respectively. The general-
ization of those solutions to the case of nonzero longitudinal
momentum is discussed in Sec. III A 4; it is noteworthy that in
this case the form of the spin vector changes considerably. In
Sec. III B the general form of the spinor describing solutions
for the case of an electron interacting with a magnetic field
along the z axis and a plane wave field whose propagation
direction is parallel to the magnetic field is derived. From
such a general spinor, in Sec. III B 3 a closed form solution
for an electron with OAM in a plane wave field (the so
called Volkov-Bessel spinors [16]) is derived rather straight-
forwardly, thus highlighting the power of the RDI technique.
In Sec. III B 4 the solution for an electron in a combination of
plane wave field whose propagation direction is parallel to a
homogeneous magnetic field, known as the Redmond solution
[28,29], is constructed. A solution to the Dirac equation is
given in Sec. III B 5 corresponding to a combination of plane
wave field whose propagation direction is parallel to an in-
homogeneous magnetic field. RDI allows one to show that
for all solutions to the Dirac equation corresponding to the
combination of plane electromagnetic waves and a magnetic
field along the wave’s propagation direction with an arbitrary
perpendicular profile, the Redmond solution stands out as
being the only one corresponding to a relativistic coherent
state [30]. Moreover, as demonstrated in Ref. [21], the electro-
magnetic vector potential derived from RDI is guaranteed to
obey Maxwell’s equations. Furthermore, we show in Sec. III C
that such a nice feature is complemented with an important
predictive property. We show that RDI allows us to predict
the self-consistent field when the plane wave fields are added

to the setup with the magnetic fields (the self-consistent field
is created via disturbance of the current generating the initial
magnetic field). We then close in Sec. IV with our conclusion
and outlook for future work.

II. DESCRIPTION OF THE METHOD

A. Hestenes’ formulation of Dirac theory

The goal of the Hestenes’ formulation of Dirac equation is
to express it in terms of geometrical quantities and to provide
a geometrical interpretation [25,26,31]. In the standard repre-
sentation the Dirac equation for an electron with charge e and
mass m in an external electromagnetic field Aμ reads

γ μ(ih̄∂μ − eAμ)ψ = mcψ, (1)

where γ μ = ημ,νγν and ημ,ν = ημ,ν . The Dirac matrices are
defined as a set of irreducible matrices γμ which satisfy

γμγν + γνγμ = 2ημ,ν, (2)

where the ημ,ν = diag(1,−1,−1,−1) is the metric tensor
of special relativity. Here we follow the convention that
Greek indices take the values 0,1,2,3 while Latin indices
take the values 1,2,3. Also, bold symbol letters refers to
three-dimensional vectors. The γμ over the complex numbers
generates the complete algebra of 4 × 4 matrices. The Dirac
spinor ψ is a column matrix with four complex components:

ψ =

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

r0 − ir3

r2 − ir1

s3 + is0

s1 + is2

⎞
⎟⎟⎠, (3)

where the rμ’s and sμ’s are real functions of space-time and
i = √−1. The representation (3) in terms of the components
ψ1, ψ2, ψ3, ψ4 presumes a specific representation of the Dirac
matrices which is the standard representation

γ0 =
(

I 0
0 −I

)
, γk =

(
0 −σk

σk 0

)
, (4)

where I is the 2 × 2 identity matrix and the σk are the usual
2 × 2 Pauli matrices, that is, traceless Hermitian matrices
satisfying

σ1σ2σ3 = iI. (5)

The new point of view is to interpret γμ as vectors of a
space-time reference frame. By definition the scalar product
of these vectors are just the components ημ,ν of the metric
tensor. That is,

1
2 (γμγν + γνγμ) = γμ · γν = ημ,ν. (6)

They generate an associative algebra over the real numbers
which has been called the space-time algebra by Hestenes
[25,26,31], since it provides a direct and complete algebraic
characterization of the geometric properties of Minkowski
space-time.

The further goal is to write ψ in terms of space-time alge-
bra which is independent of the matrix representation in order
to highlight its geometrical significance. It goes as follows. In
the space-time algebra the quantities αk = γkγ0 (k = 1, 2, 3)
are to be interpreted as vectors relative to the inertial system
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specified by the timelike vector γ0. The αk generates an al-
gebra over the real numbers which is isomorphic to the Pauli
algebra. This fact is emphasized by writing

α1α2α3 = γ0γ1γ2γ3 = i = iγ5, i2 = −1, (7)

thus i plays a similar role as i does in the Pauli algebra since
it is a root of −1 while also obeying iαk = αki for k = 1, 2, 3.
From the standard representation (4) it follows:

αk =
(

0 σk

σk 0

)
, γ5 =

(
0 I
I 0

)
,

(8)

εi jkγ
iγ j = iαk =

(
iσk 0
0 iσk

)
,

where εi jk is the Levi-Civita symbol.
The Dirac spinor ψ can be represented in the form

ψ = 	

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠, (9)

where 	 can be expressed as an element of the space-time
algebra by interpreting the γμγ0 as vectors as follows:

	 = r0 + s1α1 + s2α2 + s3α3 + i(s0 − r1α1 − r2α2 − r3α3)

=

⎛
⎜⎜⎝

ψ1 −ψ∗
2 ψ3 ψ∗

4

ψ2 ψ∗
1 ψ4 −ψ∗

3

ψ3 ψ∗
4 ψ1 −ψ∗

2

ψ4 −ψ∗
3 ψ2 ψ∗

1

⎞
⎟⎟⎠. (10)

This will help to make the geometrical significance of spinors
explicit. The Dirac equation can be expressed in terms of 	

as

(h̄c∂/	γ2γ1 − ceA/	 ) = mc2	γ0, (11)

with A/ = Aμγμ, ∂/ = γ μ∂μ. Equation (11), which is known as
Hestenes-Dirac equation, is fully consistent with the Dirac
equation, and by using (9), a solution of one equation can
be expressed as a solution of the other. Thus, it can fairly
be called the Dirac equation in the language of space-time
algebra. It is a very general equation despite the explicit ap-
pearance of γ0, γ1, and γ2 in it, which are determined only
within a proper Lorentz transformation. It cannot be overem-
phasized that the vectors γ0, γ1, and γ2 appearing in (11) need
not be associated a priori with any coordinate frame. They
are simply a set of arbitrarily chosen orthonormal vectors.
Adoption of a coordinate frame with γ0 as the time component
is equivalent in the conventional theory to adopting a matrix
representation for which γ0 is Hermitian and the γk are anti-
Hermitian. For a detailed derivation of the Hestenes-Dirac
equation (11) see Ref. [31].

Let us further highlight the geometrical meaning of the
matrix spinor 	. We start by transforming 	 to a block diago-
nal form with the following unitary matrix T = 1√

2
(1 + γ5γ0).

That is,

T 	T † =
(

Q 0
0 σ2(Q†)T σ2

)
,

(12)
Q = r0 − is0 − i(rk − isk )σk,

where the superscript T denotes the transposed. The determi-
nant of 	,

Det [	] = (rμrμ − sμsμ − 2irμsμ)(rμrμ − sμsμ + 2irμsμ),

is a Lorentz invariant quantity thus being a scalar function.
Hereinafter we will only consider cases in which rμrμ − sμsμ

and rμsμ are not simultaneously zero. Hence, Det [	] �= 0
which implies that 	 is an invertible matrix. Let us redefine Q
as Q = sV , with s = √

rμrμ − sμsμ − 2irμsμ and Det [V ] =
1. The function s can be written as s = √

ρeiβ/2, where

√
ρ = [

(rμrμ − sμsμ)2 + 4(rμsμ)2
]1/2

,

β = arg(rμrμ − sμsμ ± 2irμsμ),

where the “−” sign is for Q, while the “+” sign is for
σ2(Q†)T σ2. Here we emphasise that the above definitions of
β and ρ are novel. Finally we have

T 	T † = √
ρ

(
e−iβ/2V 0

0 eiβ/2σ2(V †)T σ2

)
. (13)

We then see that the β parameter should be defined together
with V , a fact recently recognized by Hestenes [32]. Geo-
metrically, it corresponds to a space-time reflection which is
modulated by the parameter β. By construction V is a unimod-
ular 2 × 2 complex matrix. It forms a group, the SL(2,C),
a complex three-dimensional manifold hence having six de-
grees of freedom that are associated with the parameters of a
boost and a rotation. In order to nail down the geometrical
meaning of 	, it is instructive to check how this unitary
transformation affects Eq. (9):

T ψ = T 	T †Tu1, Tu1 = 1√
2

⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠.

Given that T is the unitary transformation connecting the
Dirac representation with the Weyl representation (see the Ap-
pendix to Chap. 1 in Ref. [33], a brief description is provided
here in Appendix C) we see that 	 is the 4 × 4 double cover
of the Lorentz group (see Chap. 2 of Ref. [34]). Note that
such representation of the Dirac spinor is equivalent to the so
called “polar spinors,” see, e.g., [35,36]. It then follows that
the matrix spinor 	 can be written as

	 = √
ρ exp (iβ/2)R, (14)

R = T †

(
V 0

0 σ2(V †)T σ2

)
T, (15)

where R is an unimodular 4 × 4 complex matrix corre-
sponding to Lorentz transformations. Note that T iT † =
diag(−i,−i, i, i). It is noteworthy that the scalar function β

(known as the Yvon-Takabayashi angle [27,37]) is directly
related to antiparticles (see, for instance, Ref. [38]). Since R
is an invertible square matrix, it can always be written in the
polar form:

R = BU, (16)

where B is a positive definite Hermitian matrix while U is
unitary. A more instructive decomposition can be made that
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follows from the positive definiteness of B, which is R =
eXU = UeY where Y = U †XU and X is the unique Hermitian
logarithm of B. Moreover, given that Det [B] = 1, we must
have Tr [X ] = 0. Such form is useful in the association of
	 with matrix Lie groups. As explained in Appendixes A,
B, and C, hereinafter we will identify U with rotations and
B with boosts. Thus X can be written in the general form
X = −w(a1α1 + a2α2 + a3α3)/2, where w is the electron’s
rapidity and (a1, a2, a3) is a unit vector giving the direction of
the boost.

B. Geometrical interpretation

We are now ready to give a geometrical meaning to
	, which highlights the main idea behind RDI. At each
space-time point x = (ct, r) the electron’s rest frame {γμ} is
connected to the laboratory frame {eμ = eμ(x)} by the local
Lorentz transformation R(x),

eμ = RγμR̃ = Rγμγ0R†γ0, (17)

with RR̃ = R̃R = 1. Where the matrix spinor (14) determines
the four mutually orthogonal vector fields

	γμ	̃ = ρeμ, (18)

forming the orthonormal tetrad (OT)

ρ(e0, e1, e2, e3) = (J, ρe1, ρe2, ρs/), (19)

that is attached to the electron. In other words, it exists at every
point along the electron’s trajectory. The electron’s 4 velocity
is given by the tangent vector field J = ρe0 = ρv/, where
ρvμ = (ψ†ψ,ψ†α1ψ,ψ†α2ψ,ψ†α3ψ ) is the Dirac current
obeying ∂μJμ = 0; it corresponds to the velocity streamlines,
i.e., timelike curves tangent to space-time trajectories such as
the one depicted in Fig. 1 describing the local flow of the prob-
ability fluid. Moreover, the spin density carried by the fluid
is ρs/ = ρe3, with ρsμ = (ψ†iψ,ψ†iα1ψ,ψ†iα2ψ,ψ†iα3ψ )
being the electron spin vector density whose direction is deter-
mined by the plane S = Rγ2γ1R̃ = e2e1 = e2 ∧ e1 = is/ ∧ v/

which is also depicted in Fig. 1. The spin and proper velocity
obey the constraints: vμvμ = −sμsμ = 1 and vμs

μ = 0. The
most important feature of a Lorentz transformation is that it
leaves the metric tensor invariant, thus preserving the space-
time interval. As a consequence of this important property,
the metric tensor in the laboratory frame gμ,ν is related to the
metric tensor in the electron’s frame ημ,ν as

gμ,ν = ρ2ημ,ν, (20)

which can be inferred from (18). Therefore, the Lorentz trans-
formation (18) acts as a conformal transformation, and we say
that the metrics gμ,ν and ημ,ν are conformally related. Thus we
see that the scalar function ρ acts as a dilatation. Conformal
transformations commonly appears in the context of general
relativity [39]. Moreover, they are also connected with the
transformation from an inertial coordinate system to another
frame of reference with respect to which it is uniformly ac-
celerated [40]. Furthermore, by identifying J as the electron’s
current in the Dirac theory and v/ as its local 4 velocity, v0ρ =
J0 is also identified with the quantum mechanical probability
distribution of finding the electron on a particular trajectory.

FIG. 1. Illustration of the local orthonormal tetrad attached to the
electron whose trajectory as seen by an observer in the laboratory
frame of reference is given by the curve γ on the manifold G. Three
of the four orthonormal vectors composing the tetrad are shown. The
timelike vector e0 is the tangent vector to the curve, thus describing
the electron’s velocity, while e1 and e2 are two spacelike vectors
whose geometrical meaning is elucidated in the text. The bivector
S is depicted by the plane orthogonal to the electron’s trajectory.

From Eq. (14) we have, noting that Uγ0 = γ0U ,

	γ0	̃ = ρv/ = ρBγ0B−1 = ρB2γ0, (21)

since B−1 = B̃ = γ0B†γ0 = γ0Bγ0. For the vector spin den-
sity we have

	γ3	̃ = ρs/ = ρBUγ3U
†B−1 = ρBUα3U

†Bγ0. (22)

C. Inverse problem for the vector potential

Once the matrix spinor is given, the next step is to find the
electromagnetic fields that induce the motion of the electron
encoded in 	. Formally, the vector potential can be written in
terms of 	 by inverting Eq. (11) as

eA/ = h̄∂/	γ 2γ 1	−1 − mc	γ 0	−1, (23)

where

	−1 = 	̃

		̃
, 	̃ = γ0	

†γ0, 		̃ = ρeiβ.

Hence, the vector potential equation can be rewritten in a more
illuminating form

eA/ = h̄∂/	γ 2γ 1	−1 − p/e−iβ, p/ = mcv/, (24)

which allows us to identify p/ with the kinetic momentum.
The vector potential given by (23) is required to obey the

following constraints:

Tr [eA/�1]/4 = 0,

Tr [eA/�n]/4 = 0, for 6 � n � 16,
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where

�1 = 1, �2 = γ 0, �3 = γ 1, �4 = γ 2,

�5 = γ 3, �6 = α1, �7 = α2, �8 = α3,

�9 = γ 2γ 3, �10 = γ 3γ 1, �11 = γ 1γ 2,

�12 = γ 1γ 2γ 3, �13 = γ 0γ 2γ 3, �14 = γ 0γ 3γ 1,

�15 = γ 0γ 1γ 2, �16 = γ 5.

The above conditions imply

∂μJμ = 0,

∂μ(ρsμ) + 2mc

h̄
ρ sin β = 0. (25)

It is noteworthy that Eqs. (25) are equivalent to the conditions
for the reality of the vector potential derived in Refs. [23,24].

It is important to investigate further the bivector S since
it will play an important role in the equation for the vector
potential. We first note that its components are

S = γ 0γ is jvkεi jk − iγ 0(v0skγ
k − s0vkγ

k ),

such that s jvkεi jk = (s × v)i corresponds to the ith com-
ponent of the cross product between the spin and velocity
vectors. If we define the “matrix” vector �α = γ 0(γ 1, γ 2, γ 3)
with �α · v = γ 0γ kvk , we then have

S = �α · (s × v) − i�α · (v0s − s0v). (26)

The first thing we should note is that S has the same form as
(B2). Moreover, both of its terms are mutually orthogonal.

III. APPLICATIONS OF THE METHOD

A. Stationary solutions

For simplicity let us assume at the outset that any nontrivial
dynamics happens on the x-y plane only, so that the electron
has constant momentum along the z axis which we initially
take to be zero. Moreover, let us consider the special case in
which the electron undergoes circular motion on the plane.
These assumptions will lead to the solutions for an electron
with well defined OAM along its propagation direction. Be-
fore proceeding, we would like to call attention to the fact
that all solutions presented here are given in Cartesian in-
stead of the commonly used cylindrical coordinates. Such a
choice, which does not hinder the generality of the proce-
dure, is pursued because Hestenes equation (11) assumes its
mostly simple form in Cartesian coordinates (see, for instance,
Ref. [41] for a formulation of the Hestenes equation in spher-
ical coordinates). We also want to point out the fact that, as
shown in Appendix A, all solutions presented here correspond
to positive energy states only.

From the most general matrix spinor parametrization given
by Eqs. (14), (16), and (A8), that follow directly from the
geometrical interpretation of the Dirac equation given by
Hestenes, we select the matrix spinor

	 = √
ρBUe−γ 2γ 1 (εt+
)

h̄ (27)

having the following parametrization

U = 1, (28)

B = e
− w

2 (γ 0γ 1 −y√
x2+y2

+γ 0γ 2 x√
x2+y2

)
(29)

= e−γ 2γ 1 1
2 tan−1( y

x )e− w
2 α2 eγ 2γ 1 1

2 tan−1( y
x ), (30)


 = h̄M

2
tan−1

(y

x

)
, (31)

w

2
= tanh−1

(
B

2(mc2 + ε)

d ln[ f (λ)]

dλ

)
, (32)

√
ρ = (mc2 + ε)λM/2 f (λ)H (λ)

B cosh(w/2)
, (33)

where λ = B
√

x2+y2

2ch̄ , f , and H are arbitrary real functions
while B is a positive real number with dimensions of energy
to be determined later and the integer M � 0 is the orbital
angular momentum quantum number. The explicit form of the
above parametrization is constructed as follows: We start with
a Dirac spinor whose form is inspired by a known solution to
the Dirac equation that we wish to generalize. For the cases
dealt with in this paper, we begin with the solution for a
constant and homogeneous magnetic field. The chosen spinor
is then written in the form given by Eq. (A17) with the plane
wave term acted on by the derivative operators being replaced
by the general function f (λ). From the Dirac spinor we then
construct the matrix spinor using Eq. (10). Knowing that the
most general parametrization of the matrix spinor 	 is given
by Eqs. (14), (16), and (A8) we extract the expressions for
B, 
, w/2, and

√
ρ. Finally, we multiply the matrix spinor

by a general function H (λ) to ensure that the |ψ |2 is square
integrable on the x-y plane for bound state solutions.

It is noteworthy that e−γ 2γ 1 εt+

h̄ indicates the sense of rota-

tion of the spin, which is counterclockwise. Moreover, It must
be emphasized that the constant B has a priori no physical
meaning, being just a convenient way to get the units right;
its physical meaning will come from the vector potentials
derived from the matrix spinor. Furthermore, the above spinor
parametrization only ensures that the electron’s velocity is
along the azimuthal direction on the plane, and do not yet
fully specify the shape of the trajectory, which could as well
be elliptical. The special choice of circular trajectories will
require further constraints on the form of the vector potential
as we show below.

Let us now get a better understanding of the boost Bwhose
matrix form is

B = u0(1 − γ1γ0u1 − γ2γ0u2), (34)

with

u0 = 1√
1 − B2{d ln[ f (λ)]/dλ}2

4(mc2+ε)2

,

u =
(

− y√
x2 + y2

,
x√

x2 + y2

)
B

2(mc2 + ε)

d

dλ
ln[ f (λ)]

= φ̂
B

2(mc2 + ε)

d ln[ f (λ)]

dλ
.

Since B is a quaternion, its geometrical meaning is depicted
in Fig. 2. The vector u corresponds to the coordinates of the
point in which the plane intersects the line from the south
pole of the sphere to the upper sheet of the hyperboloid
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FIG. 2. Geometrical meaning of the boost matrix Eq. (29) and
velocity Eq. (36) for a space of 2 + 1 dimensions. (a) The upper sheet
of the hyperboloid is mapped onto the plane passing through the
origin by a stereographic projection from the south pole on the lower
sheet of the hyperboloid. The sphere is the intersection between the
plane and the light cone with vertex on the particle’s trajectory. The
disk formed by the intersection between the plane and the sphere
corresponds to the Poincaré disk model. (b) The circular trajectory
on the upper sheet of the hyperboloid is mapped onto the origin
centered circle of radius

√
ρ and tangent vector u. In the figure the

center of the sphere corresponds to the electron’s rest frame {γμ}
while the points on the upper sheet of the hyperboloid corresponds
to the observer in the laboratory frame.

shown in Fig. 2(a). Moreover, in the center of the sphere
we have u0 = 1, in the points within the sphere we have
u0 < 1, and in the points on the surface of the sphere we
have B

2(mc2+ε)
d

dλ
ln[ f (λ)] = 1 which projects onto the point at

infinity on the Poincaré disk model. In Fig. 2(b) we see that B
induces a motion in the azimuthal direction on the x-y plane
which is depicted by the tangent to the circle of radius

√
ρ.

This point becomes obvious from Eq. (30). From Eqs. (18)
and (19) we have the following expressions for the spin and

velocity vectors, respectively:

s/ = γ 3, (35)

v/ = 1 + |u|2
1 − |u|2

[
γ 0 − 2

1 + |u|2 (γ 1u1 + γ 2u2)

]

= v0(γ 0 − γ 1v1 − γ 2v2). (36)

The velocity (36) is depicted as the dotted vector in Fig. 2(a)
and is written in terms of the coordinates on the plane. It is
simply the stereographic projection from the upper sheet of
the hyperboloid onto the plane passing through the origin of
the coordinate system. The Dirac spinor ψ is extracted from
	 and is given by

ψ = H (λ)e−itε/h̄
(
ei tan−1 ( y

x )λ
)M/2

⎛
⎜⎜⎜⎝

(mc2+ε)
B

0
0

− ih̄c
B

(
∂
∂x + i ∂

∂y

)

⎞
⎟⎟⎟⎠ f (λ),

(37)

which has the same form as Eq. (A17) with pz = θ = η = 0
and α = 1; later on we will show how our solutions change by
making pz �= 0.

The vector potential follows from Eq. (24):

eA0 = h̄

2

( �∇ · (ρs × v)

ρ

)
+ P0 − p0, (38)

eA = h̄

2

[
1

ρ
�∇ × (ρ{v0s − s0v})

]
− P − p, (39)

where

P0 = − h̄

8c
Tr [e2 · ∂e1/∂t] = ε

c
,

Pk = − h̄

8
Tr [e2 · ∂ke1]

= −
(

M

2
− sinh2(w/2)

)
∂

∂xk
arctan

(
y

x

)
, (40)

with (x1, x2) = (x, y). Note that A3 = 0. The components of
(26) appear in the equations for the vector field, which are
both perpendicular to v given that s0 = 0.

It is striking to notice that despite the vector potential given
by Eqs. (38) and (39) already solving the Dirac equation for
the spinor (37), the extra condition eA0 = 0 must be imposed
in order to have circular trajectories. Geometrically it will be-
come clear when we look at some examples that this condition
implies there will be no fluid flow along the radial direction.
Physically it means that the only force that might be acting
on the electron is perpendicular to its velocity and that the
electron moves on stable circular orbits. We then see the close
connection between the classical picture inherited from the
fluid dynamics point of view and the underlying physics of
the problem.

From the equations for ρ and v we get, upon imposing the
condition A0 = 0,

d2 f (λ)

dλ2
− 4(m2c4 − ε2) f (λ)

B2
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+ df (λ)

dλ

(
M + 1

λ
+ 2

H (λ)

dH (λ)

dλ

)
= 0, (41)

which implies

eA1 = B2y

4c2λ

d

dλ
ln[H (λ)], (42)

eA2 = − B2x

4c2λ

d

dλ
ln[H (λ)]. (43)

The magnetic field then becomes

eB = − B2

4c2λh̄

d

dλ

(
λ

d

dλ
ln[H (λ)]

)
ẑ. (44)

Hence, the magnetic field is dependent only on the explicit
form of the function H (λ). Thus, as we will show below,
whether or not the electron is free depends entirely on the
explicit form of the electron’s probability density ρv0. There
is another important point to emphasize regarding the form of
the vector potential. In polar coordinates it becomes

eA = φ̂Aφ (λ), Aφ (λ) = −Bh̄

2c

d ln[H (λ)]

dλ
.

We see that the vector potential has the form of a vortex, which
is a direct consequence of the boost B. In other words, all
of the solutions presented here will necessarily carry orbital
angular momentum.

1. Free particle case

From Eq. (44) we see that H (λ) = 1 leads to B = 0. It then
follows that the components of the vector potential (42) and
(43) are zero and the solution of Eq. (41) is

f (λ) = λ−l Jl

(
2λ

√
ε2 − m2c4

B

)
, (45)

where J denotes the Bessel function of the first kind and the
substitution M = 2l was made. Note that ε > mc2. We then
recover the OAM spinor Bessel state solution of the free Dirac
equation reported in Ref. [14]. This can be seen as follows: by
noting that tan−1(y/x) = φ and (x + iy)/

√
x2 + y2 = eiφ the

explicitly form of the Dirac spinor (37) becomes

ψ = e− iεt
h̄

⎛
⎜⎜⎜⎜⎜⎜⎝

N (c2m+ε)eilφJl

(
2λ

√
ε2−c4m2

B

)
B

0
0

iN
√

ε2−c4m2ei(l+1)φJl+1

(
2λ

√
ε2−c4m2

B

)
B

⎞
⎟⎟⎟⎟⎟⎟⎠

, (46)

which can be make equal to Eq. (7) from Ref. [14] for θ0 =
π/2, α = 1 and β = 0 (note that these are the parameters
appearing in Eq. (7) of [14]) if we make the following identifi-
cations in Eq. (46):N = B√

2ε

√
c2m
ε

+1
and

√
ε2 − c4m2 = p⊥0c,

where p⊥0 is the initial transversal momentum as defined in
[14].

It is noteworthy that if instead of choosing H (λ) = 1, we
choose H (λ) = λζ , where ζ is an arbitrary real number, then
by changing l → l + ζ in (46) we get another free particle
solution to the Dirac equation, this time corresponding to
the shifted Bessel beam as described in Ref. [42]. The free
particle solution with pz �= 0 will be discussed at the end of
this section.

2. Homogeneous magnetic field

Our solution of Eq. (37) describes also the case of a con-
stant magnetic field. By solving Eq. (44) for a constant field,
with M = 2l , we get

H (λ) = e−λ2
, (47)

from which the vector potential and magnetic field follows:

eA0 = 0, (48)

eA3 = 0, (49)

eA1 = − yB2

2c2h̄
, (50)

eA2 = xB2

2c2h̄
, (51)

eB = B2

c2h̄
ẑ. (52)

The function f (λ) and energy eigenvalues in this case take the
form

f (λ) = NLl
n(2λ2), (53)

ε =
√

m2c4 + 2B2n, (54)

where Ll
n(2λ2) are the generalized Laguerre polynomials and

N is a normalization constant, which comes from the normal-
ization condition 2π

∫ ∞
0 J0λdλ = 1:

N = B

l!
√

22−lπε(c2m + ε)

√
(l + n)!

n!
.

Moreover, both the radial and the z components of the elec-
tron’s current are zero, and the averaged azimuthal component
is

〈Jφ〉 =
√

2Bn

ε
, (55)

while the average electron’s density is

〈ρ〉 = mc2

ε
. (56)

The obtained solution is in accordance with the one studied
in Ref. [18] corresponding to the case in which the eigenvalues
(54) are independent of l . However, if instead we make the
substitution M = −2l in Eq. (37), with l being a positive
integer, we arrive at

f (λ) = N (−1)l (2λ2)l
1F1(−n; l + 1; 2λ2)

= N (−1)l (2λ2)l

(
n

n + l

)
Ll

n(2λ2), (57)

ε =
√

m2c4 + 2B2(l + n), (58)

leading to a solution of an electron in a homogeneous mag-
netic field for which the states of different angular momentum
are no longer degenerate. The positive (negative) value of M
corresponds to making a clockwise (counterclockwise) rota-
tion round the z axis. Therefore, if the rotation induced by
(31) is opposite (M = 2l) to the direction of the velocity u,
the eigenstates with different orbital angular momentum are
degenerate, whereas if the induced rotation is in the same
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(M = −2l) direction as u the eigenstates with different orbital
angular momentum are nondegenerate.

As previously mentioned, no projection onto positive en-
ergy states needs to be done here, since all our solutions to the
homogeneous magnetic field case, which coincide with the
ones presented in Ref. [18], already corresponds to positive
energy states only.

3. Inhomogeneous magnetic field

For a simple example of an inhomogeneous magnetic field
we substitute

H (λ) = e− λ
2 (59)

in Eq. (41) from which we get as a solution the function

f (λ) = Ne− λ(E−B)
2B U

(
(M + 1)(E− B)

2E
, M + 1,

λE
B

)
,

with N being a normalization constant and E =√
B2 + 16c4m2 − 16ε2; U is Tricomi’s confluent hyper-

geometrical function. The vector potential, magnetic field,
and current then vary radially, given by

eA0 = eA3 = 0, (60)

eA1 = − yB

4c
√

x2 + y2
, (61)

eA2 = xB

4c
√

x2 + y2
, (62)

eB = B

4c
√

x2 + y2
ẑ, (63)

eμ0Je = B

4c

(
− y

(x2 + y2)3/2
,

x

(x2 + y2)3/2
, 0

)

= eA
x2 + y2

, (64)

as can be easily verified by plugging in (59) in (42), (43), and
(44). The vortex structure of the current (64) is not surprising
given the chosen form of the boost B. It is then advanta-
geous to also write it in polar coordinates eμ0Je = φ̂ B

4cr2 , r =√
x2 + y2, which resembles the current carried by a circular

loop on the x-y plane. It is also solenoidal, that is, �∇ · Je = 0.
The hypergeometric function U above will be a finite poly-

nomial if the following holds:

ε =
√

m2c4 + n(n + M + 1)B2

4(2n + M + 1)2
, (65)

where the integers n � 0 and M � 0 are the principal and an-
gular momentum quantum numbers, respectively. With these
conditions we have

f (λ) = Ne− λ(M+1)
2(2n+M+1) + λ

2 U

(
−n, 1 + M,

λ(M + 1)

2n + M + 1

)
(66)

= Ne− λ(M+1)
2(2n+M+1) + λ

2 LM
n

(
λ(M + 1)

2n + M + 1

)
. (67)

This solution for the inhomogeneous magnetic field concurs
with one discussed in Ref. [43].

An important point concerns the orbital angular momen-
tum quantum number which, in contrast to the homogeneous
magnetic field case, still appears in the energy eigenvalues
whether or not the sign of M is changed. Moreover, the nor-
malization condition 2π

∫ ∞
0 J0λdλ = 1 leads to the following

normalization constant:

N = B2(M + 1)M/2+1(n!)1/2

2
√

2ch̄
√

2π (M + 2n + 1)M+3(M + n)!ε(c2m + ε)
.

Both the radial and the z components of the electron’s current
are zero, and the averaged azimuthal component is

〈Jφ〉 = Bn(1 + n + M )

(1 + 2n + M )2ε
, (68)

while the average electron’s density is

〈ρ〉 = mc2

ε
, (69)

the same as (56).
From the above examples for the magnetic fields we note

that 〈ρ〉ε/c = 〈p0〉, and since the vector field ρs × v is along
the radial direction, this confirms our geometrical interpreta-
tion for the condition eA0 = 0. Also, the form of 〈ρ〉, which is
the same for both homogeneous and inhomogeneous magnetic
field cases, has an important physical significance which is
derived from the identification of the electron streamlines with
classical trajectories. Such a connection was first established
for the free Dirac electron in Ref. [44], from which we take
the equation

d

ds
xμ = ψ†γ 0γ μψ,

d

ds
= vμ∂μ. (70)

Geometrically the definition of d
ds is unambiguous, since it is

the directional derivative along the streamlines, and is analo-
gous with the proper time in classical dynamics. For the zeroth
component of the velocity in (70) (μ = 0) we see at once that
d (ct )/ds = v0 = ψ†ψ = J0 = ρv0. Since we have from clas-
sical relativistic mechanics d (ct )/ds = ε/mc2, it then follows
that 〈ρ〉 = ds/d (ct ). Such identification was already explored
in Ref. [45].

Incidentally, another way to get the free particle solution
from the solutions with either the homogeneous or the inho-
mogeneous magnetic fields is to first consider their ground
states, that is, we put n = M = 0. Then, the normalization
becomes N = B

2mc2 . In the limit of B → 0 we have f (λ) =
H (λ) = 1, ε = mc2 and the wave function (37) goes over
to the spinor of a free particle at rest with spin up, thus
highlighting the meaning of B/mc as being proportional to
the magnitude of the electron’s velocity in the above magnetic
field examples.

4. Case with pz �= 0

In this case the Dirac spinor (37) gets modified to

ψ = H (λ)e−i tε−zpz
h̄

(
ei tan−1 ( y

x )λ
)M/2

⎛
⎜⎜⎜⎝

(mc2+ε)
B

0
cpz

B

− ih̄c
B

(
∂
∂x + i ∂

∂y

)

⎞
⎟⎟⎟⎠ f (λ),

(71)
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while Eq. (41) becomes

d2 f (λ)

dλ2
− 4(m2c4 + c2 p2

z − ε2) f (λ)

B2

+ df (λ)

dλ

(
M + 1

λ
+ 2

H (λ)

dH (λ)

dλ

)
= 0. (72)

The vector potential components (42), (43), and the rotation
matrix (28) remain the same while the energy eigenvalues
(54), (58), and (65) simply have p2

z c2 added under the square
root. Moreover, the boost (29) now becomes

B = cosh(w/2)√
(c2m + ε)2 − c2 p2

z

γ 0

[
(c2m + ε)γ 0

+ B ḟ (λ)

2
√

x2 + y2 f (λ)
(yγ 1 − xγ 2) + cpzγ

3

]
,

cosh(w/2) = 1√
1 − B2 ḟ (λ)2

4[(c2m+ε)2−c2 p2
z ] f (λ)2

. (73)

The new expressions for the velocity and spin vectors are

v/ = γ0

⎛
⎝1 + c2 p2

z

(mc2+ε)2

1 − c2 p2
z

(mc2+ε)2

⎞
⎠1 + h̄2c2| �∇ ln[ f (λ)]|2

(mc2+ε)2+c2 p2
z

1 − h̄2c2| �∇ ln[ f (λ)]|2
(mc2+ε)2−c2 p2

z

+ 2h̄c

1 − h̄2c2| �∇ ln[ f (λ)]|2
(mc2+ε)2−c2 p2

z

(
γ1

∂ ln[ f (λ)]

∂y
− γ2

∂ ln[ f (λ)]

∂x

+ γ3
cpz(mc2 + ε)

(mc2 + ε)2 − c2 p2
z

)
mc2 + ε

(mc2 + ε)2 − c2 p2
z

, (74)

s/ = v3γ0 + cpz

mc2 + ε

(
v1γ1 + v2γ2

) +
1 + c2 p2

z

(mc2+ε)2

1 − c2 p2
z

(mc2+ε)2

×
⎛
⎝1 − h̄2c2| �∇ ln[ f (λ)]|2

(mc2+ε)2+c2 p2
z

1 − h̄2c2| �∇ ln[ f (λ)]|2
(mc2+ε)2−c2 p2

z

⎞
⎠γ3, (75)

from which we note that, in contrast to the pz = 0 case, the
spin undergoes a more intricate dynamics. There is a sim-
ple reason for this feature, which is the Lorentz invariant
condition sμvμ = 0 that both the velocity and spin vectors
must obey. Given that for pz = 0 we have s0 = 0, so it must
be the case that v · s = 0. Since now s0 �= 0 it follows that
s0 = v · s/v0 and the vector part of the electron’s velocity and
spin are no longer orthogonal to each other. Moreover, the
electron’s density now becomes

√
ρ = λM/2 f (λ)H (λ)

√
(mc2 + ε)2 − c2 p2

z

B cosh(w/2)
. (76)

It is instructive to see how the solution for the free particle
case changes for pz �= 0 in order to show that our method fully
reproduces the more general OAM Bessel spinor solution

from Ref. [14]. The spinor is modified as

ψ = N

⎛
⎜⎜⎜⎜⎜⎜⎝

(c2m+ε)Jl (χ )e
i(lφh̄+pzz−tε)

h̄

B

0

cpzJl (χ )e
i(lφh̄+pzz−tε)

h̄

B

iJl+1(χ )
√

ε2−c2(c2m2+p2
z )e

i[(l+1)φh̄+pzz−tε]
h̄

B

⎞
⎟⎟⎟⎟⎟⎟⎠

, (77)

where χ = 2λ
√

ε2 − c2(c2m2 + p2
z )/B. By making the

following identifications of the parameters α, β, θ0,
and (p‖0, p⊥0) (these are the initial longitudinal and
transversal momentum, respectively) appearing in Eq.
(7) of [14] with the ones in Eq. (77): pz → p cos(θ0) = p‖0,√

ε2 − c2(c2m2 + p2
z ) → p sin(θ0) = p⊥0, α = 1, β = 0,

N = B

ε

√
c2m
ε

+1
, and p =

√
ε2−c4m2

c we recover Eq. (7) of [14]

for the spin up case.

B. Nonstationary solutions for plane wave fields
propagating along the z axis

To simplify the form of the equations, in this section we
choose pz = 0. The generalization to the nonzero momentum
case is straightforward. The starting point for the construction
of the desired solution is the spinor of Eq. (37). The idea is to
induce a so-called null rotation (see pp. 28 and 29 of Ref. [46])
on the Riemann sphere shown in Fig. 2(a). For instance, such a
rotation is illustrated in Fig. 3(a) by the red full circle through
the north pole of the sphere, which corresponds to the straight

FIG. 3. (a) The same sphere from Fig. 2(a) is depicted here. The
null rotation taking place on the surface of the sphere is given by the
red full circle. A point P on the circle is mapped by stereographic
projection from the north pole N onto the point P′ on the straight
black dashed line on the plane. The point P′ is mapped onto the
point Q inside the sphere by a combination of an inversion and a
complex conjugation on the coordinates of P′; the point Q in turn
corresponds to the same point P under a stereographic projection
from the south pole S of the sphere. (b) The same triangles from
the geometric construction in (a). (c) The dashed circle corresponds
to the intersection between the unit sphere and the plane. The red
full circle passing through Q corresponds to the circle on the sphere
mapped onto the plane by the Lorentz transformation UrBr .
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line on the x-y plane passing through P′ by a stereographic
projection from the north pole N passing through P. Given
that all the points outside of the sphere correspond to spacelike
trajectories, the point P′ is in turn mapped onto the point Q
by applying an inversion followed by a complex conjuga-
tion on the coordinates of P′. This transformation maps the
line passing through P′ onto a circle tangent to the origin
O and passing through Q (see p. 126 of Ref. [47]) which
thus corresponds to the electron trajectory and is illustrated
in Fig. 3(c). Moreover, from the triangles in Fig. 3(b) we can
get the following segment lengths:

SO = ON = OP = 1, SQ = 1

cos(θ/2)
,

SP = 2 cos(θ/2),

NP = 2 sin(θ/2), NP′ = 1

sin(θ/2)
, OQ = tan(θ/2),

OP′ = cot(θ/2).

We are now ready to construct the null rotation; it is defined
by the following Lorentz transformation applied to 	 (see
Appendix C for a detailed discussion):

	T = ek/∧A/	eγ2γ1
 = (1 + k/ ∧A/)	eγ2γ1
, (78)

k/ ∧A/ = c2

2εω

(
ḟ1(ξ )α1 + ḟ2(ξ )α2 − ḟ2(ξ )γ2γ3 + ḟ1(ξ )γ3γ1

)
= c2

2εω
[�α · ḟ (ξ ) − i�α · [ ḟ (ξ ) × ẑ]], (79)

with ξ = ω(t − z/c), ḟi(ξ ) = dfi(ξ )/dξ , and ḟ (ξ ) =
[ ḟ1(ξ ), ḟ2(ξ ), 0]. The translation of the electron
on the x-y plane is described by the vector Xk =

c3

2εω2 [ f1(ξ ), f2(ξ ), 0] while its velocity on the plane is
Aμ = ω[0, Ẋ1(ξ )/c, Ẋ2(ξ )/c, 0], which corresponds to the
electron’s classical trajectory on the laser field. Moreover, the
term applied to the right of 	 is a gauge transformation given
by the function 
 = − c4

2εω3 h̄

∫ ξ

0 dφ[ ḟ1(φ)2 + ḟ2(φ)2]. The ω

and kμ = ω
c (1, 0, 0, 1) are the plane wave’s frequency and

wave vector, respectively. Note the striking similarity between
Eqs. (26) and (79), which is not a coincidence. In fact, it is
because k/ ∧A/ plays a similar role as S; it defines a plane
tangent to the light cone whose generator is the wave vector
k/. Given that every null vector is orthogonal to itself, the
bivector k/ ∧A/ gives the laser field’s propagation direction.
The Lorentz transformation ek/∧A/, which has the same form
as (B2), can also be put in the polar form e k/∧A/ = UrBr with
the following boost and rotation matrices:

Ur = eθ (cos(ϑ )γ 1γ 3+sin(ϑ )γ 2γ 3 )/2, (80)

Br = e−w(V1α
1+V2α

2+V3α
3 )/2, (81)

cos(ϑ ) = ḟ1(ξ )√
ḟ1(ξ )2 + ḟ2(ξ )2

, (82)

sin(ϑ ) = ḟ2(ξ )√
ḟ1(ξ )2 + ḟ2(ξ )2

, (83)

ϑ = tan−1( ḟ2(ξ )/ ḟ1(ξ )), (84)

θ

2
= tan−1

(
c2

√
ḟ1(ξ )2 + ḟ2(ξ )2

2εω

)
, (85)

V1

2
= cos

(
θ

2

)
cos(ϑ ), (86)

V2

2
= cos

(
θ

2

)
sin(ϑ ), (87)

V3

2
= sin

(
θ

2

)
, (88)

w = tanh−1

(
V3

2

)
. (89)

Note that the velocity components (i.e., the components of the
boost exponent) are simply the coordinates of the point P on
the sphere depicted in Fig. 3 with respect to the south pole S.
Moreover, the rotation matrix Ur simply defines the direction
of the velocity of the electron, which is tangent to the circles of
latitude on the sphere. Furthermore, the gauge transformation
can be written in terms of θ as

tan2

(
θ

2

)
= − h̄ω

2ε

d


dξ
,

which is just the squared distance between the points O and Q
shown in Fig. 3.

The general matrix spinor (78) can now be put in the form

	T = √
ρUrBrBe−γ2γ1[ εt

h̄ − M
2 arctan( y′

x′ )−
], (90)

whose application induces the following change of coordi-
nates:

x′ = x + c3 f1(ξ )

εω2
, y′ = y + c3 f2(ξ )

εω2
, (91)

with
√

ρ given by Eq. (33) in terms of the transformed co-
ordinates (91). Moreover, the velocity and spin vectors now
become

s/r = − γ 0c4

(
ḟ1(ξ )2 + ḟ2(ξ )2

2ε2ω2

)
+ γ 1 c2 ḟ1(ξ )

εω
+ γ 2 c2 ḟ2(ξ )

εω

+ γ 3

(
1 − c4 ( ḟ1(ξ )2 + ḟ2(ξ )2)

2ε2ω2

)
,

v/r = v/(x′, y′) − v0(x′, y′)
(
γ1s

1
r + γ2s

2
r

)
− [

v0(x′, y′)s0
r + v1(x′, y′)s1

r + v2(x′, y′)s2
r

]
(γ0 + γ3),

where vμ(x′, y′) are the components of the velocity (36) in
terms of the transformed coordinates (91). Again we see that
the spin vector is no longer fixed in contrast with (35).

1. General formula for the vector potential

The exact expression for the vector potential, which gen-
eralizes Eqs. (38) and (39), is derived from Eq. (23) for the
matrix spinor (90),

eAr
0 = h̄

2

( �∇′ · (ρsr × vr )

ρ

)
+ P0 − mcv0

r , (92)

eAr = h̄

2

[
1

ρ
�∇′ × (

ρ
{
v0

r sr − s0
r vr

}) − 1

cρ

∂

∂t
(ρsr × vr )

]
− P − mcvr,
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P0 = − h̄

8c
Tr [e2 · ∂e1/∂t],

Pk = − h̄

8
Tr [e2 · ∂ke1], (93)

with (x1, x2, x3) = (x′, y′, z) and �∇′ = (∂/∂x′, ∂, ∂y′, ∂/∂z).

2. Transformed vector potential

Let us investigate how the vector potentials (42) and (43)
for the stationary solution cases transforms under the action
of the Lorentz transformation 
r = e k/∧A/ followed by the
coordinate transformation (91),


r

(
γ 1 B2y

4c2λ

d

dλ
ln[H (λ)] − γ 2 B2x

4c2λ

d

dλ
ln[H (λ)]

)

̃r

= γ 0eAR
0 + γ 1 B2y′

4c2λ′
d

dλ′ ln[H (λ′)]

− γ 2 B2x′

4c2λ′
d

dλ′ ln[H (λ′)] + eAR
3 γ 3 = γ μeAR

μ,

AR
0 = B2

(
y′ ḟ1(ξ ) − x ḟ2(ξ )

)
4λ′ωε

d ln[H (λ′)]
dλ′ , AR

3 = AR
0 , (94)

where λ′ = B
√

x′2+y′2

2ch̄ . We conveniently labeled them as “radi-
ation fields” with subscript R. The reason for this is explained
in Sec. III C.

There are again three different cases to consider which
are discussed in the next subsection. Before proceeding, it is
noteworthy that for the free particle case the vector potential
can only be calculated from Eqs. (92) and (93). However, for
the magnetic field cases, the solution to the general equation
for the vector potential can be constructed by simply adding
the free particle vector potential to the radiation potentials
(94). This conforms with the fact that the vector potential
enters linearly into the Dirac equation.

3. Free particle in a laser field

By making H (λ′) = 1 and f (λ′) equal to (45) in (92) and
(93) one arrives at

eAr
0 = 0,

eAr
1 = c ḟ1(ξ )

ω
= 2ε

c
A1,

eAr
2 = c ḟ2(ξ )

ω
= 2ε

c
A2,

eAr
3 = 0. (95)

From the OAM spinor Bessel beam solution of the Dirac equa-
tion, we recover a generalization of the OAM Volkov-Bessel
state given in Ref. [16], as we show below. After the Lorentz
transformation (78) now applied to the matrix spinor represen-
tation of the OAM Bessel spinor (46), the transformed wave
function becomes

ψT = F (x′, y′, ξ )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(c2m + ε)eilφJl
( 2λ′

√
(ε2−c4m2 )

B

) − c
√

ε2−c4m2ei(l+1)φ ( ḟ2(ξ )+i ḟ1(ξ ))Jl+1

(
2λ′√(ε2−c4m2 )

B

)
εω/c

c(c2m+ε)( ḟ1(ξ )+i ḟ2 (ξ ))eilφJl

(
2λ′√(ε2−c4m2 )

B

)
εω/c

− c
√

ε2−c4m2( ḟ2(ξ )+i ḟ1(ξ ))ei(l+1)φJl+1

(
2λ′√(ε2−c4m2 )

B

)
εω/c

2i
√

ε2 − c4m2ei(l+1)φJl+1
( 2λ′

√
(ε2−c4m2 )

B

) − c(c2m+ε)( ḟ1(ξ )+i ḟ2 (ξ ))eilφJl

(
2λ′√(ε2−c4m2 )

B

)
εω/c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (96)

with

F (x′, y′, ξ ) = N
2B

(
2ch̄

B

)l

ei(
−tε/h̄),

and φ = tan−1 ( y′
x′ ). In order to cast the Dirac spinor (96)

in a form similar to the one given in Eq. (6) of Ref. [16]
we make the following definitions. Let � = (x, y) and �̄ =

c3

εω2 ( f1(ξ ), f2(ξ )). Their norms are � =
√

x2 + y2 and �̄ =
c3

εω2

√
f1(ξ )2 + f2(ξ )2. The vectors � and �̄, which are at an

angle ϕ and ϕ̄ with the x axis, respectively, are depicted in
Fig. 4, along with the vector sum � + �̄, which is at an angle
φ with the x axis; also shown are the triangles formed by the
vectors �̄, �, � + �̄ and � − �̄. For the vectors displayed in the
triangle (b) we have the following identity (see Chap. XI of
Ref. [48]):

e−iνϑJν (� ) =
∞∑

m=−∞
Jm(�̄)Jν+m(�)e−im(ϕ−ϕ̄), (97)

where � =
√

�2 + �̄2 − 2��̄ cos (ϕ − ϕ̄) = |� − �̄| with

ϑ = tan−1

(
�̄ sin (ϕ − ϕ̄)

� − �̄ cos (ϕ − ϕ̄)

)
,

and for the vectors displayed in the triangle (a) we have, by
making (ϕ − ϕ̄) → π − (ϕ − ϕ̄) in (97)

e−iνθ Jν (w) =
∞∑

m=−∞
(−1)mJm(�̄)Jν+m(�)eim(ϕ−ϕ̄), (98)

where w =
√

�2 + �̄2 + 2��̄ cos (ϕ − ϕ̄) = |� + �̄| and

θ = tan−1

(
sin (ϕ − ϕ̄)

�/�̄ + cos (ϕ − ϕ̄)

)
.

Since the sum of the internal angles of a triangle should be π ,
from triangle (a) we get θ = ϕ − φ, and (98) becomes

eiνφJν (w) =
∞∑

m=−∞
(−1)mJm(�̄)Jν+m(�)ei(m+ν)ϕ−imϕ̄ .
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FIG. 4. Illustration of the vectors �̄, �, � + �̄ and � − �̄ along
with the respective triangles formed by them.

Hence, we have the following:

eilφJl

(√
(x′2 + y′2)(ε2 − c4m2)

ch̄

)

=
∞∑

m=−∞
(−1)mJm(k�̄)Jl+m(k�)ei(m+l )ϕ−imϕ̄ ,

with k =
√

ε2−c4m2

ch̄ . It can be made equivalent to Eq. (6) of
Ref. [16] by choosing ϕ̄ = π/2 which implies that f1(ξ ) = 0,
thus corresponding to a laser field linearly polarized along the
y axis. Thus, with RDI method we obtain straightforwardly
the OAM Volkov-Bessel wave function in a more simple form
than was available in [16].

4. Homogeneous magnetic field plus laser field

We apply the Lorentz transformation to the homogeneous
magnetic field case, which leads to the Redmond solution. By
substituting H (λ) = e−λ′2

in Eqs. (94) and adding (95) to the
resulting formulas, we get

eAr
0 = − B2

(
x′ ḟ2(ξ ) − y′ ḟ1(ξ )

)
2εωh̄

= eAR
0 ,

eAr
1 = − B2y′

2c2 h̄
+ c ḟ1(ξ )

ω
= eAR

1 + 2ε

c
A1,

eAr
2 = B2x′

2c2h̄
+ c ḟ2(ξ )

ω
= eAR

2 + 2ε

c
A2,

eAr
3 = eAr

0 = eAR
3 . (99)

The physical meaning and origin of AR
μ will be elucidated

in Sec. III C below. It is noteworthy that the above vector
potential obeys the Lorentz condition ∂μAμ = 0. The electro-
magnetic fields calculated from (99) are

eE = B2c

εωh̄
( ḟ2(ξ ),− ḟ1(ξ ), 0) − c( f̈1(ξ ), f̈2(ξ ), 0)

= eER + eEL, (100)

eB = B2

εh̄ω
( ḟ1(ξ ), ḟ2(ξ ), 0) + ( f̈2(ξ ),− f̈1(ξ ), 0) + B2

c2 h̄
ẑ

= eBR + eBL + B2

c2h̄
ẑ. (101)

The transformed Dirac spinor is

ψT = e
−iεt

h̄ F (x′, y′, ξ )

⎛
⎜⎜⎜⎜⎜⎜⎝

4(c2m+ε) 1F1(−n; 2l+2
2 ;2(λ′ )2 )

B − 4Bcn(x′+iy′ )( ḟ2(ξ )+i ḟ1(ξ )) 1F1(1−n; 2l+4
2 ;2(λ′ )2 )

ε(2l+2)ωh̄
2c2(c2m+ε)( ḟ1(ξ )+i ḟ2 (ξ )) 1F1(−n; 2l+2

2 ;2(λ′ )2 )
Bεω

4Bcn(y′−ix′ )( ḟ1(ξ )−i ḟ2 (ξ )) 1F1(1−n; 2l+4
2 ;2(λ′ )2 )

ε(2l+2)ωh̄
8iBn(x′+iy′ ) 1F1(1−n; 2l+4

2 ;2(λ′ )2 )
c(2l+2)h̄ − 2c2(c2m+ε)( ḟ1(ξ )+i ḟ2(ξ )) 1F1(−n; 2l+2

2 ;2(λ′ )2 )
Bεω

⎞
⎟⎟⎟⎟⎟⎟⎠

,

F (x′, y′, ξ ) = N(
ei arctan ( y′

x′ )λ′)l
e

−B2(x′2+y′2 )
4h̄2c2 exp

(
i(2h̄
 − 2t

√
2B2n + c4m2)

2h̄

)
. (102)

Moreover, the averaged component of the current in the z
direction is just

〈Jz〉 = c4

(
ḟ1(ξ )2 + ḟ2(ξ )2

2ε2ω2

)
, (103)

which is simply a constant for a circularly polarized sinusoidal
field. Hence, in the pz = 0 case we recover the resonant solu-
tions to the Redmond field configuration (see, for instance,
[49] where the solution to the classical problem of the radi-
ation emitted by an electron in a circularly polarized plane

wave field and a longitudinal homogeneous magnetic field is
given). We want to emphasize that the above solution for the
homogeneous magnetic field plus laser field generalizes the
one discussed in Ref. [18], which only considers the relativis-
tic Landau levels. Moreover, it is noteworthy that even though
mathematically our solution coincides with Redmond’s, the
electromagnetic fields in our case have a different origin as
the combination of radiation fields, laser field, and magnetic
field; in contrast the Redmond configuration is comprised of a
laser field and a magnetic field.
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5. Inhomogeneous magnetic field plus laser field

We now apply the Lorentz transformation to the in-
homogeneous magnetic field case, which leads to a new

solution to the Dirac equation. By substituting H (λ) = e−λ′/2

in Eqs. (94) and adding (95) to the resulting formulas,
we get

eAr
0 = −Bc(x′ ḟ2(ξ ) − y′ ḟ1(ξ ))

4εω
√

x′2 + y′2 = eAR
0 , eAr

1 = − By′

4c
√

x′2 + y′2 + c ḟ1(ξ )

ω
= eAR

1 + 2ε

c
A1,

(104)

eAr
2 = Bx′

4c
√

x′2 + y′2 + c ḟ2(ξ )

ω
= eAR

2 + 2ε

c
A2, eAr

3 = eAr
0 = eAR

3 ,

also obeying the Lorentz condition ∂μAμ = 0. Moreover, the origin of AR
μ is the same as for the case discussed in Sec. III B 4 and

is explained in Sec. III C below. The transformed Dirac spinor is

ψT = e
−iεt

h̄ +i
F (x′, y′, ξ )

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

8(c2m+ε)LM
n ( (M+1)λ′

M+2n+1 )
B + Bc(y′−ix′ )( ḟ1(ξ )−i ḟ2(ξ ))

[
(M+1)LM+1

n−1 ( (M+1)λ′
M+2n+1 )−nLM

n ( (M+1)λ′
M+2n+1 )

]
ελ′ωh̄(M+2n+1)

4c2(c2m+ε)( ḟ1(ξ )+i ḟ2(ξ ))LM
n ( (M+1)λ′

M+2n+1 )
Bεω

c(x′+iy′ )( ḟ2(ξ )+i ḟ1(ξ ))
[
2BnLM

n ( (M+1)λ′
M+2n+1 )−2B(M+1)LM+1

n−1 ( (M+1)λ′
M+2n+1 )

]
λ′ωh̄

√
B2n(M+n+1)+4c4m2(M+2n+1)2

2B
[
i(M+1)(x′+iy′ )LM+1

n−1 ( (M+1)λ′
M+2n+1 )+n(y′−ix′ )LM

n ( (M+1)λ′
M+2n+1 )

]
cλ′ h̄(M+2n+1) − 4c2(c2m+ε)( ḟ1(ξ )+i ḟ2 (ξ ))LM

n ( (M+1)λ′
M+2n+1 )

Bεω

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

F (x′, y′, ξ ) = N
8

(λ′)M/2 exp

[
− λ′(M + 1)

2(M + 2n + 1)
+ 1

2
iM tan−1

(
y′

x′

)]
. (105)

The electromagnetic fields calculated from (104), as well as charge and current densities, are

eE = Bc2

4
√

x′2 + y′2

(
ḟ2(ξ )

εω
,− ḟ1(ξ )

εω
, 0

)
− c( f̈1(ξ ), f̈2(ξ ), 0) = eER + eEL, (106)

eB = Bc

4
√

x′2 + y′2

(
ḟ1(ξ )

εω
,

ḟ2(ξ )

εω
, 0

)
+ (

f̈2(ξ ),− f̈1(ξ ), 0
) + B

4c
√

x′2 + y′2 ẑ = eBR + eBL + B

4c
√

x′2 + y′2 ẑ, (107)

eμ0ρe = Bc2
(
y′ ḟ1(ξ ) − x′ ḟ2(ξ )

)
4εω (x′2 + y′2)3/2 , eμ0Je = B

4c(x′2 + y′2)3/2

(
−y′, x′,

c(y′ ḟ1(ξ ) − x′ ḟ2(ξ ))

εω

)
. (108)

Moreover, the averaged component of the current in the z
direction is just

〈Jz〉 = c4

(
ḟ1(ξ )2 + ḟ2(ξ )2

2ε2ω2

)
, (109)

which is identical to Eq. (103). From the above charge, cur-
rent, and electromagnetic fields it is clear that if we put
f1(ξ ) = f2(ξ ) = 0 we recover the time independent solution
of the previous section. It is noteworthy that the electromag-
netic fields above have the following properties:

B · E = 0, (eE )2 − (ceB)2 = − B2

16(x′2 + y′2)
,

the same being true for the homogeneous magnetic field plus
laser case. This is expected, since the time dependent fields
are a direct consequence of the Lorentz transformation (78)
and the only field present in the time independent cases are
the magnetic fields along the z axis.

It should be noticed that the spin vector s/r is the same for all
the above solutions. Moreover the averaged velocity density
of the electron for both magnetic field solutions with respect

to the transverse coordinates (x′, y′) turns out to be

〈
Jr
μ

〉 = 〈Jμ〉 +
(

2 tan2(θ/2),−c2 ḟ1(ξ )

εω
,

− c2 ḟ2(ξ )

εω
, 2 tan2(θ/2)

)
, (110)

where θ is defined in (80) and the average of a local
observable O is defined as 〈O〉 = ∫ ∞

0

∫ 2π

0 Oλ′dλ′dφ. Fur-
thermore, the average transversal coordinates 〈(x′, y′)〉 =∫ ∞

0

∫ 2π

0 (x′, y′)J0λ
′dλ′dφ are

〈(x′, y′)〉 = πc3nh̄(M + n + 1)

(M + 1)ωε2(M + 2n + 1)
( ḟ2(ξ ),− ḟ1(ξ )),

while for the homogeneous magnetic field case we have

〈(x′, y′)〉 = −2πc3nh̄

ωε2
( ḟ2(ξ ),− ḟ1(ξ )).

In comparing both results we see that, despite both being
similar, while the averaged transversal coordinates have the
same form as in the classical resonant case for the Red-
mond solutions, they differ significantly from the classical
case for the inhomogeneous magnetic field. This can be seen
by numerically integrating the Lorentz force equation for
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electromagnetic fields of the same form as Eqs. (106) and
(107). This is a consequence of the fact that the Redmond
solutions correspond to coherent quantum states [30] while
the inhomogeneous magnetic field states do not. In fact, given
that only Gaussian states have minimum uncertainty, from the
form of Eq. (44) which is also valid in the presence of the
laser fields, we can make the general claim that H (λ′) is a
Gaussian if and only if eB is constant. Hence, for all solutions
to the Dirac equation corresponding to the combination of
plane electromagnetic waves and a magnetic field along the
wave’s propagation direction with an arbitrary perpendicular
profile, the Redmond solution stands out as being the only one
corresponding to a relativistic coherent state.

C. Physical meaning of the time dependent
electromagnetic fields

Let us now investigate the source of the electric (100),
(106) and magnetic (107), (101) fields. Our reasoning is
similar to the one used in Chap. 10 of Ref. [50]. They are
separated as “radiation fields” with subscript R and laser fields
with subscript L, along with the original magnetic fields (the
inhomogeneous one in terms of the transformed coordinates
x′ and y′) which comes from the Lorentz transformation (78)
applied to the matrix spinor 	. The radiation fields are given
by the motion induced by the laser fields of the original
static current distribution that generates the homogeneous
and inhomogeneous magnetic fields (given that homogeneous
magnetic fields can also be produced by solenoidal currents
which are assumed to be far from the electron). From (94)
we recover the “radiation” vector potentials (99) and (104)
given by the respective choices of the function H (λ′). For
instance, by choosing H (λ′) = e−λ′/2, we see at once that the
transformed vector potential (94) leads to the radiation fields
(106) and (107) as well as the transformed inhomogeneous
magnetic field along the ẑ axis. The same is true for the
homogeneous magnetic field case as can be seen by replacing
H (λ′) = e−λ′2

in (94).

IV. CONCLUSION AND OUTLOOK

We have shown how applying RDI allows us to generate
solutions of the Dirac equation employing Hestenes’ geo-
metrical representation and the physical intuition behind the
geometry. We have illustrated RDI method to construct the
complete set of eigenvalues and eigenfunctions for an electron
in a homogeneous as well as an inhomogeneous magnetic
field. Even though those solutions were already discovered
a long time ago, our new derivation sheds light on their ge-
ometrical properties. Moreover, RDI also provided a rather
straightforward way to generalize those solutions for the case
in which a plane wave electromagnetic field is added, leading
to the discovery of a novel solution to the Dirac equation. Fur-
thermore, we show that RDI also can give the self-consistent
electromagnetic fields generated by the electron dynamics
when the plane wave field is included.

Having further illustrated the potential of RDI, some im-
portant points remain to be explored. For instance, what is
the role of the parameter β in the solutions to the Dirac
equation, given that it is connected with quantum states con-

taining particle and antiparticle admixtures. Here we present
our conjecture that β is necessary (albeit not sufficient) for
the probability density J0 to have compact support, a property
that requires negative energy components in the wave packet
expansion. On the other hand, we can construct square in-
tegrable, although without compact support, wave functions
composed of only positive energy states. Understanding this
feature would make it possible for us to separate those types
of external fields that allows for a clear separation between
positive and negative energy states (this is the case for all
the solutions presented here) from those which do not. Thus
allowing an effective control of wave packet spreading in
external fields, having important implications, for instance, in
the attoscience, where recollisions play a pivotal role. This
may help to control and optimize high-order harmonic gener-
ation from electron-atom rescattering in the relativistic regime
[51], and to permit the laser-driven high-energy collider [52].

Finally, it is noteworthy to call attention to an important
discussion concerning the Hestenes formulation of the Dirac
equation, which has been hitherto overlooked in the literature,
that it seems to correspond to a straightforward relativistic
generalization [53] of the de Broglie–Bohm pilot wave the-
ory [54]. RDI further highlights such correspondence since
upon identifying the particle trajectories with the Dirac’s fluid
streamlines, well defined solutions of the Dirac equation with
clear physical and geometrical meanings are derived. From
this point of view there is also the possibility of extending RDI
to account for other types of interactions besides electromag-
netism, simply by relaxing the constraints (25) imposed on the
form of A/ in a simpler and more transparent way compared
with the standard Dirac approach.
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APPENDIX A: FREE PARTICLES

Let us study the free particle solutions of Eq. (11). This
will help us better understand and further develop the matrix
spinor parametrization. In this case, Eq. (23) becomes

h̄∂/	γ 2γ 1	−1 = mc	γ 0	−1. (A1)

From (14) we have 		̃ = ρeiβ , hence

	−1 = γ0	
†γ0

ρeiβ
= γ0R†γ0e−iβ/2

√
ρ

. (A2)

Upon multiplying (A1) by γ0 from the left we get

h̄γ0∂/	γ 2γ 1	−1 = mcγ0	γ 0	−1, (A3)

γ0∂/ = 1

c
∂t + α1∂x + α2∂y + α3∂z. (A4)

Taking both ρ and β to be constants, Eq. (A3) combined with
(14) leads to

h̄

2
(γ 0γ μ�μ)Rγ 2γ 1R̃ = mcγ 0Rγ 0R̃e−iβ = mcγ 0v/e−iβ,

(A5)
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with �μ = 2(∂μR)R̃. In what follows, it is more convenient to
rewrite Eq. (A5) as

h̄γ 0γ μ(∂μRγ 2γ 1R̃)eiβ = γ 0mcv/. (A6)

In order to proceed, let us take a closer look at R. Noting that
BU must be independent of coordinates in the solution of the
free particle Dirac equation in terms of plane waves, from the
right-hand side of (A6) we infer that R must be replaced by

Re−γ 2γ 1 pμxμ

h̄ . That is

∂μR→ ∂μ

(
Re−γ 2γ 1 pμxμ

h̄
)

= Re−γ 2γ 1 pμxμ

h̄

(
−γ 2γ 1 pμ

h̄

)
, (A7)

where e−γ 2γ 1 pμxμ

h̄ is a counterclockwise rotation round the z
axis by the Lorentz invariant angle pμxμ

h̄ . Such rotation persists
even in the electron’s rest frame since there the electron still
rotates by an angle mc2t/h̄. Moreover, from the matrix form
of the Dirac equation (14), it is clear that such a phase factor
must always be present in the matrix spinor parametrization if
the Dirac equation is to be satisfied. In fact, it can be shown
that 	γ2γ1 → iψ which highlights the geometric meaning of
the i that appears in the Dirac equation. Hence, it is from

the rotation matrix e−γ 2γ 1 pμxμ

h̄ that spin enters into the Dirac
theory of the electron [26]. In fact, given the importance of
such a term, Eq. (14) will be amended as follows:

	 = √
ρ exp (iβ/2)Re−γ 2γ 1 (Et−p·x+
)

h̄ , (A8)

where 
 is an arbitrary function of space and time whose
presence changes Eq. (A7) to

∂μ

(
Re−γ 2γ 1 (Et−p·x+
)

h̄
)

= Re−γ 2γ 1 (Et−p·x+
)
h̄

[
−γ 2γ 1 (pμ + ∂μ
)

h̄

]
. (A9)

Thus ensuring the gauge invariance of the Hestenes-Dirac
equation. Mathematically, the above amendment is due to the
fact that the symmetry group underlying the Dirac theory is
the Poincaré group, which is the Lorentz group augmented
by the group of translations in space-time generated by the
momentum operator pμ (see, for instance, Sec. 2.7 of [34] for
more details).

Let us rewrite Eq. (A6) in the form

p/eiβ = mcv/, (A10)

from which we might be tempted to make the claim: for
β = 0 which corresponds to rμrμ − sμsμ > 0 and rμsμ = 0
(eiβ = 1) the solution (A10) describes particles, while for
β = π which corresponds to rμrμ − sμsμ < 0 and rμsμ = 0
(eiβ = −1) they describe antiparticles. However, this is not
the case. The reason is that positive and negative energy states
behave differently under boosts [55]. While a positive energy
spinor of momentum p is obtained from a reference system in
which it is at rest by a Lorentz boost to a new frame moving
with velocity

v = − p
E+

= − p
|E | ,

the negative energy spinor of the same momentum p trans-
forms to the new frame which is moving with velocity

v′ = − p
E−

= p
|E | .

That is, both spinors must have opposite velocities. Hence, for
a negative energy spinor, the following substitutions must be
made in (A10) [25]:

β = π, v/ → γ0v/γ0.

From the above discussion we see that a general free-particle
solution 	 of the Dirac equation can be expanded in terms of
plane waves

	(x) =
∫

d3 p

(2π h̄)3/2

√
mc2

E

(
Re−γ 2γ 1 (Et−p·x)

h̄

+ e
π
2 iγ0Rγ0eγ 2γ 1 (Et−p·x)

h̄
)
, (A11)

given that we can choose
√

ρ = 1 without loss of generality
for plane waves.

In order to have a better understanding of Eq. (A11), let us
write down each of its components explicitly. For a boost with
velocity v = −p/E in an arbitrary direction, its matrix form
is

B = cosh

(
w

2

)
− αkv

k

|v| sinh

(
w

2

)
. (A12)

Making the substitutions cosh(w/2) =
√

E+mc2

2mc2 , tanh(w/2) =
− c|p|

E+mc2 , and E =
√

m2c4 + p2c2 in (A12) leads to

B =
√

E + mc2

2mc2

(
1 + cαk pk

E + mc2

)
. (A13)

For a rotation with angle θ/2 we have

U = cos(θ/2) − iαk θ̂
k sin(θ/2), (A14)

where the θ̂ k’s are the components of the unit vector along
the rotation axis. Now that we are done with the positive
energy component of (A11), in case of the negative energy
component we have

γ0BUγ0 = γ0Bγ0U,

since γ0U = Uγ0. Thus

γ0Bγ0 = γ0

√
E + mc2

2mc2

(
1 + cαk pk

E + mc2

)
γ0

=
√

E + mc2

2mc2

(
1 − cαk pk

E + mc2

)
= B−.

Substituting the above equations in (A11) we end up with

	(x) =
∫

d3 p

(2π h̄)3/2

√
mc2

E

× (
Re−γ 2γ 1 (Et−p·x)

h̄ + e
π
2 iR−eγ 2γ 1 (Et−p·x)

h̄
)
, (A15)

with R− = B−U .
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The field free Dirac equation can be extracted from (A15)
and it is given by

ψ (x) =
∫

d3 p

(2π h̄)3/2

√
mc2

E

× (
φ+e−i (Et−p·x)

h̄ + iφ−ei (Et−p·x)
h̄

)
,

φ+ =
√

E + mc2

2mc2

(
ξ (1/2)

cσk pk

E+mc2 ξ
(1/2)

)
,

φ− =
√

E + mc2

2mc2

(
cσk pk

E+mc2 η
(1/2)

−η(1/2)

)
,

ξ (1/2) = e−iθ
σk θ̂k

2 ξ
(1/2)
0 =

(
α

η

)
,

η(1/2) = e−iθ
σk θ̂k

2 η
(1/2)
0 , (A16)

with the 2 spinors corresponding to spin up ξ
(1/2)
0 = (1, 0)T

and down ξ
(−1/2)
0 = (0, 1)T , as well as the correspond-

ingly conjugated spinors η
(−1/2)
0 = −iσ2ξ

(1/2)
0 = (0, 1)T and

η
(1/2)
0 = −iσ2ξ

(−1/2)
0 = (−1, 0)T .

We highlight the positive energy component of Eq. (A16)
as a prototype for the further spinor parametrization:⎛

⎜⎜⎜⎜⎝
e

−iEt
h̄ (E + mc2)α

e
−iEt

h̄ (E + mc2)η

−ie
−iEt

h̄ h̄c
[
α ∂

∂z + η
(

∂
∂x − i ∂

∂y

)]
−ie

−iEt
h̄ h̄c

[−η ∂
∂z + α

(
∂
∂x + i ∂

∂y

)]

⎞
⎟⎟⎟⎟⎠

ei p·x
h̄√

2mc2(E + mc2)
.

(A17)

In fact, it should be emphasised that all solutions presented in
the main text correspond to positive energy states only. Hence,
in all cases we have rμrμ − sμsμ > 0 and sμrμ = 0.

APPENDIX B: FINITE LORENTZ TRANSFORMATIONS

A finite Lorentz transformation can be written in terms of
the exponential of products of gamma matrices as follows:

R = e
1
2 γμγνω

μν

, (B1)

where

ωμν =

⎛
⎜⎜⎜⎝

0 a1 a2 a3

−a1 0 −b3 b2

−a2 b3 0 −b1

−a3 −b2 b1 0

⎞
⎟⎟⎟⎠

is a real, antisymmetric matrix. The above product of gamma
matrices satisfy the following commutation relations:

1
2 [γμγν, γργτ ] = γμγτην,ρ − γμγρην,τ

− γνγτημ,ρ + γνγρημ,τ .

These commutation relations defines an algebra over a six-
dimensional space. Hence it forms a vector space whose basis
is given by γμγν . Such a basis provides a convenient represen-
tation of the Lie group SL(2,C) by 4 × 4 complex matrices.
From this it follows that the elements of the matrix ωμν are

the coordinates of a given point in the Lie group manifold.
The exponent of (B1) have the following explicit form:

1
2γμγνω

μν = akαk − bkiαk. (B2)

Thus, from the properties of the Dirac matrices, the matrix
exponential can always be written in the polar form

e
1
2 γμγνω

μν = e
w
2 αk ãk

e
θ
2 iαk b̃k

, ãk = ak√
a2

1 + a2
2 + a2

3

,

b̃k = bk√
b2

1 + b2
2 + b2

3

, (B3)

with w, θ real, e
w
2 αk ãk

is a Hermitian matrix representing a
boost and e

θ
2 iαk b̃k

is a unitary matrix representing a spatial
rotation.

APPENDIX C: SPIN VECTORS

In order for this paper to be self-contained, here we give
a geometrical description of spin vectors. We follow the dis-
cussion given in Chap. 2 of Ref. [46]. Coordinates will be
assigned to the light cone (i.e., the set of null vectors whose
vertex lies in the particle’s trajectory as illustrated in Fig. 1)
in Minkowski space-time using complex numbers. From this
an insightful geometrical interpretation of spinors will be
reached. Given a Minkowski tetrad (e0, e1, e2, e3), any vector
in space-time can be written as

U = T e0 + Xe1 + Y e2 + Ze3.

In the case of null vectors we have

T 2 − X 2 − Y 2 − Z2 = 0. (C1)

The light cone is the set of null directions in space-time
passing through the origin O as shown in Fig. 5. In this
respect, the two vectors ±U are considered to have opposite
directions along the light cone, +U is future oriented (i.e.,
lying above the plane through the origin in Fig. 5) while −U is
past oriented (i.e., lying below the plane through the origin in
Fig. 5). As depicted in Fig. 5, the abstract space whose points
lie in the future light cone is denoted by the sphere L+, which
can be represented in any given coordinates (T, X,Y, Z ) by
the intersection S+ of the future light cone (C1) with the
hyperplane T = 1. Such an intersection is given by the sphere
x2 + y2 + z2 = 1 (this sphere is depicted in Figs. 2, 3, and
5). Any point in the hyperplane T = 1 is represented by
the homogeneous coordinates (X/T,Y/T, Z/T ). The inte-
rior and exterior points of S+ corresponds to timelike and
spacelike future directions, respectively. Moreover, any null
direction along the cone is represented as a single point on the
sphere L+.

A complex number ζ can be assigned to any given point
(x, y, z) on the sphere via the stereographic projection of a
sphere onto a plane (see Fig. 5). From the fact that the triangles
NCP′ and NOP are similar, we have the following:

X = x

1 − z
, Y = y

1 − z
,

x = 1

ζ ζ ∗ + 1
(ζ + ζ ∗), (C2)

013245-16



CONSTRUCTION OF DIRAC SPINORS FOR ELECTRON … PHYSICAL REVIEW RESEARCH 3, 013245 (2021)

FIG. 5. (a) The L+ sphere corresponds to the intersection be-
tween the plane and the light cone. (b) Stereographic projection from
the sphere onto the complex plane.

y = 1

i(ζ ζ ∗ + 1)
(ζ − ζ ∗), z = ζ ζ ∗ − 1

ζ ζ ∗ + 1
,

where ∗ corresponds to complex conjugation. Hence, the
sphere S+ is the Riemann sphere of the complex plane, a
well-known representation of the complex numbers including
the point at infinity corresponding to the north pole N =
P(1, 0, 0, 1). A more convenient way to include the point at
infinite is to label the points of S+ by two complex numbers
instead of one. That is,

ζ = χ/η,

which can be written as a column vector φ = (χ, η)T , the
sought after spin vector. These are the homogeneous complex
coordinates, so that the pairs (χ, η) and �(χ, η) represent the
same point on S+ for any complex number � �= 0. With these
coordinates the point ζ = ∞ is represented by (1,0). In terms
of the homogeneous coordinates, Eqs. (C2) become

x = 1

χχ∗ + ηη∗ (χη∗ + χ∗η),

y = 1

i(χχ∗ + ηη∗)
(χη∗ − χ∗η),

z = χχ∗ − ηη∗

χχ∗ + ηη∗ . (C3)

Consider, then, a complex linear (nonsingular) transforma-
tion of χ and η,

χ → χ ′ = αχ + βη,

η → η′ = γχ + δη, (C4)

where α, β, γ , and δ are arbitrary complex numbers subject
only to the condition αδ − βγ �= 0 (nonsingularity). Ex-

pressed in terms of ζ , the transformation (C4) becomes

ζ → ζ ′ = αζ + β

γ ζ + δ
. (C5)

The transformation (C4) [or (C5)] is called spin transforma-
tions in the context where ζ is related to the Minkowski null
vector through Eqs. (C3). In the same context we define the
spin matrix A by

A =
(

α β

γ δ

)
, det(A) �= 0. (C6)

In terms of A, (C4) takes the form(
χ ′

η′

)
= A

(
χ

η

)
. (C7)

This is regarded as the spin transformation matrix in a two-
dimensional complex space with the basic spin vector

φ =
(

χ

η

)
, φ → Aφ, φ† → φ†A†, (C8)

with φ†φ = |χ |2 + |η|2 an invariant up to a scaling factor
under the action of the spin transformation matrix A. We see
from (C8) that φ and φ† transform in different ways but we
can show that (χ, η)T and (−η∗, χ∗)T transform in the same
way under A. Comparing (C4) and (C8) we have

(−η∗)′ = δ∗(−η∗) − γ ∗χ∗,

(χ∗)′ = −β∗(−η∗) + α∗χ∗.

Hence the conjugated spin vector(−η∗
χ∗

)
=

(
0 −1
1 0

)(
χ∗
η∗

)
= −iσ2φ

∗ = φ̇, (C9)

where σ2 is a Pauli matrix, transform under

A → −
(

0 −1
1 0

)
A∗
(

0 −1
1 0

)
. (C10)

The transformation (C9) acting on the spinor φ have the effect
of sending the point P into its antipodal point. Therefore, it is
a parity transformation; its effect on ζ is

ζ ′ = − 1

ζ ∗ .

Thus, the point at infinity ζ ′ = ∞ is then represented by (0,1),
that is, the south pole of the Riemann sphere.

We see from (C7) that the composition of two successive
spin transformations is again a spin transformation: the spin
matrix of the composition is given by the product of the spin
matrices of the factors. Moreover, any spin matrix has an
inverse

A−1 = 1

det(A)

(
δ −β

−γ α

)
,

which is also a spin matrix. Thus, the spin transformations
form a group, referred to as SL(2,C) if det(A) = 1. Hence-
forth, we will assume that det(A) = 1.

Recall that the role of the point P(1, x, y, z) on S+ was
simply to represent a future null direction at O, that is, the
dotted blue vector �OP in Fig. 5. We could also choose any
other point along the line OP to represent the same null
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direction. In particular, we could choose a point, say L, on
OP whose coordinates (T, X,Y, Z ) are obtained from those
of P by multiplying Eqs. (C3) by the factor (χχ∗ + ηη∗)/

√
2.

Then the vector �OL has coordinates

T = χχ∗ + ηη∗
√

2
, X = 1√

2
(χη∗ + χ∗η),

(C11)

Y = 1

i
√

2
(χη∗ − χ∗η), Z = χχ∗ − ηη∗

√
2

,

which can be inverted and re-expressed as

1√
2

(
T + Z X − iY
X + iY T − Z

)
= φφ†, (C12)

where † stands for Hermitian conjugation. From (C7) it then
follows that(

T + Z X − iY
X + iY T − Z

)
→

(
T ′ + Z ′ X ′ − iY ′

X ′ + iY ′ T ′ − Z ′

)

= A

(
T + Z X − iY
X + iY T − Z

)
A†. (C13)

This is a linear transformation of (T, X,Y, Z ), it is real and
preserves the Minkowski norm of U , that is T ′2 − X ′2 − Y ′2 −
Z ′2 = T 2 − X 2 − Y 2 − Z2 even if U is not null. Thus, (C13)
defines a Lorentz transformation.

1. SL(2,C) and Lorentz transformations

The spin transformation matrix A with unit determinant can
be represented by the set of complex 2 × 2 matrices forming
a group with respect to matrix multiplication, the SL(2,C).
It also forms a vector space under multiplication by real
numbers as well as matrix addition. This vector space is four
dimensional because the Pauli matrices σ0 = I , σi, i = 1, 2, 3,
having the property σ1σ2σ3 = iI where i = √−1, forms a
basis of it.

The Pauli matrices will now be a representation of the
Minkowski tetrad, i.e.,

(e0, e1, e2, e3) → (σ0, σ1, σ2, σ3).

Hence, we can rewrite (C12) within SL(2,C) as

φφ† = σ (U ) = 1√
2

(T σ0 + Xσ1 + Y σ2 + Zσ3). (C14)

The association (C14) defines an isomorphism of R4 onto
SL(2,C). and the spin transformation takes the form

σ (U ′) = Aσ (U )A†, A ∈ SL(2,C).

Let us consider now the isomorphism U → σ ′(U ),

σ ′(U ) = 1√
2

(T σ0 − Xσ1 − Y σ2 − Zσ3). (C15)

The relation

σ ′(U ) → σ ′(U ′) = Bσ ′(U )B†, B ∈ SL(2,C)

also defines a Lorentz transformation, the matrices A and B
corresponding to the same Lorentz transformation. They are
connected by B = σ2(A†)T σ2 = (A†)−1, which coincides with

the transformation (C10). The map A → B is a group auto-
morphism of SL(2,C). It corresponds to the space reflection
given by (C9). Since there is no element corresponding to
complex conjugation in SL(2,C), the representations A and B
are not equivalent. Considering that a space reflection is also
a Lorentz transformation, the automorphism A ↔ (A†)−1 sug-
gests to double the dimension of the representation space in
order to obtain a matrix representation of a space reflexion. In
the linear space C4, the matrices A and (A†)−1 are combined
into 4 × 4 matrices of the form

LA =
(

A 0
0 (A†)−1

)
, A ∈ SL(2,C). (C16)

The automorphism A ↔ (A†)−1 can now be represented by
the matrix

LP =
(

0 I
I 0

)
.

The matrices LA forms a group under matrix multiplica-
tion which is isomorphic to SL(2,C). The mapping A → LA

(C16) defines an injective representation of SL(2,C) which
is reducible. There are only two invariant subspaces which
are mapped into each other by the matrix LP. Hence, the
matrix group L̃ = {LA, LPLA| A ∈ SL(2,C)} acts irreducible
on C4.

In order to describe the connection of LA with Lorentz
transformations more precisely, we define a suitable 4 × 4
matrix γ (x) for each x ∈ R4, such that Lorentz transforma-
tions can be described as a similarity transformation of γ (x).
A particular choice is

γ (x) =
(

0 σ (x)
σ ′(x) 0

)
. (C17)

Thus we obtain, with B = (A†)−1,

LAγ (x)L−1
A =

(
0 Aσ (x)A†

Bσ ′(x)B† 0

)
,

LPγ (x)L−1
P =

(
0 σ ′(x)

σ (x) 0

)
. (C18)

The bijective map γ : x ↔ γ (x), x ∈ R4 is an isomorphism
of the vector space R4 and the four-dimensional real vector
space of matrices of the form (C17). The canonical basis
{e0, e1, e2, e3} ∈ R4 is mapped to the gamma matrices

γ0 = γ (e0) =
(

0 I
I 0

)
, γk = γ (ek ) =

(
0 σk

−σk 0

)
,

γ (x) = 〈γ , x〉 = γ 0x0 − γ 1x1 − γ 2x2 − γ 3x3, (C19)

where γ0 = γ 0 = (γ 0)†, γk = −γ k = (γ k )†. From the prop-
erties of the Pauli matrices it is easy to show that

1
2 (γμγν + γνγμ) = ημ,ν1. (C20)

By construction there is a L ∈ L̃ for every Lorentz transforma-
tion �L ∈ L, where L = SO(1, 3) is the Lorentz group, such
that

L〈γ , x〉L−1 = 〈γ ,�Lx〉,
and the map L → �L is onto and a homomorphism; it is the
double cover of the Lorentz group. We can now give a formal
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justification for the description given in Appendix B. Using γ

matrices, the matrices L corresponding to boosts and rotations
become

LB =B = e− ω
2 nkγ

kγ 0
, boost with velocity v = tanh(ω)n,

(C21)

LU =U = e
φ

2 inkγ
kγ 0

, rotation through an angle φ around n,

(C22)

LP = γ 0, space reflection. (C23)

It can be shown that L−1 = γ0L†γ0 [33,56].

2. Description of the null rotation generating the laser field

Given the results of Sec. III B, let us investigate the
spinor representation of a null rotation. Since it corre-
sponds to a translation in the complex plane, it is given
by

ζ ′ = ζ + a, (C24)

where a is some complex number. A spin transformation (up
to a sign) generating (C24) is then(

ξ ′
η′

)
=

(
1 a
1 0

)(
ξ

η

)
, (C25)

while the conjugated spin transformation according to (C9) is(−(η′)∗

(ξ ′)∗

)
=

(
1 0

−a∗ 1

)(−η∗

ξ ∗

)
. (C26)

Applying the definition (C16) to the spin transformation ma-
trix in (C26) we arrive at

LA =

⎛
⎜⎜⎝

1 0 0 0
−a∗ 1 0 0

0 0 1 a
0 0 0 1

⎞
⎟⎟⎠ (C27)

for a = −c2( ḟ1(ξ ) − i ḟ2(ξ ))/(εω) it is easy to see that

LA = T 
rT †, T = 1√
2

(1 + γ5γ0), 
r = e k/∧A/.
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