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Fate of the Hebel-Slichter peak in superconductors with strong antiferromagnetic fluctuations
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We show that magnetic fluctuations can destroy the Hebel-Slichter peak in conventional superconductors.
The Hebel-Slichter peak has previously been expected to survive even in the presence of strong electronic
interactions. However, we show that antiferromagnetic fluctuations suppress the peak at q = 0 in the imaginary
part of the magnetic susceptibility χ ′′

+−(q, ω), which causes the Hebel-Slichter peak. This is of general interest
as in many materials superconductivity is found near a magnetically ordered phase, and the absence of a
Hebel-Slichter peak is taken as evidence of unconventional superconductivity in these systems. For exam-
ple, no Hebel-Slichter peak is observed in the κ-(BEDT-TTF)2X organic superconductors but heat capacity
measurements have been taken to indicate s-wave superconductivity. Similarly, experiments indicate nodeless
superconductivity in many iron pnictide superconductors which exhibit no peak in the relaxation rate. If
antiferromagnetic fluctuations destroy the putative Hebel-Slichter peak in organic superconductors, then the
peak should be restored by applying a pressure, which is known to suppress antiferromagnetic correlations in
these materials.
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I. INTRODUCTION

Unconventional superconductivity, and the identification
of the underlying mechanism, remains one of the most
active areas of research in modern physics [1–5]. The chal-
lenge of understanding unconventional superconductivity is
compounded by the fact that macroscopic probes of the
superconducting state are sensitive only to the emergent
superconducting order parameter, or gap, and not to the mi-
croscopic mechanism responsible for it [6–9]. Any attempt to
explain the microscopic origin of unconventional supercon-
ductivity must also explain how the resultant gap influences
experiments.

Understanding the exact form of the superconducting gap
is of considerable importance for developing an understanding
of the microscopic basis for unconventional superconductiv-
ity, however, it is often far from straightforward in practice.
The Josephson interference experiments responsible for un-
ambiguously identifying the “dx2−y2 -wave” symmetry of the
cuprates [10,11] have not been possible in many materi-
als. The interpretation of other experimental results can be
ambiguous, making a conclusive determination of the gap
difficult.

In many experiments, the bulk of the insight comes from
the low-temperature behavior of experimental probes, which
reflect the density of states of the superconductor [1,12]. As
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such, the temperature dependence of these probes can be used
to infer both the presence of nodes in the gap function and
the form of these nodes (i.e., point or line nodes) [3,6,13].
Such probes cannot, however, identify the positioning of any
nodes on the Fermi surface, and therefore cannot be used to
differentiate between different gap functions with the same
form of nodes.

More detailed probes of the gap function are available
for determining the presence and position of gap nodes on
the Fermi surface. Such probes include the measurement of
thermodynamic properties such as the heat capacity under a
varying orientation of magnetic field [14], measurement of
the structure of inelastic neutron scattering spectra [15], as
well as detailed surface probes such as scanning tunneling
spectroscopy and the related field of quasiparticle interference
spectra probes [16,17]. These experiments are often techni-
cally challenging, and many are only viable for large samples
and/or materials with extremely clean surfaces, which can
considerably limit the applicability of such methods.

One of the most notable probes of the superconducting
gap is the spin-lattice relaxation rate 1/T1 measured in nu-
clear magnetic resonance. For conventional superconductors,
1/T1 displays a peak below the superconducting transition
temperature known as the Hebel-Slichter peak [18,19]. The
existence of this peak was one of the earliest confirmations
of the Bardeen-Cooper-Schrieffer theory of conventional su-
perconductivity [20,21], indicating the presence of a coherent
state. Experimentally, the presence of such a peak has long
been taken as a key signature of superconductivity with an
isotropic, nodeless gap. Here, by investigating general fea-
tures of the behavior in simple model systems, we seek to
understand the influence of magnetic fluctuations on 1/T1 in
general, and the form of the Hebel-Slichter peak in particular.
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In the most interesting superconductors, both strong anti-
ferromagnetic fluctuations and the absence of a Hebel-Slichter
peak in 1/T1 are ubiquitous [2,7,22]. Additionally, the
form of the gap function in many such materials remains
contentious. One significant example is the organic supercon-
ductor κ-(BEDT-TTF)2Cu[N(CN)2]Br (κ-Br). This material
has the highest critical temperature (at ambient pressure) of
the BEDT-TTF based superconductors [9], κ-Br has been
subjected to a wide variety of experimental probes over the
last three decades. Despite this, the symmetry of the super-
conducting order parameter in this material remains a matter
of considerable disagreement [4,8,23–34]. Strong antiferro-
magnetic fluctuations are observed in κ-Br [35,36]; indeed,
the closely related material κ-(BEDT-TTF)2Cu[N(CN)2]Cl
(κ-Cl) is an antiferromagnetic insulator at ambient pressure
that can be driven superconducting by moderate hydrostatic
pressures [4]. The superconducting states [36] and magnetic
fluctuations [4] in metallic and superconducting κ-Cl and
κ-Br are extremely similar.

While Knight shift measurements on κ-Br consistently
indicate singlet pairing [37,38], due to the vanishing of the
Knight shift at zero temperature, interpretations of the re-
sults of other experiments have been inconsistent. There has
been evidence from the temperature dependence of low-
temperature specific-heat measurements to indicate nodeless
(“s-wave”) superconductivity [30,31,39] while other exper-
iments indicate the presence of nodes of the gap function
[40–42]. Similarly, penetration depth measurements were
contentious [43–45] until recently, with more precise mea-
surements showing a power-law temperature dependence
suggestive of a nodal superconducting state [33]. The den-
sity of states from the surface tunneling spectroscopy has
been found to show some indication of multiple coherence
peaks, which has been interpreted in terms of a compli-
cated mixed order parameter [28], although similar signals
have been observed in other multiband materials with a
superconducting gap magnitude that varies between bands
[46]. This ongoing disagreement has led both theorists
[8,23,26,27,47,48] and experimentalists [28,49] to discuss the
possibility of a variety of superconducting gaps, including
those with symmetry required or accidental nodes in organic
superconductors.

Despite the lack of an observed Hebel-Slichter peak in
1/T1 [37,38], there are some who argue that the supercon-
ducting gap may in fact be nodeless [9,34], as supported
by recent thermal conductivity measurements [32]. In such a
scenario, the absence of a Hebel-Slichter peak needs a detailed
explanation. Thus, it is of significant interest to understand
how magnetic fluctuations influence the 1/T1 relaxation rate
and whether the suppression of a peak by spin fluctuations
is sufficient to explain the relaxation rate in such materials.
In particular, we will focus on antiferromagnetic fluctuations
described by the random phase approximation (RPA), and
how their relative strength influences the relaxation rate, with
a focus on the effects on the Hebel-Slichter peak.

Early attempts to understand the unconventional super-
conductivity in the cuprates found that coherence effects
can, in principle, be disguised by a combination of strong-
coupling and electronic interactions [50,51]. It was also found,
however, that these effects alone were insufficient to match

experimental data with an isotropic gap [52,53]. However,
a detailed analysis of the influence of magnetic fluctuations
on the Hebel-Slichter peak is currently lacking. For example,
the absence of the Hebel-Slichter peak, and the potential role
played by magnetic fluctuations has not previously been ex-
amined in the organic superconductors.

These materials are of particular interest because the
bandwidth, and therefore the relative strength of electronic
interactions, in these materials is tunable by the application
of external pressure [9,54]. Therefore, it may be possible to
alter the interaction strength and determine the gap structure
by measuring 1/T1T and comparing both the temperature and
interaction dependence of the relaxation rate to predictions.
We show that in these materials the suppression of the Hebel-
Slichter peak can in principle be explained entirely due to the
influence of spin fluctuations, rather than gapless supercon-
ductivity, as has been discussed previously [55].

We additionally consider a model of the iron pnictide
superconductors, a large family of complex materials with
strong spin-orbit coupling and multiple bands at the Fermi
level. While various superconducting gaps have been pro-
posed [56–59], the majority of experiments support a s±-wave
superconducting state [60–63], which is relatively isotropic
on the Fermi-surface sheets, but changes sign between bands.
These materials are known to have strong spin fluctuations and
exhibit no Hebel-Slichter peak in 1/T1T despite the presence
of a superconducting gap that most likely transforms as the
trivial (A1g) representation.

In a previous work [48], we demonstrated the potential
use of the nuclear magnetic relaxation rate 1/T1T to exper-
imentally differentiate between those gaps with accidental
nodes (i.e., nodes not required by symmetry) and those gaps
with nodal positions constrained by symmetry, due to a
peak arising in 1/T1T for the former case immediately be-
low Tc, similar to the well-known Hebel-Slichter peak found
in nodeless superconductors. In addition to considering the
Hebel-Slichter peak in isotropic superconductors, we will also
address the suppression of this Hebel-Slichter–type peak by
antiferromagnetic fluctuations.

II. THEORY

The spin-lattice relaxation rate 1/T1, measured in nuclear
magnetic resonance, is related to the transverse spin suscepti-
bility χ+−(q, ω) = χ ′

+−(q, ω) + iχ ′′
+−(q, ω), via

1

T1T
= lim

ω→0

2kB

γ 2
e h̄4

∑
q

|AH (q)|2 χ ′′
+−(q, ω)

ω
, (1)

where γe is the electronic gyromagnetic ratio, AH (q) is the
hyperfine coupling, which we will approximate by a point
contact interaction, constant with respect to q. In a conven-
tional nodeless superconductor, the relaxation rate increases
below Tc to a peak before decreasing rapidly as temperature is
lowered. Formally, the peak arises due to a divergence in the
relaxation rate that is cut off by a combination of effects due to
impurities, slight anisotropy of the gap, electronic interactions
or in the extreme limit, by the influence of the crystal lattice,
which sets a characteristic length scale [12,64]. The fact that
such a divergence is absent in the majority of unconventional
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superconductors is typically taken as evidence of nodes in
the superconducting gap [1,52,65], though in some cases it
has been argued that strong electronic correlations may be

responsible for the suppression of the peak [9]. The magnetic
susceptibility in the superconducting state, in the absence of
vertex corrections, is given by

χ+−(q, ω) = χ0(q, ω) = 1

N

∑
k

{
1

2

[
1 + ξk+qξk + �k+q�k

Ek+qEk

]
f (Ek+q) − f (Ek)

ω − (Ek+q − Ek) + iη
+ 1

4

[
1 − ξk+qξk + �k+q�k

Ek+qEk

]

× f̄ (Ek+q) − f (Ek)

ω + (Ek+q + Ek) + iη
+ 1

4

[
1 − ξk+qξk + �k+q�k

Ek+qEk

]
f (Ek+q) − f̄ (Ek)

ω − (Ek+q + Ek) + iη

}
, (2)

where Ek =
√

ξ 2
k + �2

k is the superconducting quasiparticle
energy, defined in terms of the electron dispersion ξk = εk −
μ and the superconducting gap �k, f (E ) is the Fermi-Dirac
distribution function [ f̄ (E ) = 1 − f (E )], and in the absence
of interactions the limit of the lifetime η → 0+ is implied.

A. Anisotropic gaps with accidental nodes

Previously [48], we demonstrated the possibility of a
Hebel-Slichter–type peak emerging in the relaxation rate in
systems where the superconducting gap is nodal, but the
location of the nodes is not dictated by symmetry. In such
systems, the (in general) nonzero average of the gap over
the Fermi surface gives rise to a peak in the relaxation rate
analogous to the Hebel-Slichter peak, even if the integral of
the superconducting gap over the Brillouin zone vanishes.

Lifetime effects (via the self-energy) on 1/T1T have al-
ready been investigated to a degree in Ref. [48], where a
finite quasiparticle lifetime was introduced into the numerical
calculations. This served the purpose of investigating the con-
tribution of impurity effects on the Hebel-Slichter–type peaks.
Including electronic interactions in the quasiparticle lifetime
is not expected to alter the picture dramatically, introducing a
temperature dependence to the lifetime but not significantly
influencing the stability of the peak structure [48]. In this
work, we investigate the effects of antiferromagnetic fluctu-
ations and show that they have a much more dramatic effect.

B. Random phase approximation

In the absence of vertex corrections, the transverse spin
susceptibility can be expressed in terms of a convolution of
single-particle propagators,

χ+−(q, ω) = lim
iωn→ω+iη

∑
k,i
m σ̄ �=σ

G(0)
k+q,σ

(iωn)G(0)
k,σ̄

(iωn + i
m),

(3)
in which case the relaxation rate can be expressed with
the influence of the two Green’s functions separated [48],
due to a property of the convolution

∑
q,k f (k + q) f (k) =

[
∑

k f (k)]2, and

1

T1T
∝

∫
dE

(
− df

dE

){[∑
k

Ak,σ̄ (E )

]2

+
[∑

k

ξk

E
Ak,σ̄ (E )

]2

+
[∑

k

�k

E
Ak,σ̄ (E )

]2}
, (4)

where Ak,σ̄ (E ) is the quasiparticle spectral density function.
The last two terms in Eq. (4) arise from the coherence fac-
tors of the Green’s functions and represent a Fermi-surface
average of the dispersion and superconducting gap, the latter
of which is the origin of the Hebel-Slichter peak and the
related peak in superconductors with accidental nodes [48].
In a superconductor with an isotropic gap, the Hebel-Slichter
peak may be more intuitively understood as originating from
the coherence peak in the density of states [12], but this ex-
planation is not sufficient to explain the presence of a similar
peak for a gap with accidental nodes which is not present for
anisotropic gaps with symmetry-protected nodes.

The simplified expression (4) is valid only when vertex
corrections, in particular those due to spin-fluctuations, are ab-
sent. In this limit, the susceptibility χ+−(q, ω) depends on the
momentum q solely through the spectral density functions. In
the presence of strong spin fluctuations, the susceptibility can
no longer be written in this way, and must take account of the
influence of the spin fluctuations. In order to investigate these
effects, we turn to the random phase approximation, as the
simplest treatment. As it is not our intention to discuss the in-
fluence of the spin fluctuations on the superconductivity itself,
we refrain from the use of more computationally expensive
self-consistent methods (such as the fluctuation-exchange, or
FLEX, approximation). While treating spin fluctuations via
the RPA alone is not sufficient to ensure thermodynamic
consistency [66], this approach is standard, and sufficient to
describe the leading-order effects of spin fluctuations on the
NMR relaxation rate [35,52,53,67,68].

Within the RPA, the susceptibility is given by a sum over
ladder diagrams [69]

χRPA (q, ω) =

↑

↓
ΓRPA (5)

=

↑

↓
+ U

↑

↓

+

↑

U U

↓

+ . . .

=
χ0 (q, ω)

1 − Uχ0 (q, ω)
, (6)

where χ0(q, ω) is the bare transverse magnetic (superconduct-
ing) susceptibility, and U is a Hubbard interaction parameter
(longer-range interactions introduce a momentum dependence
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FIG. 1. Representation of the tight-binding model for κ-Br,
as defined in Ref. [75], including anisotropic next-nearest-neighbor
hopping parameters |t ′

2| < |t ′|. Here, a and c are crystallo-
graphic axes for the orthorhombic unit cell of κ-(BEDT-TTF)2

Cu[N(CN)2]Br, with the model axes x and y rotated by 45◦. The
unit cell is indicated by the gray area.

in this interaction parameter). The ladder diagrams here are
in marked contrast with the bubble diagrams that emerge in
the RPA for the contributions of the long-range Coulomb
interaction to the dielectric function [70].

The imaginary part of the susceptibility, which enters into
1/T1T , is then given by

χ ′′
RPA(q, ω) = χ ′′

0 (q, ω)

[1 − Uχ ′
0(q, ω)]2 + [Uχ ′′

0 (q, ω)]2 . (7)

Within the framework of the RPA, the transition to a magneti-
cally ordered state is described by a divergence in the static
(ω = 0) susceptibility. The real and imaginary parts of the
susceptibility are related by a Kramers-Kronig transforma-
tion, as a result of a fluctuation-dissipation theorem [71–73].
One of the consequences of this relationship is that, at low
frequencies, the imaginary part of the susceptibility varies
linearly with frequency, vanishing in the static limit, while
the real part tends to a constant value. The divergence of the
susceptibility in the RPA then must occur when Uχ ′(q, 0) =
1. This corresponds to a magnetic instability in the material
and the RPA predicts long-range antiferromagnetic order for
U > Uc. Thus, Uc = 1/max[χ ′(q, 0)] sets an upper limit for
the interaction strength in numerical calculations. Under-
standing the effects of the spin fluctuations on superconduc-
tivity and possible phase transitions near Uc is not the focus
of this work, and would require a more sophisticated self-
consistent approach. As such, we have chosen not to address
this question at this time, but rather focus on the universal
behavior of the Hebel-Slichter peak in the presence of spin
fluctuations, which can be demonstrated straightforwardly in
the RPA.

Effects on the 1/T1 relaxation rate

To fully understand the effects of spin fluctuations on
1/T1T , it is necessary to resort to numerical calculations
(see Sec. III), but some insight may still be gained analyt-
ically. In the low-frequency limit, the susceptibility may be

approximated by

χ ′
0(q, ω) ≈ χ ′

0(q, 0) ≡ Bq(T ),
(8)

χ ′′
0 (q, ω)

ω
≈ χ ′′

0 (q, ω)

ω

∣∣∣∣
ω→0

≡ Cq(T ),

in which case the relaxation rate is given by

1

T1T
∝ lim

ω→0

∑
q

1

ω

χ ′′
0 (q, ω)

[1 − Uχ ′
0(q, ω)]2 + [Uχ ′′

0 (q, ω)]2

= lim
ω→0

∑
q

Cq(T )

[1 − UBq(T )]2 + [UCq(T )ω]2

=
∑

q

Cq(T )

[1 − UBq(T )]2 . (9)

FIG. 2. The temperature dependence of 1/T1T , and suppression
of the Hebel-Slichter peak, with increasing interaction strength in
(a) the orthorhombic model with tx = 0.4ty, and (b) a model for κ-Br,
with an isotropic nodeless s-wave gap. In the limit of strong antifer-
romagnetic fluctuations, the peak narrows and eventually vanishes
entirely. While the peak only disappears for U � 0.95Uc, the narrow-
ing and suppression of the peak at lower interaction strengths may be
sufficient to disguise the Hebel-Slichter peak in experiments. At low
temperatures, 1/T1T has an exponential temperature dependence,
even in the presence of strong antiferromagnetic fluctuations. In these
calculations, η = 5 × 10−3t , ω = 10−3t , and �0/2 = 2.5kBTc, while
Uc ∼ 11.5t for the orthorhombic model and Uc ∼ 9.6t for the model
of κ-Br.
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In the absence of antiferromagnetic fluctuations the relevant
features are given by the form of Cq, which are influenced,
when U �= 0, by features of the static real part of the suscep-
tibility. In particular, since UBq � 1, whenever Bq ≈ 1, the

contribution to the relaxation rate is enhanced, and when Bq is
small, features of Cq are suppressed.

The static part of the susceptibility in a superconductor is
given by

Bq(T ) = χ ′
0(q, ω = 0) =

∑
k

{
1

2

[
1 + ξkξk+q + �k�k+q

EkEk+q

]
f (Ek+q) − f (Ek)

Ek − Ek+q
+ 1

4

[
1 − ξkξk+q + �k�k+q

EkEk+q

]
f̄ (Ek+q) − f (Ek)

Ek + Ek+q

+ 1

4

[
1 − ξkξk+q + �k�k+q

EkEk+q

]
f̄ (Ek) − f (Ek+q)

Ek + Ek+q

}
, (10)

and the structure of Bq can be seen to depend in a complicated
manner on the band structure and gap symmetry, particularly
with regards to approximate nesting of the Fermi surface
(which may enhance the first term).

The real part of the susceptibility can, in principle, enhance
the features dominating the relaxation rate [i.e., if Cq(T ) and
Bq(T ) have similar momentum dependence, large contribu-
tions to the relaxation rate will be enhanced while smaller
contributions will be unaffected]. There is, however, no a
priori reason to expect such enhancement, as the momentum
dependencies of Cq(T ) and Bq(T ) may differ drastically.

To gain further insight into the influence of antiferromag-
netic fluctuations on the relaxation rate, it becomes necessary
to turn to specific models and numerical calculations, as is the
focus of the remainder of this work.

III. NUMERICAL RESULTS

In order to explore the behavior of 1/T1T in the presence of
antiferromagnetic spin fluctuations, we numerically calculate
the relaxation rate for various interaction strengths.

A. Effective models

To highlight the generality of our results, we consider three
concrete examples. The first two models specifically include
strong anisotropy and in both cases consider fully gapped
superconducting states and those with accidental nodes. As
a final example, we consider a model iron pnictide super-
conductor, a system for which spin fluctuations are known

to be strong and the gap is believed to belong to the trivial
representation despite the lack of a Hebel-Slichter peak in
1/T1T [74].

The first example is a toy model with anisotropic hopping
parameters along the two axes,

ξk = tx cos (kx ) + ty cos (ky). (11)

Such a model is useful in demonstrating effects arising in
a d-wave superconducting state with accidental nodes. For
example, for tx �= ty the nodes in a superconducting gap with

�k = �0

2
[cos (kx ) − cos (ky)] (12)

are not symmetry required (for example, adding a small
s-wave component does not change the symmetry or cause
a phase transition) and (even without an s-wave component)
the average of the order parameter over the Fermi surface is
nonzero [48].

The second model we consider is a two-band effec-
tive tight-binding model for κ-Br, with hopping magnitudes
parametrized by density functional theory [75]. This model
offers the opportunity to understand the resilience of the
Hebel-Slichter peak in a more realistic band structure. Ad-
ditionally, the κ-Br model allows us to make comparison
between several proposed gap functions for the material. In
this model, the BEDT-TTF dimers are treated as sites, and
the tight-binding parameters are displayed schematically in
Fig. 1, with dispersion given by

ξk,± = t ′ cos (kc) + t ′
2 cos (ka) ± t

√[
cos

(
ka + kc

2

)
+ cos

(
ka − kc

2

)]2

+
(

δt

t

)2[
sin

(
ka + kc

2

)
+ sin

(
ka − kc

2

)]2

, (13)

where t ′ and t ′
2 are (anisotropic) hopping parameters between next-nearest-neighbor dimers, t = (t1 + t2)/2 is the average

hopping along the x and y directions, and δt = (t1 − t2)/2 the difference between the alternating hopping strengths (which
are dependent on the dimer orientation).

Due to the anisotropy of this model, the “dxy-wave” state has accidental nodes, giving rise to a Hebel-Slichter–type peak in
1/T1T , and is given by

�
(xy)
k = �0 sin (kx ) sin (ky). (14)

Finally, for the iron pnictide superconductors we use a simple two-orbital model, as proposed in Ref. [56] with an additional
spin-orbit coupling λ allowed by symmetry and in keeping with more general models [58,76], with dispersion

ξk,± = (t1 + t2)[cos (kx ) + cos (ky)] + 4t3 cos (kx ) cos (ky) ±
√

(t1 − t2)2[cos (kx ) − cos (ky)]2 + [2t3 sin (kx ) sin (ky)]2 + λ2,

(15)
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FIG. 3. The transverse susceptibility of κ-Br with an isotropic superconducting gap, at T = 0.98Tc, with ω = 10−3t . The imaginary (a) and
real (b) parts of the susceptibility in the absence of spin fluctuations (U = 0) are both enhanced around q = 0. In the case of the imaginary
part, the divergence near q = 0 is responsible for the Hebel-Slichter peak. The denominator of the RPA dressed susceptibility (c) is shown
for an interaction strength of 0.9Uc, for which the Hebel-Slichter peak is strongly suppressed. The denominator of the RPA shows a peak that
grows noticeably as the interaction strength increases, masking the divergence of the bare imaginary part, as can be seen in (d), which shows
the imaginary part of the RPA-dressed susceptibility. Interestingly, though features away from q = 0 are significantly enhanced, beyond the
magnitude of the peak in the bare susceptibility, for both bands, these features do not contribute to the Hebel-Slichter peak, which is strongly
suppressed at this interaction strength.

and we take (t1, t2, t3, λ) = (−1, 1.3,−0.85, 0.1)|t1| with
μ = 1.45|t1|. For brevity, we consider only a simple s±-wave
gap, which is the most common used for analysis of the iron
pnictide materials,

�k = �0 cos (kx ) cos (ky). (16)

We note that, while here we do not consider the possibility of
accidental nodes in the iron pnictide model, there have been
reports of nodal superconductivity in some regimes for these
materials [59,77–80].

B. Results

The suppression of the Hebel-Slichter peak is shown
for a purely isotropic s-wave gap function in Fig. 2, for
both the orthorhombic model with ty = 0.4tx at quarter fill-
ing and for the effective model of κ-Br, with (t ′, t ′

2, δt ) =
(−0.54, 0.14, 0.03)t . The parameters for the orthorhombic
model are chosen to maximize the anisotropy of the Fermi
surface while ensuring there are no Van Hove singularities
close to the Fermi energy, while the model of κ-Br has been
parametrized from first-principles calculations by Ref. [75]. In
both cases, we found that variation of the model parameters
had little influence on the resulting relaxation rate. As the

interaction strength increases, the prominent Hebel-Slichter
peak is gradually reduced in magnitude and narrows, until the
peak finally vanishes for both models near the phase transition
to long-range magnetic order (U � 0.95Uc). While the peak
is absent entirely only very close to the antiferromagnetic
instability, the narrowing of the peak may be sufficient in
some experiments to disguise its presence, depending on the
temperature resolution of the experiment.

At low temperatures, the increasing interaction strength
reduces the overall magnitude of the relaxation rate but does
not alter the temperature dependence, which displays the
exponential suppression of quasiparticle states at low ener-
gies. The Hebel-Slichter peak is noticeably more resilient to
the strength of the spin fluctuations for the effective model
of κ-Br than the toy orthorhombic model, and the absence
of any such peak in experiments [38] is therefore incon-
sistent with an isotropic gap even for strong interactions,
in contrast with interpretations of some other experiments
[31,32].

In order to better understand the origin of this suppression
of the peak we examine, in Fig. 3, the properties of the
transverse susceptibility for the model of κ-Br close to Tc. In
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FIG. 4. The RPA-dressed transverse susceptibility of κ-Br with
an isotropic superconducting gap, at T = 0.98Tc and ω = 10−3t ,
with an intermediate interaction strength of 0.6Uc, for which the
Hebel-Slichter peak is only partially suppressed. While the suscepti-
bility shares many of the same features as the dressed susceptibility
in Fig. 3, the magnitude of the susceptibility is considerably greater,
leading to the nonvanishing peak in 1/T1T .

the absence of spin fluctuations, the Hebel-Slichter peak re-
sults from a peak in the imaginary part of the susceptibility at
q = 0, which is present in both bands and only at higher tem-
peratures. In the presence of antiferromagnetic fluctuations,
this peak is suppressed due to both the broad maximum of the
real part of the susceptibility as well as the influence of the
peaked imaginary part in the denominator of the RPA-dressed
susceptibility.

As can be seen in Fig. 3(d), the imaginary part of the
dressed susceptibility shows no divergence, due to the cancel-
lation of peaks in the bare imaginary susceptibility [Fig. 3(a)]
and the denominator of the dressed susceptibility [Fig. 3(c)].
While the antiferromagnetic fluctuations described by the
RPA introduce some considerable structure in the suscepti-
bility away from q = 0, arising from the structure of the real
part of the bare susceptibility, these features do not protect the
Hebel-Slichter peak from suppression.

In Fig. 4, we examine the dressed susceptibility at an in-
termediate interaction strength, not sufficient to suppress the
Hebel-Slichter peak entirely. In this case, there is clearly still a
large enhancement of the imaginary part of the susceptibility,
though the prominent peak around q = 0 is no longer present.
As the interaction strength increases, the overall magnitude of
the susceptibility decreases further, ultimately suppressing the
peak in 1/T1T entirely. Additionally, the features away from
q = 0, while greater in magnitude, have not yet reached the
definition seen in Fig. 3, highlighting that both the suppression
of the q = 0 peak, and therefore the Hebel-Slichter peak,
and the enhancement of the other features, arise due to the
influence of the spin fluctuations.

We wish also to understand how this suppression in-
fluences the Hebel-Slichter–type peak expected in super-
conductors with accidental nodes [48]. Figure 5 displays
the suppression of the Hebel-Slichter–type peak for the
orthorhombic and κ-Br models with dx2−y2 -wave and dxy-
wave superconducting gaps, respectively, each with accidental
nodes. The peak is suppressed in the same manner as in

FIG. 5. The temperature dependence of 1/T1T , and suppression
of the Hebel-Slichter–type peak resulting from a gap with accidental
nodes, with increasing interaction strength in (a) the orthorhombic
model with tx = 0.4ty, and (b) a model for κ-Br. The Hebel-Slichter–
type peak due to the accidental nodes is clearly evident for the
orthorhombic model at weak interaction strengths, and vanishes in
the presence of strong antiferromagnetic fluctuations. While the peak
only disappears for U � 0.8Uc, the narrowing and suppression of the
peak at lower interaction strengths may be sufficient to disguise the
Hebel-Slichter peak in experiments. For the model of κ-Br, the peak
is considerably smaller and narrower, and therefore less likely to be
clearly resolved even in the absence of strong antiferromagnetic fluc-
tuations. However, the influence of the accidental nodes is still clear
at weak interaction strengths, where the relaxation rate decreases
considerably less rapidly as the temperature is reduced below Tc.
This effect is also suppressed as the interaction strength increases,
but may in principle be examined experimentally by the applica-
tion of pressure, which reduces the effective interaction strength in
these materials. At low temperatures, the temperature dependence
of 1/T1T for both models is again not qualitatively altered by the
introduction of spin fluctuations via the RPA. In these calculations,
�0/2 = 2.5kBTc, η = 5 × 10−3t , and ω = 10−3t , while Uc ∼ 11.5t
for the orthorhombic model and Uc ∼ 9.6t for the model of κ-Br.

the previous case, though much more rapidly with increasing
interaction strength.

The low-temperature behavior for the gaps with accidental
nodes in Fig. 5 does not show the exponential suppres-
sion of quasiparticle states seen for the isotropic gap, but is
again qualitatively unchanged by the increasing interaction
strength. Interestingly, the relaxation rate changes much more
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FIG. 6. The bare (a) and RPA-dressed (b) transverse susceptibil-
ity of κ-Br with a superconducting gap with accidental nodes, at
T = 0.98Tc and ω = 10−3t , are qualitatively the same as those for
an isotropic gap. The imaginary part of the susceptibilities in the
absence of antiferromagnetic fluctuations again diverges near q = 0,
and the reduced magnitude of the peak in 1/T1T relative to that for
an isotropic gap is directly related to the reduced width of the peak
in χ ′′

0 . The RPA-dressed susceptibility shows no such divergence,
consistent with the absence of a peak in 1/T1T . Additionally, the
dressed susceptibility varies considerably less across the Brillouin
zone than in the presence of an isotropic gap, which allows the
suppression of the susceptibility at q = 0 to be seen far more clearly.

dramatically as U → Uc for the more realistic κ-Br model,
most likely due to a singularity in the density of states, which
is much closer to the Fermi energy than for the orthorhombic
model. It may be necessary, in general, to examine the low-
temperature behavior of 1/T1T , and not just the presence or
absence of a peak near Tc to infer the superconducting gap
symmetry.

In Fig. 6, we again examine the origin of the peak sup-
pression for the gap with accidental nodes in κ-Br, finding
a situation at high temperatures (T = 0.98Tc) that is quali-
tatively the same as the nodeless gap. The peak in 1/T1T is
caused by a peak in χ ′′(q, ω)/ω near q = 0, which is sup-
pressed by the RPA as the interaction increases. Additionally,
the RPA-dressed susceptibilities in both cases are qualitatively
similar, differing only in the magnitude of variation in the
susceptibility across the Brillouin zone, despite the significant

FIG. 7. Comparison between results for the dimer model of κ-Br
for gaps with accidental (dxy) and with symmetry required (dx2−y2 )
nodes, as well as a nodal s + dxy-wave gap proposed by Guterding
et al. [28] (“Guterding”), with experimental data from Ref. [38].
The spin-fluctuation strength here is sufficient to suppress the Hebel-
Slichter–type peak for the dxy-wave gap, and while both dxy and
dx2−y2 gaps agree well with the data immediately below Tc the dx2−y2 -
wave state is in noticeably better agreement at low temperatures. The
s + dxy-wave gap proposed by Guterding et al. based on scanning
tunneling spectroscopy experiments does not fit the NMR data well.
In these calculations, η = 5 × 10−3t , ω = 10−3t , �0/2 = 2.5kBTc,
and Uc ∼ 9.6t for κ-Br regardless of superconducting gap.

reduction in the magnitude of the peak in 1/T1T . Notably,
the suppression of the susceptibility near q = 0 by antifer-
romagnetic fluctuations is more clearly apparent due to the
smaller magnitude and reduced variation of the susceptibility.
This further solidifies the similarities between the two gap
functions, despite the presence of line nodes in the second
case, and the corresponding alteration of the density of states.

Finally, we make comparison between our results for
the model of κ-Br and experimental data [38] in Fig. 7.
We find that sufficiently strong spin fluctuations suppress
the Hebel-Slichter–type peak for a dxy-wave gap with ac-
cidental nodes, in good agreement with experiment, though
the low-temperature behavior is less consistent. At low
temperatures, our results predict a relaxation rate that in-
creases far more rapidly with temperature than is observed
experimentally. For comparison, we also consider a dx2−y2 -
wave gap with symmetry required nodes, and find much closer
agreement with the experimental data at low temperatures. For
completeness, we also consider a recently proposed s + dxy-
wave gap, found to be in agreement with some scanning
tunneling spectroscopy measurements [27,28]. Again, in this
case the Hebel-Slichter–type peak is suppressed by the spin
fluctuations, but we find the calculated relaxation rate to be
in considerably worse agreement with the NMR data than
the simple dxy-wave gap. A more definitive test of the gap
structure may be performed by the application of pressure,
which for the BEDT-TTF–based superconductors reduces the
effective interaction strength U . Applied pressure would then
restore the Hebel-Slichter–type peak for the dxy-wave gap
but affect the relaxation rate for the dx2−y2 -wave gap less
significantly.
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FIG. 8. Comparison between numerical results for the two-
orbital iron pnictide model with s±-wave gap and experimental data
for LaFeAsO1−xFx , at x = 0.06, reported in Ref. [74]. Increasing the
strength of the spin fluctuation suppresses the Hebel-Slichter peak in
line with the experimental data for U ∼ 0.7Uc. In these calculations,
η = 5 × 10−3t , ω = 10−3t , and �0/2 = 2.5kBTc, in agreement with
Ref. [74], and Uc ∼ 9.3|t1|.

We make comparison between the relaxation rate calcu-
lated for the two-orbital iron pnictide model, with s±-wave
superconductivity, and experimental data for LaFeAsO1−xFx

in Fig. 8. At low temperatures, complicated variations in the
gap magnitude on the multiple bands lead to a rich temper-
ature dependence of 1/T1T in LaFeAsO1−xFx. As we are
primarily concerned with the behavior of the Hebel-Slichter
peak, we restrict our analysis to the region immediately be-
low the critical temperature T � 0.8Tc. We again find that
strong spin fluctuations remove the Hebel-Slichter peak for
LaFeAsO1−xFx, in agreement with experiment.

IV. CONCLUSIONS

We have found that, for all model band structures we con-
sider, sufficiently strong antiferromagnetic spin fluctuations
suppress the Hebel-Slichter peak in a fully gapped supercon-
ductor, and the similar peak found for gaps with accidental
nodes. Even when the peak is suppressed by the spin fluctu-
ations, near U/Uc ≈ 1, the low-temperature behavior of the
nuclear magnetic relaxation rate remains qualitatively un-
changed by the interactions. This is because the magnitude
of both the real and imaginary parts of the susceptibility near
q = 0 decreases as the temperature is lowered. And so, just
as the Hebel-Slichter peak is only evident near T = Tc, the
influence of the spin fluctuations is less significant at low
temperatures.

In the organic superconductors, the application of pressure
can be used to decrease the effective interaction strength,
which will increase the magnitude of any peak in 1/T1T .
Therefore, we propose an additional experimental probe of
the superconducting gap in these materials, by measuring the
temperature and pressure (and therefore U/Uc) dependence
of 1/T1T to give further insight into the gap symmetry. In
particular, for a nodeless gap, or one with accidental nodes,
a Hebel-Slichter peak should appear as pressure is increased.
For a gap with symmetry required nodes, no such peak will
emerge under pressure.
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