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Time evolution with symmetric stochastic action
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The time evolution of quantum fields is shown to be equivalent to a time-symmetric Fokker-Planck equa-
tion. Results are obtained using a Q-function representation, including fermion-fermion, boson-boson, and
fermion-boson interactions with linear, quadratic, cubic, and quartic Hamiltonians, typical of QED and many
other cases. For local boson-boson coupling, the resulting probability distribution is proved to have a positive,
time-symmetric path integral and action principle, leading to a forward-backward stochastic process in both
time directions. The solution corresponds to a c-number field equilibrating in an additional dimension. Paths
are stochastic trajectories of fields in space-time, which are samples of a statistical mechanical steady state in
a higher-dimensional space. We derive numerical methods and examples of solutions to the resulting stochastic
partial differential equations in a higher time dimension, giving agreement with examples of simple bosonic
quantum dynamics. This approach may lead to useful computational techniques for quantum field theory, as
well as to new ontological models of physical reality.
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I. INTRODUCTION

The role that time plays in quantum mechanics is a
deep puzzle in physics, since quantum measurement appears
to preferentially choose a particular time direction, via the
projection postulate. This, combined with the Copenhagen
interpretation that only macroscopic measurements are real,
has led to many quantum paradoxes. Here, we derive a
time-symmetric, stochastic quantum action principle to help
resolve these issues, extending Dirac’s idea [1] of future-
time boundary conditions to the quantum domain. In the
cases treated here, quantum field dynamics is shown to be
equivalent to a time-symmetric stochastic process. This can
be solved by equilibration in the quasitime of a higher-
dimensional space, with a genuine probability. There are
potentially useful computational consequences, since a quan-
tum action principle with a real exponent has no phase
problem. The resulting stochastic trajectories also have an
ontological interpretation [2].

The theory uses the Q-function of quantum mechanics
[3–5], which is the expectation value of a coherent state pro-
jector. It is a well-defined and positive distribution for any
bosonic or fermionic quantum density matrix [6]. In Hamilto-
nians with up to quartic interactions, the dynamical equation
has a time-symmetric Fokker-Planck form. In bosonic cases,
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this is shown to have a zero trace diffusion matrix. There
is a quantum action principle for diffusion in positive and
negative time directions simultaneously, equivalent to a time-
symmetric stochastic process. The result is time-reversible
and nondissipative, explaining how quantum evolution can be
inherently random yet time-symmetric.

Using stochastic bridge theory [7–9], the Q-function time
evolution is proved to correspond to the steady state of a
diffusion equation in an extra dimension. Thus, stochastic
equilibration of a c-number field in five dimensions gives
rise to quantum dynamics in four-dimensional space-time.
This shows that c-number fields in higher dimensions can be-
have quantum-mechanically. No imaginary-time propagation
is required, and the description is probabilistic. The relation-
ship to quantum ontology and measurement theory is given
elsewhere [2,10].

The stochastic fields used here propagate retrocausally as
well as in a positive time direction. Time-symmetric evolution
was originally proposed by Tetrode in classical electrodynam-
ics [11]. Dirac used the approach to obtain an elegant theory
of classical radiation reaction [1], which was extended by
Feynman and Wheeler [12]. Time-reversible methods have
been studied in quantum physics [13–16], the philosophy of
science [17], and used to explain Bell violations [18]. Here,
we use this general approach to analyze interacting fields, thus
giving time-symmetric quantum physics a strong foundation.

By comparison, the Fenyes-Nelson approach to stochastic
quantum evolution [19,20], does not have a constructive inter-
pretation [21]. The approach of stochastic quantization [22]
uses imaginary time. Such methods have the drawback that
analytic continuation to real time dynamics can be intractable
[23,24]. The mathematical technique used here combines the
Wiener-Stratonovich stochastic path integral [25,26], with
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Schrödinger’s [7] idea of a stochastic bridge in statistical
mechanics, as generalized by later workers. The resulting
equilibrium is equivalent to quantum dynamics.

All quantum effects are retained in this approach [2,27].
This is not unexpected, because quantum absorber theory,
with similar time-reversed propagation, even has Bell viola-
tions [15]. There is a related approach of reciprocal diffusion
due to Bernstein [28] and Zambrini [29]. The focus of this
paper is to understand quantum dynamics and measurement
using stochastic methods. This is important to fundamental
applications to quantum measurement theory [2]. In addition,
stochastic methods scale well for large systems, which may
help to compute exponentially complex many-body dynamics.

Historically, the Kaluza-Klein theory of electromagnetism
[30–32] first introduced a fifth dimension. String theory
[33,34], as well as the Randall-Sundrum [35] and Gog-
berashvili [36] approach to the hierarchy problem all use extra
dimensions. As with these approaches, one can usefully visu-
alize the extra dimensions as real extensions of space-time.
In the theory presented here, the extra dimension is timelike
and noncompact. Just as in “flatland” [37], the location of
observers defines the extra coordinate. However, our results
only make use of an extra dimension as a computational tool,
so this is not essential to the physical interpretation.

Quantum dynamical problems arise in many fields, from
many-body theory to cosmology. The utility of the path inte-
gral derived here is that it is real, not imaginary [38]. Other
methods exist for quantum dynamics. These include mean-
field theory, perturbation theory, variational approaches [39],
standard phase-space methods [4], and the density matrix
renormalization group [40]. Each has its own drawbacks,
however. The time-symmetric techniques given here use a
different approach, as well as providing a model for a quantum
ontology.

To demonstrate these results, a general quartic quan-
tum field Hamiltonian is introduced. This corresponds to
common quantum models, including QED, Bose-Hubbard,
Fermi-Hubbard, Ising, quantum circuit and parametric Hamil-
tonians. The corresponding Q-function dynamics satisfies a
time-symmetric Fokker-Planck equation in all cases. Fur-
ther extensions of the Q-function method would be required
to treat the bosonic sector in QCD. Such Hamiltonians are
closely related to the classes treated here. The common feature
is that they have a cubic or quartic interaction term. In the
boson-boson and boson-fermion cases, it is shown that there
is a zero trace diffusion. A detailed treatment is given of the
simplest boson-boson case. This leads to a time-symmetric
stochastic differential equations, a quantum action principle
and a probabilistic path integral. A solution is obtainable
through positive diffusion in a higher dimension. Elementary
examples and numerical solutions are obtained. Results are
compared with exactly soluble cases.

The content of this paper is as follows. Section II derives
properties of Q-functions and time-symmetric Fokker-Planck
equations, proving that there is a traceless diffusion matrix
for boson-boson and fermion-boson quantum field theories.
Section III defines quantum trajectories and an action prin-
ciple using time-symmetric stochastic equations. Section IV
shows that the resulting real path integral is equivalent to a
Q-function time evolution. Section V treats extra dimensions,

and shows how the classical limit is regained. Section VI gives
examples and numerical results. Finally, Sec. VII summarizes
the paper.

II. Q-FUNCTIONS

Phase-space representations in quantum mechanics allow
efficient treatment of quantum systems via probabilistic sam-
pling [41]. These general methods are related to coherent
states [42] and Lie groups [43], which introduce a continuous
set of parameters in Hilbert space. Results for bosonic and
fermionic fields are summarized below. Q-functions [3] can
also be used for spins [44,45] but this is essentially a subset of
the results given here.

The Q-function is probabilistic and defined in real time.
Yet it does not have a traditional stochastic interpretation,
since unitary evolution can generate diffusion terms that are
not positive-definite [46]. An earlier method of treating this
was to double the phase-space dimension to give a positive
diffusion [47]. This is usually applied to normal ordering
[42], but the corresponding distribution is nonunique, and is
most useful for damped systems [48] or short times [49–51].
With undamped systems however, doubling phase-space gives
sampling errors that increase with time [52,53]. Rather than
using this earlier approach, a positive diffusion is obtained
here through equilibration in an extra space-time dimension.

A. General definition of a Q-function

The general abstract definition of a Q-function [6] is

Q(λ, t ) = Tr{�̂(λ)ρ̂(t )}, (1)

where ρ̂(t ) is the quantum density matrix, �̂(λ) is a positive-
definite operator basis, and λ is a point in phase-space with an
integration measure dλ such that the identity operator Î can
be expanded as

Î =
∫

�̂(λ)dλ . (2)

Provided ρ̂(t ) is normalized in the standard way so that
Tr[ρ̂(t )] = 1, the Q-function is positive and normalized to
unity: ∫

dλQ(λ) = 1 . (3)

This satisfies the requirements of a probability. The basis
function �̂(λ) does not project the eigenstates of a Hermi-
tian operator, and therefore the quantum dynamical equations
differ from those for orthogonal eigenstates.

Quantum fields are defined with an nd -dimensional space-
time coordinate r, where r = (r1, . . . rnd ) = (r, t ). The fields
can be expanded using Mb bosonic annihilation and creation
operators âi, â†

i and M f fermionic operators b̂i, b̂†
i . The overall

mode indices i may include Nb (Nf ) internal degrees of free-
dom like spin or charm, and Mb/Nb and M f /Nf spatial modes
respectively, each of which describe excitations on a lattice or
single-particle eigenmodes.

As a result, the corresponding phase-space coordinate λ =
(α, ξ ) has both fermionic and bosonic amplitudes, and the

basis function �̂(λ) is a product of fermionic and bosonic
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operators, so that

�̂(λ) =
∏
b, f

�̂b(α)�̂ f
(
ξ
)
. (4)

We now briefly recall the properties of the basis operators,
�̂b(α) and �̂ f (ξ ). For simplicity we assume one bosonic

and/or one fermionic field here, noting that there may be more
than one species labeled b, f if there are conservation laws.
They must satisfy the completeness condition, Eq. (2). The
basis is not orthogonal, and it is generally essential to employ
nonorthogonal bases and Lie group theory in order to obtain
differential and integral identities.

For bosonic fields, �̂b is proportional to a coherent state
projector [42],

�̂b(α) ≡ |α〉c〈α|c/πMb . (5)

The state |α〉c is a normalized Bargmann-Glauber [42,54]
coherent state with âi|α〉c = αi|α〉c and ψ̂(r)|α〉c = ψ(r)|α〉c,
where α is an Mb-dimensional complex vector of coherent
field mode amplitudes and ψ(r) is the corresponding coherent
field. Here, Latin indices i, j, k, � are summed up to Mb, with
bold vectors and matrices. On Fourier transforming to position
space, Q[ψ] in field space is a functional of the complex
field amplitudes ψ(r) [55,56]. There are 2Mb independent real
bosonic phase-space variables,

For fermionic fields, the Gaussian operator �̂ f is given in
the Majorana representation by [57,58]

�̂ f
(
ξ
) = N

(
ξ
)

: exp
[ − iγ̂ T

[
i − i

(
iξ + I

)−1]
γ̂ /2

]
. (6)

The fermionic ξ coordinates are real antisymmetric 2M f ×
2M f matrices with an integration measure dξ = ∏

m<n dξmn,

and an integration domain such that (ξ 2 + I ) is a positive

semi-definite matrix. Latin indices m, n, o, p for extended vec-
tors are summed up to 2M f , with underlined vectors and ma-
trices. The normalization factor is N (ξ ) = 2−M f

√
det [i − ξ ],

where

i =
[

0 I
−I 0

]
. (7)

Here, I is a 2M f × 2M f identity matrix, I is an M f × M f

identity matrix, and γ̂ is a vector of Majorana operators with
commutators

{γ̂m, γ̂n} = 2δmn. (8)

The Majorana operators are obtained using a matrix trans-
formation [59] U = [ I I

−iI iI], acting on a vector of extended

fermionic creation and annihilation operators, b̂ = (b̂
T
, b̂

†
)
T

,
so that γ̂ = Ub̂. There are M f (2M f − 1) independent real
fermionic phase-space variables, owing to antisymmetry.

B. Observables

Quantum expectations 〈Ô〉 of ordered observables Ô are
identical to probabilistic Q-function averages 〈O〉Q, including
corrections for operator reordering if necessary:

〈Ô〉 = 〈O〉Q ≡
∫

dλQ(λ)O(λ) . (9)

Here, 〈〉 indicates a quantum expectation value, 〈〉Q is
a Q-function phase-space probabilistic average, and time-
arguments are implicit.

In the bosonic case, the expectation of any observable
Ô is obtained by first expanding ρ̂ in a generalized P-
representation, P(α, β ). This always exists [60], so that for
any quantum density matrix ρ̂,

ρ̂ =
∫

P(α,β)�̂p(α,β)dαdβ , (10)

where �̂p(α,β) is an off-diagonal coherent projector,

�̂p(α,β) = |α〉c〈β|c
〈β |α〉c

. (11)

We use dα, dβ to denote M-dimensional complex integration
measures. The existence proof [60] shows that there is a
canonical probability distribution P(α,β) which is obtained
from the Q-function:

P(α,β) =
(

1

4π

)M

exp

[
−|α − β|2

4

]
Q

(
α + β

2

)
. (12)

This can be used to invert the Q-function representation
mapping, to obtain the general operator correspondence func-
tion for Ô in the form of an integration over α:

〈Ô〉 ≡
∫

dαQα (α)O(α) = 〈O〉Q. (13)

To prove this, we use the expansion of ρ̂ in Eq. (10), which
gives that

〈σ̂ 〉Q ≡
∫

P(β, γ )Tr[Ô�̂p(β, γ )]dβdγ . (14)

Expanding this using the canonical expansion, Eq. (12),
the c-number function corresponding to Ô is therefore O(α),
where on defining α = (β + γ )/2, � = (β − γ )/2:

O(α) = 1

πM

∫
e−|�|2 Tr[Ô�̂p(α + �,α − �)]d�. (15)

As an example, particle numbers in the bosonic case are
given by introducing the equivalent c-number function n(α) ≡
|α|2 − 1, so that the quantum and probabilistic averages agree:

〈n̂〉 = 〈n(α)〉Q = 〈|α|2 − 1〉Q. (16)

This is a special case of the general identity given above.
As another example, a p-th order antinormally ordered mo-
ment is 〈

âi1 . . . â†
ip

〉 = 〈
αi1 . . . α∗

ip

〉
Q
. (17)

These operator moments can be of any order p.
Similar techniques are available for fermions [6] and spins

[44,45], so this approach is not restricted to bosonic fields. As
emphasized in Dirac’s review paper [61], one can calculate
any observable average from a quasidistribution, provided
the observable is expressed in terms of a suitable operator
ordering. In the bosonic case, it is the antinormal ordering of
ladder operators that is utilized for Q-functions.
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C. Identities and exact results

There are several mathematical properties that make this
expansion a useful approach. We first introduce a shorthand
notation for differential operators, ∂i ≡ ∂/∂αi. For conve-
nience in treating products of less than four boson operators a
convention of defining â0 = 1 = α0 and ∂0 ≡ 0 is used.

The following operator correspondences for bosons hold
for the unit terms with zero index as well as for operators:

â j�̂ = α j�̂, �̂â†
j = α∗

j �̂,

â†
j�̂ = (∂ j + α∗

j )�̂, �̂â j = (∂∗
j + α j )�̂. (18)

For j = 0, the first two identities are trivial since â0 ≡ α0. The
last two follow immediately, since because ∂0 ≡ 0, these are
simply conjugates of the first two identities.

To illustrate that this introduces no contradictions, note
that for operator products, the differential identities give the
following result for a commutator:

[âi, â†
j ]�̂ = [∂ j, αi]�̂, �̂[âi, â†

j ] = [∂∗
i , α∗

j ]�̂. (19)

These identities give the result that [âi, â†
j ]�̂ = δi j�̂ if

i, j > 0, as required for an operator. If one of i, j are zero,
then the commutator identity vanishes, as it must for a c-
number. The resulting identities have the same form as for the
usual annihilation and creation operators. This allows linear,
quadratic and cubic terms to be treated in a uniform for-
malism. Einstein summations over i, j . . . = 0, . . . , Mb, and
m, n = 1, . . . , 2M f will be included implicitly for repeated
indices, but these do not result in any new differential indices
in the resulting equations, since ∂0 ≡ 0.

There are the following operator correspondences for
bosons [5,42,62,63]:

âiâ
†
j�̂ = (∂ j + α∗

j )αi�̂, �̂âiâ
†
j = (∂∗

i + αi )α
∗
j �̂. (20)

Using an antinormally ordered product notation for Bose op-
erators, B̂i j = âiâ

†
j , these generally applicable identities can

be written in terms of differential operators Bi j and B̄i j as

B̂i j�̂ = Bi j�̂, �̂B̂i j = B̄i j�̂. (21)

Such results also hold for fermions, except that only
quadratic and quartic fermionic terms occur, so that there is no
need to treat odd numbers of operators. We introduce ∂nm ≡
∂/∂ξmn, where ∂nm is a structured derivative for antisymmet-
ric matrices such that ∂nmξm′n′ = δnn′δmm′ − δnm′δmn′ , and ξmn

is the fermionic phase-space matrix from Eq. (6). Defining
ξ± = ξ ± iI , the following identities are known [58]:

γ̂mγ̂n�̂ = i(ξ−
mm′ξ

+
n′n∂m′n′ − ξ+

mn)�̂,

�̂γ̂mγ̂n = i(ξ+
mm′ξ

−
n′n∂m′n′ − ξ+

mn)�̂. (22)

Introducing quadratic Fermi operators F̂mn = γ̂mγ̂n and their
corresponding differential operators Fmn and F̄mn, one can
write this as

F̂mn�̂ = Fmn�̂, �̂F̂mn = F̄mn�̂. (23)

Q-function evolution equations are obtained by using these
operator identities to change Hilbert space operators acting on
ρ̂ to differential operators acting �̂, and hence on Q. To obtain
operator product identities for quartic terms, one uses the fact

that the mode operators commute with the c-number terms, so
that the operator closest to the kernel �̂ always generates a
differential term that is furthest from �̂. In the fermionic case,
one must choose a defined index ordering, for example m < n,
and use antisymmetry with ξnm = −ξmn, so that there are only
independent variables in the phase-space.

As a typical example, one obtains

B̂i jB̂kl�̂ = BklBi j�̂, �̂B̂i jB̂kl = B̄i jB̄kl�̂. (24)

Exact Q-functions are known for a number of special cases,
including all gaussian states. For brevity we focus on bosonic
examples, as fermionic cases are treated elsewhere [6,64,65].
A noninteracting multimode vacuum state, |0〉, and more gen-
erally a coherent state |α0〉c, where α0 ≡ 0 in the vacuum
state, has the Q-function

Qα (α) = 1

πM
exp(−|α − α0|2). (25)

This has a well known interpretation [66,67]. If one makes
a simultaneous measurement of two orthogonal quadratures,
which is possible using a beam-splitter, then Q(α) is the prob-
ability of a simultaneous measurement of quadratures q and p,
where α = (q + ip)/2. This is also the result of an amplified
measurement [68].

Any number state |�〉 = |n〉 has a representation as

Qα (α) = 1

πM
e−|α|2 ∏

i

[∑
ni

|αi|2ni

ni!

]
. (26)

A free-particle thermal state with mean particle number nth

has a Gaussian Q-function given by

Qα (α) =
∏

i

1

π
(
1 + nth

i

)e−|αi|2/(1+nth
i ). (27)

D. Quantum field dynamics

To understand dynamics, we consider a time-dependent
multimode Hamiltonian with quartic, cubic, quadratic and lin-
ear terms. This Hamiltonian is then expanded using mode op-
erators. In the present treatment, although number conserving
nonlinear bosonic terms like â†2â2 are included, we exclude
non-number-conserving cubic or quartic terms in bosonic
operators like â4. This removes self-interacting real scalar
bosonic fields and related Hamiltonians in the standard model.

The models covered are applicable to experimentally
tested fundamental Hamiltonians as well as common effec-
tive Hamiltonians, including QED, Bose and Fermi Hubbard
models, the Ising model, parametric amplifiers and quan-
tum circuits. The QCD interaction Hamiltonian has a quartic
self-interaction term for Yang-Mills bosons [69]. This would
require a Q-function involving Gaussian bosonic operators
[70] which is not treated here for brevity.

A simple example is the QED interaction Hamiltonian, of
form ψ̂iÂρψ̂ j , where ψ̂ is a relativistic Fermi field and Â is the
electromagnetic potential. After expanding in annihilation and
creation operators, this leads to terms of the form B̂i jF̂mn in
our notation. Including all the presently allowed combinations
of fermionic and bosonic fields gives

Ĥ (t ) = ĤB(t ) + ĤFB(t ) + ĤF (t ), (28)
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where the different types of Hamiltonian are

ĤB(t ) ≡ h̄

2
gB

i jkl (t )B̂i jB̂kl ,

ĤFB(t ) ≡ h̄

2
gFB

i jmn(t )B̂i jF̂mn,

ĤF (t ) ≡ h̄

2
gF

mnop(t )F̂mnF̂op . (29)

While formally quartic, these Hamiltonians include linear,
quadratic and cubic bosonic Hamiltonians as well, through the
bosonic terms that involve â0. The quadratic case includes all
bosonic and fermionic free-field Hamiltonians, both relativis-
tic and nonrelativistic, because we have defined B̂00 = â0â†

0 =
1̂. The time argument of g(t ) is not written explicitly from now
on, but it is understood to apply. Renormalization is carried
out through cutoff dependent coupling constants.

As Ĥ is hermitian, the following constraints must be im-
posed on the coupling matrices:

gB
i jkl = gB∗

lk ji, gFB
i jmn = gFB∗

jinm, gF
mnop = gF∗

ponm. (30)

Without loss of generality, we also assume a permutation
symmetry with

gB
i jkl = gB

kli j, gF
mnop = gF

opmn. (31)

Cubic bosonic Hamiltonians such as â0â j â
†
k â†

l = â j â
†
k â†

l
are also of this general form. These describe parametric cou-
plings found in quantum science, and are used in low-noise
amplifiers for quantum measurements [71]. While not all
quantum field Hamiltonians in the standard model can be
analyzed without further extensions to the representation, the
class of Hamiltonians that is covered is both very large and
applicable to much of current quantum physics.

Quantum dynamics is described by the Schrödinger equa-
tion, which is

ih̄
d ρ̂

dt
= [Ĥ , ρ̂]. (32)

The corresponding dynamical evolution of the Q-function for
unitary evolution is given by

dQ

dt
= i

h̄
Tr{[Ĥ, �̂(α)]ρ̂}. (33)

After implementing the mappings given above, one obtains
three types of differential operator acting on Q:

dQ

dt
= [LB + LFB + LF ]Q. (34)

The identities of Eqs. (20) and (24) give for boson-boson
coupling, found in the Bose-Hubbard models:

LB = i

2
gB

i jkl [(∂l + α∗
l )αk (∂ j + α∗

j )αi

− (∂∗
i + αi )α

∗
j (∂∗

k + αk )α∗
l ]. (35)

For boson-fermion coupling, one obtains from Eq. (22):

LFB = −1

2
gFB

i jmn[(∂ j + α∗
j )αi(ξ

−
mm′ξ

+
n′n∂m′n′ − ξ+

mn)

− (∂∗
i + αi )α

∗
j (ξ+

mm′ξ
−
n′n∂m′n′ − ξ+

mn)]. (36)

The case of fermion-fermion coupling, as in the Fermi-
Hubbard model, gives

LF = −i

2
gF

mnop[(ξ−
oo′ξ

+
p′ p∂o′ p′ − ξ+

op)

× (ξ−
mm′ξ

+
n′n∂m′n′ − ξ+

mn)

− (ξ+
mm′ξ

−
n′n∂m′n′ − ξ+

mn)(ξ+
oo′ξ

−
p′ p∂o′ p′ − ξ+

op)].

The antisymmetry of ξmn means that one must use the
identity that ∂nm = −∂mn in order to restrict summations of
derivatives so that only independent fermionic variables are
summed over, with m < n. One can include decoherence and
reservoirs by adding them to the Hamiltonian. Such reservoirs
can be included in the dynamical equations, thus enlarging
both the Hilbert space and the phase space dimension. As a
result, unitary evolution is not a limitation.

Next, define an extended vector �α = αμ, where α j = α j ,
α j+Mb = α∗

j , ∂ j+Mb = ∂∗
j , which includes amplitudes and con-

jugates. If fermions are present, one must take account of
matrix antisymmetry, to include the fermionic variables. To
treat this, for indices ρ > 2Mb, we define extended indices
ρ(m, n) so that αρ(m,n) = ξmn, where m < n and ρ(m, n) =
2Mb + m + (n − 1)(n − 2)/2.

At this stage, bosonic terms with derivatives ∂0 can be
removed, since ∂0 ≡ 0. Amplitude terms with α0 ≡ 1 either
cancel, if they occur without derivatives (due to probabil-
ity conservation), or else they occur in products with other
derivatives, and so can be included in summations over the
derivatives with μ > 0.

This gives a total index range of 1, . . . , 2M, where 2M =
2Mb + M f (2M f − 1). We will assume that M f is even, from
particle-antiparticle or other symmetries, and hence that the
total range is even. Using an implicit Einstein summation
convention, over μ, ν = 1, . . . , 2M, and noting that constant
terms cancel due to the conservation of probability, one
obtains a complex time-symmetric Fokker-Planck equation
(TFPE), where

dQ

dt
= [LB + LFB + LF ]Q

=
[
− ∂

∂αν
Aν

α (�α) + 1

2

∂

∂αμ

∂

∂αν
Dμν

α (�α)

]
Q. (37)

From Eqs. (35) and (20), the diffusion term for the bosonic
case LB, with 1 � l, j � Mb is

Dl j
α (�α, t ) = i

M∑
i,k=0

gB
i jklαiαk . (38)

Letting l ′, j′ ≡ l + Mb, j + Mb, one sees that

Dl j
α = Dl ′ j′∗

α , (39)

and for unitary evolution there are no cross-terms Dl j′
α . Gen-

erally, the second-order coefficient Dμν
α (�α) depends on the

extended phase-space location �α. In cases of purely quadratic
Hamiltonians, the diffusion is either zero or constant in phase-
space.
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E. Traceless diffusion and time reversibility

For unitary quantum evolution, the diffusion matrix is di-
vided into two parts, one positive definite and one negative
definite, corresponding to diffusion in the forward and back-
ward time directions respectively. To prove this, we first show
that the corresponding Q-function time evolution has a TFPE
with a traceless diffusion matrix. That is, unlike standard dif-
fusion equations, we will prove that the Q-function dynamical
equation has an equal weight of positive and negative diagonal
diffusion terms.

For length reasons, just the Bose-Bose and Bose-Fermi
cases are analyzed here. Proof that the traceless property holds
in the Fermi-Fermi case is treated elsewhere. To map Hilbert
space time evolution to phase-space time evolution, the opera-
tor identities are utilized. In the boson-boson case of Eq. (38),
terms with nonzero l and j indices generate second-order
derivative terms which give the diffusion matrix. If terms that
multiply this have k = i = 0 the diffusion is constant, but oth-
erwise it depends on the phase-space coordinate �α. Diagonal
second-order terms are obtained when two derivatives act on
the same mode.

The kth diagonal diffusion term in complex variables ∂k

comes from from identities involving iĤB�̂ with 0 < k = l �
Mb, given in Eq. (38). The diagonal term in ∂k is accompanied
by the hermitian conjugate term derived from the reverse or-
dering, of form −i�̂ĤB, so that LB is real overall. This allows
the introduction of real quadrature variables qj, p j , defined
such that for μ = j � Mb:

α j = (q j + ip j )/2. (40)

Hence, the derivative terms in real variables are

∂

∂α j
= ∂

∂q j
− i

∂

∂ p j
. (41)

Defining q j = q j , q j+Mb = p j gives an extended 2M = 2Mb

dimensional real vector, which is written with a superscript as
qμ. Including the conjugate term from Eq. (39), and making
this transformation, the time-symmetric Fokker-Planck equa-
tion is

dQ

dt
=

[
− ∂

∂qν
Aν

q(�q, t ) + 1

2

∂

∂qμ

∂

∂qν
Dμν

q (�q, t )

]
Q , (42)

where the implicit summation is for μ, ν = 1, . . . , 2M, and
the diagonal diffusion terms in real variables are

D j j
q = −D j′ j′

q = 2Re
(
D j j

α

)
. (43)

Here, j′ = j + Mb, and as a result, on summing the diagonal
terms, the diffusion matrix with real variables is traceless, i.e.,
Tr[D] = 0. Given this analysis, the traceless property applies
to a general class of quadratic, cubic, and quartic Hamiltoni-
ans. There can also be variables with zero diffusion, which are
deterministic and hence also have traceless diffusion.

Q-function dynamical equations were investigated previ-
ously in special cases, including the anharmonic oscillator
[72] and the Dicke model [73]. The zero-trace result given
above is generally valid for Bose and Fermi quantum fields,
and is generic to second-order Q-function unitary evolution.
This is proved above for Bose-Bose coupled fields. From
Eq. (36), Bose-Fermi couplings can never give rise to diagonal

terms. The proof of traceless diffusion in the Fermi-Fermi case
is given elsewhere.

Traceless diffusion is preserved under both uniform rescal-
ing and orthogonal rotations: φ = OX , of the real quadrature
coordinates. Since the diffusion matrix of a real TFPE is real
and symmetric, it can always be transformed into a diagonal
form in the new variables φ, using orthogonal rotations. As a
result, the transformed phase-space variables can be classified
into three groups, having positive, zero or negative diffusion,
with the equation

dQ(φ)

dt
=LQ(φ)

= ∂μ

[
−Aμ(φ, t ) + 1

2
∂μDμμ(φ, t )

]
Q(φ). (44)

Here, ∂μ ≡ ∂/∂φμ. We focus in this paper on the Bose-
Bose case, and assume that there are no zero diffusion
variables, since these correspond to the trivial case of free
fields. The orthogonal rotation can always chosen for conve-
nience so that it results in a traceless diagonal diffusion with
Dμ > 0 for 0 < μ � Mb and Dμ < 0 for for Mb < μ � 2Mb.
This generates a characteristic structure which is universal for
unitary evolution with Hamiltonians of this form.

The above result shows that the phase-space vector φ can
be subdivided into two complementary pairs so that φ =
(x, y), where the x variables have a positive definite diffusion,
and the y variables have a negative definite diffusion. The
diffusion matrix is not the positive-definite type found in
classical diffusion processes. Hence, a different approach to
simulation is necessary, via diffusion in a higher space-time
dimension, as explained below.

F. Constant diffusion nonlinear cases

If the Hamiltonian has only quadratic terms, the diffusion
terms are either zero or constant in phase-space. In cases of
a nonlinear, number preserving quartic interaction there is a
nonlinear transformation that also gives constant diffusion for
the most common form of bosonic nonlinear coupling, namely
density-density coupling. The result is an alternative definition
of the transformed variable φ. Since we wish to focus on
constant diffusion cases, the proof of a transformation to a
constant diffusion TFPE is given in this section. We will show
that in this nonlinear case there is a TFPE with constant
diffusion, independent of φ, as well as being traceless and
diagonal.

This type of physics is found in the Bose-Hubbard model
and other bosonic quantum field theories [74,75].

On a lattice, consider a quartic Hamiltonian of form

ĤB = h̄
Mb∑
i j

[
ωi j â

†
i â j + 1

2
gi j â

†
i âiâ

†
j â j

]
. (45)

Using the identities of Eq. (20) again, the second-order deriva-
tive terms in α are

L(2)
B = igi j

2

∂

∂α j

∂

∂αi
α jαi + H.c. (46)

In this case, one may define a mapping, θ j = λ ln(α j ), where
λ is a scaling factor, so that in the new variables the diffusion
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FIG. 1. Transformations used in the phase-space. The original
complex mode amplitudes α are transformed first to constant-
diffusion mode amplitudes θ = λ ln (α), then mapped with a possibly
time-dependent mapping to real quadrature amplitudes φ = Tθ.

matrix Dθ
i j is constant, where

Dθ
i j = iλ2gi j . (47)

This transformation simplifies the time-symmetric Fokker-
Planck path integral. Path integrals for space-dependent
diffusion as in Eq. (44) exist [76], but are more complex. If
the diffusion is constant, as in quadratic Hamiltonians, this
step is unnecessary.

We now check that the traceless property persists after
making this variable change to logarithmic variables. The
Q-function is mapped to a set of constant diffusion, complex
phase-space variables θ, as shown in Fig. 1, which satisfy an
equation of form:

∂

∂t
Qθ = LθQθ . (48)

To prove the traceless property, a second mapping is
made to a real quadrature vector, φ = [φ1, . . . , φ2Mb], de-
scribed by the linear transformation φ = Tθ. In this constant
diffusion space, there are diagonal second derivative terms
together with conjugate terms such that Dθ

j j = e−2iη j |Dθ
j j |,

where Dθ
j j = iλ2g j j . The corresponding real variables are de-

fined in this case as

θ je
iη j = (x j + iy j )/2, (49)

where φ = (x, y). For a one-mode case, the mapping transfor-
mation matrix from complex logarithmic to real variables is

T =
[

eiη j e−iη j

−ieiη j ie−iη j

]
. (50)

As a result, the diagonal diffusion term in φ is

D j j = −D j′ j′ = 2
∣∣Dθ

j j

∣∣, (51)

where j′ = j + Mb. There is a positive diffusion in x and
negative diffusion in y as described in the previous section,
except with a constant diffusion matrix.

The result is a transformed Q-function, Q = Qθ |δθ/δφ|,
which evolves according to real differential equation. Intro-
ducing ∂μ ≡ ∂/∂φμ, for μ = 1, . . . , 2M, the time evolution
equation is a TFPE with a diagonal, constant diffusion identi-
cal to Eq. (44).

The transformed diffusion matrix is traceless as shown
previously, so that

∑
Dμμ = 0 . The phase-space probability

Q is positive, yet since the overall diffusion term D is not
positive definite, this is not a forward-time stochastic process
[77]. The form of Eq. (44) means that probability is conserved
by the dynamical equations, provided boundary terms vanish,
which is also required from the definition and Eq. (3), so that

for a 2M-dimensional real measure dφ:∫
dφQ(φ, t ) = 1 . (52)

The Q-function obeys a second-order partial differential
equation. Yet it describes a reversible process. Positive dis-
tribution functions in statistical mechanics commonly follow
a diffusion equation which is irreversible, owing to couplings
to a reservoir. Since the Q-function is a phase-space represen-
tation that is positive, it can be treated and sampled in a similar
way to a probability distribution.

III. TIME-SYMMETRIC STOCHASTIC ACTION

The Q-function for unitary evolution can be transformed
to satisfy a real partial differential equation, with a traceless
diffusion term that is not positive-definite. The resulting initial
value problem is not well-posed unless the initial conditions
have compact support in Fourier space [78]. Hence, Green’s
functions with delta-function initial conditions [79] leading to
a forward-time stochastic differential equation are not defined.

The alternative approach introduced here is to use Green’s
functions with both initial and final boundary conditions for
the TFPE, Eq. (44). Our goal is to derive a quantum action
principle [80] or path integral in Feynman’s terminology [38],
with a real action integral. The leads to probabilistic evolution
in space-time in which one can identify continuous sample
trajectories.

The traceless property of the Q-function diffusion means
that the phase space of φ is generally divisible into two M-
dimensional subvectors, so that φ = [x, y]. These have the
physical interpretation of complementary variables. The x
fields will be called positive-time fields, with indices in the
set T+, while the y fields will be called negative-time fields,
with indices in the set T−, so that

D =
[

dx 0
0 −dy

]
, A(φ) =

[
ax(φ)

−ay(φ)

]
. (53)

The dx,y matrices are assumed positive definite, where
dx

i j = {Di j} and dy
i j = {−Di+M, j+M} for i, j � M. This is a

more general scenario than a strictly diagonal diffusion, but
includes it as a special case. Hence, there are two positive-
definite differential operators, Lx,y, such that L = Lx − Ly,
where

Lx = − ∂x
i ax

i (φ) + 1
2∂x

i ∂x
j dx

i j,

Ly = − ∂
y
i ay

i (φ) + 1
2∂

y
i ∂

y
j d

y
i j . (54)

One usually solves for Q(φ, t ) at a later time t > t0, given
an initial distribution Q0(φ, t0). However, not having positive-
definite diffusion in y means that one cannot use standard
Green’s functions or propagators to propagate Q forward in
time, without requiring singular Green’s functions. One also
can not propagate Q purely backward in time, for the same
reason.

A. Input and output boundary values

We will define time-symmetric propagators relative to
combined boundary value conditions in the past and the fu-
ture for the TFPE. We introduce a notation P(φOUT|φIN) to
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FIG. 2. Quantum fields propagating in phase space, from initial
time t0 to final time t f . The x components propagate in the positive
time direction, while the y components propagate in the negative time
direction. The joint probability of input events is P(φIN, t ), where
φIN = (x0, y f ).

indicate the probability density of output event(s) φOUT given
input event(s) φIN. This does not imply time ordering, and is
different to the usage in quantum field theory [81] where time
ordering is implied. Both output and input events may include
past and future times.

The input boundary coordinates will be labeled φIN =
(x0, y f ). This indicates a boundary at t0 for positive-time fields
x, and at t f for negative-time fields y. The complementary
boundary φOUT = (x f , y0) is the output of the quantum pro-
cess. As explained above, the terms input and output are used
to indicate causality, not time ordering. The joint probabil-
ity of the input events in the past and future is defined as
P(φIN, t ), where t = (t0, t f ) are the times involved.

Defining dx and dy as M-dimensional real measures,
marginal distributions at the same time for x follow the usual
conventions where

Px(x, t ) =
∫

P(φ, t )dy , (55)

and marginal distributions for y are

Py(y, t ) =
∫

P(φ, t )dx . (56)

In some cases, the boundary values for the input distribu-
tion P(φIN, t ) are independent of each other. This implies that
one can write the joint probability of x0 in the past and and y f
in the future as a product of two independent distributions, so
that

P(φIN, t ) = Px(x0, t0)Py(y f , t f ). (57)

In general, there are correlations, and the boundary value
distribution P(φIN, t ) cannot be factorized. This is the more
general case that we analyze here. A graphical illustration of
this is given in Fig. 2. We use the convention that P(φ, t ) is a
general field probability, while Q(φ, t ) is a probability in the
restricted case which represents a quantum state.

B. Time-symmetric propagator

In contrast to the usual time-asymmetric propagator def-
initions [76], we now define a time-symmetric propagator
(TSP). This is a function G(φ, t |φIN, t ), relative to inputs
φIN = [x0, y f ] and times t = [t0, t f ], where t0 � t � t f . This
is defined to satisfy the Q-function evolution equation with
both initial and final delta-function boundary values:

∂

∂t
G(φ, t |φIN, t ) = LG(φ, t |φIN, t ). (58)

Dropping the conditional arguments for brevity, the general
equation of motion for the TSP is

dG(φ, t )

dt
=

[
−∂μAμ(φ) + 1

2
∂μ∂νDμν (φ)

]
G(φ, t )

= [Lx − Ly]G(φ, t ), (59)

with the property that G(φ, t ) is positive and normalized so
that ∫

G(φ, t )dφ = 1. (60)

The corresponding marginal distributions are given by

Gx(x, t |φIN, t ) =
∫

dyG(φ, t |φIN, t ),

Gy(y, t |φIN, t ) =
∫

dxG(φ, t |φIN, t ). (61)

The initial and final boundary conditions are delta-correlated
marginal distributions, where δ(x) is an M-dimensional real
Dirac delta function, so that

Gx(x, t0|φIN, t ) = δ(x − x0),

Gy(y, t f |φIN, t )= δ(y − y f ). (62)

This has the interpretation that, given input boundary values
φIN = [x0, y f ] at t0, t f , the probability density of obtaining the
field values φ = [x, y] at t is G(φ, t |φIN, t ).

Since L is a linear operator, any linear combination or inte-
gral of propagators also satisfies the propagator time evolution
equation, (58). As a result, provided that G(φ, t0|φIN, t ) can be
integrated with respect to a nonlocal joint distribution P(φIN)
to obtain a Q-function at t0, this gives a Q-function solution
for all times:

Q(φ, t ) =
∫

dφING(φ, t |φIN, t )P(φIN). (63)

When integrated over x f , P(φIN) is a Q-function marginal
distribution in y0 at time t0, while if integrated y0 it is a
Q-function marginal distribution in x f at time t f .

Having a nonlocal distribution P(φIN) for the Q-function
is not guaranteed in every case. A Q-function that is defined
initially does not guarantee that P(φIN) always exists. There
may be Hamiltonians and states without any corresponding
nonlocal distribution. This typically can occur in the case
of quantum superpositions. In such cases, one must define
additional constraints and conditional boundaries, which are
outside the scope of this paper.

C. Time-symmetric stochastic differential equation

To obtain a solution for the TSP, we introduce time-
symmetric stochastic differential equations to define a set of
stochastic paths. Subsequently, we will demonstrate that an
integral over paths is a solution for the TSP, and satisfies the
Q-function differential equation.

Time-symmetric stochastic path equations are stochastic
equations with both future and past boundary conditions
[82]. These will be written in an intuitive form similar to a
forward-backward stochastic differential equation [83]. The
time-symmetric stochastic differential equation or TSSDE is
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defined to have the following structure, expressed as an inte-
gral:

x(t ) = x0 +
∫ t

t0

ax(φ(t ′))dt ′ +
∫ t

t0

dwx,

y(t ) = y f +
∫ t f

t
ay(φ(t ′))dt ′ +

∫ t f

t
dwy . (64)

The two quadrature fields are propagated in the positive and
negative time directions respectively, while the independent
real Gaussian noise terms dw are correlated over short times
so that, over a small interval dt :〈

dwx
i (t )dwx

j (t )
〉 = dx

i jdt,
〈
dw

y
i (t )dw

y
j (t )

〉 = dy
i jdt,〈

dwx
i (t )dw

y
j (t )

〉 = 0. (65)

These equations unify two important features: time sym-
metry and randomness. Similar equations occur in stochastic
control theory, and there is literature on their properties [83],
in a modified form. In our equations, the boundary values in
x0 and y f are fixed rather than conditional on outputs. There
is no third field as in some control theory equations. Analytic
equations like this may be used to develop a stochastic pertur-
bation theory [84] for quantum fields, and in some cases may
have numerical iterative solutions.

While these provide insight into time symmetry, they
clearly cannot be treated using conventional algorithms for
ordinary stochastic differential equations. This can be recog-
nized by attempting to write the equations as ordinary forward
time stochastic differential equations. We may define ȳ(t ) as a
time-reversed copy of y(t ), i.e., let t− = t0 + t f − t , and

ȳ(t ) = y(t−) . (66)

The stochastic differential equation that results is

dx = ax(x(t ), ȳ(t−), t )dt + dwx,

d ȳ = − ay(x(t−), ȳ(t ), t−)dt − dwy . (67)

Here, x(t0) = x0 and ȳ(t0) = y f are now “initial” conditions,
but with the y coordinate replaced by ȳ. A time-symmetric
stochastic differential equation corresponds to stochastic
propagation with drift terms having fields at different times.
This nonlocality in time prevents the direct use of standard
local-time algorithms for solving the equations.

This behavior is not surprising, physically. If the fields had
local drift terms, they would be causal theories that satisfy
Bell’s theorem, which therefore do not correspond to quantum
theory.

D. Discretized TSSDE

To analyze the stochastic equations, consider a time-
symmetric stochastic trajectory discretized for times tk = t0 +
kε, with k = 0, . . . , n, so that t f = tn and φ f = φn, where
φk ≡ φ(tk ). The notation φk j ≡ (xk, y j ) is used for a field
with quadratures at two different times. We now define an
n-step path probability G([φ]|φ0n), where the input events are
φIN = φ0n.

Here [φ] = [φ0,φ1, . . . φn−1,φn], so this is the probability
density of stochastic paths with points [φ]. This is shown
diagrammatically in Fig. 3. This type of path probability

FIG. 3. Quantum fields propagating over multiple time intervals
in phase space. Their interactions can lead to correlations. Coupling
is indicated by green arrows.

is always defined relative to specific time-symmetric inputs,
φ0n ≡ (x0, yn).

To simplify results with no loss of generality, we use or-
thogonal transformations and rescaling dilatations on x and y,
so that each diffusion matrix is diagonal: hence dx,y = Id . The
discretized equations are given by

xk = xk−1 + ax
(
φεx

k

)
ε + �x

k,

yk−1 = yk + ay
(
φ

εy

k

)
ε + �

y
k. (68)

These have Gaussian real noises �x
k such that, at each step in

time,〈
�x

i �
x
j

〉 = εdδi j,
〈
�

y
i �

y
j

〉 = εdδi j,
〈
�x

i �
y
j

〉 = 0. (69)

The time-symmetric SDE can be written in more than one
equivalent discrete form. The discretized arguments of ax,y

generally are described by a 2 × 2 matrix of coefficients szk ,
where z = x, y; k = 1, 2, and 0 < szk < 1. These denote how
the arguments of ax,y are interpolated in terms of φk,φk−1
. The general discretized form of the drift argument is φs

k ,
interpolated so that

φs
k = (s1xk−1 + (1 − s1)xk, s2yk−1 + (1 − s2)yk ). (70)

These lead to equivalent discretized TSSDEs which all give
the same stochastic process as ε → 0. However, they do not
have the same path integral representations.

There are three particular types of TSSDE discretizations
that are important here. These will be labeled forms I, II, and
III, depending on the way that the discretized arguments to the
drift are calculated.

TSSDE I. The x arguments of ax,y are evaluated at the
earlier time, with y-arguments evaluated at the later time of
each step, so sz1 = 1, sz2 = 0:

xk = xk−1 + ax(φk−1,k )ε + �x
k,

yk−1 = yk + ay(φk−1,k )ε + �
y
k . (71)

This is an explicit equation, as the drift argument requires no
knowledge of the solution for the next step for either variable.
Such methods are similar to the Ito theory of ordinary stochas-
tic differential equations [79].

TSSDE II. Both arguments of ax,y are evaluated at the
beginning of each step in a forwards or backwards direction
respectively, so sx j = 1, sy j = 0:

xk = xk−1 + ax(φk−1)ε + �x
k,

yk−1 = yk + ay(φk )ε + �
y
k . (72)
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This is a quasiexplicit equation, since the drift argument for x
requires a knowledge of the next step for y and vice versa. As
a result, this has similar properties to type I.

TSSDE III. In this fully symmetric form, the arguments of
ax,y are evaluated at the midpoint of each step, so sz j = 1

2 .
Defining φ̄k = (φk + φk−1)/2 gives

xk = xk−1 + ax(φ̄k )ε + �x
k,

yk−1 = yk + ay(φ̄k )ε + �
y
k . (73)

This is an implicit algorithm [85], as each drift argument
requires knowledge of the solution for the next step in both
variables.

Such techniques are often used to treat stochastic differ-
ential equations, as the equations follow standard calculus
rules. This approach is similar to the Stratonovich theory of
ordinary stochastic differential equations [26,79,86]. There
are other discretizations possible as well, based on the general
interpolation formula above.

E. Path integral and action

To obtain a path integral representation, we generalize
methods used for forward stochastic differential equations
[87]. The path probability density G([φ]|φ0n, [�]) is condi-
tioned both on an input φ0n and a random noise vector, [�] =
�x

1,�
y
1, . . . ,�

x
n,�

y
n, where � j = (�x

j,�
y
j ) are independent

2M-dimensional real Gaussian noises. This conditional path
probability is a product of Dirac delta functions, since only
one path exists for a given initial condition and noise sample:

Gn([φ]|φ0n, [�] ) =
n∏

j=1

Njδ
2M (εv j − � j ). (74)

Here we define relative velocity fields v = (vx
j, v

y
j ) that corre-

spond to a particular discretization, given above

vx
j ≡ 1

ε
(x j − x j−1) − ax

(
φsx

j

)
,

v
y
j ≡ 1

ε
(y j−1 − y j ) − ay

(
φ

sy

j

)
. (75)

The normalization factor Nj ensures that each term is nor-
malized to unity when integrated over the output quadratures,
which are x j and y j−1, respectively. Since the delta-function
can be written in the form of δM (x j − f x

j )δ
M (y j−1 − f y

j ), the
normalization includes derivatives of f x,y

j . The simplest case
is if the stochastic drift is defined explicitly using the input
values of the quadrature field for that transition. This implies
that sx1 = 1 and sy2 = 0, which includes TSSDE types I and
II. For types I and II, we therefore have Nj = 1.

Using delta-function integration identities, the general nor-
malization is

Nj = Nx
j Ny

j =
∏

k

(
1 − ε

∂axk
(
φsx

j

)
∂xk

j

)(
1 − ε

∂ayk
(
φ

sy

j

)
∂yk

j−1

)
.

(76)
As a result, when there is an implicit drift, as in type III
discretization, the normalization is modified.

Employing a Fourier transform representation of the delta
function, where dk j is a 2M-dimensional real measure, this

becomes

G([φ]|φ0n, [�] ) =
n∏

j=1

∫
Njdk j

(2π )2M e−ik j (v jε−� j ). (77)

For the 2M real Gaussian noises �k , at each step in time, the
probabilities of �k are

P(�k ) = 1

(2πεd )M e−|�k |2/(2εd ). (78)

Hence the path probability conditioned on the inputs only can
be written as a weighted integral over the step �. This has the
form, after n steps, of a product of n successive one-step path
probabilities:

G([φ]|φ0n ) =
n∏

j=1

G(φ j−1,φ j ). (79)

Here, G(φ j−1,φ j ) = G j−1, j is the probability of a one-step
transition from φ j−1, j → φ j, j−1, over the time interval ε,
which is

G j−1, j =
∫

Njdkd� j

(εd )M (2π )3M e−ik·(v jε−� j )−|� j |2/(2εd ). (80)

This is integrated over � j by completing the square to give

G j−1, j =
∫

Njdk

(2π )2M e−ε[d|k|2/2+ik·v j ]. (81)

Integrating over k gives an action principle for the path
probability of the time-symmetric stochastic equation, in the
form

G[φ|φ0n ] = e−S0n . (82)

The time-symmetric action from t = t j to t = tn is defined
generally as

S jn =
n∑

k= j+1

Sk−1,k, (83)

where the one-step action for the jth step is S j−1, j = Sx
j−1, j +

Sy
j−1, j , with

Sx,y
j−1, j = Sx,y(φ j−1,φ j )

= ε

2d

∣∣vx,y
j

∣∣2 + ln
(√

N /Nx,y
j

)
, (84)

The normalization factor is N = (2πεd )M . Both type I or
type II discretizations have Nx,y

j = 1, and reduce to the same
continuous TSSDE.

The action is modified for type III discretization. This is
a second order form where each drift term ā is evaluated at
its midpoint value of φ̄k = (φk + φk−1)/2. Since this is an
implicit discretization, the normalization of the delta function
(74) as a function of the output variables φk,k−1 includes
derivatives of the drift, ā. Expanding the normalization factor
Nj in an exponential form, and including first-order terms in
ε, leads to a correction to the action [88]

S̄x,y(φk−1,φk ) = ε

2

[
1

d

∣∣v̄x,y
k

∣∣2 + ∇x,yāx,y
k

]
+ lnN

2
, (85)
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where

v̄x
k ≡ xk − xk−1

ε
− ax(φ̄k ), v̄

y
k ≡ yk−1 − yk

ε
− ay(φ̄k ).

(86)

These results are for the constant diffusion case and need
modification if the diffusion depends on φ.

IV. Q-FUNCTION AND PATH INTEGRAL

Next, we show that the integrated transition probability
defined as a path integral gives a time-symmetric propagator,
which therefore can generate a Q-function solution. This re-
quires showing that the path integral form proposed for the
TSP does satisfy the Q-function differential equation.

A. TSP equivalence theorem:

The TSP, G(φ, t j |φ0n, t ), is obtained by integrating the n-
step path probability Gn[φ] over all fields except φ j and the
inputs φ0n. Explicitly,

G(φ, t j |φ0n, t ) =
∫

D0n[φ]G[φ|φ0n ]δ(φ − φ j ), (87)

where the lower indices on the path integral measure define
the fixed endpoints:

D0n[φ] ≡ dy0dxn

n−1∏
k=1

dφk . (88)

Corollary. Provided the Q-function solution exists in in-
tegral form at initial time t0, the solution at all times is an
integrated path probability, multiplied by the joint probability
of the input fields φ0n:

Q(φ, t j ) =
∫

D[φ]δ(φ − φ j )Gn[φ]P(φ0n), (89)

where the path integral measure is over all the coordinates

D[φ] ≡
n∏

k=0

dφk . (90)

Proof. To demonstrate that integrating the conditional path
probability Gn[φ] gives a time-symmetric propagator, requires
showing that the propagator defined in (87) satisfies the
time-evolution equation, (58), and has marginal delta-function
boundaries in the past and future, (62).

General strategy. This a generalization of earlier proofs of
the equivalence between a path integral and a Fokker-Planck
equation [76,88]. Defining Gj (φ) ≡ G(φ, t j |φ0n, t ), and not-
ing that L = Lx − Ly,

Gj+1(φ) = exp (εLx − εLy)Gj (φ) + O(ε2).

It follows from the Baker-Haussdorf theorem that after
discretization and taking the limit of small time-step ε, the
discrete form of the differential equation (59) can be written
for 0 � j < n as

(1 + εLy)Gj+1(φ) = (1 + εLx )Gj (φ) + O(ε2). (91)

We will show that the postulated expansion in (87) for the TSP
at time t = t j satisfies (91) to first order in ε.

The path-integral expansions for the TSP at times t = t j

and t = t j+1 are

Gj (φ) =
∫

D0n[φ]e−S0nδ(φ − φ j ),

Gj+1(φ) =
∫

D0n[φ]e−S0nδ(φ − φ j+1). (92)

To prove (91), we introduce a hybrid probability for
φ j+1, j ≡ (x j+1, y j ), defined as

Ḡ(φ) =
∫

Don[φ]e−S0nδ(φ − φ j+1, j ) (93)

and we will show in the following that in the limit of ε → 0,

(1 + εLy)Gj+1(φ) = (1 + εLx )Gj (φ) = Ḡ(φ). (94)

Boundary values. First, we must prove that

G(φ, t0|φ0n, t ) ∝ δ(x − x0),

G(φ, tn|φ0n, t ) ∝ δ(y − yn). (95)

However, the existence of delta-function boundary values is
immediate. From (87), since D0n[φ] has no measure including
x0, it follows immediately that

G(φ, t0|φ0n, t ) =
∫

D0n[φ]Gn[φ]δ(φ − φ0) (96)

= δ(x − x0)
∫

D0n[φ]Gn[φ]δ(y − y0).

Similarly, since D0n[φ] has no measure including yn,

G(φ, tn|φ0n, t ) = δ(y − yn)
∫

D0n[φ]Gn[φ]δ(x − xn).

Single-step probability identity. We next prove a differential
identity for the single-step transition probability in x, which
factorizes from the transition probability in y at short times. As
ε → 0, using the Fourier representation of the step probability
in Eq. (81), the single step transition probability in x is

e−Sx
j, j+1 =

∫
dkx

(2π )M e−ε[d|kx |2/2+ikx ·vx
j+1]. (97)

Recalling the definition of relative velocity in Eq. (75), we use
a type II discretization, and define the drift for Sx

j, j+1 as

ax
j ≡ ax(φ j ),

ay
j ≡ ay(φ j+1). (98)

As a result, this can be written as

e−Sx
j, j+1 =

∫
dkx

(2π )M e−ε( d
2 |kx |2−ikx ·ax

j )−ikx ·(x j+1−x j ). (99)

Expanding to first order in ε, and taking derivatives of the
exponential with respect to x j , gives the identity that

e−Sx
j, j+1 = [

1 + εL̃x
j

] ∫
dkx

(2π )M e−ikx ·(x j+1−x j ), (100)

where L̃x
j is the adjoint of the differential operator Lx evalu-

ated at x j

L̃x
j ≡ d

2
∇2

x j
+ ax

j · ∇x j . (101)
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Equivalently, on carrying out the inverse Fourier transform,

e−Sx
j, j+1 = [

1 + εL̃x
j

]
δ(x j − x j+1) + O(ε2).

Hybrid probability. Inserting this expression into the ex-
pansion of the hybrid probability, (93), and integrating twice
by parts (assuming vanishing probability at the phase-space
boundaries), leads to

Ḡ(φ) =
∫

Don[φ]δ(x j − x j+1)δ(φ − φ j+1, j )

× [
1 + εLx

j

]
e−Sy

0n−Sx
0 j−Sx

j+1,n , (102)

where

Lx
j ≡ d

2
∇2

x j
− ∇x j · ax

j . (103)

On integration over x j , using the delta-function in x j , all
terms in the path integral involving x j can be replaced by x j+1.
The x coordinates are now relabeled so that x′

k = xk for k <

j and x′
k−1 = xk for k > j. As a result of the second delta-

function in x, inside the integral x j+1 ≡ x′
j = x, so that

Ḡ(φ) = [1 + εLx]
∫

N n

(
n−1∏
k=1

dx′
k

)(
n−1∏
k=0

dyk

)

× δ(φ − φ′
j )e

−S′y
0,n−S′x

0,n−1 . (104)

This has a contracted time path in x, since one of the x
integrals and its corresponding propagator is now removed.

Hybrid discretization. Here, φ′
k ≡ (x′

k, yk ), and a corre-
sponding action for S′x

k,k+1 is defined with a drift in x, y that
is as previously for k < j. For k � j, one now has a type I
discretization, since

a′x
k = ax

k+1 = ax(x′
k, yk+1),

a′y
k = ay

k = ax(x′
k, yk+1). (105)

This means that the hybrid propagator has a hybrid discretiza-
tion, part type I and part type II, with

S′
k−1,k = ε

2

[
v′T

k (dx )−1
v′

k

] + lnN . (106)

To keep the total number of integration variables the same,
a new output variable x′

n at t = tn is added to the integration
measure, with a corresponding action. The new drift terms are
independent of x′

n, as the modified action is a type I action,
since n � j.

The corresponding integration weighted by Sx′
n−1,n is nor-

malized, and equals unity. Hence, adding the new variable
and integration leaves Ḡ(φ) invariant. Since type I and type II
discretizations are identical in the limit of ε → 0, we therefore
have proved that

Ḡ(φ) = [1 + εLx]Gj (φ) . (107)

Next, carrying out the complementary procedure for the y
variable, we obtain a contraction in the number of y variables,
with a new variable added called y′

0. This also has a type
I action, and integrates to unity. The calculation is a mirror
image of the one above, leading to the required result:

Ḡ(φ) = [1 + εLy]Gj+1(φ) . (108)

This proves the required differential identity.

B. Time-symmetric quantum action principle

The results above show that the probability density for
quantum time evolution is given by a path integral over a real
Lagrangian, where in each small time interval the propagators
factorize. These equations can be solved using path integrals
over both the propagators.

The path then no longer has to be over an infinitesimal
distance in time, and the total propagators will not factorize.
This is a type of stochastic bridge [7–9], which acts in two
time directions simultaneously. The action functional S is an
integral over an effective Lagrangian, which is equivalent to a
discrete sum in the limit of small time steps:

lim
ε→0

S[φ] =
∫ t f

t0

L(φ, φ̇)dt + n lnN , (109)

with a number of steps n inverse to the step-size, so that
n ≡ (t f − t0)/ε. We note that the stochastic equation proba-
bilities are independent of the type of discretization, so any
discretization is possible. This continuum limit is most readily
obtained for the symmetric type III discretization, which is
known to reach a continuum limit uniformly for forward-time
path integrals [89–91], allowing the use of standard calculus.

In order to write the action in a unified form, we define a
combined, central difference Lagrangian as

L = Lx(φ, φ̇) + Ly(φ,−φ̇) , (110)

so that the action integral can be written in the positive time
direction for t0 < t < t f , with a total Lagrangian of

L =
∑

μ

1

2d
(φ̇μ − Aμ(φ, t ))

2 − V (φ). (111)

Here the potential term V includes contributions of opposite
sign from the positive and negative time fields, so that

V (φ, t ) = −1

2

∑
μ

∂μaμ(φ). (112)

This defines the total probability for an n-step open
stochastic bidirectional bridge, with constant diffusion, cen-
tral difference evaluation of the action, and fixed intermediate
points:

G([φ]|φIN ) = N ne− ∫ t f
t0

L(φ,φ̇)dt . (113)

On integrating over the intermediate points, with drift
terms defined at the center of each step in phase-space,
this can be written in a notation analogous to a quantum-
mechanical transition amplitude in a Feynman path integral.
One obtains the Q-function in this limit as

Q(φ′, t ′) =
∫

dμ[φ]δ(φ(t ′) − φ′)e− ∫ t f
t0

L(φ,φ̇)dt ′
P(φIN)

where tn = t0 + nε, and we integrate over all phase-space
points with a normalized measure:

dμ[φ] = lim
ε→0

N n
n∏

k=0

dφk . (114)

The paths φ(t ) are defined so that φIN = (x0, y f ), where
x(t0) = x0 and y(tn) = y f are defined at the initial and final
times respectively.
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V. EXTRA DIMENSIONS

Many techniques exist for evaluating real path integrals,
both numerical and analytic. There is a formal analogy be-
tween the form given above and the expression for a Euclidean
path integral of a polymer, or a charged particle in a mag-
netic field. Here we obtain an extra-dimensional technique
for probabilistic sampling of the time-symmetric path integral,
which also gives an algorithm for evaluating the solution to a
TSSDE. Similar results are known for forward time stochastic
equations [8,9].

A. Equilibration in higher dimensions

To make use of the real path-integral, one needs to proba-
bilistically sample the entire space-time path, since each part
of the path depends in general on other parts. To achieve
this, we add an additional “virtual” time dimension, τ . This
is used in the related statistical problem of stochastic bridges,
for computing a stochastic trajectory that is constrained by a
future boundary condition [7–9,92,93].

This extra-dimensional functional distribution, P ([φ], τ ),
is defined so that the probability tends asymptotically for large
τ to the required solution:

lim
τ→∞P ([φ], τ ) = G([φ]|φIN ) . (115)

The solution is such that φ(t ) is constrained so that x(t0) =
x0, and y(t f ) = y f , where x0, y f are randomly distributed as
P (x0, y f ) for the case of an nonlocal input boundary. We use
the Type III midpoint form of the Lagrangian.

It has been shown in work on stochastic bridges [8]
that sampling using a stochastic partial differential equation
(SPDE) can be applied to cases where one of the boundary
conditions is free. To define an SPDE the other boundary
condition on x is specified so that ẋ(t f ) = ax(φ(t f )), with a
boundary condition for ẏ so that ẏ(t0) = −ay(φ(t0)).

This is consistent with the open boundary conditions of
the path integral in real time, since in the limit of ε → 0,
the path integral weight implies that one must have ẋ(t f ) =
ax(φ(t f )) + O(

√
ε) and ẏ(t0) = −ay(φ(t0)) + O(

√
ε). The ef-

fect of the additional terms proportional to
√

ε vanish as
ε → 0, as they contributes a negligible change to the entire
path integral. This open boundary condition is necessary in
order to have a well-defined partial differential equation in
higher dimensions.

Extra-dimensional equilibration is seldom used for conven-
tional SDE sampling, as direct evolution is more efficient.
However, we will show that SPDE sampling is applicable
to time-symmetric propagation, where direct sampling is not
possible without additional iteration. In this section, a sim-
plification is made by rescaling the variables to make the
diffusion dμ(t ) independent of time and index, i.e., dμ(t ) = d ,
as in the previous section.

The SPDE is obtained as follows [9]. Firstly suppose that
P ([φ], τ ) satisfies a functional partial differential equation of

∂P
∂τ

=
∫ t f

t0

dt
∑

μ

δ

δφμ(t )

[
−Aμ(φ, t ) + d

δ

δφμ(t )

]
P .

(116)

In order that the asymptotic result agrees with the desired
expression for G, it follows from functional differentiation of
Eq. (79), that one must define A(φ, t ) so that

Aμ(φ, t ) = −d
δ

δφμ(t )

∫ t f

t0

L(φ, φ̇)dt ′. (117)

This is a variational calculus problem, with one boundary
fixed, and the other free. Variations vanish at the time bound-
aries where φ is fixed. At the free boundaries, we choose that
φ̇ = A. In either case, boundary terms are zero because they
occur in terms that vanish provided

�φν ∂L

∂φ̇μ
= �φν

d
(φ̇μ − Aμ) = 0 . (118)

As a result, there are two type of natural boundary terms that
allow partial integration to obtain Euler-Lagrange equations.
Either one can set �φμ = 0 to give a fixed Dirichlet boundary
term, or else one can set φ̇μ = Aμ, to give an open Neumann
boundary term. Hence, we choose to set x j = x j

0 and ẏ j = Ay j

at t = t0, while y j = y j
f and ẋ j = Ax j at t = t f . This allows

one to obtain Euler-Lagrange type equations with an extra-
dimensional drift defined as

Aμ(φ, t ) = d

[
d

dt

∂L

∂φ̇μ
− ∂L

∂φμ

]
= d

dt
(φ̇μ − Aμ) + (φ̇ν − Aν )∂μAν + d∂μV .

(119)

The functional Fokker-Planck equation given above is then
equivalent to a stochastic partial differential equation (SPDE):

∂φ

∂τ
= A(φ, t ) + ζ(t, τ ) , (120)

where the stochastic term ζ is a real delta-correlated Gaussian
noise such that

〈ζμ(t, τ )ζμ(t ′, τ ′)〉 = 2dδμνδ(t − t ′)δ(τ − τ ′). (121)

B. Coefficients

Introducing first and second derivatives, φ̇ ≡ ∂φ/∂t
and φ̈ ≡ ∂2φ/∂t2, there is an expansion for the higher-
dimensional drift term A in terms of the field time derivatives:

A(φ, t ) = φ̈ + Cφ̇ + U . (122)

Here, C is a circulation matrix that only exists when the usual
potential conditions on the drift are not satisfied [9], while U
is a pure drift without time-derivatives:

Cμν = ∂μAν − ∂νAμ

U μ = ∂μ

(
dV − 1

2

∑
ν

(Aν )2

)
. (123)

The function U acts to generate an effective force on the
trajectories. The final stochastic partial differential equation
that φ must satisfy is therefore

∂φ

∂τ
= φ̈ + Cφ̇ + U + ζ(t, τ ) . (124)
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The final result is a c-number field stochastic partial differ-
ential equation in an extra space-time dimension, including an
additional noise term. It has a steady state that is equivalent to
a full quantum evolution equation, and is identical to classical
evolution in real time in the zero-noise limit, as shown in the
next section.

The equations can be treated with standard techniques for
stochastic partial differential equations [94]. The equations
have nd + 1 dimensions in a manifold with nd space-time
dimensions. The simplest case, for a single mode, has nd +
1 = 2 dimensions. In computational implementations, one can
speed up convergence to the steady state using Monte-Carlo
acceleration [95].

C. Classical limit

The classical limit is for d → 0. In this limit the higher-
dimensional equations are noise-free and diffusive. Ignoring
the noise term, one obtains

∂φμ

∂τ
= φ̈μ + [∂μAν − ∂νAμ]φ̇ν − Aν∂μAν . (125)

We wish to show that the classical trajectory solution, φ̇ν =
Aν , is a possible steady-state solution. In this case, we obtain
for these trajectories

∂φμ

∂τ
= d

dt
Aμ − Aν∂νAμ. (126)

Therefore, on a noise-free trajectory, the second derivative
term simplifies to give

∂φμ

∂τ
= [φ̇ν − Aν]∂νAμ

and hence for the classical trajectory one obtains

∂φμ

∂τ
= Aμ(φ) = 0 . (127)

This extra-dimensional equation therefore has a steady state
solution corresponding to the integrated classical field evolu-
tion in real time, namely,

x(t ) = x(t0) +
∫ t

t0

ax(φ(t ′))dt ′,

y(t ) = y(t f ) +
∫ t f

t
ay(φ(t ′))dt ′ . (128)

Both the initial and final boundary term equations are
satisfied provided one chooses x(t0) = x0 and y(t f ) = y f , if
these are compatible, that is, if the dynamical equations have
a solution. If one uses these equations to solve for y(t0), the
solution can be rewritten in a more conventional form of a
classical solution with initial conditions:

φ(t ) = φ(t0) +
∫ t

t0

A(φ(t ′))dt ′. (129)

The importance of imposing future-time boundary condi-
tions in classical field problems like radiation reaction has
long been recognized in electrodynamics, including work by
Dirac [1], as well as Wheeler and Feynman [12]. In such the-
ories various field components typically require future-time
restrictions on their dynamics. Hence the fact that future-time

boundaries arise in the classical limit found here should not
be very surprising.

Dirac [1] described his result that effectively gives a future
boundary condition on electron acceleration in as “the most
beautiful feature of the theory.” He explains: “We now have
a striking departure from the usual ideas of mechanics. We
must obtain solutions of our equations of motion for which
the initial position and velocity of the electron are prescribed,
together with its final acceleration, instead of solutions with
all the initial conditions prescribed.”

If Dirac’s theory is compared with the classical limit ob-
tained here, there are are clear similarities. His approach gave
a dynamical condition required to derive the correct time
evolution, using a restriction on the future boundaries of the
radiation field. It is a striking feature of the present approach
that Dirac’s idea of a future boundary condition arises natu-
rally from the zero-noise limit of our equations.

D. Numerical methods

A variety of numerical techniques can be used to imple-
ment path integrals with a time-symmetric action. In this
paper we solve the equivalent higher-dimensional partial
stochastic differential equation with a finite difference im-
plementation. This permits Neumann, Dirichlet, and other
boundary conditions to be imposed. We also explain strategies
for dealing with future time boundaries, which is the most
obvious practical issue with this approach.

1. SPDE integration

First, we demonstrate convergence of the higher-
dimensional method, for an ordinary stochastic differential
equation. We use a central difference implicit method that
iterates to obtain convergence at each step, including an it-
eration of the boundary conditions. The method is similar to
a central difference method described elsewhere [85,94]. A
simple finite difference implementation of the Laplacian is
used to implement nonperiodic time boundaries.

In order to demonstrate convergence, Fig. 4 gives the
computed numerical variance in an exactly soluble example
of a stochastic differential equation with no drift term. We
treat one variable with C = U = 0, using a public-domain
SPDE solver [97] with a random Gaussian initial condition
of 〈x2

0〉 = 1, where

x(t ) = x0 +
∫ t

0
dwx . (130)

This is a case of pure diffusion, so one expects the final
equilibrium solution as τ → ∞ to be 〈x2(t, τ )〉 = 1 + t . From
Eq. (124), the corresponding higher-dimensional stochas-
tic process has boundary conditions of x(t = 0) = x0 and
ẋ(t = t f ) = 0, while satisfying a stochastic partial differential
equation:

∂x

∂τ
= ẍ + ζ (t, τ ) . (131)

From the numerical results in Fig. 4, the expected variance
is reached uniformly in real time t after pseudotime τ ∼ 2.5,
to an excellent approximation, reaching 〈x2〉 = 1.95 ± 0.05 at
t = t f = 1 and τ = 5.
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FIG. 4. Example of SPDE solution with an extra dimension, for
a stochastic differential equation The component x propagates in
the positive time direction as a random Wiener process. The ex-
pected variance for τ → ∞ is 〈x2(t, τ )〉 = 1 + t , with 〈x2(0, τ )〉 =
1. Fluctuations are sampling errors due to a finite number of
10000 trajectories. Variance error bars due to sampling errors were
estimated as ±2.5%, in good agreement with the difference be-
tween exact and simulated variance. A semi-implicit finite difference
method [85,96] was used to integrate the SPDE in τ , with step-sizes
of �τ = 0.0002 and �t = 0.03. Errors from the finite step-size in τ

were negligible. Finite differences were also used for the derivatives
in t .

For the cases treated here, our focus is on accuracy rather
than numerical efficiency. The purpose of the examples in this
paper is to demonstrate how this approach works in simple
cases. Checks were made to quantitatively estimate sampling
error and step-size error in τ . Substantial improvements in
efficiency appear possible. It may be feasible to combine
Ritz-Galerkin [98], spectral [94], or other methods [99] with
boundary iteration. The MALA technique for accelerated con-
vergence is also applicable [95].

VI. EXAMPLES

Hamiltonians in quantum field theory of the type analyzed
here have quadratic and quartic terms. In this section, we con-
sider two elementary examples, with details in single-mode
cases. We consider a Hamiltonian of the form Ĥ = Ĥ0 + ĤS .
Here, Ĥ0 is a free field term, and ĤS describes quadrature
squeezing, found in Hawking radiation or parametric down-
conversion. Each of these cases will be treated separately
below for simplicity, but they can be combined if required.

A. Free-field case

After discretizing on a momentum lattice, and using the
Einstein summation convention, the free-field Hamiltonian
can be written in normally ordered form as

Ĥ = h̄ωi j â
†
i â j . (132)

The corresponding Q-function equations are

Q̇α = −iωi j

[
∂

∂α∗
j

α∗
i − ∂

∂αi
α j

]
Qα . (133)

Hence, the coherent amplitude evolution equations are

dαi

dt
= −iωi jα j . (134)

The simplest case is a single-mode simple harmonic oscil-
lator Hamiltonian, such that: Ĥ = h̄ωâ†â . This corresponds
to a characteristic equation of α̇ = −iωα. The expectation
value of the coherent amplitude in the Q-function has the
equation:

∂

∂t
〈α〉Q = −iω〈α〉Q, (135)

which is identical to the corresponding Heisenberg equation
expectation value. There is no diffusive behavior or noise for
these terms, and as a result the Q-function has an exactly
soluble, deterministic quantum dynamics. The evolution is
noise-free, with no need to make the transformations outlined
above, since from (127), the steady state in extra dimensions
is given by solving (134). There is no difference between
classical and quantum dynamics for coherent states, as pointed
out by Schrödinger [100].

B. Squeezed state evolution

Next, we consider quadratic interaction terms that are
mapped to second-order derivatives in the Q-function. These
cause squeezed state generation with quantum noise. They
lead to a model for quantum measurement and quantum
paradoxes [2].

Following the notation of Eq. (28), the general squeezing
interaction term is ĤS = h̄

∑M
i j=0 [gi j00â†

i â†
j + g00i j âiâ j]/2.

Such quadrature squeezing interactions are found in many
areas of physics [71]. They illustrate how the Q-function
equation behaves in the simplest nontrivial case where there
is a diffusion term that is not positive-definite. We will inves-
tigate this in some detail, with numerical examples. This case
illustrates how complementary variance changes are related to
complementary time propagation directions.

Physically, these terms arise from parametric interactions,
and lead to the dynamics that cause quantum entanglement.
They are widespread, occurring in systems ranging from
quantum optics to black holes, via Hawking radiation. The
simplest case, with gi j00 = δi j , is a single-mode quantum
squeezing Hamiltonian:

Ĥ = ih̄

2
[â†2 − H.c.]. (136)

1. Q-function dynamics

We can calculate directly how the Q-function evolves in
time. Applying the correspondence rules as previously, one
obtains a time-symmetric Fokker-Planck type equation, now
with second-order terms. Combining these terms into one
equation gives

dQα

dt
= −

[
∂

∂α
α∗ + 1

2

∂2

∂α2
+ H.c.

]
Qα . (137)

Using the standard quadrature definitions of Eq. (40) one
has α = (q + ip)/2. The real phase space variables of Eq. (49)
with positive and negative diffusion are found by noting that
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eiη = i, so making a variable change with iα = (x + iy)/2 =
(iq − p)/2, we obtain

dQ

dt
= [

∂xx − ∂yy + ∂2
x − ∂2

y

]
Q . (138)

This demonstrates the typical behavior of unitary Q-
function equations. The diffusion matrix is traceless and
equally divided into positive and negative definite parts. In this
case the x quadrature decays, but has positive diffusion, while
the y quadrature shows growth and amplification, but has
negative diffusion in the forward time direction. The amplified
quadrature, which corresponds to the measured signal of a
quantum parametric amplifier, has a negative diffusion and is
constrained by a future time boundary condition.

If initially factorizable, the Q-function solutions can al-
ways be factorized [101] as a product with Q = QxQy. Then,
if t− = t0 + t1 − t , the time evolution is diffusive, with an
identical structure in each of two different time directions:

dQy

dt−
= ∂y[y + ∂y]Qy,

dQx

dt
= ∂x[x + ∂x]Qx. (139)

The corresponding forward-backwards SDE is uncoupled,
with decay and stochastic noise occurring in each time direc-
tion:

x(t ) = x(t0) −
∫ t

t0

x(t ′)dt ′ +
∫ t

t0

dwx,

y(t ) = y(t f ) −
∫ t f

t
y(t ′)dt ′ +

∫ t f

t
dwy , (140)

where 〈dwμdwν〉 = 2δμνdt . From these equations one can
calculate immediately that

d

dt
〈x2〉 = 2(1 − 〈x2〉),

d

dt−
〈y2〉 = 2(1 − 〈y2〉). (141)

This equation for the variance time evolution implies that the
variance is therefore reduced in each quadrature’s intrinsic dif-
fusion direction, for an initial vacuum state, with the solution
in forward time given by

〈x2(t )〉 = 1 + e−2t , 〈y2(t )〉 = 1 + e2t . (142)

Therefore the variance reduction occurs in the forward time
direction for x, giving rise to quadrature squeezing for an
initial vacuum state, and in the backward time direction for y,
leading to gain in the forward time direction. However, neither
antinormally ordered variance is reduced below 1. This is
the minimum possible, corresponding to zero variance in the
unordered operator case.

With this choice of units, the diffusion coefficient is d = 2,
so the total Lagrangian of Eq. (111) is

L = 1
4 (ẋ + x)2 + 1

4 (ẏ − y)2 − 1. (143)

The net effect of the stochastic processes in opposite time
directions is that growth in the uncertainty of one quadrature
in one time direction is canceled by the reduction in uncer-
tainty of the other quadrature in the opposite time direction.
This behavior is shown in Figs. 5–9, which illustrate numer-
ical solutions of the forward-backward equations using the
techniques of the previous section. These solutions use 6400
trajectories, and hence include sampling error.

FIG. 5. Variance of SPDE solution with an extra dimension for a
quantum amplifier. The unsqueezed quadrature y propagates in the
negative time direction, with boundaries fixed in the future. The
extra-dimensional stochastic partial differential equation is solved
out to τ = 5, with a future time Dirichlet boundary at t = 1 of a
specified Gaussian distribution of y with the correct variance at all
τ , and a past time Robin boundary at t = 0 with a fixed derivative.
Fluctuations are sampling errors due to a finite number of 6400
stochastic trajectories. Other details as in Fig. 4.

Three-dimensional graphs show equilibration in the ex-
tra dimension. Two-dimensional graphs show results near
equilibrium at τ = 5, with plots of variance in x, y versus real
time t and virtual time τ .

C. Comparison to operator equations

Defining quadrature operators ŷ = â + â† = q̂ and x̂ =
i(â − â†) = −p̂, this physical system has the well-known
behavior that the two variances change exponentially in

0 0.2 0.4 0.6 0.8 1
t

1

2

3

4

5

6

7

8

9

<
y2 >

FIG. 6. Example of SPDE solution with an extra dimension. The
unsqueezed quadrature variance y propagates in the negative time
direction, with results obtained at virtual time τ = 5. The expected
variance for τ → ∞ is 〈y2(t )〉 = 1 + e2t , and is shown as the dotted
line. Fluctuations are sampling errors due to a finite number of 6400
stochastic trajectories. The two solid lines are plus and minus one
standard deviations from the mean. Other details as in Fig. 4.
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0 1 2 3 4 5
0

0.5

1

1.5

<
x2 >

FIG. 7. The equilibration in τ of the squeezed quadrature vari-
ance x propagating in the positive time direction, with results
obtained at real time t = 0.5. Full equilibration is achieved for τ � 1.
Other details as in Fig. 6.

time [102], in a complementary way. Given an initial vac-
uum state in which 〈x̂2(0)〉 = 〈ŷ2(0)〉 = 1, the Heisenberg
equation solutions for the variances are

〈x̂2(t )〉 = e−2t , 〈ŷ2(t )〉 = e2t . (144)

Hence, the x̂ quadrature is squeezed, developing a variance
below the vacuum fluctuation level, and the ŷ quadrature is
unsqueezed, developing a large variance. This maintains the
Heisenberg uncertainty product, which is invariant.

Once operator ordering is taken into account, this gives
an identical solution to the Q-function solution in Eq. (142),
because the operator correspondences are for antinormal or-
dering. If we use {} to denote antinormal ordering, then

〈{x̂2(t )}〉 = 1 + e−2t , 〈{y2(t )}〉 = 1 + e2t . (145)

FIG. 8. Variance of SPDE solution with an extra dimension. The
squeezed quadrature x propagates in the positive time direction,
using a partial stochastic differential equation with with a past time
Dirichlet boundary at t = 0 of a specified Gaussian distribution in x
with the correct variance, and a future time Robin boundary at t = 1
with a specified derivative. Other details as in Fig. 6.

0 0.2 0.4 0.6 0.8 1
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FIG. 9. Example of SPDE solution with an extra dimension.
The squeezed quadrature variance x, propagates in the positive time
direction, with results obtained at virtual time τ = 5. The expected
variance for τ → ∞ is 〈x2(t )〉 = 1 + e−2t , shown as the dotted line.
Fluctuations are sampling errors due to a finite number of 1600
stochastic trajectories. The two solid lines are plus and minus one
standard deviations from the mean. Other details as in Fig. 4.

In both cases, there is a reduction in variance in the direction
of positive diffusion. If there is an initial vacuum state, then
quadrature squeezing occurs in x in the forward time direction,
with a variance reduced below the vacuum level. Backward
time squeezing occurs in y, which has forward-time gain.

D. Higher-dimensional stochastic equation

In the matrix notation used elsewhere, this means that we
have d = 2, and

A =
[−x

y

]
, (146)

with c = 0, so that the quantum dynamics occurs as the steady
state of a higher-dimensional equation:

∂φ

∂τ
= φ̈ − φ + ζ(t, τ ), (147)

where 〈ζμ(t, τ )ζ ν (t ′, τ ′)〉 = 4δμνδ(τ − τ ′)δ(t − t ′), with
boundary values such that

x(t0) = x0, y(t f ) = y f , ẋ(t f ) = −x(t f ), ẏ(t0) = y(t0).
(148)

These are called mixed boundary conditions. They are
partly Dirichlet (specified value), and partly Robin (specified
linear combination of value and derivative). Numerical solu-
tions for the squeezed x equations are given in Figs. 8 and 9,
while those for the unsqueezed y equations are given in Figs. 5
and 6. The effects of sampling error are seen through the two
solid lines, giving one standard deviation variations from the
mean. Exact results are included via the dashed lines.
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VII. SUMMARY

The existence of a time-symmetric probabilistic action
principle for quantum fields describes a different approach to
the understanding of quantum dynamics. Neither imaginary
time nor oscillatory path integrals are employed. More gen-
erally, time evolution through a symmetric stochastic action
can be viewed as a dynamical principle in its own right. It
is equivalent to the traditional action principle of quantum
field theory. The advantage is that it is completely probabilis-
tic, even for real-time quantum dynamics. Although not all
commonly used Hamiltonians are included here, extensions
to larger classes of quartic quantum field Hamiltonians appear
feasible.

A property of this method is that it can provide an ontologi-
cal interpretation of quantum mechanics. This quantum action
principle can give a description of a reality that underlies the
Copenhagen interpretation. The picture is of physical fields
propagating both from the past to the future and from the fu-
ture to the past. This time-symmetric interpretation, does not
require a collapse of the wave-function. Such ontological in-
terpretations are different to hidden variable theories [27,103],
which only allow causality from past to future. As a result,
one can have quantum features including vacuum fluctuations,
sharp eigenvalues and even Bell violations [2,27], within a
realistic and local framework.

The present paper has focused on the conceptual basis
of this approach, and a proof of equivalence between quan-
tum field dynamics and a time-symmetric stochastic action.

The nonlocal boundary conditions used are different to local
boundary conditions, and will not necessarily be equivalent
to every quantum state, which are defined locally in time.
Conditional boundaries are also possible in principle. These
correspond to a larger set of possible Q-functions and Hamil-
tonians, but are outside the scope of the present paper.

The power of rapidly developing petascale and exascale
computers appears well-suited to these approaches. Enlarged
spatial lattices and increased parallelism are certainly needed.
Yet this may not be as problematic to handle as either expo-
nential complexity or the phase problems that arise in other
approaches. It is intriguing that the utility of an extra di-
mension is widely recognized both in general relativity and
quantum field theory. One may speculate that extending this
action principle to curved space-time may yield novel quan-
tum theories. This could lead to new approaches to unification.
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