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Symmetry-protected topological (SPT) phases are gapped phases of matter that cannot be deformed to a
trivial phase without breaking the symmetry or closing the bulk gap. Here we introduce a notion of a topological
obstruction that is not captured by bulk energy gap closings in periodic boundary conditions. More specifically,
given a symmetric boundary termination we say two bulk Hamiltonians belong to distinct boundary obstructed
topological phases (BOTPs) if they can be deformed to each other on a system with periodic boundaries, but
cannot be deformed to each other in the open system without closing the gap at at least one high-symmetry
surface. BOTPs are not topological phases of matter in the standard sense since they are adiabatically deformable
to each other on a torus, but, similar to SPTs, they are associated with boundary signatures in open systems such
as surface states or fractional corner charges. In contrast to SPTs, these boundary signatures are not anomalous
and can be removed by symmetrically adding lower-dimensional SPTs on the boundary, but they are stable
as long as the spectral gap at high-symmetry edges/surfaces remains open. We show that the double-mirror
quadrupole model of [W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Science 357, 61 (2017)] is a
prototypical example of such phases, and present a detailed analysis of several aspects of boundary obstructions
in this model. In addition, we introduce several three-dimensional models having boundary obstructions, which
are characterized either by surface states or fractional corner charges. Furthermore, we provide a complete
characterization of boundary obstructed phases in terms of symmetry representations. Namely, two distinct
BOTP phases correspond to equivalent band representations in the periodic system which become inequivalent
upon restricting the symmetry group to that of the open system. This is used to shown that for a given open
boundary, there is only one class of BOTPs which corresponds to a local representation of the symmetry of the
open system and thus can be designated as the trivial phase. All other BOTP classes do not correspond to local
representation of the open system and as a result necessarily exhibit a filling anomaly or gapless surface states.
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I. INTRODUCTION

A symmetry-protected topological (SPT) phase is a gapped
phase of matter that cannot be adiabatically deformed to a
trivial phase without breaking the symmetry or closing the
bulk energy gap [1–8]. For free fermion systems with internal
symmetries, a complete understanding of SPTs was achieved
in the pioneering work of Refs. [4,9–11]. In any given symme-
try class and dimension (d), an SPT hosts anomalous gapless
(d − 1)-dimensional surface states whose existence is tied to
the nontrivial bulk topology. This connection between bulk
and boundary topological properties is known as a bulk-
boundary correspondence.

For spatial or crystalline symmetries, the relationship be-
tween bulk and boundary topological signatures can be more
subtle [12,13]. On one hand, there are topological crystalline
phases, such as mirror Chern insulators [14,15], that exhibit a
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conventional bulk-boundary correspondence signaled by the
appearance of two-dimensional (2D) gapless surface states
on any mirror-invariant surface plane. On the other hand,
less traditional types of surface states, known as higher-order
surface states [13,16–25], which have a lower dimensionality,
e.g., states confined to corners or hinges of the sample, are
also possible in systems with crystalline symmetry. Even in
the absence of any midgap surface (or higher-order boundary)
states, additional signatures such as fractional charge at cor-
ners [26,27] or defects [16,28–30] can be used to distinguish
different SPTs. Furthermore, there are some bulk SPTs pro-
tected by crystalline symmetries that are not associated with
surface states or boundary fractional charges at all. For in-
stance, two atomic insulators corresponding to filling the same
Wyckoff positions, but with orbitals that transform differently
under site symmetries, cannot be smoothly deformed to each
other, but they cannot be distinguished by surface states or
corner charges either [29,31–33]. Thus, for SPTs protected
by crystalline symmetries, bulk topological distinctions do not
always imply boundary signatures in the form of gapless states
or fractional charges at the boundary.

The purpose of this work is to investigate the reverse
question. Rather than asking whether the distinction between

2643-1564/2021/3(1)/013239(38) 013239-1 Published by the American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.013239&domain=pdf&date_stamp=2021-03-15
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1103/PhysRevResearch.3.013239
https://creativecommons.org/licenses/by/4.0/


KHALAF, BENALCAZAR, HUGHES, AND QUEIROZ PHYSICAL REVIEW RESEARCH 3, 013239 (2021)

two bulk SPTs can be captured by a boundary signature, we
ask whether two systems which exhibit different boundary
signatures, e.g., low-energy modes or fractional charges, nec-
essarily correspond to topologically distinct systems in the
bulk. There is an obvious counterexample to this statement
corresponding to the case where nontrivial SPTs are placed on
the boundary of a trivial bulk. For example, one can imagine
gluing 2D layers on the surface of a three-dimensional (3D)
trivial insulator. If these layers are gapless in their 2D bulk,
then the 3D system will have surface states. If the layers are
2D topological insulators instead, then the system will exhibit
gapless hinge modes. However, these boundary signatures
are not associated with a bulk property. These phases have
been dubbed “extrinsic higher-order” phases, and their surface
states can be removed or “peeled off” by means of symmet-
ric boundary manipulations[13,24]. However, this definition
does not distinguish the cases where the boundary modes are
completely decoupled from the bulk, e.g., a completely trivial
bulk is attached to a nontrivial boundary, from those where
the boundary modes are associated with the bulk in some way
such that they can be created or destroyed by tuning bulk
parameters.

One of the first examples of the latter phenomenon is
provided by the quadrupole model of Ref. [17]. This is a
2D model with gapped bulk and edges that hosts quantized
fractional charge at the corners. Two symmetry variants of
the model were considered: one with fourfold rotation sym-
metry C4z which satisfies (C4z )4 = −1, and the other with
two anticommuting mirror symmetries. In the former case,
the quadrupole phase is a topological phase in the standard
sense: it is an obstructed atomic limit [32], which denotes an
atomic insulator whose charge centers are displaced relative
to the underlying positive atoms, and which is separated from
the trivial atomic limit by a bulk gap-closing phase transition.
However, in the latter case, the quadrupole phase is not a
topological phase, in the standard sense, since the value of
the quadrupole moment can be changed without closing the
bulk gap (in periodic boundary conditions). The topology in
this model is captured by a more subtle distinction contained
in the spectrum of the Wilson loop operators (Wannier spec-
trum), or in the entanglement spectrum [20,34], rather than the
bulk energy spectrum. This was argued to imply that the two
phases of the model are separated by an edge (rather than a
bulk) phase transition when considered with open boundary
conditions [17,18]. Indeed, since both the gaps in the bulk
and on the edge protect the quantized corner charge, one can
imagine the corner charge delocalizing along the edges and
changing values if the edge gap closes.

Despite the number of subsequent works that have studied
several aspects of the quadrupole model and its general-
izations, the subtle topological distinction captured by the
double-mirror quadrupole insulator (DMQI) has ramifications
that have been mostly overlooked. In particular, several ques-
tions regarding the nature of topological distinctions that are
not captured by a bulk phase transition remain unanswered.
These include the following: (i) how can one, in general,
define a topological distinction that does not involve a gap
closing phase transition in the bulk? (ii) Are there other ex-
amples of models in two or three dimensions that exhibit
similar phenomenology? (iii) Under what conditions does

an obstruction in connecting two Wannier spectra indicate a
gap-closing transition at the boundary? and (iv) How is this
related to boundary signatures, e.g., fractional corner charge,
or boundary states, in a general setting?

In this work, we answer these questions by introduc-
ing the concept of a boundary obstructed topological phase
(BOTP) that captures distinctions between Hamiltonians that
can be adiabatically connected with periodic boundary con-
ditions, but cannot be connected for symmetric surface
terminations with open boundary conditions. We provide a
general definition of such distinctions, and show how they
can be understood in terms of the Wannier spectra as well
as real-space symmetry representations. We show that the
presence of topologically robust boundary modes in BOTPs
depends on the lattice termination, and, inversely, that for
any BOTP there is a choice of boundary characterized by
topologically robust modes protected by a boundary gap
closing.

In order to make the presentation as clear as possible, we
will first start with detailed explanations of different aspects
of the boundary obstruction concept that are realized in the
DMQI. Then we will move on to discuss the general aspects
of boundary obstructions. After reviewing the DMQI model
in Sec. II A, we provide a real space framework for its bound-
ary obstruction in Sec. II B, followed by a detailed analysis
of the Wannier spectra, and how they relate to the physical
edge spectra of particular surface terminations in Sec. II C.
Afterwards, we establish how the boundary obstruction in the
DMQI model is related to the existence of fractional corner
charge via a detailed symmetry analysis of the model with
open boundaries in Sec. II D. Finally, in Sec. II E we show
how the notion of boundary obstructions in the DMQI can be
understood in terms of restricting the bulk (periodic) symme-
try representations to representations of the point group of the
open system.

After the detailed study of the DMQI model, we intro-
duce the general definition of boundary obstructed phases
and discuss their stability from a homotopic point of view in
Sec. III A. In Sec. III B we present a definition of BOTPs from
the point of view of the symmetry representations in the open
system and show how to diagnose them through the symmetry
representations of the Wannier spectrum.

Afterwards, we discuss other possible 2D models with
boundary obstructions in Sec. IV B and show that, apart from
the DMQI (and variants of it), all such models require spe-
cific, complicated surface terminations to probe the boundary
obstructions and the associated corner charges. In Sec. V
we introduce a general recipe to generate 3D models with
various types of boundary obstructions from a 2D building
block. Such obstructions can be associated with fractional
corner charges, fractional hinge charge density (Sec. V B), or
boundary states (Sec. V C) depending on the choice of the 2D
building block. For example, in the latter case we introduce
two 3D models built from either a 2D Chern insulator or a
2D quantum spin Hall insulator with robust one-dimensional
(1D) states localized at their hinges. We also provide a com-
plete characterization of all the 3D models using the Wannier
spectra. Finally, we close with some concluding remarks and
discussion in Sec. VI.

013239-2



BOUNDARY-OBSTRUCTED TOPOLOGICAL PHASES PHYSICAL REVIEW RESEARCH 3, 013239 (2021)

FIG. 1. Lattice model used to define the quadrupole insulator in
Eq. (1). In (a), dashed lines have a relative negative sign to account
for a flux of π threading each plaquette. The flux is the origin of
the anticommuting reflection operations. (b) Band structure of the
quadrupole insulator with γx/λx = 0.5 and γy/λy = 0.4. Each energy
band is twofold degenerate for a total of four bands.

II. 2D QUADRUPOLE INSULATOR AND BOUNDARY
OBSTRUCTIONS

A. Review of the quadrupole insulator model

We start our discussion by reviewing the DMQI model
introduced in Ref. [17]. It consists of four orbitals describing
spinless fermions arranged on a 2D rectangular lattice with
dimerized hopping amplitudes along the x- and y-directions,
and π -fluxes threaded through each plaquette as shown in
Fig. 1. The Bloch Hamiltonian is given by

H(k) = [γx + λx cos(kx )]�4 + λx sin(kx )�3

+ [γy + λy cos(ky)]�2 + λy sin(ky)�1, (1)

where γx and γy are hopping amplitudes within a unit cell
along x and y, respectively, and λx and λy are the intercell hop-
ping amplitudes to nearest neighbor unit cells. The negative
signs, represented by the dashed lines in Fig. 1(a), correspond
to our gauge choice for the π -flux threaded through each
plaquette. The �0,...,4 matrices satisfy {�i, � j} = 2δi, j , and are
represented explicitly by �0 = σ3τ0, �k = −σ2τk , �4 = σ1τ0,

for k = 1, 2, 3, where σ0,...,3 (τ0,...,3) denote the Pauli matrices,
and the tensor product is implicit.

The model in Eq. (1) has reflection symmetries along both
x and y, which for spinless electrons satisfy M2

x = M2
y = 1.

They are represented by

MxH(kx, ky)M†
x = H(−kx, ky), Mx = σ1τ3,

MyH(kx, ky)M†
y = H(kx,−ky), My = σ1τ1. (2)

The model is also invariant under the combination MxMy =
C2z, where C2z is a twofold rotation symmetry. The π -flux
leads to the anticommutation of the two reflection operators
{Mx, My} = 0. As a result, C2z satisfies (C2z )2 = −1, as would
be the case for spinful fermions. Other than the crystalline
symmetries, the model H(k), as written, also has (spinless)
time-reversal symmetry given by complex conjugation T =
K, as well as chiral symmetry {H, �0} = 0. As a result, it lies
in class BDI, though these internal symmetries are not crucial
for the conclusions.

One important aspect to highlight here is that, due to the π

fluxes, the spatial symmetries of the model as defined above

TABLE I. Character table of the point group Dπ
2 defined in the

main text. The point group is isomorphic to D4 in the absence of a π

flux.

Rep./class {1} {C2
2z} {C2z} {My} {Mx}

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 1 −1 1 −1
B2 1 1 −1 −1 1
Ē 2 −2 0 0 0

already include some gauge transformations. As a result, the
symmetry representation in question is projective. Although
the implementations of Mx and My themselves are gauge de-
pendent, the quantity

MxMyM−1
x M−1

y = −1 (3)

captures the gauge-invariant plaquette flux. We note that since
the flux attachment does not affect the translation symmetries
(Tx and Ty still commute), and since the spatial symmetries
are symmorphic, the full space group is given by a simple
product of the point group F = Dπ

2 and the group of 2D trans-
lations i.e., G = F × Tx × Ty. The projective representation
considered can be equivalently understood as a Z2 extension
of the point group D2 defined by Eq. (3). We refer to such
Z2 extension with a π superscript, i.e., Dπ

2 . The point group
Dπ

2 has four 1D, irreducible representations (A1, A2, B1, B2),
and one 2D irreducible representation (Ē ) (see Table I). We
notice that the full projective representation defined by Eq. (3)
is equivalent to a double (spinful) representation for the space
group 25 (Pmm2) restricted to the 2D plane or equivalently
the layer group 23 (pmm2). This aspect was discussed in
the original works [17,18], and investigated in more detail
recently [35], but for the rest of this work we will focus on
the spinless version to simplify the intuition for the degrees of
freedom in the unit cell.

The energy spectrum of the Hamiltonian (1) is twofold
degenerate and gapped across the entire bulk Brillouin zone
(BZ) (cf. Fig. 1) unless both |γx/λx| = 1 and |γy/λy| = 1.
Hence, we can connect the Hamiltonians at any pair of points
in the (γx/λx, γy/λy)-plane without closing the bulk gap. This
implies the absence of any bulk topological distinctions in the
model. We note that the presence of C4z symmetry alters this
conclusion since it forces λx = λy = λ and γx = γy = γ , thus
changing the sign of |γ /λ| − 1 is necessarily accompanied
by a bulk-gap-closing phase transition, which indicates that
the model has at least two distinct bulk-protected topological
phases.

Despite the absence of bulk topological distinctions in
the model protected by mirror symmetries, the authors of
Refs. [17,18] have uncovered a more subtle topological dis-
tinction encoded in the topology of the Wannier bands instead.
The Wannier bands along the x- (y-) direction are obtained
as the eigenspectrum of a Wilson loop operator along this
direction for a fixed momentum ky (kx) [36,37]. The Wilson
loop operator is denoted Wb(k), where b is the direction along
which the operator is taken in the Brillouin zone. Wb(k) is
a unitary operator whose eigenvalues have the form e2π iνb(k).
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FIG. 2. (a) Band structure of the 2D quadrupole insulator with
open boundaries in a single direction, y (left) or x (right). The
blue bands correspond to the bulk band continuum, and the black
bands that are slightly separated from the bulk bands are localized at
the edges. (b) Wannier bands νy(kx ) (left) and νx (ky ) (right), with
a quantized Wannier band polarization of px,y = py,x = 1/2. The
Wannier spectra are topologically equivalent to the surface bands in
(a) when we identify the gap around νi(k) = 1/2 to represent the
surface gap; see Sec. II C. (c) Local density of states at zero energy
LDOS(r) = −Im tr(H (r) + iη)−1/π for a small broadening η = 0.1
in a system with open boundaries in x and y. The inset shows the
existence of zero energy states inside the gap.

The values νb(k) are defined modulo one and represent the
positions of the charge centers (within the unit cell) of hy-
brid Wannier functions that are maximally localized in the
b-direction, but are delocalized Bloch waves in the perpen-
dicular direction parameterized by the transverse momentum
k [36,37]. For the DMQI model, the two Wannier bands of
the occupied states are generally gapped and symmetrically
displaced away from the high-symmetry lines νb = 0 and
νb = 1/2 [cf. Fig. 2(b)]. Among other things, this indicates
that there is no spectral flow as would be the case, for example,
for a strong topological insulator [38].

Whenever the two Wannier bands are separated by gaps
from above and below we can consider the projector onto one
of these two bands. This projector is effectively projecting
onto the ground state of a 1D reflection-symmetric insulator
with one electron per unit cell. Such an insulator can be
characterized by a half-quantized polarization p, measured
in integer units of the charge, distinguishing the cases where
the charge center is at the center (p = 0), or the edge (p =
1/2), of the 1D unit cell. Since there are two possible sets
of Wannier spectra, i.e., one along the x-direction and one
along the y-direction, there are two distinct quantized Wannier
band polarizations px,y = 0, 1/2 and py,x = 0, 1/2 where pi, j

denotes the polarization in the j-direction for a band taken
from the Wilson loop in the i-direction. This yields a Z2 × Z2

invariant capturing the topology of the Wannier bands. Such
invariants are protected by the gap in the Wannier spectrum
rather than the energy spectrum, which means that their value
can be changed without going through a bulk gap closing. As
we will explain in detail later, these types of transitions can
in some cases be associated with an energy gap closing at the
edge, rather than the bulk, when the system is considered with
open boundary conditions in both directions. This will be the
topic of Sec. II C.

For pν = (px,y, py,x ) = (1/2, 1/2), the model exhibits
midgap corner modes when considered on a rectangular ge-

ometry with open boundaries in both directions, (and when
the boundary coincides an edge of the unit cell). How-
ever, these corner modes are protected by chiral symmetry
which can be broken without changing the Wannier band
polarization (whose quantization relies on only the mirror
symmetries). Thus, these corner modes are not generically
associated with the quantized Wannier band polarization.
Instead we can associate the (1/2, 1/2) phase with corner
charge [17,18,26,29,39] as will be discussed in detail in
Sec. II D. It is worth noting that the fractional corner charge
can be removed by adding edge degrees of freedom. Adding
fractional corner charge to the trivial phase will interchange
which phase we identify as topologically nontrivial, but the
fact that the two phases can be distinguished by the fractional
corner charge remains true. This topological distinction will
be discussed in Sec. II D.

Following this review of the DMQI, we will dedicate the
remainder of this section to showing that the topology of the
DMQI can be captured using the notion of edge topological
obstructions, a type of topological obstruction that is present
only when the model is placed on certain geometries with
open boundary conditions. In particular, we will provide an
intuitive picture for a topological obstruction that is associated
with an edge gap-closing transition rather than a bulk one.
Furthermore, we will show how the Z2 × Z2 topological dis-
tinction encoded in the Wannier band polarizations is related
to the corner charge, which is determined by only a single
Z2 invariant that distinguishes pν = (1/2, 1/2) from the other
three cases. We note here that picking pν = (1/2, 1/2) as the
nontrivial phase relies on the boundary termination conven-
tion shown in Fig. 1, which is chosen such that the vertical
(horizontal) edge is invariant under My (Mx), and the edge lies
at the border of the unit cell depicted in the figure (denoted
by x, y = ±1/2). As we will discuss later, the choice of the
boundary decides which Wannier phase is distinguished from
the others. In all cases, however, the resulting classification for
a fixed boundary is Z2. This is similar to the Su-Schrieffer-
Heeger chain where changing the boundary termination by
half a unit cell will change the identification of the trivial and
obstructed atomic limits.

B. Real space picture

In the following, we will present an understanding of the
edge topological obstruction of the DMQI in terms of a real
space picture. At half-filling, the space of filled bands is Wan-
nier representable, i.e., it is possible to find a basis of localized
symmetric orbitals that span the subspace of filled bands.
In a Wannier representable system, localized orbitals are la-
beled by their so-called Wyckoff position Q = {qi} which
denotes a set (symmetry orbit) of spatial positions qi with
i = 1, . . . , NQ, which is invariant as a whole under the sym-
metry group G. The positions qi can map to each other under
some elements of G, qi = giq for some reference q, but they
are invariant under a (site symmetry) subgroup Gq ⊆ G.1 NQ

1The site symmetry groups for different elements qi in the same
Wyckoff position are equivalent up to conjugation by an element in
G, so we denote them by the same symbol Gq.
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FIG. 3. Wyckoff positions for the space group of the DMQI
model, with site symmetry groups Dπ

2 , D1, and C1, for those Wyckoff
positions with multiplicity 1, 2, and 4, respectively. Figure adapted
from Ref. [44].

denotes the size of the set of spatial positions qi and is called
the Wyckoff multiplicity of position Q. Wannier representable
(atomic) insulators have electronic configurations constructed
by decorating the various Wyckoff positions with orbitals
that transform under the site-symmetry representations of Gq.
These different Wannier representable phases transform under
space group representations that are induced from a local
representation of Gq [40,41], and are each associated with a
band representation (BR) [32,40–43] that encodes both its
transformations under the symmetry group, and its Zak-Berry
phases in momentum space. A short derivation of the band
representation from the local representation of Gq is presented
in Sec. III B.

In the DMQI case, the full space group is a direct product
of the point group F = Dπ

2 and the group of translations
of a rectangular lattice in two dimensions, G = F × T . As
previously mentioned, it can be thought of a Z2 extension
of the layer group 23 (pmm2) using Eq. (3). This group
has the same set of Wyckoff positions as the original layer
group: (i) four maximal Wyckoff positions with multiplicity
1 corresponding to positions lying at the intersection of the
two mirror-invariant lines, i.e., at positions (0,0), (0, 1/2),
(1/2, 0), and (1/2, 1/2) (labeled 1a, 1b, 1c, and 1d , respec-
tively) with Gq coinciding with the full point group F ; (ii) four
Wyckoff positions with multiplicity 2 corresponding to posi-
tions lying along one of the mirror-invariant lines, (±x, 0),
(±x, 1/2), (0,±y), (1/2,±y) (labeled 2e, 2 f , 2g, and 2h,
respectively) with Gq = D1; and (iii) one general Wyckoff po-
sition 4i with multiplicity 4 at four generic symmetry-related
points (±x,±y) where Gq = C1. The positions in the unit cell
associated with these labels are shown in Fig. 3.

To illustrate the absence of a bulk obstruction in the DMQI
model, consider a translationally invariant lattice with Mx and
My symmetries having periodic boundary conditions.2 For a
filling of two electrons per unit cell, there are only three

2In general, point group operations act nonlocally in real space,
and generically relate orbitals in different unit cells. However, with
periodic boundary conditions one can use translation symmetry on a
transformed orbital to shift it back to the initial unit cell. This allows
us to represent the different point-group operations as an action on
Wannier centers inside a unit cell.

FIG. 4. Deformation of the Wannier centers (open circles), in the
double-mirror quadrupole model, from the 1a to the 1d Wyckoff
position along movable Wyckoff positions. We see that from panel
(b) to panel (c) we cannot preserve the symmetry at the edges.

allowed options for placing the atomic orbitals: (i) both are
placed at the same maximal Wyckoff position, (ii) they are
placed at a Wyckoff position of multiplicity 2, or (iii) the two
orbitals are placed at different maximal Wyckoff positions.
Case (iii) has a nonvanishing polarization of 1/2 along x or
y (or both) which rules it out for the DMQI model for which
both polarizations vanish. Interestingly, cases (i) and (iii) may
be adiabatically deformed into each other in some cases, i.e.,
they may belong to equivalent band representations. This is
the case when the two electrons (per cell) transform as a 2D
representation of the Dπ

2 point group, i.e., when the matrix
representations of the two mirror operators anticommute when
acting on the electron orbitals. To show this, we note that
equivalence between two band representations can be demon-
strated if there is a symmetric, adiabatic deformation between
the two configurations; see Refs. [32,45] and Appendix B. In
Appendix A we show that in order to carry out such a contin-
uous deformation between Wyckoff position configurations,
the two mirror operators are required to anticommute, which
is exactly the case for the DMQI model. The necessity for
anticommutation of mirror operators was previously proven
in Refs. [17,18] using the symmetry indicators of the Wannier
bands, where it was shown to be linked to the existence of
gaps in the Wannier spectra.

In the following, we will present an alternative and more
intuitive argument based for the equivalence of these repre-
sentations based on an illustration of real space deformations.
This will be backed by a more rigorous analysis in subsequent
sections. In Fig. 4 we explicitly show how to deform the
configuration with both electrons at 1a to the one where both
are at 1d while preserving the symmetry and the bulk gap.
There are two distinct ways to do this. The first one goes
through 1c by first moving horizontally through 2e then verti-
cally through 2h, whereas the second goes through 1b by first
moving vertically through 2g then horizontally through 2 f .
Such deformations can be written in terms of deformations of
the parameters of the Hamiltonian. For example, the deforma-
tion 1a → 1b → 1d starts with the parameters γx = γy �= 0
and λx = λy = 0, which yields Wannier orbitals centered at
1a. Next, we gradually increase λx and decrease γx to get to
λx �= 0 and γx = 0 whose Wannier orbitals are centered at 1b.
Finally, we increase λy and decrease γy to get to γx = γy �= 0
and λx = λy = 0 which yields Wannier orbitals centered at
1a. The center of the Wannier orbitals in these cases can be
obtained easily since all of these are fully dimerized limits.
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It is instructive again to compare to the model with C4z

symmetry for which the movable Wyckoff positions 2e, 2 f ,
2g, 2h are not allowed. In this case, it is impossible to move
two electrons from 1a to 1d without breaking the symmetry,
indicating that the two correspond to distinct bulk phases.
In terms of the Hamiltonian parameters, C4 symmetry forces
λx = λy and γx = γy. Under this constraint, it is impossible
to go from λx = λy �= 0, γx = γy = 0 (corresponding to 1a)
to λx = λy = 0, γx = γy �= 0 (corresponding to 1d) without
going through the point γx = γy = λx = λy where the bulk
Hamiltonian is gapless.

Let us now see what happens in the presence of a boundary
termination which we take, for definiteness, to be a rectangle
whose horizontal (vertical) edges are parallel to the x (y) axis
and lie at a position x, y = 1/2. This means that the edges of
the sample coincide with the the edge rather than the center
of our chosen unit cell. We then imagine how the bulk defor-
mations explained in the previous paragraph, namely, the two
possible deformations connecting 1a to 1d either through 1b
or 1c, are affected by the presence of the vertical and horizon-
tal edges. Such deformations are carried out by changing the
parameters λx,y and γx,y of the Hamiltonian while keeping the
boundary fixed. For definiteness, we consider a trajectory of
bulk Hamiltonians H(t ) such that H(0) = H1a and H(1) =
H1d which, upon choosing a boundary termination, induces
a trajectory of Hamiltonians in the open system Hobc(t ) (we
provide a precise description of this in Sec. III A). Deep
inside the bulk, H(t ) and Hobc(t ) are the same, so that the
picture of sliding the Wannier centers explained above makes
sense inside the bulk of the open system. In addition, if the
Hamiltonian Hobc(t ) is gapped for all t , we may be tempted
to assume that the position of the charge centers remain well
defined also close to the edge as we change t . However, the
schematic illustration of Fig. 4 suggests that this is impossible,
as we now discuss in detail.

To explain the intuitive picture behind the boundary ob-
struction depicted in Fig. 4, let us consider the trajectory
connecting 1a to 1d through 1c. We note that in the presence
of the vertical boundary at x = 1/2, the electron filling of
position 1c on the edge is half of its filling in the bulk (since
such a site is shared by two unit cells when in the bulk, but
one of them is now absent on an edge). This means that there
is only one electron at the 1c position at the edge, instead of
two. This makes it impossible to vertically move it to position
1d while preserving the symmetry and energy gap. Similarly,
the presence of the horizontal edge at y = 1/2 prohibits the
deformation 1a → 1b → 1d as position 2 f is unavailable at
the edge. Thus, with open boundaries we can pass from 1a
to 1b or 1c, but not to 1d, which distinguishes 1d from the
other three configurations in the presence of open, symmetric
boundaries.

To summarize, Fig. 4 suggests there are two ways to move
two electrons from 1a and 1d: one of which goes through
position 1c and one through 1b. Importantly, each of the two
edges (x or y) prohibits only one of the two trajectories.
Thus, if we open the boundaries along only one direction
by considering the system on a cylinder, it is still possible
to deform 1a to 1d , and thus they are not distinguished.
However, once we take open boundaries along both the x-
and y-directions (with an edge termination consistent with the

unit cell), these two atomic configurations cannot be continu-
ously connected while preserving the symmetry. This picture
suggests the DMQI exhibits what we will call an edge ob-
struction wherein two bulk Hamiltonians which are smoothly
deformable in a periodic system (i.e., in the bulk) are not con-
tinuously deformable in the open system, i.e., any trajectory
connecting them will involve a gap closing on the edge or
breaking the symmetry. In the following two subsections, we
will expand on the intuitive understanding presented here by
presenting two rigorous formulations of the boundary obstruc-
tion in the system: one in terms of edge phase transitions,
and the other in terms of a Wannier sliding argument in the
open system.

C. Wannier bands and edge spectrum

We now switch our attention to the diagnosis of the edge
obstruction in terms of the Wannier spectrum. As discussed
in Sec. II A, and Refs. [17,18], the Wannier bands of the
DMQI model can be characterized by a Z2 × Z2 invariant
pν = 1

2 (�(1 − |γx/λx|),�(1 − |γy/λy|)) [where �(x) is the
step function]. Using the correspondence between the Wan-
nier spectrum and the edge spectrum [46], we may naively
think that the DMQI has four distinct phases that cannot be
smoothly connected to each other without closing the energy
gap at the edge. This, however, contradicts the analysis of the
previous sections as well as the result of Refs. [17,18], which
found two, rather than four, distinct phases distinguished by
the corner charge (or alternatively the quadrupole moment).

The resolution to this puzzle lies in the observation that the
edge spectrum and the Wannier spectrum differ in one funda-
mental aspect, despite being continuously deformable to each
other. Namely, the Wannier spectrum is periodic, whereas the
edge spectrum is not. This means that of the two gaps of the
Wannier spectrum, one at ν = 0 and one at ν = 1/2, only
one corresponds to the actual energy gap at the edge. Thus,
only Wannier transitions which involve closing this particular
gap correspond to actual edge obstructions even though gap
closings at either ν can act to change Wannier topology; this
is an important subtlety that we treat in detail below. The
determination of which Wannier gap corresponds to the edge
energy gap depends on details, including the surface termina-
tion as we will see below.

To understand the relationship between a surface spectrum
and a Wannier spectrum, let us follow Ref. [46] in implement-
ing the edge via the replacement

H → Hobc(x) = PφM (x)P + M(1 − P), (4)

where P is the projector onto the filled bands of the periodic
Hamiltonian Hpbc and φM (x) is a regularized linear potential
given by

φM (x) =
{

x, |x| < M
sgn(x)M, |x| > M.

(5)

For a given filling specified by a chemical potential μ satisfy-
ing −M < μ < M, this Hamiltonian reduces to the spectrally
flattened bulk Hamiltonian with filled (empty) states at en-
ergy −M (M) in the bulk. Thus, Hobc(x) has the same filled
states as Hpbc deep within the sample, and it implements the
vacuum Hamiltonian, where all eigenstates are empty (trivial
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FIG. 5. Spectrum for the Hamiltonian Hobc(x) implementing the
edge termination with the linear potential φM (x) [Eq. (5)] truncated
at M = 2.5. We can see that the spectrum for energies localized close
to the edge matches exactly the Wannier spectrum. Bulk states are all
accumulated at energies ±M.

projection operator), far outside the sample. Although the ex-
istence of an edge obstruction does not depend on the details
of the chosen potential φ(x), the choice (5) makes the connec-
tion to Wannier bands manifest since the linear potential sets
a direct proportionality between distance and energy.3

The resulting spectrum of Hobc is shown in Fig. 5. We can
see that the spectrum for the states localized close to the edge
consists of several copies of the Wannier spectrum shifted
relative to each other by some integer. The rest of the spectrum
far away from the edge accumulates close to the energies ±M
and represent states in the bulk (−M) or outside of the sample
(+M). It is clear from Fig. 5 that, in this potential, the edge
termination is decided by choosing an energy that separates
the filled states inside the sample from the empty states out-
side, i.e., an “edge chemical potential.” The linear form of
the potential φM (x) gives a direct relation between the edge
chemical potential and the “position” of the edge termination.
Since the edge energy spectrum is just repeated copies of the
Wannier spectrum, the edge chemical potential determines a
corresponding “Wannier chemical potential” (WCP). The key
implication of this analysis is that only Wannier gap closings
that happen at a position corresponding to the WCP indicate a
gap closing in the edge energy spectrum. This establishes the
important link between gap closings in the Wannier spectrum
and at the edge.4

Similar to the previous subsection, we take a unit cell
centered at 1a (modulo integers) with edges lying on the lines
x = 1/2 and y = 1/2 (positions 2h and 2 f ) that intersect at the

3To match the units between energy and distance, we note that the
Hamiltonian Hobc(x) is a dimensionless band-flattened Hamiltonian
where filled (empty) bands correspond to −M (+M). Similarly, the
position x is measured in units of the lattice constant and can be taken
to be dimensionless.

4Throughout this work, a gap closing at the edge means that the
states for which the gap closes are localized close to the edge with
localization length much smaller than the system size.

FIG. 6. Diagram of the phases of the Wannier bands of the DMQI
model, Eq. (1). On the yellow and blue lines a Wannier gap-closing
transition occurs in the Wannier spectra Wx and Wy, respectively.
The gap closing occurs either at νi = 0 or νi = 1/2 as indicated. At
the intersection of the two lines, marked with a red dot, the bulk spec-
trum is gapless. To each region, we can associate the Wannier band
(nested) polarization pν

Q, with Q the associated maximal Wyckoff
position. Black dots indicate specific configurations corresponding
to the plots (a)–(e) in Fig. 7, where we show the evolution of Wx

and Wy along the path 1, indicated with a dashed line. The phase
(1/2, 1/2)1d is always separated from the remaining ones by a Wan-
nier gap closing at the Wannier chemical potential μ = (1/2, 1/2),
and hence is separated by a gap closing at the physical boundary for
our choice of boundary termination. Choosing a different path from
(a) to (e), for example, dashed line 2, would still imply a boundary
gap closing although at a different edge.

position 1d where the corner is located. This termination cor-
responds to the WCP νx = 1/2 and νy = 1/2. Consequently,
a Wannier gap closing at νx = 1/2 or νy = 1/2 represents a
genuine edge gap closing in our convention, whereas a gap
closing at νx = 0 or νy = 0, does not. Instead the latter type
of gap closing indicates mixing between different states at
the edge, or states at the edge mixing with the bulk, without
closing the edge gap.

Using the preceding analysis, we can now show that for our
choice of lattice termination, the state having pν = (1/2, 1/2)
is distinct from the other three Wannier polarization config-
urations. The latter three can all be continuously connected
while preserving symmetry, but there is an edge obstruction
when trying to go from one of (0, 0), (1/2, 0), (0, 1/2) to
(1/2, 1/2). We can use Fig. 6 to illustrate this conclusion.
This figure provides a diagram of all possible Wannier band
phases as a function of the ratios γx/λx and γy/λy. The blue
central square in the diagram corresponds to the Wannier
polarization pν = (1/2, 1/2); whereas other regions corre-
spond to Wannier polarization equal to either pν = (1/2, 0)
(orange regions), pν = (0, 1/2) (red regions), or pν = (0, 0)
(white regions). As we can see from the figure, going from
the (1/2, 1/2) phase to any other phase involves at least one
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FIG. 7. Correspondence between real-space configurations and Wannier bands in the DMQI model, Eq. (1). [(a)–(e)] Wannier center
location and nested (Wannier band) polarizations along a path illustrated schematically in Fig. 6 (path 1). A Wannier gap closing transition
happens between panels (a) to (b) at νy = 0, and between (d) and (e) at νx = 1/2. The latter happens at the Wannier chemical potential and
corresponds to a boundary gap closing, and consequently to a topological phase transition. [(f)–(h)] Wannier spectra for cylindrical geometries
for the three Wannier phases in (a)–(e). Wannier eigenvalues in red have eigenstates that are localized on the edges of the cylinder. These
results exactly match the configurations of the real space pictures in (a)–(e). The panels are labeled by the Wannier band polarization pν

Q where
the subscript is an indication of the maximal Wyckoff position Q that is associated to pν . The arrows in (a)–(e) are drawn with their center at
Q as visual guide.

Wannier transition at νx = 1/2 or νy = 1/2, whereas going
between any of the three other phases can be achieved without
a Wannier transition at νi = 1/2. We can conclude that, in
our convention, the (1/2, 1/2) phase is separated from the
other three phases by an edge gap closing, whereas the three
other phases are continuously connected, i.e., any pair of
them can be smoothly connected without closing the edge
gap or breaking symmetry. This is the resolution to the dis-
crepancy between the topological characterization in terms
of edge spectrum versus Wannier spectrum. We note that if
we changed our edge termination, e.g., choosing to terminate
the unit cell at x = 0, y = 1/2, the only effect would be to
permute which of the four polarization configurations should
be distinguished from the other three.

It is also worth pointing out that the the equivalence of
edge and Wannier spectra concerning the gaps applies only
for a linear potential. In general, the two are continuously
rather than smoothly connected such that a gap in one does
not imply a gap in the other. This was pointed out in a recent
work [47] which studied a modification of the DMQI with
further neighbor hopping. This means that, in general, differ-
ent choices of the function φM (x) in (4) can move the “phase
boundaries” between different obstructed phases. On the other
hand, the overall number of phases does not depend on such a
choice since they can be diagnosed by discrete features such
as filling anomalies or symmetry representations. We will
discuss the detailed dependence on the boundary termination
in Sec. III A.

Having set up this background, we can now study the
connection between Wannier polarization and the real space
picture of the edge obstruction. Figure 7 shows a detailed

version of the deformation process in Fig. 4, and illustrates
the different Wannier polarization configurations associated
with each intermediate state. In Fig. 7(a) we have a phase
characterized by pν = (0, 0). As the Wannier centers become
separated horizontally away from 1a, a first Wannier transition
occurs between Figs. 7(a) and 7(b) where the y-Wannier gap
closes at νy(π ) = 0. If we interpret the edges of the geometry
to be open instead of periodic then this transition, which
changes pν to (1/2, 0), leaves the outermost Wannier centers
(those on the left an right edges) unpaired [red open circles
in Figs. 7(b) and 7(c)] and pinned to the position νy = 0. In
contrast, the bulk Wannier centers are still free to move and
thus can adopt Wannier eigenvalues that come in pairs ν,−ν

along both x or y.
We can verify this piece of the deformation through the

explicit calculation of the Wannier spectra νx (νy) of the
DMQI on a cylindrical geometry in which boundaries are
closed along x (y) and open along y (x). In Fig. 7(f) we see
that all of the Wannier eigenvalues come in ±νi pairs, which
matches our picture of having bulk Wannier functions with
none isolated on the boundaries. In comparison we can look at
Fig. 7(g), in which there is a pair of isolated Wannier eigenval-
ues (for every unit cell along the y-direction) exactly pinned
at νy = 0. If we look at the eigenstates associated to these
pinned Wannier eigenvalues, we find that one set is localized
at one of the open, vertically oriented edges, and the other set
is on the other vertical edge. Notice, however, that since their
eigenvalues are pinned to νy = 0, these edge Wannier states
lie at the center of the unit cell in the direction parallel to
the edge, and thus amount to a trivial edge polarization. Also,
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notice that such edge isolated Wannier states do not exist for
the νx spectrum.

Now we can proceed with the deformation process along
y. A second Wannier transition occurs between Figs. 7(d) and
7(e). At this transition, there is a gap closing in the x-Wannier
bands at νx(π ) = 1/2, so that in Fig. 7(e) pν = (1/2, 1/2).
Notice the appearance of unpaired Wannier centers at the hor-
izontal edges with Wannier eigenvalues fixed to νx = 1/2 [red
solid circles in Fig. 7(e) along horizontally oriented edges].
Since the vertical edge has reflection symmetry, the values
νy for states on this edge are quantized to 0 or 1/2. Being
initially pinned at νy = 0 after the first Wannier transition,
they undergo an edge phase transition that changes their value
to νy = 1/2 [red solid circles in Fig. 7(e) along vertical edges].
This is further confirmed by the explicit calculation of the
Wannier spectrum on a cylinder shown in Fig. 7(h), which
shows pairs of isolated Wannier eigenvalues (per unit cell
along the periodic direction) at both νx = 1/2 and νy = 1/2.

If we look at the eigenstates corresponding to these isolated
Wannier eigenvalues we find that they are localized at the
horizontal or vertical edges respectively. We emphasize that
this last transition is the only one during this process that is
accompanied by an edge phase transition which closes the
edge energy gap, and that this transition is unavoidable due
to the fact that the isolated states (red) on the vertical edge
constitute effective 1D obstructed atomic limits protected by
My symmetry.

A final remark is due regarding Fig. 7(e). The overall
configuration of Wannier centers is such that reflection sym-
metries are preserved in the bulk, but not at the edges. Indeed,
it is not even possible to maintain a symmetric configuration
of Wannier centers for this system in an open boundary given
the number of occupied states we need to fill the lower energy
bands in periodic boundary conditions. This is an example
of a filling anomaly, i.e., a condition where the constraint of
charge neutrality (integer band filling) is not compatible with
the spatial symmetry [26]. We will provide a more detailed
discussion of this concept in the next subsection.

D. Corner charge and filling anomaly

As discussed briefly in Sec. II A, the pν = (1/2, 1/2) phase
exhibits zero energy corner modes, but only when particle-
hole or chiral symmetries are present. In the absence of these
symmetries, these corner states are not pinned to zero en-
ergy and, as a result, can be moved up and down in energy,
though they remain degenerate because of the spatial sym-
metry [33,48]. Once they are pushed to the conduction or
valence band they can hybridize with the delocalized states
there, and do not necessarily remain exponentially localized at
the corners. Thus, the edge obstructed phase is not associated
with corner modes in general.

The absence of zero-energy corner modes, however, does
not mean that other signatures such as corner charges (rather
than states) are absent. To investigate this possibility, let us
start with the particle-hole/chiral symmetric case and then add
terms that break these symmetries. We note that the DMQI
has 4N states in total, where N is the number of unit cells.
In the particle-hole/chiral symmetric case, we know there are
four zero-energy corner states leaving 2N − 2 states in both

the conduction and valence bands. Once particle-hole/chiral
symmetry is broken, the corner states can move in energy but
they remain degenerate due to mirror symmetries, leading to
two possibilities: they either remain inside the gap or move
into the valence or conduction band. In the first case, they
remain localized eigenstates of the Hamiltonian having de-
generacy protected by the two mirror symmetries. As a result,
the system cannot be gapped5 at half-filling since there are
two electrons that need to occupy four degenerate states.6 In
the second case, these states hybridize with the states in the
valence (conduction) band forming new and more extended
eigenstates. As a result, the number of states in the valence
(conduction) band is changed to 2N + 2, and the chemical
potential will lie in the valence (conduction) band at half
filling, which implies that the system is again not gapped.
This phenomenon, in which it is impossible for a system
to be simultaneously gapped, symmetric, and charge-neutral
at a certain filling has recently been referred to as “filling
anomaly” [26,33,48–51]. Crucially, if we impose the condi-
tions that the system is a symmetric gapped insulator, then the
filling anomaly will manifest in excess or deficient charges
distributed symmetrically in the four corners. For the DMQI,
such a charge is equal to (n + e/2) per corner for some integer
n.7

Before considering the general case in the next section,
let us build some intuition about filling anomalies in bulk
and boundary obstructed phases by contrasting two important
examples: the bulk obstructed SSH chain in one dimension
protected by inversion symmetry and the boundary obstructed
DMQI. First, imagine we take an SSH chain having N unit
cells (with two orbitals per unit cell) at half-filling so that
the total number of electrons is N . Following Refs. [50,51],
we will now show that, in some cases, it is impossible for
this system to be gapped, inversion-symmetric, and charge-
neutral when considered with open boundaries. Since every
1D system is Wannierizable, we can assign real space position
corresponding to the centers of the atomic orbitals in the
gapped, periodic system, i.e., Wannier centers. We now open
the boundaries and denote the inversion center of the open
system by O. For a sufficiently large system, the filling at a
small inversion-symmetric region surrounding O, which we
denote by νO, should not be affected by opening the bound-
ary and thus should be the same in the open and periodic
systems. The assumption of charge neutrality means that the
number of electrons in the open system is N , the same as the
periodic system. We now note that it is impossible to find
an inversion-symmetric arrangement of real space positions
away from the inversion center O if N − νO is odd. Thus, one

5A gapped system is one with no charge excitations at zero or
infinitesimally small energy.

6We note that the usual paradigm of slightly breaking the symmetry
so that two out of four modes could be filled is unavailable as we
are strictly enforcing the symmetry. Indeed filling the modes this
way essentially results in spontaneous symmetry breaking in the
thermodynamic limit.

7Corner charges associated with filling anomalies are only defined
modulo an integer charge since we are free to add integer charges to
the corners while keeping the system a symmetric insulator.
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FIG. 8. Bulk obstruction and filling anomaly in an SSH chain
protected by inversion symmetry. With open boundaries there is a
single inversion center (red dot), while when the boundaries are
identified an antipodal inversion center is created at the stitching
point (blue dot). (a, left) Trivial state: the filling of the inversion
center (red dot) is odd just as the total filling of the chain is odd,
which implies the electrons can be filled while preserving inversion.
(a, right) When the end points are identified only the red inversion
center is filled. (b, left) Nontrivial state: at an odd filling, if the red
inversion center is not filled there is no way to fill the chain while
preserving inversion, and there is a filling anomaly associated with
end charges that need to be fractional at neutrality to preserve the
symmetry. (b, right) Identifying the end points cures the anomaly,
i.e., we no longer require fractionalization at neutrality, and only the
blue inversion center is filled. With open boundaries the two phases
can be distinguished by the endpoint charges, while with closed
boundaries a topological distinction remains since the charge at the
blue site cannot be moved to the red site while preserving both the
symmetry and the bulk gap. This is an example of a bulk obstruction.

of the three assumptions—gap, inversion symmetry, charge
neutrality—must fail in the open system. For example, if
N − νO is odd and we require the gap and neutrality, then
there will be a charge imbalance on the left and right halves
of the system such that inversion symmetry is broken. If we
instead balanced the charge to preserve inversion symmetry
then the system would no longer be neutral.

Another way to intuitively understand the filling anomaly
is to see that at a filling corresponding to neutrality an electron
would be forced to fractionalize into two pieces to preserve
the inversion symmetry, as illustrated in Fig. 8. If we require
that the system be neutral then the filling anomaly in the SSH
chain generates the bulk polarization, i.e., it implies that the
inversion symmetry will be broken spontaneously and a dipole
moment will appear that creates opposite fractional charges of
±e/2 bound at the two edges. If we require that the system
remains symmetric, then it will either be gapless since there
will be degenerate low-energy modes, or we will need to
add an extra electron (at the minimum), which will violate
neutrality.

As an aside it is instructive to relate filling anomalies to
the recently developed framework of layer construction of
topological crystalline phases [52,53] since we can use it for
the description of the filling anomaly of the DMQI model.
Within the layer construction, any D-dimensional topological
crystalline phase can be built as follows. We start with some
d-dimensional region �, with d < D, that is invariant under
the spatial symmetry group. We then decorate this region with
some topological phases whose dimension is smaller than
or equal to d . Finally, we build the D-dimensional system
by symmetrically attaching or “adjoining” lower-dimensional
units to � until the whole D-dimensional space is filled. The
topological invariants of the D-dimensional topological phase
will be given by those of the lower-dimensional topological

phase modulo those related by the adjoining procedure. The
layer construction was recently employed for the classification
of higher-order topological phases in Refs. [25,54]. It was also
employed to study obstructed atomic insulators and fragile
phases which can be built by layering zero-dimensional (0D)
units, i.e., orbitals, in Ref. [29]. For example, in the SSH chain
example considered above, � is the origin O. Its topological
invariant is the filling νO which is an integer invariant pro-
tected by U(1) charge conservation. The adjoining operation
is the symmetric addition of 0D inversion-related units (which
are just a pair of atomic orbitals) which changes the filling νO
by an even number. Thus, after modding out by this operation,
we end up with a Z2 invariant diagnosing the filling anomaly
in the system.

A similar analysis can be performed for the filling anomaly
of the DMQI model. We start by considering NxNy unit cells at
a filling of two electrons per unit cell. With open boundaries,
the symmetry group of the model is the point group Dπ

2 rel-
ative to O, with irreducible representations given in Table I.
Similar to the discussion on the SSH model, we will now
show that sometimes it is impossible for the system to be a
symmetric charge-neutral atomic insulator.8

Our argument proceeds very similarly to the 1D case. We
first select a symmetry-invariant region � consisting of the
union of the x = 0 and y = 0 lines. If the filling of this re-
gion, ν� , is the same in the open and periodic system (this
assumption will be justified below), then there are 2NxNy − ν�

remaining electrons that should be symmetrically arranged
throughout the rest of the open system (excluding the region
�) to obtain a symmetric charge neutral atomic insulator.
However, this is possible only if 2NxNy − ν� is a multiple of
4 since every point in the open system that does not lie inside
the region � is mapped by Mx, My, and MxMy to three other
distinct points, hence leading to a symmetry orbit of size 4.
This can be used to establish the existence of a filling anomaly.
Notice that ν� is always even. This can be seen by noting
that it consists of (i) the filling at the origin, (ii) the filling at
the line x = 0 excluding the origin, and (iii) the filling at the
line y = 0 excluding the origin. The fillings (ii) and (iii) are
manifestly even due to mirror symmetries, whereas (i) is even
since the bulk electrons at maximal Wyckoff positions always
transform as a 2D Ē irrep in the DMQI model, regardless of
the phase. Thus, ν� is always even and the filling anomaly is
determined by the Z2 invariant NxNy − ν�/2 mod 2.

The previous argument has one missing ingredient: how
can we show that ν� is the same in the periodic and open
systems? In the 1D case, this was simple to show since open-
ing the boundary did not affect the vicinity of the inversion
center O (which corresponds to the region � in that case).
For the 2D case, this can be established only if we make the
extra assumption that the polarization per unit cell in both
directions vanishes: px = py = 0, which holds for the DMQI
model. This assumption means that if we consider a cylinder
geometry where translation symmetry is retained along one of
the directions, there is no filling anomaly and we can have a

8Note that here we need the extra assumption that the system is an
atomic insulator, i.e., it admits a Wannier representation, which was
not needed in the 1D case since all 1D systems are Wannierizable.
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symmetric insulator whose filling per unit length along the pe-
riodic directions is the same in the open and periodic systems.
Thus, for a cylinder with open boundaries in the x-direction
and PBC in the y-direction, the filling of the x = 0 line is
the same as in the periodic system. Obviously, this filling is
unaffected by opening the boundary in the y-direction which
takes place far away from the x = 0 line. Thus, by opening
the boundary in two steps, first in x then in y, we can show
that the filling at the x = 0 line is the same in the open and
periodic systems. Similarly, we can open the boundary first in
y then in x and show that the filling at y = 0 is the same in the
open and periodic systems. This establishes that the filling at
�, the union of x = 0 and y = 0, is the same in the open and
periodic systems.

We remark that for the point group Dπ
2 , the Z2 filling

anomaly explained above is the only filling anomaly possible.
It is instructive to compare this to the point group D2 of
spinless electrons without the π flux. In this case, the filling
at the origin νO is not necessarily even, and can lead to a
different filling anomaly diagnosed by the parity of the full
filling at the origin νO. This type of filling anomaly reflects
a bulk obstruction, just like it does for the 1D SSH chain,
and diagnoses the sum of the polarizations along the x- and
y-directions, each of which must be quantized by the mirror
symmetries. To identify the individual x and y polarizations,
we would need to consider cylindrical geometries with an
open boundary along one of the directions and a periodic
boundary along the other.

Though we have now identified the filling anomaly for the
DMQI mode, the previous discussion has not yet clarified the
distinction between filling anomalies in boundary-obstructed
models like the DMQI, compared to bulk-obstructed models
such as the SSH chain. Our goal now is to elucidate this
difference. The distinction can be understood by studying
what happens when the anomaly is resolved, i.e., removed,
by identifying some of the edges of the open system. What
we mean by “resolved” is that the change of geometry to a
periodic system now allows for a symmetric, gapped, and neu-
tral configuration at our filling of interest. For example, in the
SSH case, we can resolve the anomaly by identifying the two
endpoints, which generates a new inversion center O′. In this
case, it is possible to have a symmetric, charge-neutral insula-
tor whose filling N has different parity from νO since there is
now a new inversion center that can compensate for the parity
mismatch. In the phase with (without) the filling anomaly,
the new inversion center O′ will have an odd (even) filling
whose parity cannot be changed by symmetrically adding or
removing electrons. Thus, the filling anomaly in the open
system corresponds to a bulk topological distinction in the
periodic system. That is, while the anomaly can be resolved
by identifying the edges, the topological distinction between
the two phases still remains with periodic boundaries; they are
distinct atomic limits.

We can similarly resolve the filling anomaly of the DMQI
by identifying either pair of opposite edges. When the bound-
ary is stitched together, the symmetry of the corner and the
seam line is enhanced compared to the open geometry. The
filling anomaly is resolved following this boundary identifica-
tion since only two electrons are required to fill the edge states

FIG. 9. Sewing the boundaries in a boundary obstructed atomic
insulator (e.g., the DMQI quadrupole insulator). When the boundary
is stitched along one direction, the filling anomaly is lifted since the
two corners contribute with half a charge so that all sites will now
have integer filling. Interestingly, in this case the bulk obstruction is
also lifted: the seam line is a high-symmetry line where the two states
can freely move towards each other and symmetrically reach all
maximal Wyckoff positions, including the original symmetry origin.

after the stitching, as illustrated in Fig. 9. Another way to say
this is that there is a new high-symmetry line (invariant under
Mx or My depending on the identified edges) whose filling
can compensate for the mismatch between ν� and 2NxNy

modulo 4. However, in contrast to the SSH chain, the resulting
system is completely trivial since the two electrons at the new
high-symmetry line can now be symmetrically moved to the
original center O. The reason is that, unlike the SSH case,
the high-symmetry positions at the center O, or at any mirror
line, are all connected. Thus, the difference between filling
anomalies associated with boundary and bulk obstructions is
that when the anomaly is resolved by identifying some of
the edges, the former leads to completely trivial bulk phases,
whereas the latter leads to topologically nontrivial bulk phases
(e.g., obstructed atomic limits).

One final remark concerns the effect of adding some extrin-
sic degrees of freedom at the edge of the DMQI. For example,
we can add an SSH chain with NSSH lattice sites to one edge
(say the one parallel to the x-axis), and its mirror image to
the opposite edge. This process changes the total number of
states by 2NSSH. It also introduces 2νO,SSH states at the y = 0
mirror line, where νO,SSH is the filling at the center of each
SSH chain. This changes ν� as ν� �→ ν� + 2νO,SSH, and as
a result, if the SSH chain has a filling anomaly indicated by
parity mismatch between NSSH and νO,SSH, then its addition to
the DMQI in the anomalous (nontrivial) phase will cancel the
filling anomaly of the DMQI. Such a process will, however,
induce a filling anomaly in the nonanomalous (trivial) phase.
Thus, the effect of symmetrically adding SSH chains at the
edge essentially exchanges what we would identify as the trivial
and nontrivial phase, but keeps the distinction between them.
As we will see later, this is a general feature for boundary-
obstructed phases.

E. Symmetry representations

In the previous discussion we clarified that a topological
obstruction in the DMQI model exists if and only if the system
has open boundaries. This statement can directly be reiterated
as a statement about how the filled electrons transform under
the space group G with periodic boundaries versus how it
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transforms under the point group F with open boundaries.
Namely, the representations ρ of G for the filled electron
states corresponding to different parameters of the DMQI
model are isomorphic with periodic boundary conditions,
while upon opening boundaries, the filled electron states may
transform under distinct, i.e., nonisomorphic, representations
of the point group F , depending on a choice of boundary. In
the following we explicitly show this symmetry distinction by
computing the G and F representations for this model as a
means to build intuition for the general formulation that will
be presented in Sec. III B.

1. Equivalence between band representations
in the bulk periodic system

Now let us show explicitly using symmetry representations
that with periodic boundaries there are no distinct topolog-
ical phases in the DMQI model. As described in detail in
Refs. [32,40,45], as well as in Sec. III B, all atomic bands
transform under representations of a space group G, which
are obtained from local representations of the site-symmetry
group Gq of a maximal Wyckoff position. In the DMQI
case, these correspond to the four maximal Wyckoff positions
1a, 1b, 1c, and 1d of multiplicity one whose site-symmetry
group is the point group F . Although they have isomorphic
site symmetry groups, the four position centers correspond
to distinct coset decompositions of the space group under
translations F = G/T , which implies the groups F1a, F1b,
F1c, and F1d are isomorphic but not related by conjugation
under any element of G. The representations π of F in the
DMQI model with periodic boundaries, are given by the 2D
representation Ē , for all choices of parameters, guaranteeing
the anticommutation of Mx and My.

To prove that all Wannier configurations in the DMQI
are topologically equivalent with periodic boundaries it suf-
fices to find a symmetry-preserving unitary transformation
that acts in the space of filled bands and transforms between
the distinct representations ρ of G. In momentum space, the
diagonal entries of these matrix representations form the band
representations ρk. We discuss how to find ρk in Sec. III B
following the standard references [32,40,41,45]. The possible
representations induced by the local representation Ē at the
four maximal Wyckoff positions Q have distinct momentum
dependencies ρQ

k , which we will now tabulate. First, we see
that, because of the π flux,

ρk
(
C2

2z

)=−1, (6)

for all Wyckoff positions. Next, let us focus on position
1a and consider the representations of ρk(Mx ) and ρk(My).
Since this position is chosen as the center of the unit cell,
the representation matrices ρk will be k-independent. One
possible choice for ρ1a

k (Mx,y) is ρ1a
k (Mx )=σ1 and ρ1a

k (My)=
σ3 which corresponds to the eigenbasis of My. Alterna-
tively, we can choose the eigenbasis of Mx: ρ ′1a

k (Mx )=σ3

and ρ ′1a
k (Mx )=σ1. Clearly, the two BRs are equivalent with

the momentum-independent Hadamard transformation Uk =
(σx + σz )/

√
2 relating the two.

Next, we can compare the band representations induced
from distinct maximal Wyckoff positions, located at parallel
high-symmetry lines. Inducing a representation from 1b we

find that ρ1b
k (Mx ) = σ1 and ρ1b

k (My) = exp(iky)σ3. The uni-
tary transformation that relates ρ1a

k (My) and ρ1b
k (My) is

Uk = 1

2

(
1 + exp(iky) 1 − exp(iky)
1 − exp(iky) 1 + exp(iky)

)
. (7)

Finding the other unitary transformations follows analo-
gously. Since the band representations are used to distinguish
the different atomic limit phases, we conclude from this
argument that they are all equivalent to the trivial atomic
limit when the system has periodic boundary conditions.
We remark that since the unitary transformation, acting
on the filled bands alone, changes the nested polarization
px,y → px,y + 1/2, it explicitly highlights that these values
cannot be naively used as a bulk topological invariant.

2. Symmetry representations of the open system

Now let us consider the open system without periodic
boundary conditions. Assuming the system has open bound-
aries implies that the symmetry group is restricted from G to
F , i.e., translation symmetry is no longer a symmetry of the
system, and the number of high-symmetry lines in the lattice
is substantially reduced to two perpendicular lines crossing a
single point O which is the center of the lattice. Above, in
the layer construction discussed in Sec. II D, this symmetric
region was labeled by �.

We want to consider restricting the representation ρ of the
full space group G of the periodic system to a (reducible)
representation π of the point group F of the open system.
This implies selecting only group elements that belong to
F , which is symbolized by π = ρ ↓ F . Thus, starting from
a representation ρq of the site symmetry group Gq, we first
generate a representation ρ of the full space group G which is
then restricted to a representation π of the point group F of the
open system. In the language of representations a boundary
obstruction is the statement that different site symmetry rep-
resentations ρq which generate the space group representation
ρ can generate different representations π of the open system
despite being equivalent in the bulk periodic system (as we
just showed above). This provides a symmetry-based charac-
terization of boundary obstructions which we will illustrate
for the DMQI below and discuss in more general terms in
Sec. III B. In fact, we will prove a stronger statement in what
follows: not only are the representations π of the two DMQI
“phases” distinct, but only one of them is a local representa-
tion of the point group F . We say a representation of the point
group F is local if it can be generated by the action of F on
localized atomic orbitals in real space. This means that it is
generated as a sum of site symmetry representations of the
Wyckoff positions in the open system (the Wyckoff positions
of the open system are defined in analogy to the periodic sys-
tem, as a set of points forming a closed orbit under the action
of the point group F ). The notion of a local representation thus
provides a definition for a symmetric atomic insulator in the
open system.

Let us now see how this explicitly applies to the DMQI.
The Wyckoff positions consist of the center O with multi-
plicity 1, the x and y axes each with multiplicity 2, and the
general position with multiplicity 4. We begin by assuming
that the representations generated from both 1a and 1d are
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local and show this leads to a contradiction. First, note that
restricting a representation from G down to F cannot change
the dimension of the representation. Thus, since π1a and π1d

are obtained from restricting equivalent bulk representations
ρ to the point group F , we have

tr π1a(1) = tr π1d (1), (8)

which uses the fact that the dimension of the representation is
the trace of the representation of the group identity element.
Second, note that the dimension of a symmetry representation
acting on Wyckoff position Q is necessarily a multiple of its
multiplicity, thus the contribution from the general Wyckoff
position to tr π (1) mod 4 drops out. If the representation π is
local, then it is a sum of representations acting on the different
Wyckoff positions of the open system, and furthermore it
implies that tr π (1) mod 4 receives contributions only from
the Wyckoff positions lying on high-symmetry lines, i.e., the
region denoted by �. As a result, we find

ν� = tr π (1) mod 4. (9)

On the other hand, we can read off ν� from the site filling of
the periodic system assuming vanishing polarization in the x-
and y-directions (see Sec. II D). For definiteness, let us assume
both Nx and Ny are odd such that the boundary of the open
system relative to the center of the unit cell coincides with the
edge of the unit cell. Clearly for ρ1a, there are two orbitals at
the center of the unit cell which lie inside � leading to ν� =
2(Nx + Ny − 1) = 2 mod 4. On the other hand, for position
1d , there are clearly no orbitals lying on � leading to ν1d

� = 0.
Thus,

ν1d
� �= ν1a

� . (10)

We can see that Eqs. (8), (9), and (10) lead to a contradiction
which implies that the assumption that both π1a and π1d are
local must be wrong. For the chosen boundary, it is easy
to see that π1a is local since none of the filled sites lie at
the boundaries, thus we conclude that π1d cannot be local,
i.e., it cannot be described by a symmetric atomic insulator
with the same filling as the bulk, which precisely defines a
BOTP with a filling anomaly. Once we have established the
existence of two distinct phases in the open system, we can
classify representations obtained from any other site symme-
try representation ρq which will be equivalent to either π1a

or π1d depending on whether ν� = 2, 0. These results are
summarized in Table II, from which we see that π1d is distinct
from π1a, π1b, π1c, which are equivalent to each other.

3. Wannier band representations

We have seen in Sec. II C that a natural diagnosis tool
for boundary topology is the Wannier spectrum. The Wan-
nier spectrum, with eigenstates spanning the same space as
the periodic Hamiltonian, transforms under representations
related to the periodic and open boundary representations ρ

and π , respectively. By constructing hybrid Wannier func-
tions localized along the a-direction dual to b (a · b = 2π ),
each individual band in the Wannier spectrum Wb(k⊥) pre-
serves a subgroup Gb of the space group G. Therefore, we
can associate a lower dimension band representation to these
bands, identified by the symmetry character of the Wannier

TABLE II. Diagnosis of boundary obstructions through Wannier
band representations [wb

a]k (g) for the band a = + (selected to have
a positive eigenvalue at k = 0) in the DMQI model evaluated for
the mirror operator preserved by the perpendicular direction to b
at different high-symmetry momenta. The bold lines correspond to
the phases with a boundary obstruction when the conventional Wan-
nier chemical potential is chosen, i.e., μ = (1/2, 1/2) (obstructed
high-symmetry site 1d), and the center of the sample O = (0, 0)
(high-symmetry site 1a). In the last column we show the character ν�

which differentiates between the anomalous and the nonanomalous
configurations with this boundary choice.

kx = 0 kx = π ky = 0 ky = π

ρ w
y
+(Mx ) w

y
+ wx

+(My ) wx
+ ν�

(1a, Ē ) + + + + 2
(1b, Ē ) + + + − 2
(1c, Ē ) + − + + 2
(1d, Ē ) + − + − 0

states at high-symmetry momenta in the (Wannier) Brillouin
zone transverse to b spanned by the momenta k⊥. The rep-
resentation of each Wannier band wb

a(k⊥) is related to the
representation ρ of the periodic boundary Hamiltonian by
restricting this representation to the group elements of Gb;
this process is denoted as wb = ρ ↓ Gb. Since the Wannier
spectrum can be decomposed into a set of disconnected bands,
we can additionally write wb = ⊕

a wb
a, where a is a band

index. The explicit form of the representation is given in
further detail in Sec. III B. If we look at the Wannier band
representations in different directions b such that G = ⋃

b Gb,
then one can unambiguously determine from which original
bulk representation they are restricted, as well as the specific
coset decomposition G/T that identifies the maximal symme-
try point in the unit cell that serves as its center.

In the DMQI model, the four coset decompositions, labeled
by the unit cell centers 1a to 1d , can therefore be distinguished
by the Wannier band representations. In this case, the Wannier
band representations are given by ρ restricted to the subgroups
Gx = {Tx, Mx} and Gy = {Ty, My}. We can now illustrate how
to identify the bulk representation π from the set of Wannier
band representations. Let us choose the bulk Wannier func-
tions to be located at each of the possible four centers, where
they transform under the Ē representation of F = Dπ

2 . When
the center is 1a, the hybrid Wannier functions are constructed
out of linear combinations of localized Wannier functions at
the center of the unit cell in the perpendicular plane. For
example, if we choose to keep Gy, the two states in the unit
cell have opposite eigenvalues of My, and these eigenvalues
have no momentum dependence. This is analogous to the SSH
chain where the representation of the (energy) bands do not
have a momentum dependence when the Wannier centers oc-
cupy the inversion center in the unit cell. The Wannier bands
transform under the band representations [wx

±]ky (My) = ±1.
Alternatively, when keeping Gx the hybrid Wannier functions
transform under the band representation [wy

±]kx (Mx ) = ±1. If
instead the bulk Wannier centers occupied the 1b position,
which is located at y = 1/2 in the unit cell, then the restriction
of ρ to Gy would reflect this by acquiring a phase of exp{iky}
under the action of My. That is [wx

±]ky (My) = ± exp(iky).
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Indeed, all four coset decompositions G/T correspond to
1a, 1b, 1c, 1d generate distinct Wannier band representations
and are shown in Table II. These representations exhaust the
possible restrictions of ρ and do not depend on the possible
symmetric displacement of the Wannier centers away from the
high-symmetry points. We see that all bulk representations of
this model are isomorphic, and the different Wannier repre-
sentations reflect a choice of basis.

As we have seen in the previous section, the differ-
ence between the basis choice becomes important with open
boundaries. Namely, it is important to know if the center of
the unit cell occupies a high-symmetry region � in the open
boundary system. This depends on the choice of boundary. In
Table II we compare the representations of the Wannier spec-
trum, to the filling ν� of the open boundary system, where the
corner position coincides with the high-symmetry position 1d ,
and the center O with 1a with periodic boundaries. This is the
conventional boundary termination, and the direct comparison
of the Wannier spectrum representations obtained from the
Hamiltonian for a given set of parameters can be compared
with this table to predict if π is a local representation of the
open boundary symmetry group F characterized by a filling
anomaly.

III. BOUNDARY OBSTRUCTIONS: GENERALITIES

A. General definition

After discussing the properties of the DMQI model in
detail, our goal now is to introduce a general definition to
capture topological distinctions encoded in a boundary ob-
struction rather than a bulk obstruction. As we have seen
for the DMQI, the distinguishing feature between the two
phases of the model on an open boundary is a filling anomaly
manifesting as a fractional corner charge of e/2, which is
present in one of the phases, but absent in the other. However,
unlike a standard SPT, e.g., a higher-order TI, the boundary of
the DMQI is not anomalous since the corner charges can be
removed by the addition of two SSH chains on opposite edges
while preserving the mirror symmetries. This means that we
should be more careful when defining an edge termination to
distinguish surface features which arise from the bulk com-
pared to those arising from the edge termination itself.

1. Boundary termination

Let us begin by recalling some relevant concepts. Given a
Hamiltonian H and a chemical potential μ, we can define the
projector on the filled bands via

P := p(H, μ) =
∑

n

θ (εn − μ)|ψn〉〈ψn|, H|ψn〉 = εn|ψn〉.
(11)

The projector P is well-defined if and only if there are no
eigenstates of H at the chemical potential, i.e., only if H is
gapped at μ. Note that the definition above does not assume
translation symmetry. Since we are interested in topological
properties rather than dynamics, we will consider two pairs
(H, μ) and (H′, μ′) equivalent if p(H, μ) = p(H′, μ′). In the
following, unless otherwise stated, we will choose μ = 0 such
that p(H) = p(H, 0). Given an operator O (H or P), we can

write it in the position basis as

O(r, r′) := 〈r|Ô|r′〉. (12)

For example, the position-dependent projector is given by

P(r, r′) =
∑

n

θ (εn − μ)ψn(r)ψ†
n (r′), (13)

which is a matrix-valued function of two spatial positions r
and r′ (for a model with No orbitals, this will be an No × No

matrix).
We start by considering a periodic system with symmor-

phic space group G decomposed as a direct product of a group
of translations T, and a point group F relative to a fixed
point O. An F -symmetric boundary in d-dimensions is de-
fined by specifying a (d − 1)-dimensional surface � dividing
the space into an interior region �in and an exterior region
�out with a “thickness” parameter ξ such that for distances
larger than ξ boundary effects are negligible. We can now
define a surface termination as a continuous map σ which
takes a translationally symmetric Hamiltonian H (with the
corresponding projector P = p(H)) to a Hamiltonian in the
open system Hobc [with the corresponding projector Pobc =
p(Hobc)], such that Pobc(r, r′) = P(r, r′) deep inside the sam-
ple, and Pobc(r, r′) = P0(r, r′) far outside, with P0 denoting
some reference “trivial” projector. For simplicity, we will take
P0 to denote projector where all states are empty. What we
mean by deep inside and far outside the sample can be made
precise by defining

dr,� = minr′∈�|r − r′|, (14)

which simply denotes the shortest distance from a point r to
the surface �. Thus, we can define the most general boundary
termination as

Hobc = σ (H) such that for dr,�, dr′,�  ξ

Pobc(r, r′) = P(r, r′) : r, r′ ∈ �in

Pobc(r, r′) = P0(r, r′) : r, r′ ∈ �out

Pobc(r, r′) = 0 : otherwise
.

(15)

Here we also made the assumption that P(r, r′) vanishes when
one of r, r′ is deep inside and the other is far outside the
sample. This means that there are no states which “propagate”
between the inside and outside of the sample.

We notice that in practice, boundary terminations are
typically implemented by a sharp edge where the lattice ter-
minates, or more generally by a potential well which separates
the filled states inside the sample from the empty states out-
side. An example of the latter is ultracold atoms [55] where
the lattice termination is usually implemented by a potential
trap which confines the particles within a certain region. This
motivates the consideration of a particularly simple boundary
termination implemented by making the chemical potential
spatially dependent such that it lies in the gap inside the
sample, and below the smallest energy eigenvalue outside.
This is equivalent to choosing the open system Hamiltonian
considered in Ref. [46]

Hobc = σ (H) = p(H)φ(r)p(H) + φout[1 − p(H)], (16)
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where φ(r) = φin < 0 deep inside the sample, and φ(r) =
φout > 0 far outside.9 This boundary termination, imple-
mented by changing a single scalar parameter (the chemical
potential), is the simplest way to interpolate between the bulk
Hamiltonian and a fixed trivial reference without introducing
any extra degrees of freedom at the boundary. It includes most
surface terminations needed in practice, e.g., a linear poten-
tial, a sharp edge, etc., and has the advantage of connecting
directly to the Wannier spectrum.

To make the notion of boundary obstructions introduced
in the next section as general as possible, we will also find
it useful to consider an augmented class of boundary termi-
nations by allowing for the addition of gapped degrees of
freedom at the boundary. Such additional degrees of freedom
do not induce any additional boundary gap closing, thereby
preserving the notion of boundary obstructions. To define this
more general class of boundary terminations rigorously, we
note that since the open system Hamiltonian for any boundary
termination is equivalent to (16) away from the boundary,
we can write the Hamiltonian for the most general boundary
termination we consider as

σ (H) = p(H)φ(r)p(H) + φout[1 − p(H)] + H�, (17)

where H� vanishes away from the boundary. H� is defined on
a (d − 1)-dimensional shell which is topologically equivalent
to Sd−1. We say a boundary termination σ is trivial if there
exists φ(r) such that H� defined by (17) is symmetric and
gapped for all H. A trivial termination allows us to com-
pare distinct Hamiltonians with open boundaries by excluding
terminations which introduce low energy (gapless) modes at
the boundary. Such a restriction is necessary since BOTPs
are extrinsic HOTIs, hence their surface states can always be
removed through the addition of boundary degrees of freedom
and it enables a direct correspondence between the bulk and
boundary degrees of freedom.

2. Boundary obstructed phases

We are now ready to define the notion of boundary obstruc-
tions. Given a trivial termination σ , we say there is a boundary
obstruction between two gapped translationally symmetric
Hamiltonians H1,H2 with periodic boundary conditions if:

(i) There is a smooth trajectory in the space of symmetric
gapped Hamiltonians H(t ) for t ∈ [0, 1] connecting H1 and
H2 such that H(0) = H1 and H(1) = H2

(ii) The trajectory induced by the boundary termination
σ (H(t )) necessarily involves closing the energy gap at a
high-symmetry surface, i.e., there exists a t ∈ [0, 1] such that
σ (H(t )) has a zero energy (remember we use a convention
that sets the chemical potential to 0) eigenstate localized in
the direction perpendicular to a high-symmetry surface.

A high-symmetry surface (HSS) in d dimensions denotes
any D-dimensional hyperplane (D < d) on the boundary that
is left invariant by at least one nontrivial point group sym-
metry operation in F . For example, in the simple rectangular
termination considered for the DMQI, both edges are HSSs

9We will usually also impose the condition that φ(r) = 0 only at
the boundary surface �, but this is not crucial for what follows.

since each one is invariant under one of the mirror symme-
tries. For more complicated boundaries, with arbitrary shape,
we can still define HSSs by first “rounding the corners” to
make the curvature finite everywhere, and then considering
the tangent plane to the boundary at any given point. We then
define the surface spectrum as the energy spectrum of the
states which are localized in the direction perpendicular to the
surface. The surface spectrum is a function of the momentum
parallel to the surface which is a vector in the tangent plane at
this point [23,25,33,56]. See Appendix C for an illustration of
the edge spectrum for a general boundary termination of the
DMQI.

We can now define boundary-obstructed phases as equiv-
alence classes of Hamiltonians under boundary obstructions
defined earlier. That is, we consider a space of gapped
Hamiltonians in the translationally symmetric system �pbc,
which we take to be topologically trivial, i.e., all gapped
phases can be continuously deformed to each other without
closing the gap or breaking the symmetry. Given a trivial
boundary termination σ , we define the group of boundary-
obstructed topological phases to be the group of equivalence
classes of boundary-terminated Hamiltonians σ (�pbc) un-
der continuous deformations which do not close the gap at
any high-symmetry surface. Intuitively, this definition distin-
guishes different classes of Hamiltonians based on boundary
obstructions, and enables a finer distinction between phases
that are topologically identical from the perspective of bulk
topology.

The above definition introduces a relative distinction be-
tween a pair of Hamiltonians given a certain trivial boundary
termination. Such distinctions are generally termination de-
pendent even for trivial terminations. For example, recall from
the analysis of the DMQI in the previous section that the ter-
mination (which determines the Wannier chemical potential)
determines which Hamiltonians will exhibit a filling anomaly.
On the other hand, for any symmetric termination, there are
always two distinct phases in the open system distinguished
by the Z2 filling anomaly. This suggests that although the
boundary determines which BOTP class a given Hamiltonian
ends up in, the topological classification (homotopy group) of
BOTPs itself is independent of the boundary termination σ for
sufficiently general topologically trivial boundaries. Here, by
“sufficiently general,” we mean that the distinct topological
sectors are stable to symmetry-preserving perturbations of
the boundary which keep it gapped and Wannierizable. In
particular, this includes the possibility of adding degrees of
freedom on the surface which can trivialize the surface bands
if they possess fragile topology [57]. While a general proof
of this statement is beyond the scope of this work, we can
directly verify it for all the examples of BOTPs considered in
this work (the DMQI considered in Sec. II D and the 3D ex-
amples of Sec. V) by showing that the different BOTPs can be
distinguished by a physical signature: either filling anomalies
or gapless surface states, on any symmetric boundary.

In general, boundary obstructions may coexist with bulk
obstructions. For instance, a nontrivial bulk phase, such as a
3D higher-order topological insulator with chiral hinge states,
can have several distinct patterns of hinge state. These patterns
effectively differ by the addition of a BOTP, i.e., we can
always move between such different surface configurations
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FIG. 10. Illustration of zero-energy states (open circles) for the
chiral-symmetric DMQI model on a circle geometry. Zero energy
states are localized on domain walls for an edge mass term that is
invariant under the two mirror symmetries, but has a different sign at
the x = 0 and y = 0 lines, thus changing sign four times along the
edge. These zero-energy states can be removed only by annihilating
pairwise at the high-symmetry points denoted by the x symbol.

by adding a BOTP. Such a BOTP, which is manifestly trivial
in the bulk, can be identified with the difference between the
Hamiltonians corresponding to the two distinct patterns of
surface states. Thus, when studying boundary obstructions,
we can restrict ourselves to phases that are completely trivial
in the bulk.

One important aspect in our definition is that only gap clos-
ings at high-symmetry surfaces are relevant. Physically, this
is a natural restriction since most simple realistic boundaries
tend to be along high-symmetry surfaces. One way to see
this is by recalling the discussion of Sec. II D, in which the
filling anomaly in the DMQI was diagnosed by the mismatch
between the total filling and the number of states lying at the
two mirror lines modulo 4. Thus, an edge gap closing can
change the filling anomaly by changing the number of states
at the mirror lines if and only if this gap closing occurs at one
of the mirror-invariant points at the edge. This means that our
definition captures the same topological distinction described
by the filling anomaly for the DMQI.

Another way to see the importance of distinguishing
high-symmetry points/surfaces versus generic points on the
surface is to consider the DMQI on a disk geometry whose
boundary is a circle. If chiral/particle-hole symmetry is un-
broken, the nontrivial phase of the model is characterized by
four symmetry-related zero-energy states. These states can
be associated with domain walls for a surface Dirac mass
[22,23,25,33,35,49,58] that is invariant under both mirrors and
changes sign four times as we go around the circle (cf. Fig. 10)
as shown in Appendix C. In this case, we can see that the
gap at any generic point on the edge can be closed by simply
moving one of the domain walls through this point. Such a
gap closing cannot be associated with a topological distinction
since that would imply the existence of uncountably many
distinct topological phases associated with all possible (con-
tinuously varying) positions of the domain walls. However,
by restricting ourselves to gap-closing transitions occurring at
the HSSs, i.e., at x = 0 or y = 0, we can distinguish between
the cases with and without corner states. This follows because
the only way to get rid of the zero-energy domain wall states

while preserving symmetry is by annihilating them pairwise
at one of the mirror-invariant points at the boundary.

3. Relationship to higher-order topological insulators

It is instructive to relate our understanding of the boundary
obstruction in the DMQI in terms of surface domain walls to
the corresponding understanding in higher-order topological
insulators pioneered in Refs. [22,23,25,49]. In these works,
the surface states of higher-order topological insulators were
understood in terms of symmetry-enforced surface domain
walls where the transformation properties of the surface Dirac
mass under spatial symmetry forced it to change sign. In the
DMQI, the surface mass does not change sign under either
mirror symmetry (see Appendix C). However, by requiring
the edge spectrum to be gapped at HSSs, we can distinguish
phases based on the sign of the mass term at these points
which are associated with different patterns of surface domain
walls. For instance, if the sign of the mass term at x = 0 differs
from that at y = 0, then there are four domain walls as we
go around the circle (cf. Fig 10), which cannot be removed
without changing the sign of one of these masses. Thus, we
can understand the localized boundary modes of the DMQI as
domain walls protected by the gap at HSSs. This is verified
by an explicit calculation of the surface states of the DMQI in
Appendix C. We note that the transformation properties of the
surface mass term under the symmetries does not force it to
change sign. Instead, two distinct, symmetry-allowed config-
urations of mass signs at HSSs are possible, but they cannot
be deformed to each other (without closing a gap at an HSS).
This is in contrast to higher-order topological insulators where
the sign change of the mass is enforced by the symmetry.

It is worth noting that our topological distinctions are
similar to a real-space version of those used in diagnos-
ing semimetals whose spectrum is gapped at high-symmetry
momenta [31,59]. For instance, a Weyl semimetal with two
inversion-related Weyl points with opposite chirality can be
smoothly deformed to a trivial insulator by bringing the two
Weyl points together. However, this process will necessarily
involve a gap closing at one of the inversion-invariant mo-
menta [60,61].

Another related concept is that of the so-called extrinsic
higher-order topological insulators discussed in Refs. [13,24].
These are insulators hosting “higher-order” surface states
with co-dimension (d − D) (D > 1) that can be removed by
symmetrically adding a lower-dimensional SPT on the bound-
ary. Our boundary-obstructed phases fall under this definition
since their surface states (or filling anomalies) can be removed
by adding some SPTs on the boundary while preserving the
symmetry. For example, the corner modes (and corner charge)
in the DMQI can be removed by symmetrically adding a pair
of SSH chains at two symmetry-related edges as discussed in
Sec. II D. However, for a BOTP such a process only redefines
what we identify as the trivial phase and does not remove
the distinction between different phases. In other words, the
relative distinction between the phases is insensitive to what
we add at the boundary as long as it is kept fixed when com-
paring the two phases, a requirement that is already encoded
in our definition. Thus, we consider only boundary transitions
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driven by changes in the bulk, ruling out the cases in which a
nontrivial SPT is glued to the surface of a trivial bulk.

In general, relative topological distinctions are captured by
a mathematical structure called a torsor (rather than a group)
[62]. A torsor can be thought of as a group without a clear
notion of an identity element (trivial phase). We notice that
this concept is not new as many topological distinctions for
well-known bulk phases are also relative. This is the case,
for example, for obstructed atomic phases where an arbitrary
choice is made for the trivial atomic limit [31,32]. A simple
example is provided by the 1D SSH chain which has two
different values of the polarization that can be distinguished
only relative to each other. Such a relative distinction can be
made more absolute by taking into account the background of
positive ions or fixing a convention for the unit cell, either of
which can be used to distinguish the two polarization states in
the SSH chain according to whether the charge centers lie on
top of the positive ions (center of the unit cell) or not (edge
of the unit cell).10 It is, however, important to keep in mind
that the topological distinctions in the electronic Hamiltonian
(which does not contain information about the positive ions)
in these cases are strictly relative. A similar concept applies to
the topological distinction provided by BOTPs.

B. Band representations of BOTPs

In this section, we present an alternative formulation of
BOTPs based on the formalism of band representations [32]
(see Appendix B for a brief review). A band representation
corresponds to a set of bands (over the usual momentum
space Brillouin zone) generated by decorating the real space
Wyckoff positions by atomic orbitals that transform in some
representations of the local site symmetry group. In short, a
band representation is generated by the Fourier transform of
a real space representation of the space group G generated by
these local atomic orbitals. One of the recent developments of
band theory [31,32] was the classification of topological bands
that identifies topological bands as any isolated set of bands
that cannot be written as a band representation, i.e., cannot be
generated from the symmetry action on real space orbitals. In
the following, we will show these ideas can be extended to
describe BOTPs.

As discussed in Sec. III A, we can restrict ourselves to
BOTPs which admit a Wannier representation. This means
that such BOTPs correspond to band representations of the
space group G generated from real space atomic orbitals in the
periodic system. When we discussed the notion of boundary
obstructions in the case of the DMQI in Sec. II, we found
that there were two distinct notions of obstruction on a given
boundary. First, there is a relative notion which distinguishes
phases which are equivalent in the bulk, but which are sep-
arated by edge-gap-closing transitions at the boundary. This
notion does not specify which of the phases is trivial. Second,
there is an absolute notion of obstruction identified by the
presence of a filling anomaly which distinguishes the trivial

10We note that there is still an integer ambiguity in defining polar-
ization coming from the freedom to assign the electron position to
any unit cell.

phase (no filling anomaly) from the obstructed or nontrivial
one (filling anomaly). In the following, we will use band
representations to also define two notions of boundary ob-
structions.

Our main approach to define boundary obstructions is to
identify band representations which do not describe atomic
insulators in the open system. That is, a BOTP corresponds
to an atomic insulator of the periodic system that cannot be
written in terms of localized atomic orbitals which transform
under the symmetry group F of the open system. This defines
an absolute notion for boundary obstruction (once a boundary
is fixed) similar to the notion of filling anomalies discussed
in Sec. II D. On the other hand, we can also define boundary
obstructions in a relative way similar to Sec. II C such that two
Hamiltonians are considered boundary obstructed if they be-
long to equivalent band representations of the space group in
the bulk, but distinct representations of the point group in the
open system. We will show below how these two notions—the
absolute and relative—are related.

1. Symmetry obstruction with open boundaries

A band representation is specified by a set of Wyckoff po-
sitions and a set of irreps attached to each position. Any such
band representation can be decomposed into a direct sum of
so-called elementary band representations (EBRs). An EBR
is a BR generated from a single site in a maximal Wyckoff
position q [45], and will be the focus of what follows. Given a
symmetry representation ρq of the site symmetry group Gq ⊂
G which leaves the site q invariant, we can generate an EBR
ρ for the Wyckoff position invariant under the space group G
by a procedure called induction denoted by ρ = ρq ↑ G. This
procedure essentially extends the symmetry action from the
site symmetries of the Wyckoff positions in the unit cell to the
space group [32] (see Appendix B for details). Note that band
representations induced from different positions q and q′ may
turn out to be equivalent. For instance, we saw this to be the
case in the DMQI model where the BRs generated by placing
the two electrons in the Ē representation at each of the four
maximal Wyckoff positions 1a, . . . , 1d turned out to be the
same. In general, two BRs ρ and ρ ′ are considered equivalent
if there exists a symmetry preserving interpolation matrix S(t )
such that S(0) = ρ and S(1) = ρ ′ [32]. The matrix function
S(t ) parameterizes the adiabatic paths between phases.

The crucial observation is that two representations ρ and ρ ′
which are equivalent in the periodic system may not be equiv-
alent in the presence of a boundary. To see this, we note that
the representation of the open system is obtained by restrict-
ing the representation of the space group (i.e., the periodic
system) to a representation of the point group F ⊂ G (i.e.,
the open system) relative to a global origin O for the point
group.11 Such a restriction, or “subduction,” which generates a
representation π of the open system is denoted by π = ρ ↓ F .

11The explicit choice of boundary termination plays a role in the
determination of the symmetry origin O. Hence the ambiguity in the
definition of a BOTP due to the choice of boundary termination is
implicitly embedded in the determination of the point group relative
to the origin O.
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Thus, two open boundary representations π and π ′ which are
generated from equivalent bulk representations may in fact not
be the same depending on the original generating site q.

Let us now define the notion of boundary obstructions by
employing the machinery of band representations reviewed in
Appendix B. First, we say that a site symmetry representation
generated from site q in the periodic system defines a (abso-
lute) boundary obstructed phase in the open system with point
group F if π = (ρq ↑ G) ↓ F is not a local representation of
F . Here a local representation of F means that it can be written
as a sum of site symmetry representations of the Wyckoff
positions of the open system. Alternatively, we can define a
relative boundary obstruction between two phases described
by induced representations of ρq and ρq′ on a given open
boundary with point group F if

ρ = (ρq ↑ G) ∼ ρ ′ = (ρq′ ↑ G) (18)

and

π = (ρq ↑ G) ↓ F � π ′ = (ρq′ ↑ G) ↓ F, (19)

where the symbols ∼ and � indicate equivalence or inequiva-
lence of the representations as defined above.

The relative and absolute notions of boundary obstruction
can be tied together by noting that a relative obstruction be-
tween ρq and ρq′ implies that at least one of them is boundary
obstructed in an absolute sense. In other words, there can
never be a relative boundary obstruction between ρq and ρq′

if both π = (ρq ↑ G) ↓ F and π ′ = (ρq′ ↑ G) ↓ F are local
and ρ = ρq ↑ G and ρ ′ = ρq′ ↑ G are equivalent. To see this,
we note that, by definition, we can decompose a local repre-
sentation as a sum of irreps of the point group F as

π =
∑

l

nl (π )πl , (20)

where l runs over the irreps of F, and nl (π ) denotes the
multiplicity of πl in the expansion of π . Here we assumed that
we moved all the electrons in the open system symmetrically
to the center O which can always be done if π is local. The
multiplicities can be obtained by employing the orthonormal-
ity of the irrep characters relative to the scalar product [63]:

〈πl |πm〉 = 1

|F |
∑
g∈F

tr πl (g) tr π∗
m(g) = δl,m (21)

leading to

nl (π ) = 1

|F |
∑
g∈F

tr π (g) tr π∗
l (g). (22)

We note now that for g ∈ F , tr π (g) = tr ρ(g) which by virtue
of the equivalence ρ ∼ ρ ′ is equal to tr ρ(g′) = tr π ′(g) lead-
ing to nl (π ) = nl (π ′). That is, the two local representations π

and π ′ are equivalent. This means that among the equivalence
classes of representations of the open system induced from
equivalent bulk representations, there is only one class con-
taining the local representations, and they are all equivalent.
This class can then be labeled as the “trivial” phase. Any other
phase with a boundary obstruction relative to it will also have
an absolute obstruction.

C. Diagnosing BOTPs using the Wannier spectrum

Since the BOTP classification is independent of the specific
termination (as long as it is topologically trivial), we are going
to choose a particular termination for which the calculation of
the boundary spectrum simplifies. This corresponds to choos-
ing φ(r) in Eq. (16) to be a linearly increasing potential such
that the boundary spectrum is the same as the Wannier spec-
trum, as discussed in Sec. II C [46]. We can then apply band
representation theory to the Wannier spectrum to diagnose
BOTPs in a periodic geometry without having to resort to an
open system.

Let us begin by recalling some basic facts about the Wilson
loop operator whose eigenvalues are the Wannier spectrum.
As we briefly introduced before, the Wilson loop operator
Wb is a unitary operator defined by parallel transporting the
occupied-band projection operator in a closed path in the
Brillouin zone along the reciprocal lattice vector b. Its eigen-
values have the form exp{2π iνb(k)}, and its eigenstates are
the hybrid Wannier functions that are localized in the direction
along the lattice vector a which is dual to b, (i.e., a · b = 2π )
for a fixed momentum along the perpendicular directions k⊥
[36,37]. The dispersion of the Wannier eigenvalues νb(k⊥)
with k⊥ is known as the Wannier spectrum, and provides in-
formation about the k-resolved center of the charge along the
a-direction, for k⊥ momenta perpendicular to a, a · k⊥ = 0.
The Wannier spectrum is periodic, reflecting the translation
symmetry of a unit cell along a. The lattice constant is here
set to 1.

To see how boundary obstructions can be diagnosed us-
ing the Wannier spectrum, we note that since we care only
about gaps at HSSs, we can restrict ourselves to boundary ter-
minations consisting of intersections of (d − 1)-dimensional
high-symmetry hyperplanes to study a d-dimensional BOTP
(a high-symmetry surface hyperplane is one which is left
invariant by at least one nontrivial spatial symmetry). We
can then study the surface spectrum at different surface
hyperplanes, or at the intersection of any number of such hy-
perplanes. For example, in three dimensions, we can consider
the spectrum on 2D surfaces or on 1D hinges lying at the
intersection of two such surfaces. In the following, we focus
on boundary obstructions accompanied by a gap closing at a
surface hyperplane (i.e., surface obstructions) rather than the
intersection of surface hyperplanes (i.e., hinge obstructions).
For these types of geometries, a boundary obstruction in our
definition is equivalent to the statement that any trajectory
connecting the two Hamiltonians must close the surface gap
for at least one high-symmetry surface hyperplane.

The key concept we apply is that the spectrum of a surface
hyperplane perpendicular to a lattice vector a for a linear
potential is the same as the Wannier spectrum νb(k) [46].
This can be used to define a Wannier chemical potential μb

(cf. Sec. II C) at which the Wannier spectrum νb(k) should
remain gapped if the surface energy gap is to remain open.
Thus, we can identify actual surface gap-closing transitions
in a surface hyperplane perpendicular to the vector a with
gap-closing transitions in the Wannier spectrum νb(k) at the
WCP μb. Unless otherwise stated, we choose a convention
that the boundary termination is consistent with (our choice
of) the unit cell. The boundaries of the unit cell are chosen
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to be at 1/2 in units of the primitive lattice vectors, which
corresponds to a Wannier chemical potential μb = 1/2 for any
primitive lattice vector a.

The discussion above provides a recipe for diagnosing
boundary obstructions by using Wannier spectra as follows.
Given two bulk Hamiltonians H1 and H2, a set of high-
symmetry surface hyperplanes specified by a set of reciprocal
lattice vectors {b}, and WCPs {μb} describing the positions of
these planes within the unit cell, then a boundary obstruction
exists if every trajectory connecting H1 and H2 involves a gap
closing in the Wannier spectra νb(k) for some direction b at the
Wannier chemical potential μb.

1. Wannier band representations

A gap closing of the Wannier spectrum indicates a
change in the symmetry representations or topology of the
Wannier bands. Therefore, it is convenient to relate the
symmetry representations of the Wannier spectrum to the
periodic boundary and open boundary representations dis-
cussed in Sec. III B. The Wannier spectrum is obtained by
the eigenstates of the Wilson loop operator Wb(k⊥), whose
eigenstates are hybrid Wannier functions |hb

�n(k⊥)〉 (HWF),
localized in the a-direction at a layer index �. The HWFs
satisfy Wb(k⊥)|hb

�n(k⊥)〉 = exp[2π iνbn(k⊥)]|hb
�n(k⊥)〉, and

|hb
�n(k⊥)〉 = (1/2π )

∫ 2π

0 dkb exp −i�kb · aUnm|ψm(k)〉 where
Unm is fixed by the Wilson loop operator and reflects the gauge
freedom in the choice of these functions.

Since the HWFs are just a linear combination of the occcu-
pied states (i.e., a basis transformation of the occupied states),
then the collection of the hybrid Wannier functions transforms
under the same symmetry representation ρ as the collection
of occupied Bloch states |ψn(k)〉. The translation symmetry
along a connects the HWFs in distinct layers �. Thus we want
to ask under what representation does the collection of HWFs
transform at a given �. Here this representation is denoted wb,
and it is a representation of the subgroup Gb ⊂ G that leaves �

invariant. Hence, wb is obtained by restricting ρ to sites in the
layer �, which can be expressed conveniently by wb = ρ ↓
Gb. This restriction amounts to disregarding all entries of ρ

acting on basis states outside of � and group elements outside
of Gb. Alternatively, for atomic bands we can also obtain wb

by induction from the site symmetry representation ρq of a
site q in this layer. These relations are symbolically written as

ρ = ρq ↑ G, wb = ρq ↑ Gb, wb = ρ ↓ Gb. (23)

Note that due to translation symmetry, all layers trans-
form under the same band representation, and changing the
layer corresponds to changing the origin of Gb. Since each �

preserves translations perpendicular to a, we can express the
Wannier band representation (WBR) as a function of k⊥, and
it is explicitly given by

wb
k⊥ (h) =

∑
i j

exp i(hi − h j )q · k⊥ρq(h−1
j hhi ),

where h ∈ Gb, and the summation is taken over the coset
representatives hi ∈ Gb/Gq that generate all sites qi = hiq in
the layer. This formula is analogous to the induction formula

for the bulk representation

ρk(g) =
∑

i j

exp i(gi − g j )q · kρq(g−1
j ggi ),

with g−1
j ggi ∈ Gq, g ∈ G, and gi ∈ G/Gq with a derivation

presented in Appendix B to be self-contained.
With this structure in place, it is now crucial to notice

that the Wannier band representation wb may correspond to
disconnected Wannier bands,

wb =
⊕

a

wb
a, (24)

labeled by an index a. In this case, the representations wb
a may

have their own topological characterization, and they are not
required to be local even when the full bulk representation ρ

is local. Indeed, each wb
a either corresponds to an elementary

WBR, or to a topological band when its characters at high-
symmetry momenta are not compatible with a local atomic
description. Reiterating, while wb in total forms an EBR, each
individual component describing separate Wannier spectrum
bands, wb

a, does not need to be a an EBR. An example of
topological Wannier bands is shown in Sec. V C. Such phases
with topological Wannier bands result in anomalous boundary
modes rather than the boundary charges that would appear if
the Wannier bands were in obstructed atomic limit represen-
tations.

The consistency relations above allow us to infer the bulk
representation ρ and the open boundary representation π from
the different Wannier representations wb. Closing the Wannier
spectrum implies a change in the Wannier representations
wb

a. The explicit calculation of the Wannier representations
together with the bulk and open system representations are
shown in Tables II, III, and IV for the models discussed.

IV. BOTP AND FILLING ANOMALIES IN
OTHER 2D SYSTEMS

Now that we have laid out the general framework for
BOTPs we would now like to discuss the possibility of finding
BOTP phases in other 2D systems besides the DMQI model.
We are going to focus on BOTPs, which can be identified
through a filling anomaly in the open system similar to the
DMQI (Sec. II D).

A. Generalities on filling anomalies

Let us begin by distinguishing the spatial symmetry groups
in a few different settings. First, we can consider an infi-
nite translationally symmetric system with a space group G.
Among the possible wallpaper groups [64], we restrict our-
selves to symmorphic ones which can be written as a direct
product of a point group G relative to a point O and the group
of translations in the infinite system. We can instead consider
a finite translationally symmetric system with periodic bound-
ary conditions such that for translation along a given lattice
vector Ta, there is an integer such that T n

a = 1, i.e., the group
of translations is a product of cyclic groups. We can then
consider the group of spatial symmetries of such a periodic
system even if we allow translation symmetry to be broken.
We will denote such a group by G which denotes the set of

013239-19



KHALAF, BENALCAZAR, HUGHES, AND QUEIROZ PHYSICAL REVIEW RESEARCH 3, 013239 (2021)

TABLE III. Upper section of rows: Diagnosis of boundary ob-
structions through Wannier band representations in the C2h model
introduced in Sec. V B 1. The left column indicates the maximal
Wyckoff position Q that labels the phase with periodic boundaries.
In the columns to the right we show the symmetry representations
at high-symmetry momenta of one of the two WBRs. They are
evaluated for C2z and Mz according to which symmetry is preserved
in the respective direction. Lower section of rows: Other possible
WBR configurations compatible with the C2h point group but not
realized by our model. The bold lines correspond to the phases with
a boundary obstruction when the conventional Wannier chemical
potential is chosen, i.e., μ = (1/2, 1/2, 1/2), and the center of the
sample is located at the position 1a. The obstruction in these cases
is of the filling anomaly type, where the multiplicity of the sites 1g,
1 f , and 1h is larger in the open boundary system compared to the
periodic system; see Fig. 15(b). We see that for this model the ob-
structed phases are uniquely indicated by the symmetry eigenvalues
of the Wannier bands. Here we use Ē in analogy to the DMQI model;
however, this projective representation is not tabulated in the usual
symmetry representation of the 3D point group C2h. The definition of
this representation is discussed in the main text.

k � X Y M � Z
ρ wz

+(C2z ) wz
+ wz

+ wz
+ wx

+(Mz ) wx
+ ν�

(1a, Ē ) + + + + + + 2
(1b, Ē ) + + − − + + 2
(1c, Ē ) + + + + + − 2
(1d, Ē ) + − + − + + 2
(1 f , Ē ) + + − − + − 0
(1g, Ē ) + − + − + − 0
(1e, Ē ) + − − + + + 2
(1h, Ē ) + − − + + − 0

spatial symmetries on a torus without any translations. Finally,
there is the symmetry group of the open system which is
given by F, which can be nontrivial if the boundary is chosen
symmetrically.

For example, in the SSH chain, the group of symmetries of
the infinite system is generated by a reflection around a given
point and translation by one unit cell. This includes mirror
reflections around all the points n and n + 1/2 for any integer
n. For a finite periodic system with length N , the symmetry
group is obtained from the one for the periodic system by the
condition T N

x = 1. For a system with periodic boundary con-
ditions but not translations, the symmetry group is generated
by two mirrors about the origin x = 0 and the point x = N/2
(which sends x to N − x which is equivalent under periodic
boundary conditions to −x). Finally, for the open system, the
symmetry group is generated by a single mirror relative to a
single fixed origin O which is determined by the choice of
boundary termination.

In order to define filling anomalies for BOTP systems, we
need a way to go back and forth between the open system and
the periodic system. For this reason, we start by considering
a special class of boundaries which can be folded back to
a torus. We will call such boundaries foldable and define
them as terminations which are obtained by cutting a torus
into a d-dimensional region topologically equivalent to the
disk such the the following conditions are satisfied: (i) the

TABLE IV. Example of Wannier symmetry representations in
the magnetic space group P2/m′ generated by the irreducible rep-
resentation of the 2/m′ point group {1Ē , 2Ē} at different maximal
Wyckoff positions allowed through different parameter choices in
the model of Eq. (40). In this case Mz is not a symmetry and does
not label the phase. Top rows: Phases with these correspond to
boundary obstructed phases with anomalous surface states, where
the Wannier bands in W z are characterized by a Chern number.
The bold line corresponds to the phase with a boundary obstruc-
tion when the conventional Wannier chemical potential is chosen,
i.e., μ = (1/2, 1/2, 1/2). Neither the position 1a nor 1c admits a
filling anomaly in this space group (see Fig. 15); however, the bulk
representation ρ admits a restriction the Wannier bands which are
topological or in other words nonlocal. Such a configuration makes
the position 1c obstructed. The Wannier configuration on the top
rows is characterized by a Chern number, and the obstructed cases
will host anomalous chiral modes at the boundary. Note that this
phase, unlike the models with filling anomalies presented above, is
not uniquely indicated by the symmetry eigenvalues of the Wannier
bands, but it is still diagnosed by the representation of the open
boundary system.

k � X Y M
ρ wz

+(C2z ) wz
+ wz

+ wz
+ nu�

(1a, {1Ē , 2Ē}) + + + − 2
(1c, {1Ē , 2Ē}) + + + − 0
(1a, {1Ē , 2Ē}) + + + + 2
(1c, {1Ē , 2Ē}) + + + + 2

open system is invariant under the point group symmetry F
relative to O, (ii) the d-dimensional torus can be obtained by
identifying opposite edges/faces of the open region, and (iii)
it includes an integer number of unit cells of the translationally
symmetric system. This definition means that the open system
has the shape of a (large) symmetric unit cell for the periodic
system. This special class of boundaries enables us to compare
the filling in the open and periodic systems and make the idea
of “resolving” the filling anomaly by identifying boundaries
more precise. Once we have established the existence of a
filling anomaly in the open system, we will show afterwards
how we can define it for more general boundaries, hence
establishing in the process that it captures a stable topological
invariant of the open system which does not change under
any boundary or bulk deformation which preserves the gap
at high-symmetry surfaces (as well as the bulk gap).

We now define a filling anomaly as follows. Given a pe-
riodic Hamiltonian with filling of ν per unit cell, we can
define a corresponding open Hamiltonian (or projector) on a
foldable boundary whose filling is νN with N denoting the
number of unit cells. A Hamiltonian (or a projector) is char-
acterized by a filling anomaly at νN if a gapped, symmetric,
Wannierizable and charge-neutral ground state is possible
in the periodic system, but impossible on the foldable open
boundary. For a system with a filling anomaly we can find
a gapped, symmetric, and Wannierizable ground state in the
open system if we remove the condition of charge neutrality.
Hence, the filling anomaly can be quantified by an integer νfa

denoting the number of electrons we need to add to obtain
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a gapped, symmetric, and Wannierizable ground state in the
open foldable system.

Now let us try to generalize this invariant to more generic
types of boundaries. Our definition for boundary obstructions
identifies Hamiltonians in an open system which are related
by symmetric deformations which do not close the gap in
the bulk or at any HSS on the boundary. This does allow
for gap-closing transitions away from HSSs at the boundary
which can change the total filling by pushing some eigenstates
across the chemical potential. Such gap closings have to oc-
cur at |F | symmetry related points/surfaces at the boundary
which means that the total change in the filling induced by
such a process has to be a multiple of |F |. As a result, the
integer νfa can change by a multiple of |F | but is invariant
modulo |F |. This defines a topological invariant protected by
the gap at HSS which is additive modulo |F |. As a result, the
topological phases distinguished by filling anomaly invariants
form a subgroup of the integers Z|F |. We can now lift the
restriction of foldable boundaries by considering more general
symmetric boundary terminations which can be deformed to
a foldable boundary without closing the gap at a HSS. Since
νfa mod |F | is protected by the gap at HSSs, it will remain well
defined for such boundaries and can be used to define filling
anomalies in a more general context.

To understand how a filling anomaly arises when we open
the boundary, we notice that the little group of a point q, i.e.,
the subset of symmetries which leave q invariant, is generally
larger on the torus compared to the open system. More specif-
ically, the little group of q is defined in the open system and
the torus as

Fq = {g ∈ F, gq = q},
Gq = {g ∈ G, gq = q}. (25)

It is clear from the definition that Fq ⊆ Gq since F ⊆ G. As a
result, the size of the orbit of q under the action of the point
group F is |F |/|Fq| (|F |/|Gq|) in the open (periodic) system.
For example, in the DMQI a general point (x, y) whose little
group contains only the identity element has an orbit with
four elements in total given by (x, y), (−x, y), (x,−y), and
(−x,−y) under the action of Mx and My. On the other hand,
a point lying on one of the mirror lines, let’s say (x, 0) has
an orbit with only two points: (x, 0) and (−x, 0). When we
open the boundary, a point q in the periodic system maps to
nq points in the open system where nq is an integer larger than
or equal one given by

nq = |Gq|/|Fq|. (26)

Thus, a filling anomaly occurs if (and only if) there is a point
q whose filling in the periodic system is not divisible by nq.
The anomaly invariant νfa can be expressed in terms of nq, the
size of the full group |G|, and the filling of q in the periodic
system ν

pbc
q as

νfa = ν
pbc
q |F |

nq
mod |F | = ν

pbc
q |F ||Fq|

|Gq| mod |F |, (27)

which is always an integer since |F | is divisible by |Gq| (which
follows from Gq ⊆ F ). Now we can state in particular that
a filling anomaly describes a BOTP if there are two gapped
bulk Hamiltonians which are symmetrically deformable in the

periodic systems, but which correspond to distinct anomaly
invariants νfa in the open system.

B. Filling anomalies in 2D systems

To investigate possible filling anomalies for BOTPs in
general 2D systems, we consider the possible point group
symmetries for which the anomaly condition derived above
is satisfied. Crystallographic point groups in 2D belong to
two categories: n-fold rotation groups Cn, n = 1, 2, 3, 4, 6 or
the dihedral groups Dn generated by n-fold rotation and an
in-plane mirror reflection with n = 1, 2, 3, 4, 6. We denote the
filling of a point q in the open and periodic system by νq and
ν

pbc
q , respectively. We now note that a point q whose little

group Gq = Cn will be characterized by nq = n/|Gq|. As a
result, a filling anomaly is possible only if ν

pbc
q is not divisible

by n. On the other hand, the value of ν
pbc
q modulo n cannot be

symmetrically changed in the periodic system since the only
possible symmetric operations involve the addition or removal
of n electrons to q, which will change its filling by multiples
of n. As a result, all filling anomalies for points q with point
group Cn are associated with bulk phases not BOTPs.

Next, consider points q whose point group is Gq = Dn

for which |Gq| = 2n such that a filling anomaly is realized
whenever ν

pbc
q is not divisible by 2n. In contrast to the Cn

case, there are symmetric deformations which can change the
value of ν

pbc
q mod 2n, namely, by symmetrically moving n

electrons in or out of q along the mirror-invariant lines. As
a result, a filling anomaly is associated with a bulk phase
whenever ν

pbc
q �= n mod 2n, and it is associated with a BOTP

when ν
pbc
q = n mod 2n. For BOTPs this is equivalent to the

conditions

νpbc
q = n, |Gq| = 2n, |Fq| = 1, (28)

which gives a necessary (but not sufficient) condition for a
BOTP filling anomaly. One possibility of realizing (28) is
at the corner of a rectangular sample which does not have
any symmetry in the open system (|Fq| = 1) but lies at the
intersection of two mirrors in the periodic system such that
|Gq| = 4. Thus, the filling ν

pbc
q = 2 in the periodic system

leads to a filling anomaly not associated with a bulk phase.
This is what happens in the DMQI model. Other cases in-
volve a point q lying at an edge in the open system with
|Fq| = 1 which becomes a mirror-invariant line in the periodic
system with Gq = 2. If the periodic filling ν

pbc
q = 1, and this

position can be symmetrically deformed to the origin, then it
satisfies all the conditions of a boundary filling anomaly. An
example is illustrated in Fig. 11 with the group D4 with the
points q lying at the edges of the square (with |Gq| = 2) with
ν

pbc
q = 1. Such filling anomalies can be observed on generic

D4 symmetric boundaries like the ones shown in Figs. 11(b)
and 11(c). However, on a simple square boundary with ap-
proximate translation symmetry along the edges, the localized
charges (or alternatively the zero modes if we assume particle-
hole or chiral symmetry) cannot exist at any arbitrary point
along the edge and will be pushed towards the corners where
they annihilate. Hence, for simple boundary terminations, e.g.,
a square or hexagon, we are not able to identify any interesting
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FIG. 11. (a) Schematic illustration of a BOTP filling anomaly
in the 2D point group D4 associated with edge charges on a square
geometry. (b), (c) More complicated edge terminations which allow
the localization of the zero modes so that they can be removed only
by closing the gap at a high-symmetry edge.

physical signatures of BOTPs other than what was already
known for the DMQI. For the rest of this work, we will instead
focus on BOTPs in three dimensions.

V. 3D MODELS WITH BOUNDARY OBSTRUCTIONS

A. Recipe for constructing 3D BOTPs

We now switch our attention to BOTPs in three dimen-
sions. In the following we present a simple recipe that can be
used to construct 3D models with different types of boundary
obstructions. The recipe works in analogy to the construction
of the 2D DMQI model. For that model, we took a pair of
inversion symmetric SSH chains in each unit cell parallel to
say the x-direction, and then coupled them with dimerized
couplings, i.e., intra- and intercell couplings γy and λy along
the y-direction (i.e., the stacking direction). Additionally, to
generate the necessary symmetry structure, we threaded a
π -flux per unit cell (Fig. 1). In the limit γy = 0, λy �= 0, there
is an isolated/unpaired SSH chain on each of the edges par-
allel to the x-axis that can be in the trivial (|γx| > |λx|) or
obstructed (|γx| < |λx|) atomic limit, and thus may have an
associated boundary obstruction.

This construction suggests a route to obtaining 3D BOTPs:
we start with any 2D Hamiltonian H2D(k) associated with
boundary signatures such as corner/edge charges or 1D edge
states. We then consider a pair of these Hamiltonians such that
their sum is topologically trivial, and hence all the associated
boundary signatures can be removed when they are coupled.
Next, we couple these pairs via dimerized SSH-like couplings
γz, λz along the (stacking) z-direction. This arrangement guar-
antees that in the limit γz = 0, λz �= 0, there is a single isolated
copy of ±H2D(k) at the upper/lower surface when the system
is considered with open boundaries. Additionally, we need to
to ensure that the bulk gap is open if either H2D(k) is gapped
or |γz| �= |λz|. This can be done by choosing the 2D Hamilto-
nian to have alternating sign between layers. In most cases,
this is realized by inserting π fluxes between the stacked
layers (i.e., in the xz and yz plaquette types) possibly with
the addition of some other modifications to the Hamiltonian
parameters between layers as we will show later. The resulting

3D Hamiltonian is given by

H3D(k) = H2D(k)τ3 + (λz sin kz )τ2 + (γz + λz cos kz )τ1,

(29)
where τ1,2,3 denote the Pauli matrices in the layer subspace
along z. Due to the π fluxes, the different terms of the Hamil-
tonian anticommute which implies that it can be gapless only
if each of the three terms separately vanish, i.e., only if H2D(k)
is gapless and |λz| = |γz|. As in the DMQI case, the existence
of π fluxes means that spatial symmetries are generally com-
bined with gauge transformations and transform projectively.
In particular, since the π -fluxes here are considered in only
the vertical xz and yz planes but not the horizontal xy plane,
the resulting projective representation cannot be recast as a
spinful representation as we will see later.

It is instructive to highlight the relationship between
our construction and the layer construction used to build
higher-order and topological crystalline phases from lower-
dimensional topological phases [52–54,65]. In the conven-
tional layer construction, one starts from a lower-dimensional
topological phase placed at a symmetry-invariant region and
then symmetrically adds layers or copies of this lower-
dimensional system to realize a higher-dimensional system.
A system constructed this way will always be topologically
nontrivial in the bulk as long as the protecting spatial symme-
try is unbroken. In contrast, we start with a lower-dimensional
system H2D which is topologically trivial but consists of two
components which are individually nontrivial. Upon repeating
this lower-dimensional unit using the layering procedure, we
can spatially separate these two nontrivial components such
that they appear at opposite edges/surface of the system. The
resulting system is topologically trivial in the bulk with lower-
dimensional nontrivial systems living at its boundary.

The type of boundary obstruction in the 3D Hamiltonian
(29) depends on the type of obstruction for H2D(k), as well
as the dimension of its surface states. For the top/bottom
surfaces, H3D(k) will have a surface (hinge) obstruction if
H2D(k) has a bulk (edge) obstruction. For side surfaces,
H3D(k) will have a surface (hinge) obstruction if H2D(k)
has edge states/charges (corner charges). The latter state-
ment can be understood by investigating the dimension of
the SPT needed to add to the side surfaces to cancel the
surface states/charges (remember all BOTPs are also extrin-
sic higher-order topological insulators whose surface states
can be removed by adding a lower-dimensional SPT on the
surface). If the 2D Hamiltonian has corner charges, then it
is enough to add 1D SSH chains to the vertical hinges to
cancel them. On the other hand, a 2D Hamiltonian with edge
states or charges requires the addition of a 2D SPT on the
side surfaces to cancel these states/charges. It follows from
the previous discussion that H3D(k) has a surface (hinge)
obstruction if and only if H2D(k) has a bulk (edge) obstruc-
tion with 1D (0D) edge states/charges. We note that it is
also possible to have mixed surface-hinge obstructions where
connecting two BOTPs involves either a surface gap closing
on the upper/lower surfaces or a hinge gap closing on the
side surfaces. This would be the case if, for example, we
take H2D(k) to be a bulk-obstructed atomic insulator with
corner charge, e.g., the C4z quadrupole model. It is worth
noting that the distinction between surface and hinge types
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FIG. 12. Generic phase diagram for H3D(k) obtained by the 3D
construction in Sec. V A, where the 2D Hamiltonian H2D(k) is pa-
rameterized by {ξ1, ξ2}. As an illustration we choose the 2D model
to exhibit two topologically distinct phases depending on which of ξ1

or ξ2 is the largest. Hence, H2D(k) has a bulk gap closing transition
at ξ1 = ξ2 that will subsequently lead to a Wannier gap closing
in H3D(k) in the W z Wannier spectrum (blue plane), which can
happen at νz = 0 or νz = 1/2 as labeled in the figure. On the other
hand, the gap in the Wx and Wy Wannier spectra closes when the
stacks of H2D(k) are uniformly coupled in the stacking direction, i.e.,
when λz = γz (yellow plane), again at either νx,y = 0 or νx,y = 1/2
as labeled. The intersection between the two planes corresponds
to a line where the bulk gap is closed in the phase diagram. This
construction yields four phases A, B, C, and D separated by Wannier
gap closings. A choice of boundary may select one of the four to be
topologically distinct from the other three (in the sense of a boundary
obstruction) when the Wannier gap closing happens at the Wannier
chemical potential. Here we highlighted phase D as a nontrivial
boundary obstructed topological phase for a choice of boundary
termination that coincides with the unit cell structure, μi = 1/2.

of obstructions is possible only for boundaries consisting of
several intersecting 2D planes. On a more smooth boundary
like a sphere, such a distinction is ill-defined.

Now let us more explicitly describe the properties of our
3D parent model. A representative phase diagram of the above
construction can be found in Fig. 12. There we consider a 2D
Hamiltonian parametrized by generic parameters ξ1 and ξ2.

For illustration we assume the 2D Hamiltonian admits a topo-
logically nontrivial phase with boundary modes if ξ1 > ξ2, a
trivial phase when ξ1 < ξ2 and a critical point when ξ1 = ξ2.
When stacking into a 3D system, the bulk 3D Hamiltonian
will be gapped even when ξ1 = ξ2 as long as there is a dimer-
ization along z, λz �= γz. As a function of ξ1, ξ2, and γz/λz

there is a line in the phase diagram (red line) where the bulk
is gapless. By construction, this model allows for four adi-
abatically connected bulk phases, separated by Wannier gap
transitions where the Wannier spectra changes its topology. A
choice of a symmetric boundary termination will single out
one of the phases, where the Wannier gap closing happens at

the WCP, (for our choice this is at νx,y = 1/2 and νz = 1/2)
(cf. Fig. 12). For this boundary termination, which coincides
with the unit cell structure, phase D is a nontrivial boundary
obstructed topological phase since λz > γz leaving a dangling,
unpaired H2D(k) on both the top and bottom surfaces that is
in its topologically nontrivial phase.

In the following two subsections, we will focus on models
with surface obstructions while briefly discussing an exam-
ple of a hinge obstruction. We will separately consider the
cases where the surface obstruction is associated with a filling
anomaly or gapless surface states.

B. 3D BOTPs with filling anomalies

In this subsection, we will discuss 3D BOTPs associated
with filling anomalies. We will propose a class of models with
C2nh symmetry n = 1, 2, 3 exhibiting surface obstructions as-
sociated with a filling anomaly. After introducing the models,
we analyze their properties using a real-space approach as
well as through the Wannier spectrum. At the end, we will
briefly discuss an example of a hinge-obstructed model with
corner charge.

1. A class of C2nh Hamiltonians

Now let us introduce a class of 3D models defined for
the space groups 10, 83, and 175 which are symmorphic
space groups whose point group F is C2nh with n = 1, 2, 3,
respectively. These symmetry groups are characterized by a
2n-fold rotation C2nz accompanied by a mirror reflection per-
pendicular to the rotation axis Mz.

We build the 3D Hamiltonians in each case following the
recipe of Sec. V A using 2D models that realize a C2nz insu-
lator at filling n. The full 3D model will be a 3D BOTP at
filling of 2n which has a surface obstruction associated with
a filling anomaly. The 2D tight-binding Hamiltonians we use
are shown in Fig. 13. Each of these 2D models has several
distinct atomic limit phases separated by a bulk transition: one
atomic limit where all the 2n electrons are at the center of the
unit cell (with site symmetry group C2nz) and others where
the 2n electrons are distributed in pairs to n symmetry related
edges of the unit cell (with site symmetry C2z). The nontrivial
obstructed atomic limit of these models is characterized by
edge charges and bulk polarization so they can be understood
as weak 2D phases if translation symmetry in the 2D plane is
preserved.

Explicitly, the C2z model is given by

HC2z

2D (k) = (λx sin kx + λy sin ky)σ2

+ (λ0 + λx cos kx + λy cos ky)σ1, (30)

where σ1,2,3 denote the Pauli matrices distinguishing the two
atomic orbitals inside the unit cell. The hopping parameters
λ0,x,y are represented by the black, green, and blue links in
Fig. 13(a), respectively. The spectrum of Eq. (30) is given by

ε2
2D = λ2 + 2λ0(λx cos kx + λy cos ky) + 2λxλy cos(kx − ky),

(31)
with the shorthand λ2 = λ2

0 + λ2
x + λ2

y . The 2D model is
gapped whenever the largest of λ0,x,y exceeds the sum of
the other two. In addition, the gapped phases at half filling
correspond to distinct atomic insulators with a single electron
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FIG. 13. [(a)–(c)] Schematic illustration of the 2D hopping
Hamiltonians used to build the 3D surface obstructed models with
(a) C2z, (b) C4z, and (c) C6z symmetries. The hopping parameters λ0,
λx , and λy are denoted by red, green, and blue lines respectively.
[(d)–(f)] Top view illustration of the deformation process explained
in the text between position 1a and position nc for (d) C2z, (e) C4z,
and (f) C6z symmetries.

localized either at the 1a, 1b, or 1c positions whenever the
largest λ is λ0, λx, or λy, respectively.

The 2D Hamiltonians for C4z and C6z symmetric cases can
be constructed in a straightforward way. We simply stack two
or three copies of HC2z

2D (k) related by C4z or C6z rotations,
respectively. They are shown schematically in Figs. 13(b) and
13(c). Let us here explicitly show the resulting C4z model, by
adding to the C2z model a π/2 rotated copy of itself,

HC4z

2D (k) =
(
HC2z

2D (k) 0
0 ei π

4 σ1HC2z

2D (C4zk)e−i π
4 σ1

)
, (32)

where C4zk = (ky,−kx ) is the momentum space action of C4z.
This Hamiltonian describes a 2D four-band model.

The 3D models can be constructed following the recipe
of Sec. V A stacking pairs of 2D models with dimerized
couplings γz and λz along the z-direction. Additionally, we
thread a π -flux per unit cell in the xz and yz plaquettes but
not in the xy plaquette. This flux threading modifies the sym-
metry representation for the spatial symmetries to a projective
representation by combining spatial symmetries with gauge
transformations such that the gauge-invariant condition

C2zMzC
−1
2z M−1

z = −1 (33)

is satisfied. This condition captures the π flux in the vertical
(xz and yz) plaquettes. Notice that this condition implies that
we cannot write this projective representation as a nonprojec-
tive spinless or spinful representation: the former has M2

z =
C2

2z = +1 whereas the latter has M2
z = C2

2z = −1 with both
having [Mz,C2z] = 0 [66]. As a result, the inversion operator
which is given by I = C2zMz squares to +1 in any nonprojec-
tive spinful or spinless representation, whereas it squares to
−1 when (33) is satisfied, meaning that it cannot be consistent
with any nonprojective spinless or spinful representation. This
arises from the special property of the models we consider
where π -fluxes are attached only to the vertical plaquettes but
not the horizontal ones.

For the 3D Hamiltonian defined by (29) with H2D given in
(30), the spatial symmetries C2z and Mz are implemented as

MzH(k)M†
z = H(mzk), Mz = σ3τ1

C2zH(k)C†
2z = H(C2zk), C2z = σ1τ0, (34)

where mzk = (kx, ky,−kz ) and C2zk = (−kx,−ky, kz ). The
eight-band C4h model has the symmetries

C4z = e−i π
4

(
0 ei π

4 σ1

ei π
4 σ1 0

)
τ0, Mz =

(
σ3 0
0 σ3

)
τ1. (35)

Here σ1,2,3 act in the space of orbitals within the same 2D
layer, whereas τ1,2,3 act in the space of orbitals in different
layers. The C6z model has a similar structure.

2. Real space picture and filling anomaly

We now explain the boundary obstruction in the models
described in the previous subsection. We can start with a
similar picture to that of Sec. II B. In this picture, we consider
two configurations of Wyckoff positions which are smoothly
deformable in the bulk, but not in the presence of a surface.
The precise meaning of this procedure follows from the ma-
chinery of Sec. III A wherein the deformation trajectory in the
periodic system induces a corresponding trajectory in the open
system via the boundary map σ . By tracing the movement of
the charge centers, we can then show that such a trajectory
cannot be both symmetric and smooth. We consider the real-
space deformation between two distinct configurations of the
electrons: one where all electrons are at the center of the unit
cell 1a (cf. Fig. 15, red Q) in the z = 0 plane, and the other
with two electrons at the edge of the unit cell 1c, 2c or 3c (nc
for shorthand) in the three different models (cf. Fig. 15, purple
Q) in the z = 1/2 plane. This can be done while preserving the
symmetry by first moving the 2n electrons at 1a horizontally
in the z = 0 plane into nc as shown in Fig. 13, and then mov-
ing the 2 electrons at this site vertically in opposite directions.
We could also start by first moving n electrons vertically in
each direction, then moving them horizontally to the position
nc.

Now we can see that the first trajectory (which involves
moving horizontally then vertically) will be obstructed in the
presence of side surfaces at the unit cell edge. The reason is
that at such side surfaces, the filling of the nc position is 1, and
thus we cannot further move the electrons vertically while pre-
serving the mirror symmetry in the z-direction. Similarly, the
second trajectory involving vertical then horizontal movement
is not possible in the presence of the top/bottom surfaces at
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the z = 1/2 plane. The reason is that the filling of the position
1a at this surface is n (rather than 2n which is its bulk filling).
This does not allow us to symmetrically move the electrons in
the plane to position nc without breaking the symmetry. This
discussion parallels the one of Sec. II B for the DMQI, and it
shows that in the presence of a surface termination consistent
with the unit cell shown in Fig. 13, it is not possible to connect
the atomic configuration where the 2n electrons are at 1a in
the z = 0 plane to the one where two electrons are at each
position nc at the z = 1/2 plane, despite the fact that these
two atomic configurations are symmetrically deformable to
each other in the bulk (with periodic boundaries). We also note
that, similar to the DMQI case, the possibility of interpolat-
ing the two atomic configurations in the bulk imposes some
constraints on the commutation properties of the different
symmetries, i.e.,

{C2z, Mz} = 0, (36)

which is shown to be a necessary condition for the smooth
deformation between these different bulk trajectories in
Appendix A.

Similar to the DMQI, the 3D models introduced in this
section are chatacterized by filling anomalies which are not
associated with bulk topology. They can be understood by
employing a similar argument to that of Sec. II D. Let us
start with the n = 1 model corresponding to 3D space group
10 whose point group is C2h. Taken on an open symmetric
boundary, let us consider the filling of the low-dimensional
symmetry-invariant region � given by the union of the xy
plane and the z-axis. This region consists of the disjoint union
of three regions: (i) the origin O, (ii) the z-axis excluding
the origin (described by the line x = y = 0), and (iii) the
xy-plane excluding the origin. The filling of (ii) and (iii) is
necessarily even due to the action of Mz and C2z, respectively.
The filling of (i) is even due to the anticommutation of Mz and
C2z which enforces the (projective) symmetry representation
to be 2D. This 2D representation is neither spinless or spinful,
and we will refer to it in Table II as Ē is analogy to the
DMQI model, however this is slight abuse of notation since
this projective representation is not tabulated or equivalent to
a purely spinless or spinful representation [67]. As a result,
the total filling of � is even. On the other hand, adding
or removing electrons from outside this region can change
ν� only by four corresponding to the four symmetry-related
locations (x, y, z), (−x,−y, z), (x, y,−z), and (−x,−y,−z)
(that is to say that the general Wyckoff position in the open
system has multiplicity 4). Thus, the parity of ν�/2 describes
a Z2 invariant which cannot be changed without changing the
filling of the high-symmetry region �. This is possible only by
closing the gap at a high-symmetry surface (or in the bulk). As
in the DMQI case, the discrepancy between this number and
the total filling indicates a filling anomaly described by the Z2

invariant.
Such an anomaly can be resolved by identifying opposite

side faces of the sample. This introduces new C2z-invariant
twofold rotation axes whose filling is even, but can take a
value of 0 or 2 modulo 4, which makes it possible for it to
compensate for the discrepancy between the total filling and
ν� modulo 4. The orbitals in these new C2z-invariant lines can
be symmetrically brought to � without closing the bulk gap or

FIG. 14. [(a)–(c)] Local density of states at zero energy for the
surface obstructed insulators constructed by stacking the tight bind-
ing models from Fig. 13 with (a) C2z, (b) C4z, or (c) C6z symmetry. We
can clearly notice the existence of hinge-localized states associated
with hinge charges if we require the system to be symmetric and
gapped, or alternatively a partially filled hinge band if we require the
system to be symmetric and neutral; both phenomena are a result of
the filling anomaly. [(d)–(f)] Illustration of the 0D surface states as-
sociated with the filling anomaly for a spherical surface termination.
Such states can be annihilated only at the high-symmetry regions at
the equator or north/south poles leading to a gap closing at these
points.

breaking the symmetry, thereby changing the value of ν� and
removing the bulk signature of the filling anomaly observed
in the open system. This indicates that such filling anomaly
is associated with a BOTP rather than a bulk phase. Similar
analysis can be carried for the models with point groups C4h

and C6h.
Another approach to filling anomalies is the one intro-

duced in Sec. IV. In this case, we choose a foldable boundary
termination as shown in Figs. 14(a)–14(c) which resembles
a symmetric large cell for the periodic system. Recall the
criterion derived in Sec. IV where a filling anomaly is realized
whenever the filling of a position q on the periodic system
ν

pbc
q is not divisible by nq, defined as the ratio of the order of

its site symmetry group in the periodic and the open system
[Eq. (27)]. For all the C2nh models discussed above, the bulk
filling for the nc position at z = 1/2 in the obstructed “phase”
is ν

pbc
q = 2, and its symmetry group on the torus is Gq = C2h

(generated by C2z and Mz) which has four elements, |Gq| = 4.
For the surface termination where the vertical surfaces are at
the edges of the unit cell [shown in Figs. 13(a)–13(c)], and
the horizontal surfaces are at z = 1/2, the sites q lying at the
horizontal hinges [see Figs. 14(a)–14(c)] have no symmetry
left. Thus |Fq| = 1 for these points which implies that the
condition of Eq. (28) is satisfied.

Finally, let us discuss the observable consequences of
the filling anomaly. In the DMQI, the filling anomaly man-
ifests itself in the existence of fractional corner charge.
Here we similarly expect fractional charges placed at 4n
symmetry-related points at the corners of a generic bound-
ary termination. These corner charges can be more easily
undersood by first imposing chiral symmetry or particle-hole
symmetry and noting that we can associate the anomaly with
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2n 0D surface states at generic symmetry related points on
an arbitrary symmetric surface as shown in Fig. 14(d)–14(f).
Such 0D states can be annihilated only at the equator or the
north/south poles which are HSSs. Following the discussion
of Sec. II D, we can show that the filling anomaly will survive
even after breaking chiral symmetry. In this case, it will appear
as excess charge fractionally distributed among these sym-
metry related points for the symmetric gapped insulator. We
notice that on highly symmetric foldable terminations such
as the ones shown in Fig. 14, the edges have an approxi-
mate translation symmetry. As a result, the filling anomaly
for a symmetric insulator implies the existence of fractional
charges per unit cell along the hinge for a symmetric gapped
insulator, i.e., a hinge charge. Alternatively, we can impose
the condition of charge neutrality (and unbroken symmetry)
to deduce that the filling anomaly gives rise to partially filled
bands corresponding to gapless hinges in these models.

3. Wannier spectrum

We now turn our attention to the evolution of the Wannier
bands and how they encode the boundary obstructions de-
scribed in the previous subsection. We diagnose the boundary
obstruction by analyzing the Wannier spectrum and choosing
a lattice termination that coincides with the edges of the unit
cell. That is, the WCP is given by μ = (1/2, 1/2, 1/2), which
means that only gap closings of the Wannier spectrum at these
values correspond to actual boundary gap closings. A phase
diagram of the models is shown for reference in Fig. 15.

C2h model: A gapped Wannier spectrum along ẑ is possi-
ble provided HC2z

2D is in a gapped phase. This happens only
when 2λM > λS (blue regions in Fig. 15), where we defined
the parameters λS = λx + λy + λ0 and λM = max(λx, λy, λ0).
On the other hand, the Wannier spectrum along x̂ or ŷ is
gapped as long as |γz| �= |λz| (yellow plane in Fig. 15). The
bulk Hamiltonian is gapped if either condition is satisfied
and is therefore gapless only in the intersections of the blue
region and yellow plane in the phase diagram. The region of
intersection is marked in red. It is evident that the Wannier
gap may close while preserving the bulk gap, a necessary
condition for a BOTP. We show the Wannier spectra νz(kx, ky)
and νx(kz, ky) in Figs. 16(a) and 17(a). In these figures, we
can see six distinct regions with gapped Wannier spectra
separated by Wannier gap closings, as will be explained in
detail below.

Similar to the DMQI case, the different gapped phases
of the C2h model are characterized by distinct Wannier band
representations, which can be reflected in distinct values of
the nested Wannier band polarizations. Let us first notice that
the model has four quantized Wannier band polarizations: pz,x

and pz,y are quantized due to C2z symmetry, and px,z and
py,z are quantized by Mz symmetry. In our model, pz,x and
pz,y cannot be simultanuously nonzero, and px,z and py,z are
equal, leading to six distinct gapped phases (see Fig. 15).
Let us label the different phases by the maximal Wyckoff
position Q around which the Wannier centers are located, as
shown in Fig. 15(b). While the electrons may be symmetri-
cally displaced from this maximal Wyckoff position in some
cases, they remain centered around Q, and both their band
representations, and Wannier band representations, are topo-

FIG. 15. (a) Phase diagram for the C2h model introduced in
Sec. V B 1 with a fixed value of λ0 = 1/2. The Wannier spectrum
W z closes at the blue regions which span the γz/λz axis in the areas
marked with W z; while the Wannier spectrum Wx closes at the
yellow plane at γz/λz = 1. Due to the constraints in the model, a
gap closing in Wx implies a gap closing in Wy. In the intersection
between the two, the red regions, the bulk is gapless The gapped
phases with gapped Wannier spectra are marked by the representative
maximal Q from which the Wannier band representations may be
induced. (b) Spatial location of the maximal Q compatible with the
C2h point group. With the conventional choice of Wannier chemical
potential μ = (1/2, 1/2, 1/2), phases induced from 1 f , 1g, and 1h
may be surface obstructed; from 1h they could also be hinge ob-
structed. In our model we realize 1 f and 1g surface obstructions.

logically equivalent to those of the phase where the electrons
lie exactly at Q. Therefore it is useful to label the phases by
such maximal Wyckoff positions. We can use the notation
(pz,x, pz,y, px,z, py,z )Q, to label the six distinct phases, which
are given by (0, 0, 0, 0)1a, (0, 1/2, 0, 0)1b, (1/2, 0, 0, 0)1d ,
(0, 0, 1/2, 1/2)1c, (0, 1/2, 1/2, 1/2)1g, (1/2, 0, 1/2, 1/2)1 f .
In our model we cannot tune parameters such that the Wannier
centers lie at the 1e or 1h Wyckoff positions.

The Wannier transitions between the different phases can
be studied numerically leading to the phase diagram in
Fig. 15(a). As we can see, all of the pairwise Wannier tran-
sitions between the phases 1a, 1b, and 1d are associated with
a gap closing of the Wannier spectrum in the z-direction at
νz = 0. On the other hand, the pairwise Wannier transitions
between the phases 1c, 1g, and 1 f are associated with a gap
closing for the Wannier spectrum in the z-direction but at
νz = 1/2. This reflects the fact that transitions between 1a,
1b, and 1d take place in the z = 0 plane, whereas transitions
between 1c, 1 f , and 1g take place in the z = 1/2 plane.
The Wannier transitions 1a ↔ 1c, 1b ↔ 1 f and 1g ↔ 1d are
associated with a gap closing in both Wannier spectra along
the x- and y-directions occuring at (νx, νy) = (0, 0), (0, 1/2),
and (1/2, 0), respectively.

Following the previous discussion, we can see that
the phases 1 f and 1g have a surface obstruction, which
can be diagnosed by px,z = py,z = 1/2 and (pz,x, pz,y ) =
(0, 1/2) or (1/2, 0), respectively. They are characterized
by a quantized hinge charge of 1/2 per unit cell, at the
hinges along y or x, respectively. A real space calcula-
tion of the low energy states is found in Figs. 14(a)–
14(c). As an example, in Figs. 16 and 17 we show how
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FIG. 16. Evolution of the Wannier spectrum W z with eigenvalues νz(kx, ky ) for different values of λx in the 3D boundary obstructed
models with filling anomalies and C2h, C4h, and C6h symmetries. The other parameters are kept fixed at the values of λ0 = 0.5 and λy = 0.25
with λz = 1.5 and γz = 1. With gapped νx (see text), we find that varying λx allows for two gapped phases bordered by an extended region
where νz is gapless. This happens when 0.25 < λx < 0.75 where the condition 2 max(λ0, λx, λy ) < (λ0 + λx + λy ) is satisfied. Panels (a1) and
(a4) correspond to the gapped phases 1 f and 1g in the phase diagram of Fig. 15, respectively.

the two gapped phases, 1a and 1g, which correspond
to the parameters (λ0, λx, λy, γz, λz ) = (0.5, 0, 0.25, 0.5, 1)
and (λ0, λx, λy, γz, λz ) = (0.5, 1, 0.25, 1.5, 1), respectively,
are separated by a Wannier gap closing transition at the WCP,
and consequently a surface gap closing. We follow two dis-
tinct paths, either by first increasing λx : 0 → 1, and then

FIG. 17. Evolution of the Wannier spectrum Wx with eigenval-
ues νx (ky, kz ) for different values of λz and fixed λ0 = 0.5, λx = 1,
λy = 0.25, and λz = 1. Across these that νz is gapped, we find
the gapless transition of νx to happen when λz = 1. Panels (a) and
(c) correspond to the gapped phases 1g and 1d in the phase diagram
of Fig. 15, respectively.

increasing γz : 0.5 → 1.5, or vice versa. When increasing
λx first, the gap at the z = 1/2 surface closes in the range
of 0.25 � λx � 0.75 [cf. gapless νz(kx, ky) in Figs. 16(a2)
and 16(a3)]. Instead, if we increase γz first we find the
gap closing at the WCP at γz = 1 [cf. gapless νx(ky, kz ) in
Fig. 17(b)]. Thus, a surface gap closing at the z = 1/2 or
x = 1/2 surface is unavoidable whenever we connect the 1a
and 1g phases.

Finally, let us comment on the Wannier band representa-
tions. The Wannier spectrum of W z, corresponds to the upper
and lower surfaces (which preserve C2), while the Wannier
spectrum of Wx/y correspond to the side surfaces (which pre-
serve Mz). The WBRs corresponding to wz and wx/y are split
into two disconnected WBRs when 2λM > λS or |γz| �= |λz|,
respectively. The values that the WBRs take at high-symmetry
momenta may be used to determine the topological phases
since in this case they can be uniquely associated with a
representation π of the open boundary system. The symmetry
eigenvalues for the WBRs are shown in Table II. To determine
these symmetry indicators we induce the bulk BR’s from the
maximal Q’s and subduce them to the subgroup maintained by
the respective Wannier spectrum, as described in Sec. III B.
The subduction of the bulk BRs to the point group F for
a fully open system (assuming the sample center to be at
O = 1a) are also computed to directly associate the WBRs to
the obstructed or trivial phases under this choice of boundary.
The table shows exhaustively the WBRs compatible with this
band representation, therefore we can observe that in this
case the obstructed phases are symmetry indicated from the
symmetry eigenvalues of the Wannier bands. As anticipated
earlier, we can see that the C2z eigenvalues for 1a/1c, 1b/1 f ,
and 1d/1g correspond to a 2D inversion symmetric insulator
with a single electron localized at (0,0), (0, 1/2), and (1/2, 0),
respectively. Similarly, The Mz eigenvalues correspond to a
2D mirror-symmetric system where the electron is localized
at the 0 or 1/2 mirror lines for 1a/1b/1d or 1c/1 f /1g, re-
spectively.
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C4h model: We now look at the eight-band model with
C4h symmetry. The model differs from the C2h model in two
main aspects. First, C4z symmetry dictates that the Wannier
spectra Wx and Wy are identical, hence the nested polariza-
tions pz,x and pz,y are equal. This means the model has only
one nontrivial phase, and this phase has hinge charge along
both the x and y directed hinges. In this phase, the occupied
electrons are distributed around the 1 f and 1g positions in
Fig. 15(b). Second, with four occupied electrons per unit cell,
the Wannier bands allow for more complicated gap-closing
patterns, as we will see below.

The analysis of the C4h model parallels the C2h model
above. The model has four distinct regions of gapped Wannier
spectra characterized by the values of the two distinct nested
polarizations (pz,x, px,z ) equal to (0, 0)1a1a, (0, 1/2)1c1c,
(1/2, 0)1b1d , and (1/2, 1/2)1 f 1g, and separated by Wannier
gap closings. Here the sequence of two Wyckoff position
labels indicates one orbital in one position and another or-
bital in the second position. The transitions 1a1a ↔ 1c1c
and 1b1d ↔ 1 f 1g are characterized by Wannier gap closings
at νx = νy = 0 and νx = νy = 1/2, respectively, whereas the
transitions 1a1a ↔ 1b1d and 1c1c ↔ 1 f 1g are characterized
by Wannier gap closings at νz = 0 and νz = 1/2, respectively.
As a result, the 1b1d phase is a BOTP that cannot be reached
from any of the three other phases without closing a gap at the
boundary for our chosen boundary termination (correspond-
ing to a WCP μx,y,z = 1/2).

This can be seen more directly by studying the evolution
of the Wannier bands. The Wannier bands in the z-direction
calculated via W z are shown in Fig. 16(b). The four bands
are split into two groups of two bands. Akin to the C2h

model, when λM = λ0 > λS/2, the two filled bands are lo-
cated around 1a with pz,x = pz,y = 0. On the other hand,
when λM = λx,y > λS/2, the two filled bands describe one
electron at 1 f and one at 1g, each having pz,x = pz,y =
1/2. In both cases, the Wannier bands form elementary
bands and cannot be split further. In particular, this implies
that the Wannier gap closing when λM < λS/2 involves all
four bands.

Focusing on Wx, we can similarly investigate the transition
between the two distinct phases by tuning γz. Here we find a
gap closing transition when |γz| = |λz| (cf. Fig. 17). Unlike
W z, the bands are split into four separate bands (four EBRs)
since the symmetries of Wx do not relate them. This follows
from the fact that, with only mirror symmetry, all nongeneral
Wyckoff positions have multiplicity 1. This implies that all
EBRs that are not derived from the general position are 1D.
As a result, the gap closing at the WCP takes place only
between two of the four Wannier bands. This implies that we
can identify the different phases by looking at the (nested)
Wannier band polarization of a single band. The phase with
hinge charge is characterized by px,z = 1/2.

C6h model: We can define a model with C6h symmetry in
a very similar fashion. The 2D Hamiltonian used to construct
this model [via Eq. (29)] is schematically illustrated in the
third panel of Fig. 13. The behavior of the model is quali-
tatively similar to the models above. Namely, there are two
phases distinguished by a surface obstruction as shown in
Figs. 16(c) and 17(c). The nontrivial phase is characterized
by a fractional hinge charge per unit cell [cf. Fig. 14(c)].

4. A hinge-obstructed 3D BOTP

One of the simplest 3D BOTPs we can construct is a trivial
dimensional extension of the DMQI. Following the recipe of
Sec. V A, we can create a 3D BOTP by stacking pairs of
DMQIs with π fluxes at each plaquette along the stacking
direction. Since the DMQI is edge-obstructed and has corner
charges, the resulting 3D BOTP has a hinge obstruction as-
sociated with a filling anomaly which translates to a corner
charge of e/2 at each of the eight corners.

The filling anomaly can be understood by noting the
3D model has mirror symmetries about three perpendicular
planes, i.e., Mx, My, and Mz. When considered on a torus, i.e.,
with periodic boundary conditions, then there are eight points
q with maximal symmetry |Gq| = 8, where the three perpen-
dicular mirror planes intersect. These points correspond to the
eight maximal Wyckoff positions of multiplicity 1. Whenever
the filling of such points is a multiple of two, we can symmet-
rically move the electrons along the intersection of any two
of the three mirror planes to reach any of the other symmetric
positions. On the other hand, with open boundaries, the site
q that lies on a corner of the open system has its site sym-
metry group reduced such that |Fq| = 1. At a bulk filling of
ν

pbc
q = 4 (which is natural for a pair of DMQIs), the sites at

the corners will have a filling of 1/2 signaling the existence
of a BOTP filling anomaly. Such a filling anomaly is asso-
ciated with a hinge rather than surface obstruction. Indeed,
this model is the octupole insulator of Refs. [17,18], which
was the first example of a 3D BOTP when protected by mirror
symmetries (additionally, bulk obstructions exist in this model
when additional crystalline symmetries are considered). Since
this model is hinge-obstructed, its boundary obstruction is
encoded in the band representations of the nested Wannier
bands rather than the WBR themselves.

C. 3D BOTPs with gapless surface states

In the previous section, we discussed models with bound-
ary obstructions associated with filling anomalies. Here we
construct two models with gapless hinge states due to a sur-
face obstruction: the dimerized weak Chern insulator and the
dimerized weak quantum spin Hall (QSH) insulator. Both of
these models are constructed using the recipe of Sec. V A as
shown in Fig. 18.

1. Dimerized weak Chern insulator

We start by considering a 2D Chern insulator whose
Hamiltonian is given by

HCI,±(k) = ±[sin kxσ1 + sin kyσ2

+ (2 + m − cos kx − cos ky)σ3]. (37)

Let m be restricted to the interval −2 < m < 2. In this case,
the Hamiltonian HCI,± has Chern number C = ∓1 for m < 0
[with the sign determined by the sign in Eq. (37)], Chern
number 0 for m > 0, and it is gapless for m = 0. The 3D
dimerized Chern insulator is built by stacking copies of the 2D
Chern insulator above with alternating sign which results in
two layers per unit cell with alternating Chern number. Then
we couple the layers with a dimerized coupling that alternates
between two values λz and γz. Physically, the terms multi-
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FIG. 18. Three-dimensional boundary obstructed phases without
a Wannier representation: dimerized weak Chern insulator protected
by MzT and C2z (top panel), and the dimerized weak quantum spin
Hall insulator protected by Mz, T , and C2z (bottom panel). Left:
Scheme of the model where the arrows indicate chiral 1D modes
that can be gapped by a coupling along z. In the two nontrivial cases,
either a 2D Chern insulator or a 2D quantum spin Hall insulator is
left unpaired at the surface. Center: Energy spectrum of a system
with translation symmetry along y but open along both x and z.
The ingap states are located at the top and bottom hinges. We have
marked in black the band that is exponentially localized at one hinge.
Right: Illustration of the 1D surface states on a spherical surface
termination. The equator and north/south pole are invariant under
Mz and C2z, respectively. The 1D surface states can be symmetrically
removed only by closing the gaps at one of these high-symmetry
regions.

plying sin kx,y and cos kx,y correspond to hopping between
unit cells, so flipping their sign is equivalent to threading
a π -fluxes through all the vertical plaquettes. On the other
hand, the term 2 + m denotes an onsite potential whose sign
should be chosen to alternate between layers. The resulting 3D
Hamiltonian is given in Eq. (29). This Hamiltonian is invariant
under the product MzT = σ1τ1K, and C2z = iσ3. This set of
symmetries places our model in the magnetic space group
P2/m′(10.45), which has the point group 2/m′ that admits a
single spinful complex representation {1Ē , 2Ē} [68].

The energy spectrum can be understood by noting that the
3D Hamiltonian has the form of a Dirac Hamiltonian

H = sin kx�1 + sin ky�2 + (2 + m − cos kx − cos ky)�3

+ λz sin kz�4 + (γz + λz cos kz )�5 (38)

with �1,2,3 = σ1,2,3τ3, and �4,5 = τ2,1 such that C2z = �1�2,

and MzT = �1�4K. It is then obvious that for this Hamilto-
nian to be gapped all 5 terms have to vanish simultaneously
which is possible only for m = 0 and |γz/λz| = 1. This set of
points where the Hamiltonian is gapped forms a line in the
3D parameter space which means that it is always possible to
connect any set of parameters (m, γz, λz ) for which the Hamil-
tonian is gapped without going through a bulk gap closing.
That is, the bulk phase is always trivial. We note that we can

FIG. 19. Evolution of the W z [(a)–(c)] and Wx [(d)–(f)] Wannier
spectra of the dimerized weak Chern insulator model for different
values of m and λz with fixed γz = 1. Entering the phase with
m = −0.5 and λz = 1.5 requires a Wannier gap closing at ν = 1/2
both when tuning m or λz. This phase is therefore separated by
a boundary phase transition for a boundary with the conventional
Wannier chemical potential μx,y,z = 1/2.

also understand the triviality of the model from the fact that
none of the symmetries C2z and MzT quantizes the θ angle in
the axion term θE · B [49,60,69].

In order to study this transition, we compute the Wannier
spectra in Fig. 19. We can see in the top panel that changing
the sign of m induces a gap closing in the Wannier spectrum
in the z-direction indicating gap closing in the top/bottom
surfaces. On the other hand, keeping the value of m fixed
and negative, we find a gap-closing transition in the Wan-
nier spectra along the x- or y-direction (bottom panel). This
means that for the chosen termination, the model exhibits a
boundary obstruction separating the gapped phase with pa-
rameters (|γz| > |λz|, m < 0) from (|γz| < |λz|, m ≶ 0) and
(|γz| ≶ |λz|, m > 0).

An interesting aspect of this model is that the Wannier
obstruction for W z has a different origin from Wx and Wy.
In the Wannier spectrum of W z, the obstruction is associated
with a nonzero Chern number, i.e., the Wannier bands do not
separately form WBRs, as illustrated by the nontrivial spectral
flow of the nested Wannier spectrum shown in Figs. 20(a)
and 20(e). On the other hand, the Wannier obstruction in
Wx or Wy is associated with changes in the nested Wannier
band polarization between values of 0 and 1/2 as shown in
Figs. 20(c), 20(d), 20(g), and 20(h). Unlike the filling anomaly
scenario, the obstruction in this model is not due to the change
in multiplicity of a Wyckoff position when going between G
and F, but rather the fact that generating the open boundary
representation from the site 1c is not compatible with a local
representation, i.e., it cannot be represented as the symmetry
action on localized atomic orbitals of the open system.. This
is shown in Table IV. When the Chern layers are in the
topological phase (upper rows), the two Wannier bands of the
Wannier spectrum W z form an irreducible representation of
Gz = {C2z, Tx, Ty} when grouped together. However, the sep-
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FIG. 20. Nested Wannier polarization pz,x (ky ) and px,z(ky ) for
different values of m and λz with fixed γz = 1 in the dimerized
weak Chern insulator [(a)–(d)] and weak quantum spin-Hall insulator
[(e)–(h)]. The phase with m = −0.5 and λz = 1.5 [(a),(e)] is charac-
terized by a winding of the nested polarization which indicates that
the Wannier bands in W z do not form band representations and are
associated with hinge modes. On the other hand, px,z(ky ) is gapped
with a different average value in the two phases, either 0 [(c),(g)]
or 1/2 [(d),(h)], reflecting the fact that Wx decomposes into distinct
Wannier band representations.

arate Wannier bands are topological and their eigenvalues are
not compatible with an atomic insulator. If the Wannier bands
are both located around the center of the unit cell (1a), then
this configuration is not obstructed, since for each unit cell
the two Wannier bands of opposite Chern number combine
to form a band representation whose local support lies on a
site with site symmetry group F admitting the 2D irreducible
representation. However, if the bulk band representation is
generated from the position 1c, with site symmetry group
C2, which admits only 1D representations, it is necessarily
obstructed for a boundary where 1c lies on the boundary. In-
tuitively, the Chern bands of opposite Chern number centered
around the edge of the unit cell are spatially separated leaving
behind chiral modes exponentially localized to the hinges,
which can either be removed by closing the gap of the Chern
bands and inverting their mass (closing the gap on the poles;
see Fig. 18), or changing the coset decomposition of G such
that it can be generated from a Wyckoff position in the z = 0
plane, resulting in the surface gap closing at the equator.

It is important to highlight the role played by the C2z

symmetry here. Although it is not needed as a traditional
protecting symmetry for the Wannier topology, it is crucial
to single out the upper and lower surfaces as high-symmetry
planes where Wannier gap closings imply a surface phase
transition. Similar to the discussion of Sec. III A, this can
be illustrated by considering a spherical geometry as shown
in Fig. 18(c). Under MzT alone, only the equator is a high-
symmetry region, and we are generally allowed to smoothly
deform the chiral hinge modes by shrinking them to a point
without touching the equator. In the presence of C2z, however,
the north and south poles become HSSs where surface gap
closings indicate a surface phase transition per our definition.
Note that allowing for distinctions captured by gap closings at
generic, non-HSSs will generate the same spurious, uncount-
able boundary distinctions as those discussed in Sec. III A.

2. Dimerized weak quantum spin Hall insulator

Similar to the dimerized Chern insulator, we can define a
3D BOTP by stacking layers of the 2D quantum spin Hall
(QSH) topological insulators with dimerized coupling. We
start with the 2D Bernevig-Hughes-Zhang (BHZ) model [3]
whose Hamiltonian is given by

HBHZ(k) = sin kxσ1s3 + sin kyσ2

+ [2 + m − cos kx − cos ky]σ3, (39)

where s1,2,3 denote the Pauli matrices in spin space. We also
take |m| < 2 such that the Hamiltonian describes a topolog-
ical insulator for m < 0 and a trivial phase for m > 0. The
Hamiltonian is invariant under spinful time-reversal symmetry
T = is2K. It also has U(1) Sz rotation symmetry, but that is
not required for its topological protection [1,2]. The Hamil-
tonian is also invariant under 2D inversion (I2D = σ3) which,
when combined with π Sz rotation, yields the spinful twofold
rotation C2z = iσ3s3.

We can then build a 3D BOTP by stacking layers of the
2D Hamiltonian (39) with alternating signs. As explained
earlier, this amounts to threading π fluxes threaded in the
vertical plaquettes and choosing the sign of the parameter
2 + m to alternate between layers. The resulting 3D Hamil-
tonian has the form (29) with H2D = HQSH. Due to the Z2

topology of the QSH, switching the sign of the Hamiltonian
between layers does not alter the topological index, but it is
needed to ensure that the bulk Hamiltonian describes a BOTP
rather than a weak TI. This distinction will be encoded in
the symmetry action as we will see now. In addition to time
reversal and C2z, the 3D Hamiltonian is also invariant under
Mz = iτ1σ1s1. Similar to Secs. II and V B, we can think of the
symmetry representations considered here as a projective rep-
resentation which combines spatial symmetry transformations
with internal and gauge transformations. We note that the 2D
inversion symmetry I2D anticommutes with Mz as required
by the presence of the π fluxes in the vertical plaquettes,
whereas the spinful C2z rotation commutes with Mz. Thus, the
projective representation of the symmetry group generated by
C2z and Mz (together with translations) can be thought of as
a nonprojective spinful (double) representation of the space
group 10 (P2/m) (if we allow for perturbations which break
Sz spin rotation but not C2z or Mz).

As in the dimerized weak Chern insulator, the Hamiltonian
has the form of a Dirac Hamiltonian

H = sin kx�1 + sin ky�2 + (2 + m − cos kx − cos ky)�3

+ λz sin kz�4 + (γz + λz cos kz )�5 (40)

with �1 = σ1s3τ3, �2,3 = σ2,3τ3, �4,5 = τ2,1, and �6,7 =
τ3σ1s2,1 with C2z = �1�2, T = �1�7K, and Mz = �4�7. Sim-
ilar to the dimerized weak Chern insulator, the Hamiltonian
above is only gapless for m = 0 and |λz/γz| = 1 which means
that all the parameters for which the Hamiltonian is gapped
can be deformed to one another without closing the gap. One
consistency check for the triviality of this Hamiltonian is to
note that the Hamiltonian has the inversion symmetry I =
C2zMz = τ1σ2s2 which squares to +1. Thus, one can check
its triviality by computing the symmetry indicators [23,31]
obtained from the inversion eigenvalues at the time-reversal
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invariant momenta (TRIM). These correspond to a Z4 index
labeling the possible bulk phases (strong TI or second-order
TI), and three weak Z2 invariants for the x-, y-, and z-
directions [23,31]. There are four filled bands which come
in pairs of Kramers’ doublets at the TRIMs. The symmetry
indicators are obtained by computing the product of inversion
eigenvalues at each TRIM (counting only one state out of
each Kramers’ doublet) [23,31,70]. By an explicit calculation,
we find that the product of inversion eigenvalues at every
TRIM is equal to −1. As a result, all symmetry indicators are
trivial.

It is important to highlight the role of π -fluxes through the
vertical plaquettes. Unlike the models considered in Sec. V B,
it is possible here to choose a gauge such that Mz and C2z

commute. This arises from the fact that the total flux per
plaquette in the vertical direction (including both spins) van-
ishes, although the there is a π -flux per spin. Thus, the the
π -fluxes do not alter the commutation relations between Mz

and C2

We can investigate the boundary obstruction numerically
by computing the Wannier bands. Here again we consider a
slightly modified model with the same topological properties
but on a cubic lattice with the Hamiltonian given by

H = (2 + m − cos kx − cos ky)�1 + sin kx�2 + sin ky�7

+ λz sin kz�4 + (γz + λz cos kz )�3. (41)

The Wannier spectra of the model are very similar to the weak
Chern insulator since this model is just two time-reversed
copies of the Chern insulator model. Thus, we see a Wannier
transition at the WCP in W z when |λz| > |γz|, and m = 0; as
well as a Wannier transition at the WCP in Wx and Wy when
m < 0 but |γz| = |λz|. However, in contrast to the dimerized
weak Chern insulator, this model has four filled bands. Each
of the Wannier bands is twofold degenerate at time-reversal
invariant momenta, and the additional C2z symmetry causes
this degeneracy to appear across the entire surface Brillouin
zone.

The nested Wannier spectra of this model are shown in
Fig. 20. We note that νz,x(ky) resembles the spectral flow in
a quantum spin Hall insulator. Two Wannier bands flow in
opposite directions, crossing at ky = 0 and π where the degen-
eracy cannot be lifted due to Kramers’ theorem. This nested
Wannier winding captures the dangling QSH at the upper and
lower surfaces. On the other hand, νx,z(ky) in the nontrivial
phase shows two bands related by time-reversal symmetry,
each with average polarization of 1/2. Although the total
polarization vanishes, the polarization for each component of
the Kramers’ pair does not, and it is such a quantized (time-
reversal) polarization [71] that captures the Wannier transition
in νx(ky, kz ). In general one could use a description of the
time-reversal polarization in terms of a Pfaffian invariant[71],
but we will not pursue that further here. In this case the
Wannier transition resembles the transition in a spinful SSH
chain with time-reversal and inversion symmetry where the
edge anomaly is associated with Kramers’ pairs of electrons
rather than an individual electron.

In summary, both the dimerized weak Chern model and
the dimerized weak QSH model exhibit 1D propagating hinge
states that can be removed without closing the bulk gap. How-

ever, removing the hinge states requires closing the energy gap
on at least one high-symmetry surface. These systems admit a
Wannier representation only for periodic boundaries, but not
for open boundaries. This serves to illustrate that boundary
obstructions are not restricted to Wannier representable sys-
tems.

VI. DISCUSSION

In this work, we introduced the notion of boundary topo-
logical obstructions that captures obstructions which do not
exist on periodic boundaries, but exist on geometries with
symmetric open boundaries. In more precise terms, we call
two Hamiltonians H1 and H2 boundary-obstructed on a
given symmetric open boundary if they can be symmetrically
deformed to each other without closing the gap with periodic
boundary conditions, but not for the open boundary. Another
way to formulate this is by saying that any symmetric defor-
mation of H1 to H2 involves a gap closing at a high-symmetry
surface rather than in the bulk, as in the case of conventional
SPTs. Although the possibility of an obstruction between
a given pair of Hamiltonians is termination dependent, the
group of equivalence classes distinguished by boundary ob-
structions is termination-independent and is characterized by
physical boundary signatures such as filling anomalies and
gapless states.

It is worth stressing that boundary signatures associated
with BOTPs are not anomalous as they can be removed by
adding a lower-dimensional SPT on the boundary. As a result,
we need to be careful when defining the boundary termination
to distinguish surface features which arise from the bulk from
those due to the termination. This is done by first considering
a simple reference class of terminations achieved by “inter-
polating” the bulk Hamiltonian to the vacuum Hamiltonian
by means of a single real scalar function. This is always
possible by changing the value of the chemical potential from
the inside to the outside of the sample. In a more general
boundary termination, we can always separate the contri-
bution coming from the termination by comparing to this
reference boundary [cf. Eq. (17)]. This enables us to isolate
the boundary contribution to the open Hamiltonian making
it possible to compare two open Hamiltonians with the same
boundary.

We also offered an alternative definition of boundary ob-
structed phases using the theory of band representations. In
this definition, BOTPs can be identified with equivalent band
representations of the space group in the periodic system
which become inequivalent upon restricting to a point group
of the open system. This definition not only bridges the idea of
boundary obstruction to the bulk band representation, it also
enables us to define an absolute notion of boundary obstruc-
tion, related to the existence of filling anomalies and gapless
surface states, from the knowledge of a relative obstruction as
defined above. This is achieved by observing that whenever
two band representations which are equivalent in the periodic
system are inequivalent in the open system, at least one of
them has to be nonlocal and exhibit a filling anomaly or gap-
less surface states. This enables us to identify a trivial BOTP
phase (the one corresponding to a local representation in the
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open system) such that all phases with a boundary obstruction
relative to it are nontrivial.

The motivation for introducing the concept of BOTP is
twofold. First, there is the advent of new ways to implement
2D topological systems, e.g., in synthetic materials [27,72–
84] and cold atoms [85–92], which can be used to realize the
DMQI and similar models not associated with a bulk topologi-
cal invariant. The observation and robustness of corner modes
in these systems motivate developing a concept that goes be-
yond standard SPTs to understand the features of these models
responsible for these observables’ stability. We note that these
systems are characterized by a large degree of control over
the boundary termination, which is usually done by sharply
terminating the lattice or through a confining potential. Even
for real crystals where there is less control regarding the
termination, we expect our concept to be relevant to under-
standing surface states which may arise through tuning the
bulk parameters by applying pressure, strain, magnetic field,
etc., or by applying a spatially dependent gate voltage inside
the sample to implement an edge termination as described in
Eq. (17).

The second motivation is conceptual. Since the intro-
duction of the concept of higher-order topological phases
[17,18,20], there has been a large body of works that discussed
models with corner or surface states (see Ref. [93] for a
recent review). In many cases, the existence of surface states
was established by numerically analyzing the Hamiltonian on
a simple boundary without making the distinction whether
these states arise from a bulk invariant or not. To distinguish
these, the concept of intrinsic versus extrinsic HOTIs was
introduced in Refs. [13,24] with the former corresponding
to phases whose surface states are anomalous and cannot
be removed with symmetric boundary addition, whereas the
latter corresponding to systems whose surface states are re-
movable through symmetric boundary additions. However,
the concept of extrinsic HOTIs, while useful, is too broad
since it lumps together models like the DMQI, which has
robust boundary features when considered on most simple
boundaries and which can be related to bulk quantities such as
those described in this text, with models consisting of a com-
pletely trivial bulk attached to a lower-dimensional SPT on
the surface. The concept of BOTP helps make this distinction
and explains why some models exhibit some topologically
robust surface features without being associated with a bulk
invariant.

In Sec. II we used the double-mirror quadrupole insulator
(DMQI) of Refs. [17,18] as a prototypical example to illus-
trate the notion of BOTPs. Although this model has been
intensively studied as one of the first examples of a higher-
order topological insulator, one crucial aspect of it had so far
been overlooked. Namely, the fact that in the absence of C4z

symmetry, the two “phases” of the model are not SPTs in the
standard sense since they can be deformed to each without
closing the bulk gap in periodic boundary conditions. Using
the notion of BOTP, we provide a resolution to this problem by
showing that such “phases” are related by a boundary rather
than bulk obstruction. This was investigated in detail from
several different perspectives including real space orbital de-
formations, Wannier spectra, and symmetry representations.
The latter was particularly useful in establishing the connec-

tion between the boundary obstruction in the model and the
existence of a filling anomaly. Indeed the existence of a filling
anomaly allows for a topological boundary signature that does
not rely on the existence of zero-energy corner states (which,
for insulators, typically require fine-tuned symmetries such
as particle-hole or chiral symmetry). Instead, it reflects the
fact that the model, when filled with electrons to neutrality,
cannot be simultaneously gapped, symmetric, and charge-
neutral. Thus, a symmetric, gapped DMQI at half-filling will
necessarily have excess/deficit charge of 2e equally distibuted
among the four corners yielding a fractional corner charge of
e/2.

In Sec. V we introduced several 3D models for BOTPs.
The first family of such BOTPs have similar phenomenology
to the DMQI and exhibit surface obstructions. The nontrivial
BOTPs in this family are associated with filling anomalies
similar to the one in the DMQI, and they manifest in fractional
hinge charge (per unit cell) when the system is symmetric
and gapped at half-filling. In addition, we introduced a second
family of BOTPs characterized with chiral/helical propagat-
ing hinge modes. In both cases, the existence of a boundary
obstruction is established explicitly by studying the Wannier
spectra and the symmetry indicators of the corresponding
WBRs.

Before closing, let us discuss the possible extension of
the concepts discussed here beyond free fermions. We note
that the existence of chiral/helical hinge states or filling
anomalies are robust features that are expected to survive in
the presence of interactions. Thus, we expect the boundary
topological distinctions we found here to still be relevant for
interacting systems. On the other hand, defining boundary
obstructions is likely more tricky for interacting phases since
it requires the implementation of a surface termination in
a way which isolates the surface and bulk contributions. It
is unclear whether this is generally possible which makes
it difficult to decide what it means to “keep the boundary
fixed” or to compare two phases with the “same bound-
ary.” We leave the investigation of such questions to future
works.
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APPENDIX A: REAL SPACE PROOF OF
ANTICOMMUTING SYMMETRIES

1. Anticommuting mirrors in the 2D DMQI

We now show that in order to carry out the deformation
between the configurations at 1a and 1d in the DMQI, it is
necessary that the two mirror operators anticommute. This is
suggested by the fact that the two configurations actually cor-
respond to different symmetry representations for commuting
mirrors, but the same symmetry representation for anticom-
muting mirrors (Ē ). We will see that the anticommuting
mirrors can be inferred from the real space picture in Fig. 4.
Let us start with the orbitals at position 1a and then move
them horizontally using position 2e into position 1c. The two
orbitals in position 2e are related by mirror symmetry Mx and
have the form |(±x, 0)〉, where |r〉 denotes an orbital localized
at point r. In this basis, Mx is off-diagonal and acts gen-
erally as Mx|(±x, 0)〉 = e±iφ |(∓x, 0)〉 (with some arbitrary
phase φ), leading to the eigenvectors |(+x, 0)〉 ± eiφ |(−x, 0)〉
whose eigenvalues are ±1, respectively. Since these orbitals
lie on the y = 0 mirror line, they are eigenvectors of My.
Next, to bring these orbitals to position 1d , we move them
vertically using position 2h. In this position, the action of
My is off-diagonal, thus, following the same argument as for
Mx, we can deduce that it has two distinct eigenvalues +1
and −1. Since the symmetry eigenvalues cannot change under
smooth, symmetry-preserving deformations, we deduce that
My = ±σ3 in the 2e basis. In the same basis, we showed
that Mx = σ1 exp{iφσ3}, which in turn implies {Mx, My} = 0.
Since anticommutation is basis-independent, we deduce that
connecting the 1a and 1d positions at a filling of two elec-
trons per cell requires Mx and My to anticommute. We note
that the connection of mirror anticommutation in the DMQI
model to important quadrupole properties was proposed in
Refs. [17,18] based on a study of the Wannier spectrum.

2. Anticommuting C2z and Mz for 3D C2nh models

To show that C2z and Mz anticommute for the C2nh models
that we discuss in Sec. V B 1, we note that in order to occupy
a movable Wyckoff position that interpolates between 1a and
nc in the Mz invariant planes, the Wannier centers permute
into each other under the action of C2nz. This implies the
eigenvalues of the C2nz operator must span all the 2n roots
of unity eπ il/n with l = 0, . . . , 2n − 1. Similarly, to occupy
a vertically movable Wyckoff position at C2z invariant lines,

the eigenvalues of Mz should be ±1 since its action is a
permutation of the two sites in this position. Noting that the
two electrons at position nc originate from electrons which
have moved away from the center 1a in diametrically opposite
directions, and are thus related by C2z, we find that the require-
ment of deformability in the vertical direction forces any pair
of C2z-related orbitals to have opposite mirror eigenvalues.
Thus, in a basis where the mirror symmetry Mz is diagonal,
C2z is purely off-diagonal, and it switches the positive and
negative mirror sectors which implies the anticommutation
condition

C2zMzC
†
2z = −Mz. (A1)

This discussion is very similar to the one for the DMQI above.

APPENDIX B: BAND REPRESENTATIONS OF BOTPs

1. Induction of a band representation from a local
representation

Restricting ourselves to atomic bands, it follows from the
work of Zak [40] that one can write a representation ρ of a
space group G from two ingredients. The first ingredient is
the Wyckoff position Q, comprised of a site q with a site
symmetry group Gq and the sites qi obtained by the coset
expansion of G with respect to Gq. Explicitly, the full space
group can be decomposed by G = ∑

i giGq with gi ∈ G/Gq.
The lattice sites qi in the crystal are obtained by the left action
of the coset representatives qi = giq, with i = 1, . . . , NQ with
NQ the multiplicity of Q, the number of times the site q is
repeated over the lattice. The second ingredient needed to de-
fine ρ is the representation ρq of Gq under which the state |q〉
transforms. That is, for any h ∈ Gq, h|q〉 = ρq(h)|q〉. Finally,
the collection of the representations ρqi

and the associate basis
functions |qi〉, form a complete basis for the electronic states
in the system, and the complete representation ρ of the space
group G, acts on this space. Naturally, ρ is not necessarily
diagonal in this basis since it mixes orbitals at different lattice
sites qi. Making use of translation symmetry in G, and the fact
that the crystal momentum k diagonalizes lattice translations
T , it is possible to express ρ in such basis, where the diag-
onal entries ρk represent Bloch states labeled by k with little
group Gk, at a Brillouin zone point k. The collection of ρk at
high-symmetry momenta determine the band representation
[32,40,41,45].

The construction of the band representation is straight for-
ward. Let us start with the representation ρq of Gq for any
element h ∈ Gq, h|q〉 = ρq(h)|q〉, here |q〉 denotes a basis state
localized at site q. Other basis states |qi〉 are obtained by the
action coset elements gi as |giq〉. Any group element g can be
expressed as a product of an element of Gq and elements of
the coset as g = g jhg−1

i or alternatively g jh = ggi with h and
g j uniquely determined by g and gi. Then, it follows that the
action of any element g ∈ G on any basis state is given by

g|giq〉 = g jh|q〉 = ρq(h)|g jq〉. (B1)

It follows that a symmetric state in the full Hilbert space trans-
forms into itself under all elements of G under a (reducible)
induced representation ρ of G, which in the real space basis
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|qi〉 is given by

[ρ(g)]i j = ρq(g−1
j ggi ) if g−1

j ggi = h ∈ Gq, (B2)

and zero otherwise. This representation is nothing but the
local representation ρq induced to the entire Wyckoff position
Q, and it is usually abbreviated as ρ = ρq ↑ G. The induced
representation is unique up to the choice ambiguity of the
coset representatives g j .

While the statement above is completely general, we can
take a shortcut in symmorphic space groups by inducing the
representation from a site q with the point group Gq = F
as its site symmetry group. In this case, all the degrees of
freedom in the unit cell collapse into the dimension of the
local representation at q. The action of translations on the
center of the unit cell O (fixed to coincide with the center
of the lattice with open boundaries) defines the Bravais lattice
which may or may not coincide with the lattice Q obtained
by the action of translations on q. Given that G = F × T ,
the different lattices correspond to distinct coset decomposi-
tions G = ∑

i tiF . For each space group G there are usually
more than one site q of maximal symmetry, where its site
symmetry group is isomorphic but not the same. They can
be distinguished by the symmetry action on the basis states
and cannot be connected under conjugation by any element in
G. Explicitly in the DMQI model, these points generate the
Wyckoff positions 1a to 1d . The space group p2mm admits
four distinct coset decompositions up to conjugation by an
element in G, with four isomorphic factor groups F = G/T .

Directly applying the induction procedure we find that
an element of G acts on the maximal lattice as g|giq〉 =
[ρ(g)]i j |g jq〉 with [ρ(g)]i j = ρq(g−1

j ggi ) if g−1
j ggi ∈ Gq, and

zero otherwise. In order to describe the representation of
Bloch states in the Brillouin zone it is convenient to change
the basis |qi〉 to the crystal momentum basis |k〉 related by the
basis transformation 〈qi|k〉 = exp(−ik · qi ). After this Fourier
transform we have g|k〉 = [ρ(g)]kk′ |k′〉 with diagonal terms
given explicitly by

ρk(g) =
∑

i j

ρq
(
g−1

j ggi
)
eik·(g j−gi )q. (B3)

When ρ corresponds to an elementary band representation it
is either connected in momentum space or disconnected into
topological subsets, which separately are not compatible with
any tabulated band representation [32].

2. Movable Wyckoff positions

Two representations ρ and ρ ′ are equivalent if and only
if there is a unitary and smooth matrix-valued function
S(t, g) respecting S(0, g) = ρ(g) and S(1, g) = ρ ′(g) for all
symmetry group elements g. In a crystalline system, the
unitary matrix that generates these changes S(t, g) = U (t −
t ′, g)†S(t ′, g)U (t − t ′, g), continuously implements a basis
transformation of ρ. As discussed in Ref. [45], when ρ is an
induced representation from a point q into G, and ρ ′ is an
induced representation from a different site q′, the S matrices
can be explicitly constructed by inducing a family of represen-
tations from intermediate sites p that continuously interpolate
between q and q′. A Wyckoff position P with continuously

tunable sites p is called movable or nonmaximal when it can
continuously preserve Gp.

This structure is the mathematical background for the
pictures presented in the main text: S(t, g) is the induced rep-
resentation from the states located at p in a path that connects
q and q′, and guarantees there exists a gapped, symmetry-
preserving path between the different Wannier configurations
located at q and q′. We can try to directly find the unitary
transformation U (1, g) that transforms ρ(g) into ρ ′(g). If ρ

and ρ ′ are band representations, labeled by k, this implies
finding a unitary matrix that is periodic in k and satisfies

ρk(g) = U †
gk(1, g)ρ ′

k(g)Uk(1, g) (B4)

for all g and k. While we have argued that all represen-
tations along a movable path are equivalent, the Wannier
states |R; q〉 and |R; q′〉 are generally different. Additionally,
the Hamiltonian itself is not generally left invariant by these
transformations, and the path is implemented by varying the
Hamiltonian parameters. However, in some cases two differ-
ent points along the path may simply correspond to a basis
transformation. In these cases Uk leaves the Hamiltonian in-
variant. This is relevant for the DMQI example, where the
mirror operators anticommute, and the Wannier states can be
either at the 2e or the 2g depending on which Mx or My we
choose to act diagonally. Thus, whether we draw the Wannier
functions in 2e or 2g is a choice of basis (at least when periodic
boundary conditions are chosen).

APPENDIX C: SURFACE STATES OF THE DMQI

In this Appendix, we analyze the edge spectrum for the
DMQI on a generic boundary termination. To do this, we
start by noting that the DMQI can be obtained from the C4-
symmetric quadrupole model by breaking the C4 symmetry.
Since the C4-symmetric model is a proper higher-order topo-
logical phase, we can employ the same techniques used to
analyze HOTI surface states as in Refs. [23,25,29,33]. We
note that recently, an analysis of the surface states of the C4

quadrupole model was employed in Ref. [35] by adding a
symmetry-breaking mass term to the surface of a 2D TI. Our
analysis differs in the fact that we do not need to explicitly
employ spinful representation of the symmetries and we can
work directly in terms of the projective representations de-
fined in the main text.

The C4-symmetric model is obtained from Eq. (1) by
setting γx = γy = γ and λx = λy = λ. In this case, the Hamil-
tonian has the extra C4 symmetry implemented as

C4zH(k)C†
4z = H(O4k), O4(kx, ky) = (ky,−kx )

C4z = �2e
π
4 (�2�4−�1�3 ) = −σ2τ2ei π

2
σ0−σ3

2 τ2 . (C1)

We will find it useful to define the modified � matrices �± =
1√
2
(�2 ± �4) such that

C4z�±C†
4z = ±�±. (C2)

The Hamiltonian for the C4 symmetric model can then be
written as

HC4 = λ[sin kx�3 + sin ky�1] + m+(k)�+ + m−(k)�−,

(C3)
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FIG. 21. Illustration of the edge theory of the DMQI on a genetic
surface. Starting from the C4-symmetric model, we can derive the
edge theory by taking the mass term m+ to change sign from the
inside to the outside of the sample. The edge theory at any point
can be expressed in terms of the normal and tangent vectors n and t .
The variable rt parametrizes the 1D edge which can be alternatively
expressed in terms of an angular variable φ.

m+(k) = 1√
2

[2γ + λ(cos kx + cos ky)], (C4)

m−(k) = 1√
2

(cos ky − cos kx ), (C5)

where m±(O4k) = ±m±(k).
The C4 symmetric model is characterized by two topo-

logically distinct bulk phases depending on whether |λ/γ |
is smaller or larger than 1. These can be distinguished by
the eigenvalues of C4z symmetry at the � and M points
as follows. For |λ| < |γ |, the C4z eigenvalues are given by
{e3iπ/4, e−3iπ/4} at both the � and M whereas for |λ| > |γ |,
the C4z eigenvalues are given by {e3iπ/4, e−3iπ/4} at � and by
{eiπ/4, e−iπ/4} at M. Thus, the two phases of the C4z symmetric
quadrupole model are distinguished by a bulk phase transition
at M. Close to such transition, we can write a continuum
model by expanding the Hamiltonian close to the M point and
going to real space as

HC4 = iλ(�3∂x + �1∂y) + m+(r)�+ + m−(r)�−. (C6)

The action of the spatial symmetries on m±(r) can be deduced
from the conditions (C2) and Mx,y�±M†

x,y = �± leading to

m±(O4r) = ±m±(O4r), (C7)

m±(−x, y) = m±(x, y), m±(x,−y) = m±(x, y). (C8)

The edge is implemented by choosing m+(r) to change sign
from being negative inside the sample (corresponding to the
nontrivial phase) to being positive outside (corresponding to
the trivial phase). Let us denote the normal to the edge at
point r by n(r) = (cos φ(r), sin φ(r)) with the corresponding

tangent t (r) = ( − sin φ(r), cos φ(r)) (cf. Fig. 21). We note
that, in general, the normal vector depends on the position on
the edge. In the following, we will drop this r dependence to
simplify the notation. We also introduce

�n = cos φ�3 + sin φ�1, �t = − sin φ�3 + cos φ�1,

(C9)

rn = r · n, rt = r · t, (C10)

which enables us to write

HC4 = iλ(�n∂rn + �t∂rt ) + m+(r)�+ + m−(r)�−. (C11)

To obtain the edge theory, we will assume that the mass m−(r)
is much smaller than the value of m+(r) in the bulk. If we also
consider wave functions which vary slowly along the tangent
direction to the edge, then we find that the low-energy states
are spanned by eigenfunctions of the form

ψ (r) = 1

2
(1 − i�n�+)e− 1

λ

∫ r dr′
nm+(r′

n,rt )χ (rt ), (C12)

which are annihilated by iλ�n∂rn + m+(r)�+ for any function
χ (rt ). Thus, the edge Hamiltonian is given by

Hedge = iλγt∂rt + m−(rt )γ−, (C13)

where γt , γ− are obtained by projecting �t , �− onto the space
spanned by ψ (r). The edge Hamiltonian is a 1D Dirac Hamil-
tonian defined in terms of the variable rt along the direction
parallel to the edge. Changing the variable from rt to the
angular variable φ (cf. Fig. 21), and using (C7), we find that

m−(φ + π/2) = −m−(φ), (C14)

m−(−φ) = m−(φ), m−(π − φ) = m−(φ), (C15)

where the first condition follows from the transformation
properties under C4 rotation (C7) and the second follows from
Mx and My (C8). Equation (C14) implies that the edge Dirac
Hamiltonian hosts four domain walls where the mass term m−
changes sign.

Notice now that if we break C4 symmetry, these four
domain walls can be freely moved to annihilate. However,
Eq. (C15) would dictate that they can annihilate only at φ = 0
or π , i.e., at a high-symmetry surface. If we enforce the con-
dition that m−(0), m−(π ) �= 0, we can never get rid of these
domain walls. We notice also that Eq. (C15) is also satisfied by
the trivial phase where m−(φ) = const leading to a completely
gapped edge. Thus, for the C4-broken model, the symmetries
allow for two possibilities with or without zero energy states
at the edge. In contrast, for the C4 symmetric model which is
a HOTI, the symmetry forces the mass term to change sign
enforcing the existence of four symmetry-related zero energy
states.
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