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Two relativistic Kondo effects: Classification with particle and antiparticle impurities
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We investigate two different types of relativistic Kondo effects, distinguished by heavy-impurity degrees
of freedom, by focusing on the energy-momentum dispersion relations of the ground state with condensates
composed of a light Dirac fermion and a nonrelativistic impurity fermion. Heavy-fermion degrees of freedom are
introduced in terms of two types of heavy-fermion effective theories, in other words, two heavy-fermion limits
for the heavy Dirac fermion, which are known as the heavy-quark effective theories (HQETs) in high-energy
physics. While the first one includes only the heavy-particle component, the second one contains both the
heavy-particle and heavy-antiparticle components, which are opposite in their parity. From these theories, we
obtain two types of Kondo effects, in which the dispersions near the Fermi surface are very similar, but they
differ in the structure at low momentum. We also classify the possible forms of condensates in the two limits.
The two Kondo effects will be examined by experiments with Dirac/Weyl semimetals or quark matter, lattice
simulations, and cold-atom simulations.
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I. INTRODUCTION

The Kondo effect [1–5] attracts much broad interest in
the fields of both condensed-matter and high-energy physics.
While the original Kondo effect is physics for nonrelativis-
tic electrons, studies of the Kondo systems with relativistic
(Dirac/Weyl/Majorana) fermions will be useful for compre-
hensive understandings of Kondo effects realized in Dirac/
Weyl metals and semimetals [6–19] described by effec-
tive Hamiltonians, in nuclear matter [20–23] described by
hadronic effective models, and in quark matter [12,20,24–37]
described by the quantum chromodynamics (QCD) or effec-
tive models of QCD.

The Kondo effect is induced by the interplay between light
fermions with a Fermi surface and heavy particles as impuri-
ties. Theoretically, in order to precisely formulate the Kondo
effect, one should be careful about which and how many
degrees of freedom of heavy particles are participating in this
interplay effect as impurities. In this paper, we demonstrate
that the difference in the Kondo effect arises from the choice
of heavy-particle degrees of freedom, by taking two kinds of
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“heavy-fermion limits” (or nonrelativistic limits) based on the
heavy-quark effective theory (HQET) [38,39] well known in
high-energy particle physics (see Refs. [40,41] for reviews).
The first one is the conventional HQET [42], where the heavy
field contains only a single component, either the particle or
antiparticle component. The second one [43–50] is based on
the Foldy-Wouthuysen (FW) transformation [51–53] of the
Dirac field, which is called the FW-HQET in Ref. [44]. In
this theory, the heavy field is composed of the particle and
antiparticle components. Both of the HQETs are derived by a
transformation of the original massive Dirac field and by the
expansion with respect to the inverse heavy mass.

We suggest that the difference between these two heavy-
fermion limits leads to similar but slightly different properties
of the relativistic Kondo effect, which are characterized as
dispersion relations, as will be shown later in Fig. 1. Here, we
emphasize the insights from these Kondo effects as follows:

(i) Similarity between two Kondo effects. Their structures
of dispersion near the Fermi surface are almost similar, where
a hybridization between the light-particle branch and the
heavy-particle branch is realized due to a nonzero condensate.
This similarity is based on the fact that the dominant degree
of freedom in the Kondo effects is the heavy particle, and the
contribution from the heavy antiparticle is relatively small.

(ii) Difference between two Kondo effects. On the other
hand, a difference is found in the light-antiparticle branches
in the low-momentum region away from the Fermi surface.
Light particle and antiparticle branches in the FW-HQET
are simultaneously modified by a condensate, while, in the
conventional HQET, the light-antiparticle branches can be de-
coupled from condensates. As a result, for the former we find
that a pointlike (Dirac-cone-like) crossing structure between
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FIG. 1. Examples of dispersion relations of quasiparticles with S + V condensate at λ = 0. The colored region means the Fermi sea. Left:
Dispersion relations of light Dirac fermions (E = ±p − μ) and heavy fermions (E = 0) without condensates. Middle: Eqs. (13) and (14) in
the conventional HQET. Right: Eqs. (29) and (30) in the FW-HQET.

the light-particle and light-antiparticle branches remains at
zero momentum. For the latter, such a pointlike crossing can
be broken.

Our analysis on the two Kondo effects will be useful for un-
derstanding various condensate (or hybridization) structures
assumed in mean-field theories. For example, in Refs. [26,29],
to nonperturbatively describe the relativistic Kondo effect by
using a mean-field approximation, the authors proposed an
ansatz of a condensate composed of a heavy particle and
a light antiparticle with the scalar and vector-“hedgehog”
Lorentz structure defined as 1 + p̂ · �γ , where p̂ ≡ �p/| �p| is
the unit vector of the there-dimensional momentum, and �γ ≡
(γ 1, γ 2, γ 3) is the spatial component of the Dirac gamma
matrix. They named it the Kondo condensate (for applications
of this condensate, see Refs. [30,31,33,35,36]). To the con-
trary, in Refs. [11,13], the authors found a similar solution for
Dirac/Weyl fermions by assuming only the condensate with
the scalar-type Lorentz structure. In this paper, based on the
two types of HQETs, we classify various Ansätze including
other types of condensates.

In addition, a similar hedgehog-type hybridization was also
suggested in the context of the nonrelativistic topological
Kondo insulators (TKIs) such as SmB6 and YbB12 [54–75]
(see Refs. [76–85] for one-dimensional TKIs). In this paper,
we compare hybridizations in TKIs and hedgehog conden-
sates in relativistic Kondo effects.

This paper is organized as follows. In Sec. II, we investi-
gate the dispersion relations of quasiparticles in the relativistic
Kondo effects based on the two types of HQETs. Here, we
classify the possible forms of condensates generating a sim-
ple form of dispersion relations. In Sec. III, we summarize
the possible forms of Kondo condensates and discuss the
comparison between relativistic Kondo condensates and a hy-
bridization in nonrelativistic TKIs. Section IV is devoted to
our discussion and outlook.

Note that throughout this paper, we employ the Dirac rep-
resentation for the 4 × 4 Dirac matrices:

γ0 =
(

1 0
0 −1

)
, �γ =

(
0 �σ

−�σ 0

)
, γ5 =

(
0 1
1 0

)
, (1)

where �σ is the 2 × 2 Pauli matrix.

II. COMPARISON OF KONDO EFFECTS
FROM TWO HQETs

In this section, we investigate the dispersion relations of
quasiparticles for the ground states under relativistic Kondo
effects. The Kondo effect is induced by a non-Abelian interac-
tion between a light fermion and a heavy fermion. In order to
formulate relativistic Kondo effects, we start from an effective
Lagrangian with a massless Dirac field ψ1 and massive Dirac
field ψ2,

Leff = ψ̄1(i/∂ + μγ0)ψ1 + ψ̄2(i/∂ − m − λγ0)ψ2

+ G(ψ̄1γμT aψ1)(ψ̄2γ
μT aψ2), (2)

in which an interaction between ψ1 and ψ2 is described by
a four-point vector-current-type one, which is the so-called
“Nambu–Jona-Lashinio–type” interaction [86,87] when ψ1 =
ψ2. μ and λ are chemical potentials for ψ1 and ψ2, respec-
tively, and m is the mass of ψ2 (the minus sign of −λ is
not important1). T a is the generator of the non-Abelian group
SU(N ),2 and G is a constant.3 With the help of the Fierz
transformation, the effective Lagrangian (2) can be rewritten
in a more convenient form as

Leff = ψ̄1(i/∂ + μγ0)ψ1 + ψ̄2(i/∂ − m − λγ0)ψ2

+ 2G
[|ψ̄1ψ2|2 + |ψ̄1iγ5ψ2|2

− 1
2 |ψ̄1γμψ2|2 − 1

2 |ψ̄1γμγ5ψ2|2
]

+ · · ·, (3)

in the 1/N expansion,4 in which, for example, |ψ̄1ψ2|2 means
(ψ̄1ψ2)(ψ̄2ψ1).

1Sometimes, −λ is regarded as not the chemical potential but the
Lagrange multiplier for heavy impurities [26,29].

2In the QCD Kondo effect [20,24], the non-Abelian group is SU(3).
3In general, the spatial and temporal components of four-point

coupling constant can be different. See Ref. [24] for discussion from
a perturbative approach for the QCD Kondo effect. In this paper, we
assume that the temporal and spatial couplings are equal.

4For the conventional Kondo effect in solid-state physics, mean-
field approaches with the 1/N expansion have been successfully
applied. For early works, see Refs. [88,89]. Note that, for relativistic
Kondo effects, additional degrees of freedoms of light fermions, such
as chirality and flavors, sometimes induce the overscreened Kondo
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In the following analyses, we keep the first flavor ψ1 and
consider the two kinds of the heavy-fermion limits for the
second flavor ψ2: The conventional HQET and the FW-HQET.
In both the heavy-fermion limits, the four-momentum Pμ

of heavy fields is represented by Pμ ∼ mvμ + pμ, where m,
vμ, and pμ are the mass, four-velocity, and virtual (residual)
momentum of the heavy fields, respectively, if the mass is
sufficiently heavier than the residual momentum (m � pμ).

A. Conventional HQET

In the conventional HQET, the second flavor is trans-
formed to

ψ2 → ψ2 = e−imv·x (�+
v + �−

v ), (4)

where

�+
v ≡ eimv·x 1

2 (1 + vμγμ)ψ2,

�−
v ≡ eimv·x 1

2 (1 − vμγμ)ψ2. (5)

The redefined �+
v is the velocity-dependent heavy field,

which is the so-called “large” component. �−
v is the “small”

component and neglected at the leading order of 1/m expan-
sion. At the rest frame of the heavy field, vμ = (1, 0, 0, 0),
we get ψ2 → e−imt 1+γ0

2 ψ2. Thus, the nonrelativistic momen-
tum mv0 (and also the heavy mass m) of the heavy field is
subtracted as a plane wave e−imt . Furthermore, the antiparti-
cle components of the Dirac four-component spinor for the
heavy flavor are completely decoupled.5 Then, the effective
Lagrangian (3) is transformed to

Leff = ψ̄1(i/∂ + μγ0)ψ1 + �̄+
v (i∂0 − λ)�+

v

+ G[|ψ̄1�
+
v |2 + |ψ̄1iγ5�

+
v |2

+ |ψ̄1 �γ�+
v |2 + |ψ̄1 �γ γ5�

+
v |2]. (6)

For the four-point interaction terms, only the terms including
�+

v survive since we have neglected �−
v component.

Next, we apply the following mean-field approximations
for the four-point interaction terms in Eq. (6):

G〈ψ̄1�
+
v 〉 ≡ �S, (7)

G〈ψ̄1iγ5�
+
v 〉 ≡ �P, (8)

G〈ψ̄1 �γ�+
v 〉 ≡ �V p̂, (9)

G〈ψ̄1γ5 �γ�+
v 〉 ≡ �A p̂. (10)

These Ansätze are defined in momentum space, and p̂ ≡ �p/p
(p ≡ | �p|) is the unit vector of the three-dimensional momen-
tum �p. In this paper, we focus on the four types of condensates.
The gap �i of the condensate is a complex number, which
means the strength of the mixing between the light and heavy
fermions. The indices of gaps, i = S, P,V, A, denote the scalar

effect and non-Fermi-liquid behavior [12], which is analogous to the
multichannel Kondo effect in nonrelativistic systems [90]. In such
situations, the standard mean-field approach may not be applicable.

5On the other hand, if we regard the heavy-antiparticle field �−
v as

the large component, then the particle component is decoupled.

(S), pseudoscalar (P), vector (V ), and axial vector (A), re-
spectively. We call the third (vector) and fourth (axial vector)
condensates with p̂ the hedgehog condensates, where p̂ was
introduced as one of the simplest three-dimensional vectors
satisfying the spherical symmetry in three-momentum space.
It should be noted that this Ansatz is not necessarily the unique
solution of the ground state. The shape of dispersion at low
momentum may vary depending on the radial structure of the
condensate in momentum space. After assuming the hedgehog
Ansätze, p̂ is combined with another �γ in the vector four-point
interaction, and then we get the factor p̂ · �γ .

As a result, the mean-field Lagrangian in the conventional
HQET is6

LMF ≡ ψ̄1(/p + μγ0)ψ1 + �̄+
v (p0 − λ)�+

v

+ �̄+
v (�S + i�Pγ5 + �V p̂ · �γ + �A p̂ · �γ γ5)ψ1

+ ψ̄1(�∗
S + i�∗

Pγ5 + �∗
V p̂ · �γ + �∗

A p̂ · �γ γ5)�+
v

− 1

G
(|�S|2 + |�P|2 + |�V |2 + |�A|2), (11)

where we used γ0�
+
v = �+

v . The inverse propagator of the
“quasiparticles” with all the S, P, V , and A condensates is

GS,P,V,A
MF (p0, �p )−1

≡
⎛
⎝ p0 + μ −�p · �σ �∗

S − �∗
A p̂ · �σ

�p · �σ −(p0 + μ) −�∗
V p̂ · �σ + i�∗

P
�S − �A p̂ · �σ �V p̂ · �σ + i�P p0 − λ

⎞
⎠.

(12)

Notice that this propagator consists of 6 × 6 components:
the four-component Dirac spinor for the light flavor and the
two-component spinor for the heavy flavor. By assuming a
combination of S, P, V , and A condensates and by solving
det[G(p0)−1] = 0, we can extract the various solutions for
dispersion relations of quasiparticles. In most cases, it is dif-
ficult to get a simple form of dispersion relations, but we can
obtain a simple form only in a few examples such as S + V
and V + A.

As an example, we consider the case with � ≡ �S = �V

as suggested in Ref. [26,29]. For the inverse propagator with
only the S + V condensate, by solving det[G(p0)−1] = 0, we
get the six energy-momentum dispersion relations

E±(p) ≡ 1
2 (p + λ − μ ±

√
(p − λ − μ)2 + 8|�|2)

(Double), (13)

Ẽ (p) ≡ −p − μ (Double). (14)

These solutions are the same as those obtained in Ref. [26,29].
E±(p) and Ẽ (p) are doubly degenerate.

The antiparticle mode Ẽ (p) is decoupled from the conden-
sate. This is a characteristic of the Kondo condensate in the
conventional HQET, which is different from the FW-HQET
as discussed below. Note that the factor of 8 in front of |�|2
might be characteristic in the sense that the factor of 2 among

6Equation (11) is the notation in momentum space. If we write
Eq. (11) in real space, we should rewrite p̂ · �γ as −i∇̂ · �γ , where
−i∇̂ ≡ −i∇/| − i∇| using the coordinate derivative ∇.
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8 stems from the structure of the “combinatorial” condensate
(or linear combination) of S + V .

In the middle panel of Fig. 1, we plot an example of the
dispersion relations, (13) and (14). Here, we can find that
while the particle component of the light flavor is mixed with
the heavy flavor as E±(p), the antiparticle component Ẽ (p) is
decoupled. By a nonzero condensate, the original crossing-
point (Dirac-point) structure between the light particle and
light antiparticle near the origin (p = 0) disappears, and as
a result the crossing between Ẽ (p) and E−(p) is located on
the spherical surface in three-momentum space (p 
= 0, where
remember p ≡ | �p|), which is no longer pointlike. In the next
subsection II B, we will show that this situation changes in
dispersion relations based on the FW-HQET.

As another example, we assume � ≡ �V = �A and con-
sider the case with the V + A condensate. From the inverse
propagator with only the V + A condensate, we get

E±(p) ≡ 1
2 (p + λ − μ ±

√
(p − λ − μ)2 + 8|�|2)

(Single), (15)

Ẽ±(p) ≡ 1
2 (−p + λ − μ ±

√
(p + λ + μ)2 + 8|�|2)

(Single), (16)

E (p) ≡ p − μ (Single), (17)

Ẽ (p) ≡ −p − μ (Single). (18)

These solutions are found in this paper. Contrary to the S + V
condensate, these modes are not degenerate with each other,
and both the particle E (p) and antiparticle Ẽ (p) modes are
decoupled from the condensate. Furthermore, at the origin
p = 0 in momentum space, we find that the Weyl-point struc-
ture between the decoupled modes, E (p) and Ẽ (p), and a
crossing-point structure between the mixed modes, E−(p) and
Ẽ−(p).

To summarize, in the conventional HQET, only for S + V
and V + A condensates, we can get a simple form of the dis-
persion relations, as far as we checked. For other condensates,
we cannot obtain a simple form of dispersion relations after
the diagonalization of the inverse propagators. Therefore, in
order to investigate the properties of the dispersion relation
with these condensates, we have to numerically solve it.

B. FW-HQET

In the previous subsection II A, we studied the Kondo
effects with the heavy-fermion field based on the conven-
tional HQET, where only the particle component of the
heavy-fermion field is included, and the antiparticle compo-
nent is removed. In this subsection, we introduce another
type of heavy-fermion field based on the FW-HQET, where
both the particle and antiparticle components are included.
Thus, an essential difference between the two types of
HQETs is the existence or absence of the heavy-antiparticle
component.

In the FW-HQET, the second flavor is transformed to
[43,44]

ψ2 → ψ2 = e−imv·x(e
O1
2m e

O2
2m2 e

O3
2m3 · · · )�+

v

+ eimv·x(e
O1
2m e

O2
2m2 e

O3
2m3 · · · )�−

v . (19)

The �+
v and �−

v are defined as

�+
v ≡ ( · · · e− O3

2m3 e− O2
2m2 e−O1

2m
)
eimv·x 1

2 (1 + vμγμ)ψ2, (20)

�−
v ≡ ( · · · e− O3

2m3 e− O2
2m2 e−O1

2m
)
e−imv·x 1

2 (1 − vμγμ)ψ2, (21)

where the differential operators Oi are determined order by
order in the 1/m expansion of the massive Dirac field (see
Refs. [43,44] for the explicit forms). If we take the rest frame
of the heavy field, vμ = (1, 0, 0, 0), we can use e±imv·x →
e±imt and 1

2 (1 ± vμγμ) → 1±γ0

2 . 1+γ0

2 and 1−γ0

2 are the projec-
tion operators of the particle and antiparticle, respectively, and
then �+

v and �−
v correspond to the heavy particle and heavy

antiparticle, respectively. Thus, by using the FW transforma-
tion in the rest frame, although the particle and antiparticle
components are completely decoupled, both the fields can
exist at the same time, which is definitely different from the
conventional HQET. Then, the effective Lagrangian (3) is
transformed to

Leff ≡ ψ̄1(i/∂ + μγ0)ψ1

+ �̄+
v (i∂0 − λ+)�+

v − �̄−
v (i∂0 − λ−)�−

v

+ G[|ψ̄1�
+
v |2 + |ψ̄1iγ5�

+
v |2

+ |ψ̄1 �γ�+
v |2 + |ψ̄1 �γ γ5�

+
v |2

+ |ψ̄1�
−
v |2 + |ψ̄1iγ5�

−
v |2

+ |ψ̄1 �γ�−
v |2 + |ψ̄1 �γ γ5�

−
v |2]. (22)

For the four-point interaction terms, the terms including both
�+ and �−, which are proportional to a rapidly oscillating
phase factor e±2imt , can be obtained. However, as long as m
is extremely larger than the typical energy scale such as the
momentum or the strength of condensates, such terms will
vanish.

Next, we apply the following mean-field approximations
for the four-point interaction terms in Eq. (22):

G〈ψ̄1�
+
v 〉 ≡ �+

S , G〈ψ̄1�
−
v 〉 ≡ �−

S , (23)

G〈ψ̄1iγ5�
+
v 〉 ≡ �+

P , G〈ψ̄1iγ5�
−
v 〉 ≡ �−

P , (24)

G〈ψ̄1 �γ�+
v 〉 ≡ �+

V p̂, G〈ψ̄1 �γ�−
v 〉 ≡ �−

V p̂, (25)

G〈ψ̄1γ5 �γ�+
v 〉 ≡ �+

A p̂, G〈ψ̄1γ5 �γ�−
v 〉 ≡ �−

A p̂. (26)

Here, we assumed the condensates with different gaps, �+
i

and �−
i (i = S, P,V, A), between the �+

v and �−
v fields.

As a result, the mean-field Lagrangian in the FW-HQET is

LMF ≡ ψ̄1(/p + μγ0)ψ1

+ �̄+
v (p0 − λ+)�+

v − �̄−
v (p0 − λ−)�−

v

+ �̄+
v (�+

S + i�+
P γ5 + �+

V p̂ · �γ + �+
A p̂ · �γ γ5)ψ1

+ ψ̄1(�+∗
S + i�+∗

P γ5 + �+∗
V p̂ · �γ + �+∗

A p̂ · �γ γ5)�+
v
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+ �̄−
v (�−

S + i�−
P γ5 + �−

V p̂ · �γ + �−
A p̂ · �γ γ5)ψ1

+ ψ̄1(�−∗
S + i�−∗

P γ5 + �−∗
V p̂ · �γ + �−∗

A p̂ · �γ γ5)�−
v

− 1

G
(|�+

S |2 + |�+
P |2 + |�+

V |2 + |�+
A |2

+ |�−
S |2 + |�−

P |2 + |�−
V |2 + |�−

A |2), (27)

where we used γ0�
+
v = �+

v and γ0�
−
v = −�−

v . The inverse
propagator of quasiparticles is

GS,P,V,A
MF (p0, �p )−1 ≡

⎛
⎜⎜⎝

p0 + μ −�p · �σ �+∗
S − �+∗

A p̂ · �σ �−∗
V p̂ · �σ + i�−∗

P
�p · �σ −(p0 + μ) −�+∗

V p̂ · �σ + i�+∗
P �−∗

S + �−∗
A p̂ · �σ

�+
S − �+

A p̂ · �σ �+
V p̂ · �σ + i�+

P p0 − λ+ 0
−�−

V p̂ · �σ + i�−
P �−

S + �−
A p̂ · �σ 0 −(p0 − λ−)

⎞
⎟⎟⎠. (28)

This propagator consists of 8 × 8 components: the four-
component Dirac spinor for the light flavor and the four-
component spinor for the heavy flavor, which is definitely
different from Eq. (12) with 6 × 6 components based on the
conventional HQET. In Eq. (28), the off-diagonal components
between the heavy-particle and heavy-antiparticle compo-
nents are zero (in other words, �p · �σ is absent), which indicates
that the heavy particle and heavy antiparticle are decoupled
within the block matrix. This decoupling is the consequence
of the FW transformation.

We note that in the FW-HQET without the gaps, the heavy
particle and antiparticle numbers are separately conserved
[44]. The parameters λ± determine the relative positions of
the dispersions of the heavy fermions from the Fermi surface
of light fermions (determined by μ), at the same time, and
they serve as the chemical potentials for the numbers of heavy
particles and antiparticles, measured in the residual momen-
tum space. For example, the condition of λ+ = λ− means that
the dispersions of the heavy particles and antiparticles coin-
cide with each other, and the corresponding physical system
contains equal numbers of heavy particles and antiparticles as
long as we switch off the interaction between the light and
heavy fermions. Practically, for analyses of relativistic Kondo
effects, it is enough to consider the condition of λ+ ≈ λ− ≈ 0
(for the role of λ in the conventional HQET, see Refs. [26,29–
31,33,35,36]).

Next we extract the dispersion relations. In order to obtain
a simple solution, we assume � ≡ �+

S = �+
V = �−

S = �−
V

and λ ≡ λ+ = λ−. For the inverse propagator with only the
S + V condensate, by solving det[G(p0)−1] = 0, we get the
dispersion relations

E±(p) ≡ 1
2 (p + λ − μ ±

√
(p − λ − μ)2 + 8|�|2)

(Double), (29)

Ẽ±(p) ≡ 1
2 (−p + λ − μ ±

√
(p + λ + μ)2 + 8|�|2)

(Double). (30)

For S + P or P + V condensate, we can obtain the same
dispersion relations. Compared with the dispersion rela-
tions in the conventional HQET, (13) and (14), the par-
ticle modes E±(p) are the same. In the FW-HQET, the
antiparticle modes are mixed with the heavy particles, and the
decoupled modes like Eq. (14) do not appear. In the right panel
of Fig. 1, we plot an example of the dispersion relations. Thus,
the appearance of the Dirac-cone-like crossing point between

E−(p) and Ẽ−(p) is a unique characteristic in the relativistic
Kondo effect based on the FW-HQET, which is different from
that in the conventional HQET with the S + V condensates as
shown in the previous subsection II A.

For the single S, P, V , or A condensate, we get

E±(p) ≡ 1
2 (p + λ − μ ±

√
(p − λ − μ)2 + 4|�|2)

(Double), (31)

Ẽ±(p) ≡ 1
2 (−p + λ − μ ±

√
(p + λ + μ)2 + 4|�|2)

(Double). (32)

These agree with those obtained in Refs. [11,13]. Thus, a
single condensate leads to the factor 4 in front of |�|2.

For the S + P + V condensate with � ≡ �+
S = �−

S =
�+

P = �−
P = �+

V = �−
V , we get

E±(p) ≡ 1
2 (p + λ − μ ±

√
(p − λ − μ)2 + 12|�|2)

(Double), (33)

Ẽ±(p) ≡ 1
2 (−p + λ − μ ±

√
(p + λ + μ)2 + 12|�|2)

(Double). (34)

The factor of 3 among 12 is caused by the linear combination
of the three types of condensates.

We comment on the thermodynamic potential for each con-
densate. For the “non-combinatorial” condensates such as S,
P, V , and A, the condensate energy part of the thermodynamic
potential is 2|�|2/G (the factor of 2 comes from �+ and
�−). The two-combinatorial (S + P, S + V , and P + V ) and
three-combinatorial (S + P + V ) condensates have 4|�|2/G
and 6|�|2/G, respectively. Therefore, the coefficient in front
of |�|2 is scaled as the number of the condensates, so that S,
P, V , A, S + P, S + V , P + V , and S + P + V are thermody-
namically equivalent to each other.

For the V + A condensate with � ≡ �+
V = �−

V = �+
A =

�−
A , we get

E±(p) ≡ 1
2 (p + λ − μ ±

√
(p − λ − μ)2 + 16|�|2)

(Single), (35)

Ẽ±(p) ≡ 1
2 (−p + λ − μ ±

√
(p + λ + μ)2 + 16|�|2)

(Single), (36)

E (p) ≡ p − μ (Single), (37)

013233-5



ARAKI, SUENAGA, SUZUKI, AND YASUI PHYSICAL REVIEW RESEARCH 3, 013233 (2021)

Ẽ (p) ≡ −p − μ (Single), (38)

EQ ≡ λ (Double). (39)

Thus, we find the four mixing modes and four decoupled
modes. For the mixing modes, the factor of 16 in front of |�|2
might be characteristic. Each mode except for EQ does not
degenerate, and both the particle E (p) and antiparticle Ẽ (p)
modes are decoupled from the condensate.

III. DISCUSSION

A. Possible physical situations for two HQETs

In Sec. II, we have discussed the relativistic Kondo effects
based on the two different types of HQETs, i.e., the conven-
tional HQET and the FW-HQET. The former includes only the
particle component, while the latter includes both the particle
and antiparticle components. In the former, the heavy-particle
number density is controlled by the chemical potential λ (mea-
sured in the residual momentum space). Similarly, in the latter,
the heavy-particle number density and the heavy-antiparticle
number density are controlled by λ+ and λ−, respectively.
Thus, the FW-HQET can describe environments where there
exist not only heavy-particle impurities but also the heavy-
antiparticle impurities.

In other words, we can consider different physical situ-
ations by utilizing the difference between the two types of
HQETs. For example, the FW-HQET with nonzero λ+ and λ−
can allow coexistence of both heavy particles and heavy an-
tiparticles, and then both the particle density and antiparticle
density can be nonzero at the same time. On the other hand,
in the conventional HQET, such heavy-antiparticle density is
always absent by the definition of the heavy field, and only
the heavy-particle density can be nonzero. Thus, the physical
situation described by the FW-HQET can be different from
that in the conventional HQET.

B. Possible forms of Kondo condensates

The possible condensates that can induce simple dispersion
relations are summarized in Table I. Here, we compare the
three situations: (i) mixing between a light Dirac fermion
and a heavy fermion in the conventional HQET, (ii) mixing
between a light Dirac fermion and a heavy fermion in the
FW-HQET, and (iii) mixing between two light Dirac fermions.
For the case (iii), we can get a simple form of dispersion
relations, but the possible forms are different from the typical
dispersion relations in the Kondo effects (see the Appendix
for a detailed discussion).

As shown in Table I, in the conventional HQET, only for
the S + V and V + A condensates, we can obtain a simple
form of dispersion relations of the quasiparticles, where S + V
corresponds to the Ansatz found in Refs. [26,29]. On the other
hand, V + A is newly found in this work. If we assume the
parity symmetry of the ground state (in other words, � is even
parity), only the S + V condensate is allowed.7 Thus, in the

7From the definition of vector-hedgehog condensate, G〈ψ̄1 �γ�+
v 〉 ≡

�V p̂, the condensate 〈ψ̄1 �γ�+
v 〉 is odd parity, and the gap �V is even

parity.

TABLE I. The list of possible particle-antiparticle condensates in
three cases: (i) mixing between a light Dirac fermion and a heavy
fermion defined in the conventional heavy-quark effective theory
(con.HQET), (ii) mixing between a light Dirac fermion and a heavy
fermion in the heavy-quark effective theory with the FW trans-
formation (FW-HQET), and (iii) mixing between two light Dirac
fermions (2-Dirac). S, P, V , and A denote the scalar (1), pseudoscalar
(iγ5), vector-hedgehog ( p̂ · �γ ), and axial-vector–hedgehog ( p̂ · �γ γ5)
condensates, respectively. For “�”, we can get a simple form of
the dispersion relations. For “−”, we cannot get simple dispersion
relations.

Condensate con.HQET FW-HQET 2-Dirac

S − � �
P − � �
V − � �
A − � �
S + P − � �
S + V � � �
S + A − − �
P + V − � �
P + A − − �
V + A � � �
S + P + V − � �
S + P + A − − �
S + V + A − − −
P + V + A − − −
S + P + V + A − − −

conventional HQET, only the hedgehog-type condensates are
a promising candidate as a ground state of the Kondo effect.
This limitation is because the heavy-fermion field is formally
a two-component spinor due to the particle (or antiparticle)
projection.

We emphasize that, in the conventional HQET, for non-
combinatorial condensates such as S, P, V , and A, we cannot
get simple dispersions. An interpretation is as follows. When
we first consider the vector hedgehog, the vector hedgehog
mixes the light lower component and heavy particle, but it
cannot mix the light upper component and heavy antiparti-
cle due to the particle projection of the heavy fermion.8 To
compensate the mixing lost for the light upper component,
the mixing by the S or A condensate is required (P condensate
does not mix them). Thus, in order to describe a ground state
in this limit by using condensates, we need combinatorial
condensates as a linear combination of (S, P, V , and A).

In the FW-HQET, the heavy field consists of the four-
component Dirac spinor as usual. As a result, we can get
simple forms of dispersion relations for non-combinatorial
condensates such as S, P, V , and A as the ground state in
the Kondo effects. Also, other linear combinations such as
S + P, P + V , and S + P + V become possible. If we assume
the parity symmetry of the ground state, only the S, V , and
S + V condensates are allowed. These ground states (S, V ,

8The “upper” and “lower” mean the upper and lower two compo-
nents of the four-component Dirac spinor.
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and S + V ) are equivalent (or degenerate) in the thermody-
namic potential.

C. Relation to topological Kondo insulators

Finally, we discuss the relation between the relativistic
Kondo condensates and hybridizations in nonrelativistic TKIs
[54,55]. The TKIs are induced by a band inversion between
even-parity d-electron bands and odd-parity f -electron bands,
which is driven by a spin-orbit interaction stronger than the
typical gap of Kondo insulators.

We consider a minimal Hamiltonian of the TKI [65], where
conduction d electrons are hybridized with f electrons:

HTKI ≡
∑

�k

(
c†

d (�k)
c†

f (�k)

)T

	(�k)

(
cd (�k)
c f (�k)

)

≡
∑

�k

(
c†

d (�k)
c†

f (�k)

)T (
εc(�k) � �d (�k) · �σ

� �d (�k) · �σ ε f (�k)

)(
cd (�k)
c f (�k)

)
,

(40)

where each of the d and f electrons consist of two compo-
nents (or a Kramers doublet) in pseudospin space: (c†

d , c†
f ) ≡

(c†
d↑, c†

d↓, c†
f ↑, c†

f ↓). The energy levels, εc(�k) and ε f (�k), and

the hybridization � �d (�k) · �σ with a “form factor” �d (�k) · �σ and
a strength � are 2 × 2 matrices in pseudospin space. This
hybridization is induced by the (spin) exchange interaction
between the d electron and f electron. For the cubic lattice,
the three-momentum vector is �d (�k) = (sin kx, sin ky, sin kz ),
but it is approximated to be �d (�k) ∼ (kx, ky, kz ) at a small �k.
Note that if the Fermi level of quasiparticles is inside the
hybridization gap, the ground state of the Hamiltonian (40)
is a Kondo insulator with the hedgehog-type condensate in
momentum space. From this Hamiltonian, the dispersion rela-
tions for the quasiparticles are

E±(�k)

≡ 1
2 (εc(�k) + ε f (�k) ±

√
(εc(�k) − ε f (�k))2 + 4�2| �d (�k)|2)

(Double). (41)

In Fig. 2, we show a schematic picture for the band structures
before and after the hybridization.

Next, we compare the Hamiltonian (40) for nonrelativistic
TKIs and the Lagrangians for relativistic Kondo effects. For
the inverse propagator (12) from the conventional HQET, the
corresponding Hamiltonian form is

	S,P,V,A
HQET ( �p) ≡

⎛
⎜⎝

−μ �p · �σ −�∗
S + �∗

A p̂ · �σ
�p · �σ −μ −�∗

V p̂ · �σ + i�∗
P

−�S + �A p̂ · �σ−�V p̂ · �σ − i�P λ

⎞
⎟⎠, (42)

Note that this form is a 6 × 6 matrix, and it consists of the spin-doublets for the light-particle, light-antiparticle, and heavy-
particle components. For the inverse propagator (28) from the FW-HQET, the corresponding Hamiltonian form is

	S,P,V,A
FW ( �p) ≡

⎛
⎜⎜⎜⎜⎝

−μ �p · �σ −�+∗
S + �+∗

A p̂ · �σ −�−∗
V p̂ · �σ − i�−∗

P

�p · �σ −μ −�+∗
V p̂ · �σ + i�+∗

P �−∗
S + �−∗

A p̂ · �σ
−�+

S + �+
A p̂ · �σ −�+

V p̂ · �σ − i�+
P λ+ 0

−�−
V p̂ · �σ + i�−

P �−
S + �−

A p̂ · �σ 0 λ−

⎞
⎟⎟⎟⎟⎠. (43)

Note that this form is a 8 × 8 matrix, and it consists of the
spin-doublets for the light-particle, light-antiparticle, heavy-
particle, and heavy-antiparticle components. Thus, in the
relativistic light Dirac fermions, by definition, the spin-
momentum locking, �p · �σ , appears in the (1,2) and (2,1)
components in the matrix representation. In addition, when
a relativistic Kondo effect is realized, we can consider
hedgehog-type hybridization as a Kondo condensate, which
is a similar situation to the hybridization in TKIs.

We emphasize that the mechanism realizing the hedgehog
condensates in momentum space for nonrelativistic TKIs and
relativistic Kondo effects is almost the same. In the TKI
Hamiltonian (40), the odd-parity condensate, � �d (�k) · �σ , is
induced by the pairing between the even-parity d electron
and odd-parity f electron, as long as the spatial inversion
symmetry of the whole Hamiltonian is preserved. On the
other hand, the Hamiltonians for the relativistic Kondo ef-
fects, (42) and (43), include the hedgehog condensates such
as �

(∗)
V p̂ · �σ and �

(∗)
A p̂ · �σ . The vector hedgehog �

(∗)
V p̂ · �σ and

pseudoscalar �
(∗)
P condensates with odd parity are composed

of the light lower component with a parity and the heavy-
particle component with the opposite parity (or light upper and
heavy-antiparticle components) since the parity of the upper
component is opposite to that of the lower component. The
scalar �

(∗)
S and axial-vector–hedgehog �

(∗)
A p̂ · �σ condensates

with even parity, where �
(∗)
A is odd parity, are composed of

the light upper and heavy-particle (or the light lower and
heavy-antiparticle) components. When the spatial inversion
symmetry of the ground state is preserved (namely, � is
even parity), only the scalar and vector-hedgehog condensates
are possible. Thus, the Hamiltonian for the vector-hedgehog
condensate is similar to that for the TKI.

IV. CONCLUSION AND OUTLOOK

In this paper, we showed that the two types of relativistic
Kondo effects can be realized based on the two types of
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FIG. 2. Schematic picture of dispersion relations in nonrelativis-
tic topological Kondo insulators. The d-electron band εc(�k) and
f -electron band ε f (�k) are hybridized, and the quasiparticle bands
E±(�k) with a gap � appear. The shaded region means the Fermi sea.

HQETs, as shown in Fig. 1, where “relativistic” means that
the light fermions are treated as the Dirac field, and the heavy-
impurity fields are in the nonrelativistic limits of the massive
Dirac fermion. The essential difference between the two types
of HQETs is the existence or absence of the heavy antiparticle
component. The two Kondo effects are similar to each other
near the Fermi surface but slightly differ in the structure at low
momentum.

In the conventional HQET, we showed that the combinato-
rial hedgehog-type condensates such as the S + V condensate
[26,29] may be preferentially induced due to the assumption
of the particle projection. On the other hand, in the FW-HQET,
the various condensates such as the S [11,13], V , and S + V
condensates can appear. Although the final conclusion de-
pends on the specific interactions in the focused system, the
various Kondo condensate structures studied in this paper will
give a guide to investigate the true ground state for a specific
system.

One of the open questions is which Kondo effect is closer
to the relativistic Kondo effect with the original massive (and
sufficiently heavy) Dirac field, such as the QCD Kondo effect
with charm or bottom quarks [20,24]. In this sense, a most
useful approach is lattice simulations with relativistic heavy
Dirac fermions, such as lattice QED or QCD simulations,
where we can directly measure the vacuum expectation values
of operators composed of a light fermion and a heavy fermion,
such as 〈ψ̄1ψ2〉 and 〈ψ̄1 �γψ2〉. On the other hand, in lattice
HQET [91] simulations, one can apply the particle projection
operator to lattice heavy-fermion actions, so that such simula-
tions will be useful for examining nonperturbative properties
of the Kondo effect with only particle components of heavy

fermions as shown in the subsection II A. Lattice simulations
with the projection of the FW-HQET will be also interesting.

The two Kondo effects will be studied by utiliz-
ing ultracold-atom simulations. For studies of nonrela-
tivistic Kondo effects with ultracold atoms, see, e.g.,
Refs. [92–98]. Ultracold-atom simulations implementing rel-
ativistic fermions will give us deeper understanding of the
relativistic Kondo effects.

In the context of solid-state systems, our discussion can
be applied to materials such as Dirac/Weyl semimetals with
dilutely doped heavy impurities or superlattice systems with
periodic intercalation of heavy-electron layers. The latter
may be designed with material growth techniques such as
molecular-beam epitaxy (MBE), building up the crystal layer
by layer. Our findings in this paper imply that parity of heavy
impurities, which is determined by the atomic orbital of im-
purity electrons participating in the Kondo effect, restricts the
possible hybridization structure of the Kondo condensate. We
have demonstrated that the resultant hybridization structure
affects the band structure. In particular, the Kondo effect may
change the structure of the band crossing, even when the
crossing point is located at an energy away from the Fermi
level. The presence or absence of the Dirac point beneath the
Fermi level does not significantly affect the thermodynamic
properties (such as specific heat) or the stationary transport
properties (such as the electric conductivity for direct cur-
rents), as long as the Dirac point is far enough away from the
Fermi level. Nevertheless, it can be captured experimentally
if an electron living near the Dirac point is excited above
the Fermi surface by a finite-frequency external field such
as a laser. For example, the band structure below the Fermi
level may be directly measured by angle-resolved photoemis-
sion spectroscopy (ARPES). Furthermore, electromagnetic
responses to the light, such as the optical conductivity and
absorption spectrum, also provide information on the structure
of the band eigenstates away from the Fermi level.

Once the hybridization structure from the Kondo effect
is determined from such measurements, our findings will be
helpful in identifying the heavy degrees of freedom partici-
pating in the Kondo effect.
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APPENDIX: MIXING BETWEEN TWO-FLAVOR DIRAC FERMIONS

In this Appendix, we study mixing between massless two-flavor Dirac fermions. We start from a Lagrangian including two
different Dirac fields, ψ1 with chemical potential μ and ψ2 with −λ:

Leff ≡ ψ̄1(i/∂ + μγ0)ψ1 + ψ̄2(i/∂ − λγ0)ψ2 + G[|ψ̄1ψ2|2+|ψ̄1iγ5ψ2|2+|ψ̄1 �γψ2|2 + |ψ̄1 �γ γ5ψ |2], (A1)

where G is the coupling constant. Here, for the vector and axial-vector interactions, we assumed a situation that the temporal
component is suppressed for any reason, and only the spatial components survive, which is a similar situation to the heavy-
fermion limit.
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Here, we assume the following mean fields for the four-point interaction terms:

G〈ψ̄1ψ2〉 ≡ �S, (A2)

G〈ψ̄1iγ5ψ2〉 ≡ �P, (A3)

G〈ψ̄1 �γψ2〉 ≡ �V p̂, (A4)

G〈ψ̄1γ5 �γψ2〉 ≡ �A p̂, (A5)

where p̂ ≡ �p/p (p ≡ | �p|) is the unit vector of the three-dimensional momentum �p. The gaps �S , �P, �V , and �A are a complex
number. We call the third (vector) and fourth (axial-vector) condensates with p̂ the hedgehog condensate. After assuming the
hedgehog Ansätze, p̂ is combined with another �γ in the vector four-point interaction, and then we get the factor p̂ · �γ . As a result,
the mean-field Lagrangian is

LMF ≡ ψ̄1(/p + μγ0)ψ1 + ψ̄2(/p − λγ0)ψ2 + ψ̄2(�S + i�Pγ5 + �V p̂ · �γ + �A p̂ · �γ γ5)ψ1

+ ψ̄1(�∗
S + i�∗

Pγ5 + �∗
V p̂ · �γ + �∗

A p̂ · �γ γ5)ψ2 − 1

G
(|�S|2 + |�P|2 + |�V |2 + |�A|2). (A6)

From the mean-field Lagrangian (A6), the inverse propagator of quasiparticles with all the S, P, V , and A condensates is written
as

GS,P,V,A
MF (p0, �p )−1 ≡

⎛
⎜⎝

p0 + μ −�p · �σ �∗
S − �∗

A p̂ · �σ �∗
V p̂ · �σ + i�∗

P
�p · �σ −(p0 + μ) −�∗

V p̂ · �σ + i�∗
P �∗

S + �∗
A p̂ · �σ

�S − �A p̂ · �σ �V p̂ · �σ + i�P p0 − λ −�p · �σ
−�V p̂ · �σ + i�P �S + �A p̂ · �σ �p · �σ −(p0 − λ)

⎞
⎟⎠. (A7)

This propagator consists of 8 × 8 components: the two four-component Dirac spinors for ψ1 and ψ2.
From now on, we assume � ≡ �S = �P = �V = �A for clarity. From Eq. (A7), by solving det[G(p0)−1] = 0, we get the

dispersion relations of quasiparticles. For example, for the S + V condensate,

E±(p) ≡ 1
2 (λ − μ +

√
4p2 + (λ + μ)2 + 8|�|2 ± 4p

√
(λ + μ)2 + 4|�|2) (Double),

(A8)

Ẽ±(p) ≡ 1
2 (λ − μ −

√
4p2 + (λ + μ)2 + 8|�|2 ± 4p

√
(λ + μ)2 + 4|�|2) (Double). (A9)

For the P + V condensate, we can get the same dispersions. Thus, for mixing between massless Dirac fermions, even when we
assume the S + V condensate, we cannot obtain the dispersion relations of the Kondo effect like Eq. (13) in the conventional
HQET or Eqs. (29) and (30) in the FW-HQET. In other words, the Kondo-type dispersions are induced by the nonrelativistic
properties of heavy fermions.

For the single S or P condensate,

E±(p) ≡ 1
2 (λ − μ +

√
(±2p + λ + μ)2 + 4|�|2) (Double), (A10)

Ẽ±(p) ≡ 1
2 (λ − μ −

√
(±2p + λ + μ)2 + 4|�|2) (Double). (A11)

For the P condensate, these dispersion relations are equivalent to those [99] of quasiparticles with the pion condensate [100]
realized at nonzero isospin chemical potential μI , where we can check it by using the replacement of μ → μu and −λ → μd (μu

and μd are the chemical potentials of the up and down quarks, respectively) and the definition of μI ≡ 1
2 (μu − μd ) = 1

2 (μ + λ).
For the single V or A condensate,

E±(p) ≡ 1
2 (2p + λ − μ ±

√
(λ + μ)2 + 4|�|2) (Double), (A12)

Ẽ±(p) ≡ 1
2 (−2p + λ − μ ±

√
(λ + μ)2 + 4|�|2) (Double). (A13)

These dispersion relations mean that the vector or axial-vector hedgehog condensate (composed of two massless Dirac
fermions) is decoupled from the momentum p of the Dirac fermions. Therefore, these condensates modify only the vacuum
(or condensation) energy in the thermodynamic potential, and the dispersion relations of Dirac fermions are not modified. This
situation is distinct from the hedgehog condensates composed of a light fermion and a heavy impurity, as discussed in the main
text.

For the S + P condensate,

E±(p) ≡ 1
2 (λ − μ +

√
(±2p + λ + μ)2 + 8|�|2) (Double), (A14)

Ẽ±(p) ≡ 1
2 (λ − μ −

√
(±2p + λ + μ)2 + 8|�|2) (Double). (A15)

These are the same as Eqs. (A10) and (A11) except for the factor of 2 in front of |�|2.
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For the S + P + V condensate,

E±(p) ≡ 1
2 (λ − μ +

√
4p2 + (λ + μ)2 + 12|�|2 ± 4p

√
(λ + μ)2 + 4|�|2) (Double), (A16)

Ẽ±(p) ≡ 1
2 (λ − μ −

√
4p2 + (λ + μ)2 + 12|�|2 ± 4p

√
(λ + μ)2 + 4|�|2) (Double). (A17)

These are the same as Eqs. (A8) and (A9) except for the factor of 12|�|2.
For the S + A or P + A condensate,

E±(p) ≡ 1
2 (λ − μ +

√
4p2 + (λ + μ)2 + 8|�|2 ± 4

√
p2[(λ + μ)2 + 4|�|2] + 4|�|4) (Double),

(A18)

Ẽ±(p) ≡ 1
2 (λ − μ −

√
4p2 + (λ + μ)2 + 8|�|2 ± 4

√
p2[(λ + μ)2 + 4|�|2] + 4|�|4) (Double). (A19)

For the S + P + A condensates,

E±(p) ≡ 1
2 (λ − μ +

√
4p2 + (λ + μ)2 + 12|�|2 ± 4

√
p2[(λ + μ)2 + 4|�|2] + 8|�|4) (Double), (A20)

Ẽ±(p) ≡ 1
2 (λ − μ −

√
4p2 + (λ + μ)2 + 12|�|2 ± 4

√
p2[(λ + μ)2 + 4|�|2] + 8|�|4) (Double). (A21)

These are the same as Eqs. (A18) and (A19) except for the factor of 12|�|2and 8|�|4.
For the V + A condensate,

E±(p) ≡ 1
2 (2p + λ − μ ±

√
(λ + μ)2 + 16|�|2) (Single), (A22)

Ẽ±(p) ≡ 1
2 (−2p + λ − μ ±

√
(λ + μ)2 + 16|�|2) (Single), (A23)

E1(p) ≡ p − μ (Single), (A24)

E2(p) ≡ p + λ (Single), (A25)

Ẽ1(p) ≡ −p − μ (Single), (A26)

Ẽ2(p) ≡ −p + λ (Single). (A27)

Similarly to Eqs. (A12) and (A13), this condensate is decoupled from the momentum p of Dirac fermions.
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