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Equilibrium topological phases are robust against weak static disorder but may break down in the strong-
disorder regime. Here we propose to explore how the quench-induced emergent dynamical topology evolves
under dynamical noise and uncover novel dynamical topological physics beyond equilibrium counterparts. We
develop an analytic theory and show that for weak noise, the quantum dynamics induced by quenching an initial
trivial phase to the Chern insulating regime exhibits robust emergent topology on certain momentum subspaces
called band-inversion surfaces (BISs). The dynamical topology is protected by the minimal oscillation frequency
over BISs, mimicking a bulk gap of the dynamical phase. Two novel types of dynamical transitions classified
by distinct exceptional points or rings are predicted if increasing the noise to critical strength, with critical
points being exactly obtained. At the exceptional points on the BISs the minimal oscillation frequency vanishes,
manifesting the dynamical bulk-gap closing, beyond which the dynamical topology breaks down. Interestingly,
we predict a sweet spot region of the transition, in which the dynamical topology survives surprisingly at
an arbitrarily strong noise regime. This work unveils novel universal physics of dynamical topology under
dynamical noise, which can be probed with control in experiment.
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I. INTRODUCTION

The topological quantum phases [1–6] are defined on the
ground state of a system in equilibrium with a nontrivial bulk
topological invariant, and host topologically protected gap-
less boundary modes through the celebrated bulk-boundary
correspondence [5,6]. Since their discovery, the topological
quantum phases have ignited extensive research in condensed
matter physics [7–10], photonic systems [11–14], and ultra-
cold atoms [15–21], with the focus mainly on the equilibrium
properties, such as the classification [22–24] and the search,
synthesis, and detection in real materials [25–29]. Although
these studies have led to tremendous progress, a full and
comprehensive understanding of the underlying topological
physics remains incomplete, especially about their nonequi-
librium properties.

Recently, benefiting from the advances in quantum sim-
ulations which provide a fully controllable platform to
realize various topological phases [17–21], considerable ef-
forts have been devoted to investigate the topological physics
out of equilibrium [30–41]. Particularly, by quenching a d-
dimensional (dD) topological system, nontrivial dynamical

*Corresponding author: xiongjunliu@pku.edu.cn

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

topological patterns are predicted to emerge on the (d − 1)D
momentum subspaces called band-inversion surfaces (BISs)
in quantum dynamics, which universally correspond to the
bulk topology of the dD equilibrium topological phase
[42–48]. This dynamical bulk-surface correspondence pro-
vides new schemes to characterize and detect the equilibrium
topological phase via nonequilibrium quench dynamics, and
has been generalized to various topological systems [49–53],
with the experimental verifications having been widely re-
ported recently [54–60].

On the other hand, the dynamical bulk-surface corre-
spondence opens a way to classify nonequilibrium quantum
dynamics with topological theory. The nontrivial topologi-
cal patterns emerging on the BISs manifest a new notion of
dynamical topological phases, which are connected to but
conceptually different from the equilibrium counterparts, with
the underlying nontrivial physics remaining to be unearthed.
For example, it is known that the equilibrium topological
phases are robust against weak static disorder but may break
down in the strong-disorder regime [61–63]. The disorder ef-
fect may also give rise to the topological Anderson insulators
[64–66]. Being a temporal analogy to the spatial static disor-
der, the dynamical noise obviously destroys the equilibrium
topological phase. However, is the emergent dynamical topol-
ogy in quantum quenches robust against dynamical noise?
Does the dynamical topological transition occur, and how
does it occur, under the strong-noise regime? How should we
classify such dynamical transitions? Is there any novel feature
beyond the equilibrium topology? Although the dynamical
noise indeed exists and is inevitable in practical experiments
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[54–60], these novel issues have not been studied either the-
oretically or experimentally. Answering these questions will
promote the basic understanding of the emergent dynamical
topological phases in quantum quenches and stimulate exper-
imental studies of their exceptional features with controllable
noise.

In this work, we address these issues by investigating the
quench-induced dynamical topology under dynamical noise
for 2D quantum anomalous Hall (QAH) systems. The analytic
theory of the quench dynamics is developed based on the
stochastic Schrödinger equation. In the weak-noise regime,
we show that the dynamical topology emerging on the dy-
namical band-inversion surfaces (dBISs) is protected by the
minimal oscillation frequency which mimics the bulk gap of
the emergent dynamical phase. In the strong-noise regime, the
exceptional points emerge in the dynamical patterns on dBISs
and the dynamical topology breaks down. Interestingly, we
uncover two types of dynamical topological transitions classi-
fied by distinct exceptional points or rings, with critical points
being exactly obtained. Moreover, we predict a sweet spot
region, in which the dynamical topology survives surprisingly
at arbitrary strong noise. This result is beyond the equilibrium
counterparts.

The paper is organized as follows. In Sec. II, we intro-
duce the QAH model with dynamical noise and discuss the
corresponding dissipative quench dynamics. In Sec. III, we
generalize the emergent dynamical topology into the dissipa-
tive regime. In Sec. IV, we study the stability of the emergent
dynamical topology under weak noise. The dynamical tran-
sitions in the strong-noise regime are discussed in Sec. V.
Further, in Sec. VI we show the critical noise strength and
the sweet spot region. Finally, we present the conclusion and
outlook in Sec. VII. More details are provided in the appen-
dices.

II. NOISE-INDUCED DISSIPATIVE QUENCH DYNAMICS

We start with 2D QAH models coupling to dynamical
white noise, with the Hamiltonian

H̃ (k, t ) = H (k) + w(k, t ) · σ + δmz(t )σz, (1)

where H (k) = h(k) · σ gives the QAH phase, and wi(k, t )
is magnetic white noise of strength

√
wi, which exists

and is also controllable in experiments [54–58], satisfying
〈〈wi(k, t )〉〉= 0 and 〈〈wi(k, t )w j (k, t ′)〉〉= wiδi jδ(t − t ′). Here
〈〈·〉〉 denotes the stochastic average over different noise con-
figurations. We tune the magnetization δmz to trigger the
quench dynamics from the deep trivial state to the topo-
logically nontrivial phase; see Fig. 1(a). For t < 0, we set
δmz � 0 such that the system is initially prepared in the
fully polarized state |ψ (k, t = 0)〉 = |↑〉 and the noise is
negligible for the prequench state. Quenching δmz → 0 at
t = 0 leads to evolution under the postquench Hamiltonian
with noise Hpost (k, t ) = H (k) + w(k, t ) · σ. The dynamics is
governed by the stochastic Schrödinger equation [67–70],
i∂t |ψ (k, t )〉 = Hpost (k, t ) |ψ (k, t )〉, a noise-induced random
unitary evolution. Our study can be readily generalized to
quench dynamics along an arbitrary axis [42] and from a
generic trivial state [44].
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FIG. 1. Noise-induced dissipative quench dynamics and the dy-
namical band-inversion surfaces. (a) Quenching a 2D QAH model
from deep trivial state to the topologically nontrivial regime. The
white noise (the insert) randomly couples the upper and lower bands.
(b) The dBIS (red line) and BIS (dashed blue line). (c) The stochas-
tic averaged spin polarizations s(k, t ) for the momenta marked in
(b) by red triangles. On the dBIS, the evolution of spin polarization
(red line) is always within the plane perpendicular to the SO axis
hso (black dashed arrow), while it spirals around the postquench
Hamiltonian vector h (black arrows) for momenta off the dBIS
(including the BIS). Here we set mz = 1.2t0 and tso = 0.2t0 for the
postquench Hamiltonian. The noise strength is wx = 0.12t0, wy = 0,
wz = 0.02t0.

The quench dynamics with noise can be quantified by the
stochastic averaged spin polarization

s(k, t ) ≡〈〈〈ψ (k, t )|σ|ψ (k, t )〉〉〉 . (2)

The random evolution of spin polarization renders the
dissipative quantum dynamics [Fig. 1(c)], which can be
obtained from the Lindblad master equation [69–71] for
the stochastic averaged density matrix s(k, t ) = Tr[ρ(k, t )σ],
with ρ(k, t ) =〈〈|ψ (k, t )〉 〈ψ (k, t )|〉〉 and

∂tρ(k, t ) = Lk[ρ(k, t )], ∂t s(k, t ) = L(k)s(k, t ). (3)

Here the Liouvillian superoperator reads Lk[•] ≡
−i[H (k), •] + ∑

i=x,y,z wi[σi • σi − •] and can be recast
into the following matrix form for the two-band model with
ρ(k, t ) = [1 + s(k, t ) · σ]/2:

L(k) = 2

⎡
⎣−wy − wz −hz(k) hy(k)

hz(k) −wx − wz −hx(k)
−hy(k) hx(k) −wx − wy

⎤
⎦, (4)

where the noise w j is directly coupled to spin components si

(i 
= j) for its dephasing effect in the basis |σ j〉. The noise in
general couples the eigenstates of H (k), leading to a decay
effect instead of pure dephasing and modulating the oscilla-
tion frequency. The same master equation can be reached for
quantum noise [72], so this study is applicable to the case with
quantum noise.

By diagonalizing the Liouvillian superoperator L(k), the
solution to the dissipative quench dynamics can be generically
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written as

s(k, t ) = s0(k)e−λ0(k)t + s+(k)e−[λ1(k)+iω(k)]t

+ s−(k)e−[λ1(k)−iω(k)]t , (5)

with the coefficients sα (k) = [sL
α (k) · s(k, 0)]sR

α (k) for α = 0,

±. Here sL(R)
α satisfying sL

α (k) · sR
β (k) = δαβ are the left (right)

eigenvectors of the Liouvillian superoperator

LT (k)sL
α = −λαsL

α, L(k)sR
α = −λαsR

α, (6)

with eigenvalues λ0 and λ± = λ1 ± iω, respectively, and sL(R)
0

are real. The coefficients λ0,1 reflect explicitly the dissipation
of the spin dynamics due to the dynamical noise. Note that ω

may become imaginary for certain noise strength, manifesting
a fully decayed spin dynamics. The above formal solution is
valid only for momenta with three distinct eigenvalues, which,
however, does not affect the analysis of dynamical topology.

III. EMERGENT DYNAMICAL TOPOLOGY

As is known that without noise, the nontrivial topology
emerges in the quench dynamics on BISs where the spin-flip
resonant oscillations occur and thus the time-averaged spin-
polarization vanishes s(k) ≡ limT →∞ 1

T

∫ T
0 dt s(k, t )|k∈BIS =

0 [42–44]. This characterization needs generalization in the
noise regime, when the decay dominates the long-time evo-
lution and the direct time-averaging s(k) vanishes at any k,
hence does not capture the topology. Below we first extend the
characterization theory to the generic case with dissipation.

For unitary quench dynamics, the BISs correspond to the
momentum subspace {k|hz(k) = 0} with h(k) · s(k, 0) = 0,
where the spin processes perpendicularly to spin-orbit (SO)
axis hso(k) = (hx, hy). With dynamical noise, on such BISs
the spin dynamics are complicated. However, we show that
on the k-subspace dubbed dBISs defined by sL

0 as

dBIS ≡ {
k|sL

0 (k) · s(k, 0) = 0
}
, (7)

under noise the spin processes fully in the plane perpendicular
to the SO axis hso (see Appendix A). Away from the dBISs,
the spin evolves along a generic 3D curve in the Bloch sphere.
For the initial state |↑〉, the dBISs are analytically given by the
momenta satisfying hz = (wy − wx )hxhy/(h2

x + h2
y ) with sL

0 ∼
(hx, hy, 0). The dBISs return to the BISs if the noise strengths
are zero or wx = wy. The numerical results in Fig. 1 confirm
features on the dBIS, where we consider the QAH model
[16,73] realized in recent experiments [21,74], H (k) = h(k) ·
σ with h(k) = (tso sin kx, tso sin ky, mz − t0 cos kx − t0 cos ky),
where t0 and tso denote the spin-conserved and spin-flipped
hopping. The magnetization mz is suddenly changed from a
large negative value to mz = 1.2t0 [Fig. 1(a)], together with
tso = 0.2t0,wx = 0.12t0, wy = 0, and wz = 0.02t0. The dBIS
differs from the BIS even when the noise is weak [Fig. 1(b)].
On the dBIS, the spin polarization evolves exactly within the
plane perpendicular to hso, but not for momenta off the dBIS
[including the BIS; see Fig. 1(c)].

The emergent topology characterizes the global feature of
the dynamical spin texture which is normalized [42]. For this
we can neglect the amplitude decay (quantified by Re λα) of
the spin polarization to characterize the dynamical topology,

except for the case with singularities, giving the rescaled dy-
namical spin polarization [75]

s̃(k, t ) ≡ s0(k) + s+(k)e−iω(k)t + s−(k)e+iω(k)t . (8)

This characterization requires the frequency ω(k) to be real.
Otherwise, spin dynamics is characterized by purely decay, as
dominated by the noise, and the information of the postquench
topological Hamiltonian is scrambled for the indistinguish-
able decay modes with real λα’s. The emergent topology of the
quench dynamics is characterized by the topological invariant

W ≡ 1

2π

∮
dBIS

g(k)dg(k). (9)

Here g(k) denotes the directional derivative of dynamical spin
polarization in x-y plane g(k) ≡ (1/Nk )∂k⊥ (s̃x(k), s̃y(k))|dBIS

normalized by Nk, with k⊥ perpendicular to the dBISs and
pointing to the side with sL

0 (k) · s(k, 0) > 0. The invariant
W represents the winding number of g(k) over dBISs. This
invariant naturally returns to the one for unitary quench
dynamics if the noise is absent, which characterizes the topo-
logical phase of the postquench Hamiltonian [42,44].

IV. STABILITY OF THE DYNAMICAL TOPOLOGY

Now we study the fate of dynamical topology under dy-
namical noise, and consider first the weak-noise regime with
the spin dynamics on dBISs exhibiting damped oscillation.
Accordingly s̃(k, t ) on the dBISs oscillate around zero [see
Fig. 2(a)], leading to vanishing time averaged spin polar-
ization |s̃(k)|k∈dBISs = 0; see Fig. 2(b). Near the dBISs, for
the real and nonzero oscillation frequency ω(k) we have
s̃(k) = s0(k). It follows that the dynamical field is obtained
by g(k) = 1

NK
(sR

0,x(k), sR
0,y(k))|dBIS and explicitly reads (see

Appendix A)

g(k) = 1

Nk
(hx(k)[1 − η(k)], hy(k)[1 + η(k)])|dBIS, (10)

where the deformation factor is η = [(wy − wx )/h2
so] ×

(wxh2
x/h2

so + wyh2
y/h2

so − wz ). The factor η quantifies the de-
formation of g(k) from the SO field hso. It is seen that the
noise cannot fully flip g with respect to hso, which is crucial
for the robustness of dynamical topology in the relatively
weak noise regime. Finally, for the case with wx = wy or
without noise, the SO field is recovered. These results are
valid in general for the damped oscillating spin dynamics on
the dBISs.

The stability of dynamical topology under weak noise
can be examined by increasing the noise strength from zero.
Without noise, the invariant W reduces to the winding of
SO field hso on the BISs, which is clearly nontrivial. As the
noise increases to the weak regime, no topological charge
with hso(k) = 0 passes through the deformed dBISs (see
Appendix B). Thus the winding of the SO field hso on the
dBISs remains invariant. In Appendix B, we prove that while
the g(k) field on the dBISs is locally deformed by the noise,
its global topology, quantified by W , is unchanged and still
equivalent to that of the SO field hso, as long as dissipative
spin dynamics has finite minimal oscillation frequency over
the dBISs, which mimics a bulk gap protecting the emergent
dynamical phase against relatively weak noise. In Fig. 2(c),
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FIG. 2. Two types of dynamical topological transition. (a) The rescaled dynamical spin polarization s̃(t ) (red lines) and spin polarization
s(t ) (dashed blue lines) on dBIS momentum with ky = 0 marked by the black dot in (b). The corresponding components sx, s̃x are always
zero. (b) The time-averaged rescaled spin polarizations s̃(k) under weak noise strength wx = 0.05t0, wy = 0, wz = 0.01t0. The vanishing time
averages s̃(k) = 0 characterize the dBIS (dashed line). (c) The dynamical pattern g(k) (blue arrows) exhibits nonzero topological number W =
+1. (d) The rescaled dynamical spin polarization and spin polarization on dBIS at the momentum marked in (e). (e) The time-averaged spin
texture under strong noise strength wx = 0.1t0, wy = 0.05t0, wz = 0.45t0. Singularities emerge on dBIS momenta with nonzero time averaging
s̃(k) 
= 0. The spin dynamics at the marked momenta purely decays without oscillation. (f) The dynamical pattern g(k) has singularities. Here
we set mz = 1.2t0 and tso = 0.2t0 for (a)–(f). (g) The results for noise strength wx = 1.6t0, wy = 0, wz = 0.8t0, where the deformed dBIS
connects to the topological charge (green dot) at k = 0. The dynamical topology also breaks down. Here we set mz = 1.2t0 and tso = 2t0. (h)
The variation of dynamical pattern with wx increasing from zero while keeping wy = 0 and wz = 0.8t0. When wx increases to 2|h∗

z | = 1.6t0,
the dBIS is deformed to the charge position where spin oscillation vanishes and the emergent topology breaks down. As wx further increases,
more dBIS momenta are deformed to charge momentum.

we show the dynamical field g of the QAH model under noise
strengths wx = 0.05t0, wy = 0, and wz = 0.01t0. The quench
dynamics exhibit nonzero topological number W = +1.

V. TWO TYPES OF DYNAMICAL
TOPOLOGICAL TRANSITION

The quench dynamics are qualitatively different in the
strong-noise regime. Two types of dynamical transitions are
obtained, with numerical results shown in Figs. 2(d)–2(h).
For type I, the spin dynamics at some momenta of the dBIS
purely decays without oscillation [Fig. 2(d)], even though
the deformation of the dBIS is relatively small. At these
momenta, the eigenvalues λα of L(k) are all real; i.e., ω(k)
is purely imaginary. The rescaled spin polarization s̃(k, t ) =∑

α=0,± sα (k) = s(k, 0) is trivial. Thus the dBIS breaks down
and the dynamical field g(k) cannot be defined at these sin-
gular momenta in this regime [Figs. 2(e) and 2(f)]. For type
II, the noise strongly deforms the dBIS to connect to topo-
logical charges. At the crossing of charges with dBISs the
oscillation vanishes, leading to breakdown of the dynamical
topology [Figs. 2(g) and 2(h)]. Thus the breakdown of dynam-

ical topology is associated with the emergence of singularities
on dBISs.

These two types of dynamical transition can be further
distinguished by different exceptional points or rings of
the Liouvillian superoperator, consisting of exceptional mo-
menta with ω = 0, on which the eigenvectors sL(R)

± coalesce.
Numerically, it is more convenient to determine the excep-
tional momenta via the vanishing discriminant 
 ≡ (bc/6 −
b3/27 − d/2)2 + (c/3 − b2/9)3 of eigenequation det(L +
λ) = λ3 + bλ2 + cλ + d = 0 (see Appendix C). The dynam-
ical transition implies the emergence of the exceptional point
on or the touch of the exceptional ring with dBISs, leading
to vanishing frequency on dBISs; see Figs. 3(a) and 3(b). We
show that the exceptional point or ring can be characterized by
the winding number NE ≡ 1

2π

∮
S d� arctan〈Sy〉/〈Sx〉, where S

is a loop enclosing the exceptional point or ring [Figs. 3(a)
and 3(b)]. Here we define 〈Sα〉 ≡ sR†

+ SαsR
+ with Sα being the

spin-1 operator:

Sx =
⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠, Sy =

⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠, (11)
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FIG. 3. Exceptional point or ring of Liouvillian superoperator. In
the upper panel we plot the sign of discriminant 
, with exceptional
momenta being given by 
 = 0. (a) The exceptional ring (boundary
of the blue cluster) touches the dBIS (black line) for type-I transition.
The noise strength is wx = 0.1t0, wy = 0.05t0, and wz ≈ 0.4419t0.
Other parameters are the same as in Figs. 2(d)–2(f). (b) The excep-
tional point (white dot) emerges at the charge momentum (green
dot) at k = 0, to which the dBIS connects for type-II transition.
The noise strength is wx = 1.6t0, wy = 0, and wz = 0.8t0, with other
parameters being the same as in Figs. 2(g) and 2(h). (c), (d) The
winding of vector (〈Sx〉, 〈Sy〉) on an ellipse loop S of the form
(x0 + rx cos θ, y0 + ry sin θ ) [dashed orange line in (a), (b)]. The
winding number NE is trivial for type-I transition (c), but equals the
charge value +1 for type-II transition (d).

and Sz = i[Sy, Sx], satisfying [Sα, Sβ ] = iεαβγ Sγ . For type-I
transitions, the exceptional point or ring on dBISs is char-
acterized by a trivial winding number [Figs. 3(a) and 3(c)],
while it contains the charge momentum and has a nonzero
winding number NE = 1 equal to the charge value for type-II
transitions [Figs. 3(b) and 3(d)]. We refer to Appendix C for
more details. The distinct exceptional point or ring shows
the fundamental difference between the type-I and type-II
dynamical transitions.

VI. CRITICAL NOISE STRENGTH
AND SWEET SPOT REGION

The difference between the weak and strong noise regimes
indicates that dynamical transitions occur at certain critical
noise strengths. The dynamical topology is robust as long as
the oscillation frequency of the dissipative spin dynamics is
finite everywhere on dBISs; namely, the effective bulk gap
of the emergent dynamical phase is not closed by the noise.
Similarly to the equilibrium topological phase, the dynamical
transition here occurs when the minimal frequency on dBISs
vanishes. For type-II transitions, the critical noise strength
satisfies |wy,c − wx,c| = 2|h∗

z | and wx,c + wy,c = 2wz,c, with
|h∗

z | the minimal value of hz at the topological charges where
hso = 0 (Appendix D). For |wy − wx| � 2|h∗

z |, the deformed

−2 2
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2
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transition
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0.8t0
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w
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FIG. 4. Sweet spot region of QAH model. The lines represent the
critical noise strength for different tso values. The type-II transition
point is indicated by the black points. In the sweet spot region
(the shadow region), the dynamical topology survives at arbitrarily
strong noise. The insert plot shows the full infinite sweet spot region
extended along the wx axis for tso = 0.6t0 and with cross section
being the same along wx axis. Here we set mz = 1.2t0.

dBISs connect to topological charges [Figs. 2(g) and 2(h)],
where oscillations always vanish and the emergent topol-
ogy breaks down. For the type-I transition, the critical noise
strength wc = (wx,c,wy,c,wz,c) is determined by

min
k∈dBISs

ω(k; wc) = 0, (12)

with ω(k) = 2
√

h2
so(k) − [λ0(k)/4 − wz]2 and λ0 = 2wxh2

y/

h2
so + 2wyh2

x/h2
so + 2wz (see Appendix D). Under the critical

noise strength, certain dBIS momenta become exceptional,
rendering a dynamical topological transition. Beyond the criti-
cal value the dynamical pattern becomes singular. Which type
of transitions occurs first is parameter dependent.

A striking result is obtained from Eq. (12) that a sweet spot
region is predicted as

max
k∈dBISs

[
(wy − wx )h2

x

/
h2

so − 2|hso|
]

< wz − wx < min
k∈dBISs

[
(wy − wx )h2

x

/
h2

so + 2|hso|
]
, (13)

in which the dynamical topology survives at arbitrarily strong
noise. Here the upper and lower bounds of wz − wx are de-
pendent only on wy − wx as the dBISs are fully determined by
wy − wx. The type-II transition constrains |wy − wx| < 2|h∗

z |.
The existence of the sweet spot region is an exotic feature
of the dynamical topology, clearly beyond the equilibrium
counterparts. In Fig. 4, we show the sweet spot region and the
critical noise strength for the QAH model. The full sweet spot
region is an infinite region extended along the wx axis with the
same cross section in the (wz − wx )-(wy − wx ) plot, which
increases as the strength of spin-orbit coupling increases. The
type-II transition can happen only for relatively large tso. With
a relatively large parameter range, the sweet spot region is
observable in experiment [76].
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VII. CONCLUSION AND OUTLOOK

We have investigated the effects of dynamical noise on
the quench-induced emergent dynamical topology, with uni-
versal results being predicted. We showed that the dynamical
topology is robust against weak dynamical noise, and is pro-
tected by an effective bulk gap, i.e., the minimal oscillation
frequency of the quench dynamics. Two novel types of dy-
namical transitions classified by distinct exceptional points
or rings are predicted in the strong dynamical noise regime,
with critical points being exactly obtained. Interestingly, we
predicted a novel sweet spot region, in which the dynamical
topology survives in arbitrarily strong noise, and the results
are beyond the equilibrium counterparts. These universal re-
sults of the dynamical topology can be probed based on the
recent experimental advances [57–60].

It is of great interest to generalize the study of noise ef-
fects on dynamical topology to higher-dimensional systems
with higher bands and to other types of noise with colors,
which will be left for future investigations. On the other
hand, while having exceptional features, the emergent dynam-
ical topological phases share similarities with the equilibrium
counterparts, and the open questions can be further asked. In
particular, as the nontrivial topology of an equilibrium phase
brings about the broad nontrivial physics, e.g., the emergence
of gapless boundary modes, exotic defect modes, topological
responses under external field, etc., can the similar nontrivial
physics in the dynamical version be obtained for the emergent
dynamical topological phases? These issues are novel and
deserve future studies.
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APPENDIX A: SPIN DYNAMICS ON THE dBISs

Here we prove that the spin polarization on dBISs evolves
within the plane perpendicular to the SO axis hso. We
notice that the spin component s‖(k, t ) = sL

0 (k) · s(k, t ) sat-
isfies ṡ‖(k, t ) = −λ0(k)s‖(k, t ). On the dBISs with sL

0 (k) ·
s(k, 0) = 0, it is obvious that the component s‖ always van-
ishes, namely s‖(k, t ) = 0. Thus the spin polarization evolves
within the plane perpendicular to the component s‖. On
the other hand, for our initial state |ψ (k, t = 0)〉 = |↑〉, i.e.,
s(k, 0) = (0, 0, 1), sL

0 on dBISs generally takes the form
sL

0 = (α, β, 0). Substituting this into Eq. (6), we have sL
0 ∼

(hx, hy, 0) on the dBISs and s‖ = hxsx + hysy, which is paral-
lel to the SO axis hso in the Bloch sphere. Therefore, on the
dBISs the spin polarization evolves within the plane perpen-
dicular to the SO axis hso, which is valid both for weak noise
and strong noise.

With sL
0 ∼ (hx, hy, 0) on the dBISs, we can solve

from Eq. (6) the explicit expression for dBISs hz =

(wy − wx )hxhy/h2
so and the eigenvalue λ0 = 2wxh2

y/h2
so +

2wyh2
x/h2

so + 2wz. Together with the relation sL
0 · sR

0 = 1, we
also obtain the x, y components of the right eigenvector sR

0 on
the dBISs as (sR

0,x, sR
0,y)|dBIS ∼ (hx(1 − η), hy(1 + η)), giving

the explicit form of dynamical field g in the main text. It is
obvious that the noise cannot fully flip the SO field, namely
g 
∝ −hso; otherwise we must have 1 − η = 1 + η < 0, which
is impossible.

APPENDIX B: PROOF FOR THE ROBUSTNESS
OF DYNAMICAL TOPOLOGY

Here we first show that as the noise increases from zero
to the weak regime, no topological charge passes through
the deformed dBISs. The proof is given as follows. For the
momenta of topological charges with hso(k) = 0, the spin
dynamics with initial state s(t = 0) = (0, 0, 1) is given by
sx(t ) = sy(t ) = 0 and sz(t ) = e−2(wx+wy )t , and the correspond-
ing dynamical spin polarization reads s̃(t ) = (0, 0, 1). If we
gradually increase the strength of noise from zero to some
weak noise, the dBISs will be deformed from the BISs to
the final ones but no topological charge passes through them;
otherwise there will be momenta on the dBISs with s̃(k) 
= 0
for the intermediate weak noise, which is impossible. Thus
no topological charge passes through the deformed dBISs.
Consequently, the topological charges enclosed by the dBISs
remain unchanged; so does the winding of the SO field hso on
the dBISs in the weak-noise regime.

We now prove the robustness of the dynamical topol-
ogy by showing that the winding of the dynamical field g
on the dBISs is equivalent to that of the SO field hso. We
can introduce two auxiliary gapped Hamiltonians defined
on the one-dimensional dBISs, H1(k) = gx(k)σx + gy(k)σy

and H2(k) = hx(k)σx + hy(k)σy with k ∈ dBIS, of which the
winding number characterizes the winding of dynamical field
g and SO field hso, respectively. Without changing the wind-
ing number, we can choose (gx, gy) as (hx(1 − η), hy(1 + η))
while ignoring the normalization factor. Consider the con-
tinuous deformation Hq = qH1 + (1 − q)H2 with 0 � q � 1;
we have H2

q = (1 − qη)2h2
x + (1 + qη)2h2

y . Since 1 − qη and
1 + qη cannot be zero simultaneously, we must have H2

q > 0
for hx,y 
= 0. For the case with hx = 0 (or hy = 0), we have
g ∼ (0, hy) [or g ∼ (hx, 0)], from which it is obvious that
H2

q > 0. Therefore, Hq is gapped for 0 � q � 1, indicating
that H1 and H2 are topologically equivalent. This proves that
for the weak noise with damped oscillation for spin dynamics
on dBISs, the winding of dynamical field g(k) is topologically
equivalent to that of the SO field and remains invariant.

APPENDIX C: EXCEPTIONAL POINT OR RING
OF THE LIOUVILLIAN SUPEROPERATOR

The properties of the eigenvalues of Liouvillian superop-
erator L are determined by the corresponding discriminant

 (see main text). For 
 > 0, we have one real eigenvalue
and a conjugate pair of complex eigenvalues. The eigenvalues
are all real with at least two equal if 
 = 0. For 
 < 0, the
three real eigenvalues are distinct from each other. These three
cases correspond to positive ω, ω = 0 and purely imaginary ω,
respectively.
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FIG. 5. Possible configurations of exceptional point or ring of Liouvillian superoperator. In the upper panel, we plot the signs of
discriminant 
. The isolated momentum with 
 = 0 (white dot) is the exceptional point, and the boundary of the blue cluster also has 
 = 0
and is the exceptional ring. The loop S (black dashed line) is chosen as an ellipse with (x0 + rx cos θ, y0 + ry sin θ ). The lower panel shows
the corresponding windings of the vector (〈Sx〉, 〈Sy〉) as the eccentric angle θ of the elliptical loop S varies from 0 to 2π . (a) Isolated type-I
exceptional point at k ≈ (0, 0.60375). (b) Type-I exceptional ring. (c) Isolated type-II exceptional point at the charge momentum k = (0, 0).
(d) Type-II exceptional ring enclosing the charge momentum (green dot). (e) Type-II exceptional ring containing the charge momentum;
i.e., the charge momentum is on the exceptional ring. The type-I exceptional point or ring [(a), (b)] is characterized by a trivial winding
number, while the type-II exceptional point or ring [(c)–(e)] has a nonzero winding number equal to the charge value +1. Here the model
is H (k) = h(k) · σ with hx = tso sin kx , hy = tso sin ky, hz = mz − t0 cos kx − t0 cos ky for (a)–(d) and hz = mz − t0 cos(kx + 0.1) − t0 cos ky

for (e). We set mz = 1.2t0 and tso = 2t0. The noise strength for (a)–(e) is (wx, wy, wz ) = (0.5, 0, 2.451265)t0, (0.5, 0, 2.6)t0, (1.6, 0, 0.8)t0,
(1.61, 0, 0.8)t0, and (2|0.2 − cos 0.1|, 0, 0.7)t0, respectively.

Suppose that the discriminant 
 is zero for certain mo-
mentum, i.e., ω = 0, leading to a multiple eigenvalue λ with
algebraic multiplicity greater than 1. The dimension of the
eigenspace associated with λ is determined by the nullity of

L + λI . If the nullity is smaller than the algebraic multiplicity,
the corresponding momentum is exceptional for the Liouvil-
lian superoperator. Consider the momentum with hi 
= 0 for
i = x, y, z; we have for the multiple eigenvalue λ

L + λI
Gaussian−−−−−→

elimination

⎡
⎢⎢⎣

2hz λ − 2(wx + wz ) −2hx

0 −2hz − [λ−2(wx+wz )][λ−2(wy+wz )]
2hz

2hy + hx[λ−2(wy+wz )]
hz

0 2hx + hy[λ−2(wx+wz )]
hz

λ − 2(wx + wy) − 2hxhy

hz

⎤
⎥⎥⎦. (C1)

Since the last two rows cannot simultaneously be zero for the
considered momentum, the rank of L + λI is greater than 1.
Hence the nullity is smaller than 2 and is smaller than the
algebraic multiplicity of λ, manifesting that the considered
momentum with a multiple eigenvalue is exceptional. Similar
analysis for other momenta with possible h(k) suggests that
when there exists a multiple eigenvalue for the eigenequation
det(L + λI ) = 0, i.e., 
 = 0 and ω = 0, the corresponding
momentum is exceptional for the Liouvillian superoperator.

The possible configurations of exceptional momenta are
shown in the upper panel of Fig. 5. For the Liouvillian su-
peroperator, both the isolated exceptional points [Figs. 5(a1)
and 5(c1)] and the exceptional rings [Figs. 5(b1), 5(d1), and
5(e1)] are possible. The isolated exceptional point of the Liou-
villian superoperator just emerges under certain noise strength
without the creation of a pair of opposite valued exceptional
points, and it becomes an exceptional ring when the noise
strength further increases.

To characterize the exceptional point or ring, the winding
number NE has been introduced in the main text. Denote
sR
+ = (α, β, γ )T being the right eigenvector of L with eigen-

value −λ+ = −(λ1 + iω); we have 〈Sx〉 = −iβ∗γ + iγ ∗β
and 〈Sy〉 = iα∗γ − iγ ∗α. Note that we can always find a
gauge such that γ is real. On the exceptional point or ring,
it is obvious that the right eigenvector sR

+ is real and the
vector (〈Sx〉, 〈Sy〉) vanishes. On the other hand, we always
have γ = 0 and (〈Sx〉, 〈Sy〉) = 0 for the charge momenta with
hso = 0. In this sense, both the exceptional point or ring and
the charge momentum are singular points. For other momenta
not being either the exceptional point or ring, on one hand, or
the charge momenta, on the other, we have nonzero oscillation
frequency; i.e., the eigenvalue is a complex number. Hence
sR
+ cannot be real and γ 
= 0. For this, the vector (〈Sx〉, 〈Sy〉)

is always nonzero on these momenta. Based on these facts,
the winding number NE of (〈Sx〉, 〈Sy〉) on a loop S enclosing
the exceptional point or ring but not enclosing other singular
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points is well defined and can be used to characterize the
exceptional point or ring.

1. Classification of exceptional points or rings

According to the relation with the charge momentum and
the winding number NE, the exceptional points or rings of the
Liouvillian superoperator can be generally categorized into
two types:

(i) Type-I exceptional point or ring: Isolated exceptional
point not at the charge momentum or exceptional ring not
enclosing nor containing the charge momentum, for which NE

is trivial; see Figs. 5(a) and 5(b).
(ii) Type-II exceptional point or ring: Isolated exceptional

point at the charge momentum or exceptional ring enclosing
or containing the charge momentum, for which NE equals the
charge value; see Figs. 5(c)–5(e).

In the following, we utilize the general properties of wind-
ing number NE to prove this classification.

a. Type-I exceptional point or ring

We start with the isolated type-I exceptional point not at
the charge momentum, near which there is no other singular
point; see Fig. 5(a1). To prove its triviality, we notice that the
isolated exceptional point of the Liouvillian superoperator just
emerges under certain noise strength. For an arbitrary isolated
type-I exceptional point, we can fix a loop S enclosing it and
gradually decrease the noise strength such that this isolated
exceptional point disappears. During this process, there is no
singular point passing through the loop S and the oscillation
frequency on S is always nonzero, indicating that the vector
(〈Sx〉, 〈Sy〉) does not vanish. Thus the winding of (〈Sx〉, 〈Sy〉)
for the isolated type-I exceptional point is topologically equiv-
alent to the one without any singular point enclosed by S .
With this, we conclude that the isolated type-I exceptional
point is characterized by a trivial winding number NE; see
Fig. 5(a2).

We next consider the type-I exceptional ring, which does
not enclose or contain the charge momenta [Fig. 5(b1)]. Gen-
erally, the type-I exceptional ring will become smaller and
smaller as we decrease the noise strength and finally disap-
pears. For its winding NE, we can either fix a large loop S
or deform S to follow the exceptional ring during the process
with decreased noise strength. The loop does not cross any
singular point. Then the vector (〈Sx〉, 〈Sy〉) on S is always
nonzero and its winding number remains unchanged. On the
other hand, when the exceptional ring enclosed by S disap-
pears, the winding of (〈Sx〉, 〈Sy〉) is obviously trivial, as there
is no singular point enclosed by S . Hence the type-I excep-
tional ring is also characterized by a trivial winding number
NE, as illustrated in Fig. 5(b2).

b. Type-II exceptional point or ring

The type-II exceptional point refers to the isolated excep-
tional point located at the charge momentum; see Fig. 5(c1).
Similar to the isolated type-I exceptional point, we can fix a
loop S enclosing the type-II exceptional point and gradually
decrease the noise strength such that this isolated exceptional
point disappears. During this process, the winding number NE

on S remains unchanged and is topologically equivalent to the
one without noise. The difference is that the charge momen-
tum is also a singular point for the vector (〈Sx〉, 〈Sy〉), which
is enclosed by the loop S . Hence the winding number of the
type-II exceptional point is the same as the one of topological
charge without noise, near which the right eigenvector sR

+ is
given by

sR
+ = 1

N

(
iωhy/2 − hxhz

ω2/4 − h2
z

,− iωhx/2 + hyhz

ω2/4 − h2
z

, 1

)T

(C2)

with eigenvalue −iω and ω = 2|h|. We obtain

(〈Sx〉, 〈Sy〉) = ω

N 2
(
ω2/4 − h2

z

) (hx, hy), (C3)

where ω,ω2/4 − h2
z are always positive and for which the

winding number is equal to the charge value, i.e., the winding
number of (hx, hy). With this, the isolated type-II exceptional
point is characterized by a nontrivial winding number NE with
the charge value; see Fig. 5(c2).

For the type-II exceptional ring, which encloses the charge
momentum [Fig. 5(d1)] or contains the charge momentum
[Fig. 5(e1)], we can use the similar argument of type-I ex-
ceptional rings to obtain its winding number. That is, we can
either fix a large loop S or deform S to follow the excep-
tional ring during the process with decreased noise strength,
provided that the loop does not cross any singular point. Then
we calculate the winding number of (〈Sx〉, 〈Sy〉) on S when
the noise strength decreases to zero, which is topologically
equivalent to the one of type-II exceptional ring. Note that the
loop enclosing the type-II exceptional ring also encloses the
charge momentum, which is always a singular point for the
vector (〈Sx〉, 〈Sy〉). When the noise strength decreases to zero
and the type-II exceptional ring disappears, the loop S should
still enclose the charge momentum. Hence the type-II excep-
tional ring is characterized by a nontrivial winding number NE

equal to the charge value; see Figs. 5(d2) and 5(e2).

2. Classification of dynamical transitions

We now show the classification of dynamical transitions by
the exceptional points or rings of the Liouvillian superopera-
tor. For type-I dynamical transitions, the deformation of dBISs
is relatively small, but the minimal oscillation frequency over
the dBISs vanishes for the critical noise strength wc. Under
this critical noise strength, certain momenta of dBISs with
vanishing minimal frequency become exceptional, which are
either isolated type-I exceptional points or belong to type-I
exceptional rings. Therefore, the type-I dynamical transition
can be understood as the isolated type-I exceptional point
emerges on the dBISs [Fig. 6(a)] or the type-I exceptional ring
touches the dBISs [Fig. 6(b)]. As shown above, the type-I ex-
ceptional points or rings are characterized by a trivial winding
number NE.

For the type-II dynamical transition, the dBISs are de-
formed dramatically and even connect to the topological
charges for the critical noise strength wc, under which the
charge momentum has ω = 0. Although both types of dynam-
ical transition indicate that the minimal oscillation frequency
over the dBISs vanishes for the critical noise strength, the
type-II transition indeed differs from the type-I transition.
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type-II ER

type-II EP
type-I ER

dBIS

charge

type-I EP

(a) (b) (c) (d)

type-I transition type-II transition

FIG. 6. Schematic illustration of two types of dynamical transition classified by the exceptional points or rings. (a), (b) The type-I transition.
The isolated type-I exceptional point (blue dot) emerges on the dBISs (black line) (a), or the type-I exceptional ring (blue line) touches the
dBISs (b), rendering the type-I dynamical transition. (c), (d) The type-II transition. The dBIS is deformed to connect to the charge momentum
(green dot), which is exceptional. The charge momentum is either an isolated type-II exceptional point (c) or belongs to a type-II exceptional
ring containing the charge momentum (d). Here EP (ER) denotes the exceptional point (ring).

Under the type-II critical noise strength wc, the charge mo-
mentum is the only momentum on dBISs being exceptional.
According to the above classification of exceptional points or
rings, the charge momentum is either an isolated type-II ex-
ceptional point [Fig. 6(c)] or belongs to a type-II exceptional
ring containing the charge momentum [Fig. 6(d)], which are
characterized by a nonzero winding number NE equal to the
charge value. Thus the type-II dynamical transition is driven
by the type-II exceptional point or ring, while the type-I tran-
sition is related to the type-I exceptional point or ring. The
distinct exceptional point or ring shows the fundamental dif-
ference between the type-I and type-II dynamical transitions.

APPENDIX D: DERIVATION OF THE CRITICAL
NOISE STRENGTH

To obtain the critical noise strength for type-I transitions,
we need to solve the oscillation frequency on dBISs from
the eigenequation det(L + λI ) = 0, namely (λ − λ0)[λ2 +
(b + λ0)λ + λ2

0 + bλ0 + c] = 0. We have λ2
± + (b + λ0)λ± +

λ2
0 + bλ0 + c = 0, and the oscillation frequency on dBISs is

given by ω = 2
√

h2
so − [λ0/4 − wz]2. The vanishing minimal

oscillation frequency over dBISs gives the type-I critical noise
strength in the main text.

For type-II dynamical transitions, the dBISs are deformed
to connect to the topological charges. To see this, we consider

a continuous path P with fixed hxhy/(h2
x + h2

y ) connecting the
corresponding momentum on BISs with hz = 0 to the topo-
logical charge with h = (0, 0, h∗

z ). As |wy − wx| increases,
the dBIS momentum with |hz| = [|hxhy|/(h2

x + h2
y )]|wy − wx|

will move along the path P. Due to h2
x + h2

y � 2|hxhy|, the
dBIS momentum varying most rapidly belongs to the path
P with |hxhy|/(h2

x + h2
y ) = 1/2, namely |hx| = |hy|, for which

we have |hz| = |wy − wx|/2. When |wy − wx| increases to
2|h∗

z |, we have hz = h∗
z on the dBIS momentum, indicating

that the dBISs connect to the topological charge.
We can also examine the spin dynamics of topological

charge. It is easy to find that the corresponding oscillation
frequency is nonzero for |wy − wx| < 2|h∗

z |, and the topolog-
ical charge cannot belong to the dBISs due to sL

0 · s(0) 
= 0.
However, the oscillation frequency vanishes for |wy − wx| �
2|h∗

z | and we have the eigenvector sL
+ ∼ (α, β, 0) for real λ+

satisfying the dBIS condition sL
+ · s(0) = 0, from which the

deformed dBISs indeed connect to the topological charge.
The above analysis shows the type-II critical noise strength

|wy,c − wx,c| = 2|h∗
z |. On the other hand, the type-I transition

should not happen before the dBISs connect to topological
charges; otherwise there is no type-II transition. This means
that as the dBIS momenta with |hx| = |hy| approach the topo-
logical charges, i.e., hso → 0, the corresponding frequencies
should always be nonzero, leading to wx,c + wy,c = 2wz,c.
With this condition, the charge momentum is the only point on
dBISs being exceptional when the type-II transition occurs.
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