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Two-parameter counter-diabatic driving in quantum annealing
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We introduce a two-parameter approximate counter-diabatic term into the Hamiltonian of the transverse-
field Ising model for quantum annealing to accelerate convergence to the solution, generalizing an existing
single-parameter approach. The protocol is equivalent to unconventional diabatic control of the longitudinal and
transverse fields in the transverse-field Ising model and thus makes it more feasible for experimental realization
than an introduction of new terms such as nonstoquastic catalysts toward the same goal of performance
enhancement. We test the idea for the p-spin model with p = 3, which has a first-order quantum phase transition,
and show that our two-parameter approach leads to significantly larger ground-state fidelity and lower residual
energy than those by traditional quantum annealing and by the single-parameter method. We also find a scaling
advantage in terms of the time-to-solution as a function of the system size in a certain range of parameters
as compared to the traditional methods in the sense that an exponential time complexity is reduced to another
exponential complexity with a smaller coefficient. Although the present method may not always lead to a drastic
exponential speedup in difficult optimization problems, it is useful because of its versatility and applicability
for any problem after a simple algebraic manipulation, in contrast to some other powerful prescriptions for
acceleration such as nonstoquastic catalysts in which one should carefully study in advance if it works in a given
problem and should identify a proper way to meticulously control the system parameters to achieve the goal,
which is generally highly nontrivial.

DOI: 10.1103/PhysRevResearch.3.013227

I. INTRODUCTION

Quantum annealing is a metaheuristic for combinatorial
optimization problems [1–7] and has often been analyzed the-
oretically in the framework of adiabatic quantum computing
[8–10]. A serious bottleneck in this approach originates in
the exponential closing of the energy gap between the ground
state and the first-excited state as a function of the system size,
typically at a first-order quantum phase transition, by which
the computation time explodes exponentially according to the
adiabatic theorem of quantum mechanics (see, e.g., Ref. [10]).
One of the promising candidates to circumvent this difficulty
is diabatic quantum annealing [11], in which one ingeniously
drives the system out of the ground state to avoid the problem
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of closing the minimal energy gap and thus to reach the final
ground state with high fidelity. There have been attempts to
design protocols to control the system variables based on this
idea [11], and shortcuts to adiabaticity [12–15] present strong
candidates, providing a systematic way toward this goal.

Among these shortcuts-to-adiabaticity methods [16–22],
counter-diabatic (CD) driving [21,23–27] is one of the most
promising approaches. The underlying idea of CD driving is
to speed up an originally adiabatic process by additionally
applying a CD Hamiltonian (adiabatic gauge potential) that
suppresses the transitions between the system eigenstates.
However, for many-body quantum systems, finding the ex-
act CD Hamiltonian requires a priori knowledge of these
eigenstates at all times during the dynamics [17], which is
practically unfeasible. Recently, Sels, Polkovnikov, and col-
laborators [25,26,28] have developed a variational approach
where a simple and local, but approximate, CD Hamiltonian
is introduced, which makes the formulation and realization
much simpler not just theoretically but experimentally as well
[27,29] (see, also, [30,31] for related developments). The
price to pay is that the enhancement of performance is often
limited.
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In the present contribution, we propose a method to iden-
tify an enhanced local approximate CD Hamiltonian. The
latter entails a second adiabatic gauge potential that appears
naturally due to the introduction of an additional time-
dependent driving function of the Hamiltonian. We find its
optimal coefficients by minimizing the operator distance be-
tween the exact and approximate CD Hamiltonians in order
to maximize the performance of the latter. This approach
generalizes the existing method of single-parameter local CD
driving by expanding the search space into a second dimen-
sion. We test the idea for the p-spin model with p = 3 as the
problem Hamiltonian, which is known to be a simple model,
yet a hard problem to solve by traditional quantum annealing
[32–37]. We demonstrate that our approximate two-parameter
CD Hamiltonian leads to clearly enhanced final ground-state
fidelity and reduced residual energy compared to traditional
quantum annealing and the existing method of the approxi-
mate single-parameter CD Hamiltonian. We further show a
scaling advantage of the method compared to its traditional
counterparts in a certain parameter range in the sense that an
exponential time complexity is reduced to another exponential
complexity with a smaller coefficient. Our two-parameter CD
Hamiltonian improves the ground-state fidelity and residual
energy for both short and longer annealing times, which thus
decreases the time-to-solution considerably. We note that the
modified CD Hamiltonian used in this approach involves only
local σ

y
i operators, where i is the site index, and can thus

be rotated in the spin space at each site such that the re-
sult consists only of σ x

i and σ z
i in addition to the original

transverse-field Ising Hamiltonian. This is simply the usual
transverse-field Ising model, but with unconventional diabatic
control of the transverse and longitudinal fields, making it
feasible for experimental realization.

The paper is structured as follows. In Sec. II, we introduce
the method of finding the two-parameter CD protocol and
apply the formulation to the p-spin model. Numerical tests
are presented in Sec. III for the p-spin model with p = 3, and
Sec. IV discusses and concludes the paper.

II. METHOD

Quantum annealing is a metaheuristic that aims to solve
combinatorial optimization problems. The basic idea is to
find the lowest-energy eigenstate of a problem Hamiltonian
Hp—that encodes a combinatorial optimization problem that
we want to solve as an Ising model [38]—by adiabatically
transferring the easy-to-prepare ground state of the driver
Hamiltonian,

Hd = −γ

N∑
i=1

σ x
i , (1)

with γ the time-independent transverse magnetic field
strength and N the number of sites (qubits) in the system, into
the ground state of Hp. The annealing schedule is often chosen
as

H0(t ) = [1 − λ(t )]Hd + λ(t )Hp, (2)

where λ(t ) is a time-dependent driving function that fulfills
the boundary conditions λ(t = 0) = 0 and λ(t = τ ) = 1, with

τ the total annealing time. Reaching the exact ground state
of Hp—which for most interesting optimization problems
is written in the form of single- and multispin σ z

i terms
that describe high-order polynomial unconstrained binary
optimization (PUBO) problems with k-local interactions—
generally requires adiabaticity, and the time necessary to
satisfy this condition grows exponentially as a function of N if
the energy gap between the ground state and the first-excited
state closes exponentially, which is the case in most of the
interesting combinatorial optimization problems [10].

To overcome this bottleneck, one can implement a so-
called counter-diabatic Hamiltonian HCD(t ) to suppress
transitions between the system eigenstates. The full Hamil-
tonian then reads

H(t ) = H0(t ) + HCD(t ), (3)

where HCD(t ) = λ̇(t )Aλ(t ) is the additional counter-diabatic
Hamiltonian, and Aλ(t ) = ih̄U †(t )∂λU (t ) with

U (t ) = T exp

[
− i

h̄

∫ t

0
H0(t ′)dt ′

]
(4)

is the exact time-dependent adiabatic gauge potential
[25,26,28] with respect to the driving function λ(t ) of Eq. (2)
and λ̇(t ) its time derivative.

Finding the exact adiabatic gauge potential is a challenging
task and generally requires a priori knowledge of the system
eigenstates for the whole annealing time as can be seen from
the above expression of Aλ(t ) [17], which is impossible in
practice. To overcome this difficulty, one can employ an ap-
proximate adiabatic gauge potential, denoted with a prime as
A′

λ(t ) (not to be confused with the derivative), which includes
only local single-spin terms involving {σ y

i }i and which adds a
new degree of freedom to the system [25]. We note here that in
the case of the original Hamiltonian H0(t ), given by Eq. (2),
with driver Hamiltonian Hd, given by Eq. (1), and problem
Hamiltonian Hp including σ z terms, additional {σ x

i }i and {σ z
i }i

operators do not yield further improvement (see Appendix B
for the example of the Landau-Zener model for more details).

Following the variational principle of Ref. [25], one finds
the best possible approximate adiabatic gauge potential by
defining a Hermitian operator Gλ(Aλ) ≡ ∂λH0 + i[Aλ,H0]
and minimizing the operator distance

D2(A′
λ) = Tr{[Gλ(Aλ) − Gλ(A′

λ)]2} (5)

between the exact, Aλ, and approximate, A′
λ, adiabatic gauge

potentials with respect to the parameters in A′
λ. This is

equivalent to minimizing the action S (A′
λ) = Tr[G2

λ(A′
λ)]

with respect to its parameters, symbolically written as
δS (A′

λ)/δA′
λ = 0, as detailed in Refs. [25,26,28] and Ap-

pendix A. In this general approach, the driver Hd and problem
Hamiltonian Hp are kept intact.

Now, we notice that the time-dependent coefficients of the
two terms in the Hamiltonian H0(t ), given by Eq. (2), can be
chosen independently—not necessarily in a single-parameter
form as in Eq. (2)—as long as the initial Hamiltonian is Hd

and the final Hamiltonian is Hp. We take advantage of this
degree of freedom and choose to write these coefficients using
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two time-dependent parameters λ(t ) and γ (t ) as

Hλ,γ

0 (t ) = −[1 − λ(t )]γ (t )
N∑

i=1

σ x
i + λ(t )Hp, (6)

where λ(t ) satisfies the same boundary conditions as before,
λ(0) = 0 and λ(τ ) = 1, and γ (t ) is an arbitrary function
satisfying γ (0) �= 0 and which generalizes the form of γ in
Eq. (1). Since we have an additional function γ (t ), it is nat-
ural to introduce a corresponding additional adiabatic gauge
potential Aγ . We therefore employ the approximate local
two-parameter CD Hamiltonian,

Hλ,γ

CD (t ) = λ̇(t )A′
λ(t ) + γ̇ (t )A′

γ (t ), (7)

where A′
γ (t ) is also a linear combination of σ

y
i but with a

different coefficient than in A′
λ(t ).

One may wonder if the same linear combination of σ
y
i

operators as in A′
λ(t ) with just a different coefficient would

lead to different results. As we will see in the next section, it
indeed leads to an improvement of the annealing performance
in several measures, thanks to the enhanced space of search
for variational optimization of the coefficients as functions of
time. See, also, Appendix D.

As shown in Appendix A, finding the optimal coefficients
in the two adiabatic gauge potentials A′

λ and A′
γ is equivalent

to minimizing the two-parameter action,

S = Tr[G2
λ(A′

λ)] + Tr[G2
γ (A′

γ )], (8)

with respect to the parameters in the two adiabatic gauge
potentials A′

λ and A′
γ , i.e.,

δS
δA′

λ

= 0,
δS
δA′

γ

= 0, (9)

where Gγ (A′
γ ) ≡ ∂γH0 + i[A′

γ ,H0] is the additional Hermi-
tian operator with respect to γ (t ).

As we will see later, the introduction of an additional time
dependence for the transverse magnetic field strength, γ (t ),
and thus the emergence of the additional adiabatic gauge
potential A′

γ (t ) has significant consequences for local CD
driving. The operator distance and thus the corresponding
action, given by Eq. (8), can be algebraically determined for a
given set of two functions λ(t ) and γ (t ). A detailed derivation
of Eqs. (7) and (8) can be found in Appendix A and its
application on the easy single-body Landau-Zener model in
Appendix B.

Although it is desirable to find the best possible functional
forms of λ(t ) and γ (t ), this poses an additional complex step
of functional optimization, about which we do not have a clear
principle to rely upon. Indeed, existing studies adopt simple
functions satisfying boundary conditions without elaborating
on further optimization of functional forms [25,26,28]. We
follow this tradition and work with simple conventional forms
of those functions, as illustrated in the next section, and del-
egate the optimization of those functions to a future project.
See Appendix D for additional information.

p-spin model

Our method can be applied to any problem Hamiltonian
Hp. In the present paper, we test our approach by using the

p-spin model with p = 3 as the problem Hamiltonian since it
is a hard problem for traditional quantum annealing due to a
first-order quantum phase transition, though the final ground
state is trivially known to be ferromagnetic [32–36]. Another
advantage of the p-spin model is that the total spin quantum
number is conserved, which can also be stated as that the
Hamiltonian is invariant under an arbitrary permutation of site
indices. This fact makes it possible to study very large system
sizes numerically by restricting ourselves to the subspace of a
fixed spin quantum number corresponding to the ground state,
as we shall see in the next section.

The total Hamiltonian of interest reads

Hλ,γ

0 (t ) = −[1 − λ(t )]γ (t )
N∑

i=1

σ x
i − λ(t )N

(
1

N

N∑
i=1

σ z
i

)3

.

(10)

This Hamiltonian fulfills the commutation relation

[Hλ,γ

0 (t ), S2
total] = 0, (11)

where Stotal = (Sx
total, Sy

total, Sz
total ) is the total spin quantum

number with Sx
total = (1/2)

∑N
i=1 σ x

i , and similarly for the y
and z components. Since the initial condition is that the
ground state of Hd of Eq. (1) is an eigenstate of S2

total with
largest eigenvalue, we can restrict our numerical computations
to the space of this eigenvalue, which greatly reduces the
dimension of the Hilbert space to be explored numerically
from exponential to linear in N .

Throughout this work, we will use the driving functions

λ(t ) = sin2
[π

2
sin2

(πt

2τ

)]
, γ (t ) = γinit + λ(t ), (12)

where we have chosen the function λ(t ) following Ref. [25].
The above form of γ (t ) is chosen arbitrarily and its deeper
investigation is a future task as mentioned before. We note
here that γ (t ) can generally take a most generic form as long
as γ (t ) �= 0 and does not necessarily need to include λ(t ). We
have checked numerically that small variations of the value of
γinit do not lead to noticeable changes of the results.

Since any local adiabatic gauge potential is a linear combi-
nation of σ

y
i (cf.Appendix B), we write, for the latter,

A′
λ =

N∑
i=1

ασ
y
i , A′

γ =
N∑

i=1

βσ
y
i . (13)

We choose α and β to be site independent, reflecting the
permutation symmetry of the p-spin Hamiltonian of Eq. (10).
These coefficients can generally be chosen to depend on the
site index i for problems without such symmetries.

Minimizing the corresponding action S , given by Eq. (8),
with respect to the coefficients α and β, as detailed in Ap-
pendix C, leads to their optimal algebraic solutions and thus
the CD Hamiltonian, given by Eq. (7), as

Hλ,γ

CD (t ) =
N∑

i=1

(λ̇α + γ̇ β )σ y
i ,

α = −κγ , β = κ (1 − λ)λ,

κ = 1

2

N2(3N − 2)

(1 − λ)2γ 2N4 + λ2(27N2 − 66N + 40)
. (14)
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It is noticed that κ is proportional to 1/N for large N and thus
the CD Hamiltonian Hλ,γ

CD (t ) becomes small for very large
N [39]. We therefore expect that the effect of the adiabatic
gauge potentials is seen most prominently for relatively small
to moderate N . This also means that as long as the p-spin
model is concerned, the present method does not lead to a
drastic scaling advantage that reduces the asymptotic com-
putational complexity from exponential to polynomial in the
limit of very large N , although significant improvements will
be observed numerically even for moderately large N , as we
will see in the next section.

The corresponding full Hamiltonian then reads

Hλ,γ (t ) = Hλ,γ

0 (t ) +
N∑

i=1

(λ̇α + γ̇ β )σ y
i , (15)

with the solutions α and β, given by Eq. (14), and λ̇ and γ̇ the
time derivatives of Eq. (12).

To facilitate experimental implementation, we eliminate
the σ

y
i terms by rotating this full Hamiltonian around the z axis

in spin space, i.e., applying the unitary gauge transformation

Ug(t ) = exp

[
i
θ (t )

2

∑
i

σ z
i

]
(16)

over the angle θ (t ) = arctan(Y/X ), with X = −(1 − λ)γ and
Y = λ̇α + γ̇ β. The resulting effective Hamiltonian in the lab-
oratory frame then has the form

Hλ,γ

eff (t ) =
N∑

i=1

√
X 2 + Y 2σ x

i − λ(t )
6

N2

N∑
i< j<k

σ z
i σ z

j σ
z
k

−
N∑

i=1

[
1

2

XẎ − Y Ẋ

X 2 + Y 2
+ λ(t )

3N − 2

N2

]
σ z

i (17)

(see Appendix C and Ref. [25] for additional details). This
Hamiltonian consists only of σ x

i and σ z
i terms, which makes it

more feasible for experimental realization than Eq. (15) with
σ

y
i .

III. NUMERICAL VERIFICATION

We next present numerical results of our method for the
p-spin model with p = 3. To this end, we compute the final
ground-state fidelity F (τ ) = |〈ψ (τ )|φ0〉|2, with |ψ (τ )〉 and
|φ0〉 the states at the end of annealing and the true ground state
of the problem Hamiltonian, respectively, and residual energy
�E = E (τ ) − E0, with E (τ ) and E0 being the energy at the
end of annealing and the true ground-state energy, respec-
tively. We compare three protocols: (i) traditional quantum
annealing with the original Hamiltonian [Hλ,γ

0 (t ), Eq. (10)],
(ii) the existing method with single-parameter CD Hamilto-
nian [Eq. (17) with γ (t ) = γinit and thus β = 0], and (iii)
two-parameter CD Hamiltonian [Hλ,γ

eff (t ), Eq. (17)]. We test
a wide range of annealing times τ from 10−1 to 105 and
different system sizes up to N = 100 by exploiting the spin
symmetry of the problem.

We numerically solved the Schrödinger equation for the
Hamiltonian dynamics and computed the fidelity, residual
energy, and the time-to-solution, which is a measure of the

effective annealing time to reach the solution of the optimiza-
tion problem with probability pr [40], i.e.,

TTS(τ ) =
{

τ
ln(1 − pr )

ln[1 − F (τ )]
for F (τ ) < 1

τ for F (τ ) = 1,
(18)

where we have set pr = 0.99 as the success probability thresh-
old. For our numerical computations, we used QUTIP 4.5 [41].

A. Dependence on annealing time

Figure 1 depicts the final ground-state fidelity F (τ )
[Figs. 1(a)–1(c)] and residual energy �E [Figs. 1(d)–1(f)]
as functions of annealing time τ for system sizes N = 4
[Figs. 1(a) and 1(d)], N = 30 [Figs. 1(b) and 1(e)], and N =
50 [Figs. 1(c) and 1(f)].

For the original Hamiltonian without the CD term [H0(t ),
Eq. (10); diamond with blue solid line in the figure], we see
that the final state is far away from the ground state for short
annealing time τ [green-shaded areas, where F (τ ) ≈ 1/2N

for H0(t )] and reach the final ground state in the adiabatic
regime [gray-shaded areas, where F (τ ) > 0.99] for very long
annealing time.

The existing method of a single-parameter CD driven
Hamiltonian [Eq. (14) with γ (t ) = γinit and thus β = 0;
square, orange dashed line] reaches a considerably higher final
ground-state fidelity and lower residual energy, respectively,
especially for short annealing time (green-shaded areas), yet
approaches their original counterpart for longer annealing
time (yellow-shaded areas) due to the fact that λ̇ ∝ 1/τ

[cf.Eq. (12)]. Consequently, the counter-diabatic Hamiltonian
Hλ,γ

CD (t ) naturally converges towards zero for longer annealing
time, in particular in the adiabatic limit (gray-shaded areas),
and thus does not yield any further speedup.

On the other hand, for the two-parameter CD driven Hamil-
tonian [Hλ,γ

CD (t ), Eq. (17), where γ (t ) = γinit + λ(t ); circle,
green dash-dotted line], it is observed that we reach consid-
erably higher final ground-state fidelity and lower residual
energy compared to traditional quantum annealing (QA) and
single-parameter CD driving for the long annealing time
regime (yellow-shaded areas). This is important since the
asymptotic adiabatic regime (gray-shaded areas) starts at later
times for larger system sizes, as seen in Fig. 1(c), meaning that
the system performance in the long-, but not yet adiabatic,
time regime (yellow-shaded areas) becomes more and more
vital for larger systems. In other words, for the two-parameter
CD driven Hamiltonian, we come closer to the adiabatic
regime more quickly, thus performing much better (around
an order of magnitude reduction in annealing time to reach
the same values of fidelity and residual energy) compared to
its traditional quantum annealing and single-parameter CD
driving counterparts. Although the last term in Eq. (15) with
γ̇ β may superficially seem not to add a new element to the
single-parameter method just with λ̇α, the present numer-
ical results clearly indicate that our two-parameter method
leads to significant advantages in the intermediate-time region
(yellow-shaded region in Fig. 1). This time region is important
in practice because, first, the gray-shaded adiabatic region is
often hard to reach for very large systems, and, second, the
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FIG. 1. Ground-state fidelity and residual energy. (a)–(c) Final ground-state fidelity and (d)–(f) residual energy for (i) traditional quantum
annealing (diamonds, blue solid line), (ii) single-parameter CD drive (squares, orange dashed line), and (iii) two-parameter CD drive (circles,
green dash-dotted line) as functions of annealing time τ . The system sizes are (a),(d) N = 4, (b),(e) N = 30, and (c),(f) N = 50, where
γinit = 0.1 for all panels. Time ranges are color coded as follows: short-time regime (green-shaded areas) where the fidelity is approximately
1/2N for traditional quantum annealing, long-time regime (yellow-shaded areas) where transient behavior is observed and the two-parameter
CD drive shows a clear advantage, and adiabatic regime (gray-shaded areas) where F (τ ) > 0.99.

green-shaded short-time region has large residual energy and
low fidelity.

B. Time-to-solution

We further studied the time-to-solution, a central measure
of annealing time necessary to reach the solution of the op-
timization problem of interest with a certain high success
probability, for different system sizes N . Figures 2(a) and
2(b) depict the time-to-solution TTS(τ ), given by Eq. (18),
for fixed system sizes N = 20 and N = 100, respectively. It
is observed that the minimal time-to-solution is located at
the shortest annealing time that we studied, i.e., τ = 10−1,
except for the case of traditional quantum annealing. We did
not study even shorter time ranges because the time derivative
of λ(t ), given by Eq. (12), becomes anomalous for very small
τ and also experimental implementation may be difficult for
too short annealing time. We further found a local minimum
of TTS(τ ) at a longer time, τ ≈ 103.

Figure 2(c) depicts the system size dependence of the min-
imal time-to-solution at the shortest annealing time that we
studied, τ = 10−1. We see that the existing single-parameter
CD method and our two-parameter method have a scaling
advantage over traditional quantum annealing in the sense that
the slope is smaller, i.e., a smaller constant in the exponent.
Figure 2(d) depicts the time-to-solution at the local minimum
τ ≈ 103 as a function of the system size. Our two-parameter
approach has the same scaling behavior (the same slope) as
the other two methods, but depicts a constant speedup of the
order of around 10. The same scaling behavior for large N

is not very surprising because the adiabatic gauge potentials
A′

λ and A′
γ are proportional to 1/N and will consequently

disappear for increasing system sizes. We notice here that
this asymptotic vanishing of the adiabatic gauge potentials
is a special property of the p-spin model, and the advantage
of the present method is expected to remain finite for large
system size and large annealing time in other models, for
which we have preliminary analytical and numerical evidence.
The comparison of Figs. 2(c) and 2(d) reveals that it is more
advantageous to repeat very short annealing processes many
times than to run a single long annealing, at least in the present
problem.

Our preliminary data for a few other problem Hamilto-
nians indicate the possibility that the absolute minimum at
the shortest annealing time may be a finite-size effect and
seems to vanish for large system sizes and, in particular, in
the thermodynamic limit. If this proves to be true, the p-spin
model is peculiar in the sense that finite-size effects persist
even for system sizes as large as N = 100. Whether or not
this behavior is shared by other problem Hamiltonians is an
interesting future topic of research.

C. Behavior of coefficients

Figure 3(a) depicts the time dependence of the coeffi-
cient of each term of the full Hamiltonian Hλ,γ

eff (t ), given by
Eq. (17), in the rotated frame, i.e.,

Hx(t ) =
N∑

i=1

√
X 2 + Y 2σ x

i , (19)
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FIG. 2. Time-to-solution. Time-to-solution TTS(τ ) for (i) traditional quantum annealing (diamonds, blue solid line), (ii) single-parameter
CD drive (squares, orange dashed line), and (iii) two-parameter CD drive (circles, green dash-dotted line) for (a) N = 20 and (b) N = 100.
For the latter, the data between τ = 1 to about 10 are not shown because the values are too large to achieve reasonable numerical precision.
Minimal time-to-solution for (c) short-time region (τ � 1) and (d) long-time region (τ � 10). Other parameters are the same as in Fig. 1.

Hzzz(t ) = −λ(t )
6

N2

∑
i< j<k

σ z
i σ z

j σ
z
k , (20)

Hz(t ) = −
N∑

i=1

[
1

2

XẎ − ẊY

X 2 + Y 2
+ λ(t )

3N − 2

N2

]
σ z

i , (21)

for annealing time τ = 10, system size N = 30, and other
parameters as in Fig. 1. Figure 3(b) depicts the coefficients
of the adiabatic gauge potentials A′

λ(t ) and A′
γ (t ) and the

corresponding coefficients α(t ) and β(t ), given by Eq. (14),
in the inset. The maximal corresponding strengths of the
additional magnetic field in the y direction in the original
frame [Fig. 3(b)] and in the rotated frame [reflected in the
coefficients of Hx(t ) and Hz(t ) in Fig. 3(a)] are not (over-
whelmingly) larger than the original parameters in Hzzz(t )
for this annealing time regime, which makes this approach
attractive for experimental realization.

D. Energy spectrum of two-parameter CD drive

It is useful to see how the wave function is spread over
the instantaneous eigenstates of the rotated full Hamiltonian,
given by Eq. (17), during the present two-parameter CD drive
in the laboratory frame.

Figure 4 depicts the occupation probability of each in-
stantaneous eigenstate, expressed by the thickness of the red
lines, for a system size N = 30 and annealing time τ = 300,
corresponding to Figs. 1(b) and 1(e), where the two-parameter

CD drive shows a clear advantage over traditional quantum
annealing and the existing method of single-parameter CD
driving. We observe that Figs. 4(a) and 4(b) share a very
similar eigenspectrum, and the wave function is spread over
many excited states after t/τ ≈ 0.3 via a cascade of avoided
level crossings. In contrast, in the two-parameter CD case
[Fig. 4(c)] the structure of the eigenspectrum has significantly
changed and the system is driven downward in the spectrum
around t/τ ≈ 0.3, which results in the high occupation prob-
abilities in low-energy eigenstates in the end of the annealing
process. We emphasize that such an ingenious protocol has
emerged naturally from the two-parameter variational ap-
proach to suppress undesirable diabatic transitions observed
in Figs. 4(a) and 4(b).

IV. DISCUSSION AND CONCLUSION

We have proposed and tested a method to find an effi-
cient local CD Hamiltonian that outperforms its traditional
quantum annealing and single-parameter approximate CD
counterparts with respect to enhanced final ground-state fi-
delity and reduced residual energy as well as time-to-solution.
The method introduces an additional term in the adiabatic
gauge potential by taking advantage of the degree of free-
dom of choosing a time-dependent transverse magnetic field
strength. This two-parameter local CD approach general-
izes the existing method of single-parameter CD driving by
expanding the search space of optimal parameters by in-
troducing a second controllable driving function γ (t ). The
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FIG. 3. Coefficients of two-parameter CD Hamiltonian. (a) Time
dependence of coefficients of terms of the Hamiltonian as described
in the text, Hx(t ) (upper blue solid line), Hz(t ) (middle green dash-
dotted line), and Hzzz(t ) (lower orange dashed line), the last one
being scaled by N to fairly compare coefficients of extensive operator
terms. (b) Time dependence of the coefficients of the adiabatic gauge
potentials A′

λ(t ) (lower blue dash-dotted line) and A′
γ (t ) (upper

green solid line). Inset depicts the corresponding coefficients α(t )
and β(t ) under the two-parameter CD drive with γ (t ) = 0.1 + λ(t ),
annealing time τ = 10, and system size N = 30. Other parameters
are the same as in Fig. 1.

corresponding CD Hamiltonian in this approach is local and
can be expressed, after a rotation in spin space, just in terms
of the usual transverse-field Ising model but with unconven-
tional diabatic control of the magnetic field strengths. For
the goal of performance improvement, the latter may thus be
implemented in current quantum annealing devices on various
platforms considerably more easily than other approaches,
which introduce more involved terms into the Hamiltonian
such as two-body σ x

i σ x
j interactions.

We have tested the idea using the p-spin model with p = 3
because it is possible to simulate the Schrödinger dynam-
ics numerically for very large system sizes for this model
due to its special symmetry of conserved total quantum spin
number. We have derived the algebraic expression of the two-
parameter CD Hamiltonian and numerically demonstrated a
considerable increase in final ground-state fidelity and reduc-

tion in residual energy as well as time-to-solution compared
to traditional quantum annealing and the single-parameter
CD Hamiltonian approach. We further demonstrated a scaling
advantage of time-to-solution of the approximate single- and
two-parameter CD methods in the short-time region, and a
constant speedup of the two-parameter method in the long-
time region. The division of annealing processes in short-time
and long-time regions has important numerical and oper-
ational consequences. Whereas the time-to-solution in the
short-time region depicts a global minimum, the experimental
realization of the strongly increasing additional magnet fields
in this time region constitutes a severe hindrance for practical
purposes. The local minimum of time-to-solution in the long-
time region serves as a promising regime for experimental
implementation since the additional magnetic fields are not
(considerably) larger than their original analogs. The lack of
scaling advantage in the long-time region may originate in the
1/N scaling of the coefficients of the CD Hamiltonian for the
p-spin model, which is a special property of this multibody
mean-field-like problem. We may expect an even better scal-
ing behavior in many other problems where those coefficients
of the CD Hamiltonian generally stay finite in the large-N
limit. Even when a clear scaling advantage is not achieved,
the present method becomes useful at least for a quantitative
improvement as exemplified in the p-spin model. In particular,
our method may be realized in an improvement of existing
annealing devices by a better control of system parameters
of the transverse-field Ising model only. We note that the
method can also be applied in the case of additional random
longitudinal magnetic fields where site-dependent optimal al-
gebraic solutions for the coefficients of the adiabatic gauge
potentials can be easily found. As a consequence, it does not
need further additional terms to be realized experimentally
and is versatile to be applicable to any problem, in contrast to
other approaches such as nonstoquastic catalysts [33–36] and
inhomogeneous field driving [37,42,43], in which one should
determine in advance if the idea works in a given problem and,
if it does, should find a proper way to meticulously control the
system parameters, which is in general highly nontrivial for a
generic optimization problem.

We have also illustrated how the two-parameter CD Hamil-
tonian resolves the problem of excitation to higher-energy
states by showing the modification of the energy eigenspec-
trum that eliminates a cascade of avoided level crossings
toward higher-energy states. It is an interesting future problem
to identify problems in which this mechanism leads to a clear
scaling advantage even for very large system sizes. Such ex-
amples may well exist because of the special disadvantageous
property of the p-spin model as described above, i.e., that the
coefficients of the CD Hamiltonian tends to vanish for larger
system size.

We note that there exist other approaches to optimize the
time dependence of coefficients in quantum annealing, e.g.,
from the viewpoint of optimal control theory and related ideas
often under the context of the quantum approximate optimiza-
tion algorithm [29,44–46] (see, also, Ref. [47] for a related
idea of inverse engineering). It is not clear a priori whether
or not our two-parameter CD Hamiltonian is better in com-
parison with these approaches since the criteria of optimality
are different. The comparison in terms of relevant physical
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FIG. 4. Energy spectrum. Instantaneous energy spectrum E (t ) for (a) traditional quantum annealing, (b) single-parameter CD driving,
and (c) two-parameter CD driving for system size N = 30, annealing time τ = 300, and γinit = 0.1. Thickness of red curves indicates the
occupation probability of each eigenstate in the dynamical processes of the three annealing protocols. Higher excited states have a neglectably
small occupation probability and thus the corresponding very thin red lines cannot be seen.

quantities such as fidelity, residual energy, and the time-to-
solution will be the best way to measure the performance of
different protocols. It can happen that one is better than the
other in some problems and the reverse in other problems,
which reveals an interesting future topic to be studied.
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APPENDIX A: DERIVATION OF ADIABATIC GAUGE
POTENTIALS

In this Appendix, we derive the two adiabatic gauge poten-
tials Aλ and Aγ by considering a quantum state |ψ〉 evolving
under the time-dependent Hamiltonian Hλ,γ

0 (t ).
The effective Schrödinger equation i∂t |ψ〉 = Hλ,γ

0 |ψ〉 in
the moving frame by applying the unitary transformation
U = U (λ, γ ) with |ψ (t )〉 = U †|ψ〉, and thus |ψ〉 = U |ψ (t )〉,

is written as

i∂t [U |ψ (t )〉] = Hλ,γ

0 [U |ψ (t )〉],
i(∂λU λ̇ + ∂γU γ̇ )|ψ (t )〉 + iU∂t |ψ (t )〉 = Hλ,γ

0 U |ψ (t )〉.
(A1)

If we apply U † from the left, we have

i(U †∂λU λ̇ + U †∂γU γ̇ )|ψ (t )〉 + iU †U∂t |ψ (t )〉
= U †Hλ,γ

0 U |ψ (t )〉, (A2)

and, consequently,

i∂t |ψ (t )〉 = H̃λ,γ

0 |ψ (t )〉 − i(U †∂λU λ̇ + U †∂γU γ̇ )|ψ (t )〉,
(A3)

which we write as

i∂t |ψ (t )〉 = H̃λ,γ

0 |ψ (t )〉 − (λ̇Ãλ + γ̇ Ãγ )|ψ (t )〉, (A4)

where H̃λ,γ

0 (λ, γ ) = U †Hλ,γ

0 U is diagonal in its instantaneous
eigenbasis, and Ãλ = iU †∂λU and Ãγ = iU †∂γU are the cor-
responding adiabatic gauge potentials in the moving frame
with respect to the two time-dependent driving parameters
λ(t ) and γ (t ), respectively.

The counter-diabatic Hamiltonian with respect to these
two adiabatic gauge potentials that suppresses any transitions
between the eigenstates back in the laboratory frame can
consequently be written as

Hλ,γ

CD (t ) = λ̇(t )Aλ(t ) + γ̇ (t )Aγ (t ). (A5)

It is straightforward to verify that the two adiabatic gauge
potentials fulfill the relations

[Aλ,Hλ,γ

0 ]= i∂λHλ,γ

0 +iMλ, [Aγ ,Hλ,γ

0 ]= i∂γHλ,γ

0 +iMγ ,

(A6)

where the operators Mλ = −∑
n |n〉〈n|∂λHλ,γ

0 |n〉〈n| and
Mγ = −∑

n |n〉〈n|∂γHλ,γ

0 |n〉〈n| are diagonal in the
instantaneous eigenbasis |n(λ, γ )〉. As [Hλ,γ

0 , iMλ] =
[Hλ,γ

0 , iMγ ] = 0 and thus commute, we can rewrite the
conditions, given by Eq. (A6), as

[Hλ,γ

0 , [Aλ,Hλ,γ

0 ] − i∂λHλ,γ

0 ] = 0,

[Hλ,γ

0 , [Aγ ,Hλ,γ

0 ] − i∂γHλ,γ

0 ] = 0. (A7)
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The exact solution for the adiabatic gauge potentials Aλ and
Aγ generally requires a priori knowledge of the system eigen-
states, i.e., Mλ and Mγ , during the whole annealing time
through |n〉 = |n[λ(t ), γ (t )]〉. To generate the latter, Aλ and
Aγ have complicated many-body interacting terms of all com-
binations of the operators σ x

i , σ
y
i , and σ z

i up to complicated
nonlocal N-spin terms (cf.Ref. [49] in the case of quantum
criticality).

To circumvent this difficulty, we follow Ref. [25] and de-
fine the Hermitian operators Gλ(A′

λ) ≡ ∂λHλ,γ

0 + i[A′
λ,H

λ,γ

0 ]
and Gγ (A′

γ ) ≡ ∂γHλ,γ

0 + i[A′
γ ,Hλ,γ

0 ] and insert a suitable
Ansatz A′

λ and A′
γ , respectively, to approximately solve

Eqs. (A7). Notice that inserting the exact solutions into the
Hermitian operators by multiplying Eqs. (A6) with the imagi-
nary number i and solving for the generalized forces Mλ and
Mγ leads to the expressions Gλ(Aλ) = −Mλ and Gγ (Aγ ) =
−Mγ .

We aim to approximate the exact solutions for the adiabatic
gauge potentials as faithfully as possible. To measure the
distance between our approximate (A′

λ and A′
γ ) and exact

(Aλ and Aγ ) adiabatic gauge potentials, it is convenient to
introduce the operator distance as the Frobenius norm. The
two-parameter operator distance can be written as

D2 = Tr[(Gλ(A′
λ) + Mλ)2] + Tr[(Gγ (A′

γ ) + Mγ )2]

= Tr[G2
λ(A′

λ)] + Tr[G2
γ (A′

γ )] − Tr[M2
λ] − Tr[M2

γ ],
(A8)

where we use the fact that Hλ,γ

0 commutes with Mλ

and Mγ , respectively, and Tr[Mλ∂λHλ,γ

0 ] = −Tr[M2
λ] and

Tr[Mγ ∂γHλ,γ

0 ] = −Tr[M2
γ ]. As the generalized forces Mλ

and Mγ do not depend on A′
λ and A′

γ , we can minimize
the two-parameter operator distance, given by Eq. (A8), by
minimizing the two-parameter action,

S = Tr[G2
λ(A′

λ)] + Tr[G2
γ (A′

γ )], (A9)

with respect to the parameters of our Ansätze for the adia-
batic gauge potentials, A′

λ and A′
γ , symbolically written as

{δS/δA′
λ = 0, δS/δA′

γ = 0}.

APPENDIX B: LANDAU-ZENER MODEL

In this Appendix, we illustrate the method of our two-
parameter CD drive for the Landau-Zener model. Its original
Hamiltonian reads

Hλ,γ

LZ,0(t ) = −[1 − λ(t )]γ (t )σ x − λ(t )hσ z, (B1)

where the driving functions are

λ(t ) = sin2
[π

2
sin2

(πt

2τ

)]
,

γ (t ) = γinit + λ(t ). (B2)

We have followed Ref. [25] in choosing the functional
form of λ(t ) and have arbitrarily chosen the form of
γ (t ). We now employ the Ansätze A′

λ ≡ ασ y and A′
γ ≡

βσ y for the adiabatic gauge potentials with respect to
λ and γ , respectively, and calculate the two Hermitian
operators Gλ(A′

λ) = ∂λHλ,γ

LZ,0 + i[A′
λ,H

λ,γ

LZ,0] and Gγ (A′
γ ) =

∂γHλ,γ

LZ,0 + i[A′
γ ,Hλ,γ

LZ,0] and then minimize the corresponding

two-parameter action S , given by Eq. (A9), with respect to the
coefficients α and β. The Hermitian operators then turn out to
be

Gλ(A′
λ) = (γ + 2λhα)σ x − [h + 2(1 − λ)γα]σ z,

Gγ (A′
γ ) = [2λhβ − (1 − λ)]σ x − 2(1 − λ)γ βσ z. (B3)

Pauli matrices are traceless and thus calculating the trace of
the square of the Hermitian operators is equivalent to adding
up squares of the coefficients in front of every Pauli matrix.
Therefore, the action S , given by Eq. (A9), reads

S = (γ + 2λhα)2 + [h + 2(1 − λ)γα]2

+ [2λhβ − (1 − λ)]2 + 4(1 − λ)2γ 2β2. (B4)

By calculating the derivatives of this action with respect to
α and β, i.e., solving the system of equations {δS/δα =
0, δS/δβ = 0}, we obtain the optimal solution for the CD
Hamiltonian Hλ,γ

LZ,CD(t ) = (λ̇α + γ̇ β )σ y, given by Eq. (7)
from the main text, as

α = −1

2

hγ (t )

λ2(t )h2 + γ 2(t )[1 − λ(t )]2
,

β = 1

2

[1 − λ(t )]λ(t )h

λ2(t )h2 + γ 2(t )[1 − λ(t )]2
. (B5)

It turns out that this solution reduces to the exact CD term
(cf. Ref. [20]) when γ (t ) is constant—as γ̇ (t ) then becomes
zero and, consequently, we are left with the solution for α in
Eq. (B5) with γ (t ) = γ alone, i.e., β = 0.

We can gauge away the imaginary σ y term by applying
the unitary gauge transformation Ug(t ) = exp[iθ (t )σ z/2] =
cos[θ (t )/2]1 + i sin[θ (t )/2]σ z to the full Hamiltonian
Hλ,γ

LZ (t ) = Hλ,γ

LZ,0(t ) + Hλ,γ

LZ,CD(t ) according to

Hλ,γ

LZ,eff(t ) = UgHλ,γ

LZ (t )U †
g + i(∂tUg)U †

g . (B6)

Here, the second term evaluates to i(∂tUg)U †
g = −(θ̇/2)σ z

with the right angle θ = arctan(Y/X ) along with X = −[1 −
λ(t )]γ (t ) and Y = λ̇(t )α(t ) + γ̇ (t )β(t ), and where we set
h̄ = 1. The effective full Hamiltonian in the rotated frame then
reads

Hλ,γ

LZ,eff (t ) =
√

X 2 + Y 2σ x −
[

1

2

Ẏ X − ẊY

X 2 + Y 2
+ hλ(t )

]
σ z,

(B7)
where the term involving time derivatives of X and Y stems
from the corresponding derivatives of Ug and θ̇ .

Figure 5 depicts the coefficients of the rotated driver and
problem Hamiltonian, i.e.,

Hλ,γ

LZ,x(t ) =
√

X 2 + Y 2σ x,

Hλ,γ

LZ,z(t ) = −
[

Ẏ X − ẊY

2(X 2 + Y 2)
+ hλ(t )

]
σ z, (B8)

with γ (t ) = γinit + λ(t ) and annealing time τ = 1. The coef-
ficients are quite nonmonotonic and become rather large at
intermediate times.

We, finally, note that an introduction of σ x and σ z in
the approximate adiabatic gauge potential, in addition to σ y,
i.e., employing the Ansätze A′

λ = αxσ x + αyσ y + αzσ z and
A′

γ = βxσ x + βyσ y + βzσ z, leads to vanishing coefficients
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FIG. 5. Coefficient of two-parameter CD drive. Coefficients of
the driver Hamiltonian, i.e., Hλ,γ

LZ,x(t ) (blue solid line) and problem

Hamiltonian Hλ,γ

LZ,z(t ) (orange dashed line), as described in Eq. (B8)
for two-parameter CD driving during annealing of τ = 1. Other
parameter: h = 0.1.

αx and αz as well as βx and βz. This can directly be seen
by calculating the corresponding Hermitian operators G(Aλ)
and G(Aγ ), which entail additional 2[(1 − λ)γαz − λhαx]σ y

and 2[(1 − λ)γ βz − λhβx]σ y terms. The resulting action S,
given by Eq. (A9), thus comprises additional (αx )2, (αz )2, and
αxαz as well as (βx )2, (βz )2, and βxβz terms which, after
taking the square and building the derivative with respect to
αx and αz as well as βx and βz, become zero. This justifies the
framework to use only σ y in the approximate adiabatic gauge
potential. The same can be observed in more generic cases
with interactions in the cost function, i.e., the Ising model.

APPENDIX C: p-SPIN MODEL

In this Appendix, we derive the solutions of the opti-
mal two-parameter CD Hamiltonian, Hλ,γ

CD (t ) = ∑N
i=1(λ̇α +

γ̇ β )σ y
i , given by Eq. (14) from the main text, for the p-

spin model with p = 3 and original Hamiltonian H0(t ), given
by Eq. (10), with driving functions λ(t ) and γ (t ), given by
Eq. (12). For the latter, we can rewrite the original Hamilto-
nian into the form

Hλ,γ

0 (t ) = −[1 − λ(t )]
N∑

i=1

γ (t )σ x
i − λ(t )

1

N2

⎡
⎣6

∑
i< j<k

σ z
i σ z

j σ
z
k + (3N − 2)

N∑
i=1

σ z
i

⎤
⎦. (C1)

For this many-body case, we employ the Ansätze A′
λ ≡ ∑N

i=1 ασ
y
i and A′

γ ≡ ∑N
i=1 βσ

y
i for the corresponding adiabatic gauge

potentials. Calculating the Hermitian operators Gλ(A′
λ) and Gγ (A′

γ ) requires the commutators

i[A′
λ,H

λ,γ

0 ] =
N∑

i=1

2λ(3N − 2)

N2
ασ x

i − 2(1 − λ)αγσ z
i + 12λ

N2

N∑
i< j<k

α
(
σ x

i σ z
j σ

z
k + σ z

i σ x
j σ

z
k + σ z

i σ z
j σ

x
k

)
,

i[A′
γ ,Hλ,γ

0 ] =
N∑

i=1

2λ(3N − 2)

N2
βσ x

i − 2(1 − λ)βγ σ z
i + 12λ

N2

N∑
i< j<k

β
(
σ x

i σ z
j σ

z
k + σ z

i σ x
j σ

z
k + σ z

i σ z
j σ

x
k

)
. (C2)

Adding the two partial derivatives ∂λHλ,γ

0 and ∂γHλ,γ

0 , respectively, leads to the Hermitian operators

Gλ(A′
λ) =

N∑
i=1

[
γ + 2αλ(3N − 2)

N2

]
σ x

i − 6

N2

N∑
i< j<k

σ z
i σ z

j σ
z
k −

N∑
i=1

[
3N − 2

N2
+ 2α(1 − λ)γ

]
σ z

i

+ 12λ

N2

N∑
i< j<k

α
(
σ x

i σ z
j σ

z
k + σ z

i σ x
j σ

z
k + σ z

i σ z
j σ

x
k

)
,

Gγ (A′
γ ) =

N∑
i=1

[
2βλ(3N − 2)

N2
− (1 − λ)

]
σ x

i −
N∑

i=1

[
3N − 2

N2
+ 2β(1 − λ)γ

]
σ z

i − 6

N2

N∑
i< j<k

σ z
i σ z

j σ
z
k

+ 12λ

N2

N∑
i< j<k

β
(
σ x

i σ z
j σ

z
k + σ z

i σ x
j σ

z
k + σ z

i σ z
j σ

x
k

)
. (C3)

Consequently, the action S = Tr[G2
λ(A′

λ)] + Tr[G2
γ (A′

γ )], given by Eq. (A9), can be written as

S
2N

=
N∑

i=1

[
γ + 2αλ(3N − 2)

N2

]2

+
[

3N − 2

N2
+ 2α(1 − λ)γ

]2

+ 72λ2

N4
(N − 1)(N − 2)α2

+
N∑

i=1

[
2βλ(3N − 2)

N2
− (1 − λ)

]2

+
[

3N − 2

N2
+ 2β(1 − λ)γ

]2

+ 72λ2

N4
(N − 1)(N − 2)β2− 12(N − 1)(N − 2)

N2
, (C4)
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FIG. 6. Ground-state fidelity and residual energy. (a)–(c) Final ground-state fidelity and (d)–(f) residual energy for (i) traditional quantum
annealing (diamonds, blue solid line), (ii) single-parameter CD drive (squares, orange dashed line), and (iii) two-parameter CD drive with
driving functions γ1(t ), given by Eq. (D2) (circles, green dash-dotted line), γ2(t ), given by Eq. (D3) (down triangles, magenta dotted line), and
γ3(t ), given by Eq. (D4) (up triangles, cyan widely dashed line), as functions of annealing time τ . The system sizes are (a),(d) N = 4, (b),(e)
N = 30, and (c),(f) N = 50, where γinit = 1 for all panels. Time ranges are color coded as follows: short-time regime (green-shaded areas)
where the fidelity is approximately 1/2N for traditional quantum annealing, long-time regime (yellow-shaded areas) where transient behavior
is observed and the two-parameter CD drive shows a clear advantage, and adiabatic regime (gray-shaded areas) where F (τ ) > 0.99.

and minimizing this action with respect to each coefficient α

and β leads to the solutions, given by Eq. (14), from the text.
To bring the full Hamiltonian Hλ,γ (t ) = Hλ,γ

0 (t ) +
Hλ,γ

CD (t ) with Hλ,γ

CD (t ) from Eq. (14) in an experimentally
more feasible form, we can gauge away the imaginary single-
body σ

y
i terms by applying the unitary gauge transformation

Ug[θ (t )] = exp[iθ (t )/2
∑N

i=1 σ z
i ], given by Eq. (16), for con-

venience written as Ug = ∏N
j=1[cos(θ/2)1 + i sin(θ/2)σ z

j ].
The effective, i.e., rotated, full Hamiltonian in the laboratory
frame then reads

Hλ,γ

eff (t ) = UgHλ,γ (t )U †
g −

N∑
i=1

θ̇

2
σ z

i , (C5)

which can straightforwardly be derived by multiplying both
sides of the time-dependent Schrödinger equation i∂tψ =
Hψ in the original frame with the unitary transformation
Ug, given by Eq. (16), employing the relation ψ̃ = Ugψ

and expressing the dynamics in the moving frame. Anal-
ogously to Appendix B, the rotational right angle is θ =
arctan(Y/X ) with Y = λ̇α + γ̇ β and X = −(1 − λ)γ . For
the first term of Eq. (C5), we use that Ugσ

x
i U †

g = cos θσ x
i −

sin θσ
y
i , Ugσ

y
i U †

g = sin θσ x
i + cos θσ

y
i , and Ugσ

z
i U †

g = σ z
i , as

well as the trigonometrical relations sin θ = Y/
√

X 2 + Y 2

and cos θ = X/
√

X 2 + Y 2. The first term then evaluates to√
X 2 + Y 2σ x

i and, together with the second term and θ̇ =
(Ẏ X − ẊY )/(X 2 + Y 2), describe the expression of the effec-
tive Hamiltonian, given by Eq. (17), from the text.

APPENDIX D: DIFFERENT DRIVING FUNCTIONS γi(t )

The numerical results of the two-parameter CD approach
with particular choice of the driving function γ (t ), given by
Eq. (12), revealed a considerable enhancement in the reached
final ground-state fidelity and residual energy. We are thus
interested in whether this enhancement stems from this partic-
ular choice of driving functions or constitutes a general feature
due to the expansion of the search space for the optimal
parameters α and β, given by Eq. (14). Although it is difficult
to systematically explore the best possible functional forms,
we nevertheless tried a few different cases to confirm that our
conclusion remains unchanged qualitatively. To this end, we
compare the numerical performance of this two-parameter CD
method for three different forms of the driving function, i.e.,

λ(t ) = sin3
(πt

2τ

)
, (D1)

γ1(t ) = γinit − λ(t ), (D2)

γ2(t ) = cos3
(πt

2τ

)
, (D3)

γ3(t ) = 1 − sin3
(πt

2τ

)
, (D4)

where, in contrast to the case of Fig. 1, we set the initial
value of γ (t ) to γinit = 1. The corresponding numerical re-
sults are depicted in Fig. 6 with the same other parameters
as in Fig. 1. They reveal that the full Hamiltonians with
two-parameter CD driving and all three driving functions
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considerably outperform the traditional quantum annealing
and existing one-parameter counterparts. Interestingly, the
two newly added driving functions γ2(t ) and γ3(t ), which
have considerably different forms than the one originally used
in Fig. 1, even considerably outperform the latter for short
sweep durations (green-shaded area), though the function
γ1(t ), which is similar to the one in the main text, works best
in the intermediate-time region (yellow-shaded area). This

is a promising result as the two-parameter approach provides
a systematic enhancement for a variety of driving functions
due to the expanded search space in two dimensions. These
results motivate more systematic analytical and numerical
investigations of driving functions that yield the maximal
reached final ground-state fidelities and—as mentioned in
the main text—constitute an interesting topic for future
research.
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[3] G. E. Santoro, R. Martoňák, E. Tosatti, and R. Car, Theory of
quantum annealing of an Ising spin glass, Science 295, 2427
(2002).

[4] G. E. Santoro and E. Tosatti, Optimization using quantum
mechanics: Quantum annealing through adiabatic evolution, J.
Phys. A 39, R393 (2006).

[5] A. Das and B. K. Chakrabarti, Colloquium: Quantum annealing
and analog quantum computation, Rev. Mod. Phys. 80, 1061
(2008).

[6] S. Morita and H. Nishimori, Mathematical foundation of quan-
tum annealing, J. Math. Phys. 49, 125210 (2008).

[7] P. Hauke, H. G. Katzgraber, W. Lechner, H. Nishimori, and
W. D. Oliver, Perspectives of quantum annealing: Meth-
ods and implementations, Rep. Prog. Phys. 83, 054401
(2020).

[8] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, Quantum
computation by adiabatic evolution, arXiv:quant-ph/0001106.

[9] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and
D. Preda, A quantum adiabatic evolution algorithm applied to
random instances of an NP-complete problem, Science 292, 472
(2001).

[10] T. Albash and D. A. Lidar, Adiabatic quantum computation,
Rev. Mod. Phys. 90, 015002 (2018).

[11] E. J. Crosson and D. A. Lidar, Prospects for quantum enhance-
ment with diabatic quantum annealing, arXiv:2008.09913.

[12] E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno,
A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, and
J. G. Muga, in Advances in Atomic, Molecular, and Optical
Physics, Vol. 62, edited by E. Arimondo, P. R. Berman, and
C. C. Lin (Academic Press, Cambridge, Massachusetts, 2013),
pp. 117–169.

[13] A. del Campo and K. Sengupta, Controlling quantum critical
dynamics of isolated systems, Eur. Phys. J. Spec. Top. 224, 189
(2015).

[14] A. del Campo and K. Kim, Focus on shortcuts to adiabaticity,
New J. Phys. 21, 050201 (2019).

[15] D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui,
S. Martínez-Garaot, and J. G. Muga, Shortcuts to adiabatic-
ity: Concepts, methods, and applications, Rev. Mod. Phys. 91,
045001 (2019).

[16] M. Demirplak and S. A. Rice, Adiabatic population trans-
fer with control fields, J. Phys. Chem. A 107, 9937
(2003).

[17] M. V. Berry, Transitionless quantum driving, J. Phys. A Math.
Theor. 42, 365303 (2009).

[18] X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-
Odelin, and J. G. Muga, Fast Optimal Frictionless atom Cooling
in Harmonic Traps: Shortcut to Adiabaticity, Phys. Rev. Lett.
104, 063002 (2010).

[19] X. Chen, E. Torrontegui, and J. G. Muga, Lewis-Riesenfeld
invariants and transitionless quantum driving, Phys. Rev. A 83,
062116 (2011).

[20] K. Takahashi, Transitionless quantum driving for spin systems,
Phys. Rev. E 87, 062117 (2013).

[21] C. Jarzynski, Generating shortcuts to adiabaticity in quantum
and classical dynamics, Phys. Rev. A 88, 040101(R) (2013).

[22] K. Takahashi, Hamiltonian engineering for adiabatic quantum
computation: Lessons from shortcuts to adiabaticity, J. Phys.
Soc. Jpn. 88, 061002 (2019).

[23] A. del Campo, Shortcuts to Adiabaticity by Counterdiabatic
Driving, Phys. Rev. Lett. 111, 100502 (2013).

[24] B. Damski, Counterdiabatic driving of the quantum Ising
model, J. Stat. Mech. Theor. Expt. (2014) P12019.

[25] D. Sels and A. Polkovnikov, Minimizing irreversible losses in
quantum systems by local counterdiabatic driving, Proc. Natl.
Acad. Sci. 114, E3909 (2017).

[26] P. W. Claeys, M. Pandey, D. Sels, and A. Polkovnikov,
Floquet-Engineering Counterdiabatic Protocols in Quantum
Many-Body Systems, Phys. Rev. Lett. 123, 090602 (2019).

[27] A. Hartmann and W. Lechner, Rapid counter-diabatic sweeps
in lattice gauge adiabatic quantum computing, New J. Phys. 21,
043025 (2019).

[28] M. Kolodrubetz, D. Sels, P. Mehta, and A. Polkovnikov, Ge-
ometry and nonadiabatic response in quantum and classical
systems, Phys. Rep. 697, 1 (2017).

[29] H. Zhou, Y. Ji, X. Nie, X. Yang, X. Chen, J. Bian, and X.
Peng, Experimental Realization of Shortcuts to Adiabaticity in
a Nonintegrable Spin Chain by Local Counterdiabatic Driving,
Phys. Rev. Appl. 13, 044059 (2020).

[30] G. Passarelli, V. Cataudella, R. Fazio, and P. Lucignano, Coun-
terdiabatic driving in the quantum annealing of the p-spin
model: A variational approach, Phys. Rev. Res. 2, 013283
(2020).

[31] N. N. Hegade, K. Paul, Y. Ding, M. Sanz, F. Albarrán-
Arriagada, E. Solano, and X. Chen, Shortcuts to Adiabaticity
in Digitized Adiabatic Quantum Computing, Phys. Rev. Appl.
15, 024038 (2021).

[32] T. Jörg, F. Krzakala, J. Kurchan, A. C. Maggs, and J. Pujos,
Energy gaps in quantum first-order mean-field–like transitions:
The problems that quantum annealing cannot solve, Europhys.
Lett. 89, 40004 (2010).

013227-12

https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1126/science.284.5415.779
https://doi.org/10.1126/science.1068774
https://doi.org/10.1088/0305-4470/39/36/R01
https://doi.org/10.1103/RevModPhys.80.1061
https://doi.org/10.1063/1.2995837
https://doi.org/10.1088/1361-6633/ab85b8
http://arxiv.org/abs/arXiv:quant-ph/0001106
https://doi.org/10.1126/science.1057726
https://doi.org/10.1103/RevModPhys.90.015002
http://arxiv.org/abs/arXiv:2008.09913
https://doi.org/10.1140/epjst/e2015-02350-4
https://doi.org/10.1088/1367-2630/ab1437
https://doi.org/10.1103/RevModPhys.91.045001
https://doi.org/10.1021/jp030708a
https://doi.org/10.1088/1751-8113/42/36/365303
https://doi.org/10.1103/PhysRevLett.104.063002
https://doi.org/10.1103/PhysRevA.83.062116
https://doi.org/10.1103/PhysRevE.87.062117
https://doi.org/10.1103/PhysRevA.88.040101
https://doi.org/10.7566/JPSJ.88.061002
https://doi.org/10.1103/PhysRevLett.111.100502
https://doi.org/10.1088/1742-5468/2014/12/P12019
https://doi.org/10.1073/pnas.1619826114
https://doi.org/10.1103/PhysRevLett.123.090602
https://doi.org/10.1088/1367-2630/ab14a0
https://doi.org/10.1016/j.physrep.2017.07.001
https://doi.org/10.1103/PhysRevApplied.13.044059
https://doi.org/10.1103/PhysRevResearch.2.013283
https://doi.org/10.1103/PhysRevApplied.15.024038
https://doi.org/10.1209/0295-5075/89/40004


TWO-PARAMETER COUNTER-DIABATIC DRIVING IN … PHYSICAL REVIEW RESEARCH 3, 013227 (2021)

[33] Y. Seki and H. Nishimori, Quantum annealing with antiferro-
magnetic fluctuations, Phys. Rev. E 85, 051112 (2012).

[34] B. Seoane and H. Nishimori, Many-body transverse interactions
in the quantum annealing of the p-spin ferromagnet, J. Phys. A
Math. Theor. 45, 435301 (2012).

[35] Y. Seki and H. Nishimori, Quantum annealing with antifer-
romagnetic transverse interactions for the Hopfield model, J.
Phys. A Math. Theor. 48, 335301 (2015).

[36] H. Nishimori and K. Takada, Exponential enhancement of the
efficiency of quantum annealing by non-stoquastic Hamiltoni-
ans, Front. ICT 4, 2 (2017).

[37] A. Hartmann and W. Lechner, Quantum phase transition with
inhomogeneous driving in the Lechner-Hauke-Zoller model,
Phys. Rev. A 100, 032110 (2019).

[38] A. Lucas, Ising formulations of many NP problems, Front.
Phys. 2, 5 (2014).

[39] It is known that in the p-spin model, the thermodynamic limit
N → ∞ is equivalent to the classical limit and a correction of
O(1/N ) is equivalent to a quantum correction of the order of
O(h̄) [48]. Thus the present adiabatic gauge potential may be
regarded as representing delicate quantum effects in the p-spin
model.

[40] T. Albash and D. A. Lidar, Demonstration of a Scaling Advan-
tage for a Quantum Annealer over Simulated Annealing, Phys.
Rev. X 8, 031016 (2018).

[41] J. R. Johansson, P. D. Nation, and F. Nori, QUTIP 2: A PYTHON

framework for the dynamics of open quantum systems, Comput.
Phys. Commun. 184, 1234 (2013).

[42] Y. Susa, Y. Yamashiro, M. Yamamoto, and H. Nishimori, Ex-
ponential speedup of quantum annealing by inhomogeneous
driving of the transverse field, J. Phys. Soc. Jpn. 87, 023002
(2018).

[43] Y. Susa, Y. Yamashiro, M. Yamamoto, I. Hen, D. A. Lidar,
and H. Nishimori, Quantum annealing of the p-spin model
under inhomogeneous transverse field driving, Phys. Rev. A 98,
042326 (2018).

[44] Z.-C. Yang, A. Rahmani, A. Shabani, H. Neven, and C.
Chamon, Optimizing Variational Quantum Algorithms Using
Pontryagin’s Minimum Principle, Phys. Rev. X 7, 021027
(2017).

[45] G. B. Mbeng, R. Fazio, and G. Santoro, Quantum Annealing:
A journey through Digitalization, Control, and hybrid Quantum
Variational schemes, arXiv:1906.08948.

[46] L. T. Brady, C. L. Baldwin, A. Bapat, Y. Kharkov, and
A. V. Gorshkov, Optimal Protocols in Quantum Annealing and
QAOA Problems, Phys. Rev. Lett. 126, 070505 (2021).

[47] K. Takahashi, Shortcuts to adiabaticity for quantum annealing,
Phys. Rev. A 95, 012309 (2017).

[48] M. Ohkuwa and H. Nishimori, Exact expression of the en-
ergy gap at first-order quantum phase transitions of the fully
connected p-body transverse-field Ising model with transverse
interactions, J. Phys. Soc. Jpn. 86, 114004 (2017).

[49] A. del Campo, M. M. Rams, and W. H. Zurek, Assisted Finite-
Rate Adiabatic Passage Across a Quantum Critical Point: Exact
Solution for the Quantum Ising Model, Phys. Rev. Lett. 109,
115703 (2012).

013227-13

https://doi.org/10.1103/PhysRevE.85.051112
https://doi.org/10.1088/1751-8113/45/43/435301
https://doi.org/10.1088/1751-8113/48/33/335301
https://doi.org/10.3389/fict.2017.00002
https://doi.org/10.1103/PhysRevA.100.032110
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1103/PhysRevX.8.031016
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.7566/JPSJ.87.023002
https://doi.org/10.1103/PhysRevA.98.042326
https://doi.org/10.1103/PhysRevX.7.021027
http://arxiv.org/abs/arXiv:1906.08948
https://doi.org/10.1103/PhysRevLett.126.070505
https://doi.org/10.1103/PhysRevA.95.012309
https://doi.org/10.7566/JPSJ.86.114004
https://doi.org/10.1103/PhysRevLett.109.115703

