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Exciton condensation in bilayer spin-orbit insulator
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We investigate the nature of the magnetic excitations of a bilayer single-orbital Hubbard model in the
intermediate-coupling regime. This model exhibits a quantum phase transition (QPT) between a paramagnetic
(PM) and an insulating antiferromagnetic (AFM) phase at a critical value of the coupling strength. By using
the random phase approximation, we show that the QPT is continuous when the PM state is a band insulator
and that the corresponding quantum critical point (QCP) arises from the condensation of preformed excitons.
These low-energy excitons re-emerge on the other side of the QCP as the transverse and longitudinal modes of
the AFM state. In particular, the longitudinal mode remains sharp for the model parameters relevant to Sr3Ir2O7

because of the strong easy-axis anisotropy of this material.
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I. INTRODUCTION

Low-dimensional Mott insulators play a central role in cor-
related electron physics because of the novel states of matter
and phase transitions that they can host. In the strong-coupling
limit, U/|t | � 1, the on-site repulsion U “freezes out” the
charge degrees of freedom, turning the Mott insulator into a
quantum magnet described by an effective spin Hamiltonian.
The lattice connectivity can then be exploited to generate
competing exchange interactions that induce quantum phase
transitions (QPTs) between different states of matter. One of
the simplest examples is provided by bilayer materials [1–6],
where the competition between intralayer and interlayer hop-
ping amplitudes, t and tz, can induce a transition between an
AFM state and a quantum paramagnet (QPM) comprising lo-
cal singlet states on the interlayer dimers. This QPT, which is
typically induced by applying pressure, has been extensively
studied in multiple quantum magnets to understand different
properties of the QCP, such as the emergence and decay of the
longitudinal mode (LM) that is present in the antiferromag-
netic (AFM) state [7–16].

The discovery of low-dimensional intermediate-coupling
4d- and 5d-electron correlated insulators introduces a knob,
U/t , that can be used to unleash the charge degrees of
freedom via pressure or strain. For instance, the iridate
materials [17–22] have a charge gap � that is comparable to
the magnon bandwidth W . The reduction of U/t leads to the
suppression of the AFM ordering in favor of a paramagnetic
state. In bilayer materials, such as Sr3Ir2O7, the paramagnetic
state can either be metallic or a band insulator depending
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on the spin orbit coupling. Similarly to the large U/|t | limit,
where the transition from the QPM to the AFM state can be
described as a triplon condensation, the QPT from the band
insulator to the AFM state corresponds to condensation of
preformed magnetic excitons. These bound states reemerge on
the other side of the QCP as longitudinal and transverse modes
(magnons) of the AFM state. In contrast, the longitudinal
mode (LM) is absent in the AFM phase induced by a metal-
insulator transition with perfect Fermi surface (FS) nesting.

In this article, we study the possible QPTs induced by
reducing the U/|t | ratio in bilayer materials. Although the
transition into the band insulator has some similarities with
the transition into the QPM of pure spin systems (U/|t | � 1)
[7–16], there are also some important differences associated
with the enhanced charge fluctuations. By applying our anal-
ysis to the easy-axis bilayer antiferromagnet Sr3Ir2O7, with
� = 130 meV [23] and W = 70 meV [24], we reveal the
existence of a LM in some regions of the Brillouin zone,
which arises from the band-insulating character of the non-
interacting limit of the model: The Néel phase is induced
by condensation of preformed Sz = 0 excitons at a critical
coupling strength U = Uc. This exciton reemerges in the Néel
phase (U > Uc) as a LM, whose energy scale and dispersion
are consistent with previous resonant inelastic x-ray scattering
(RIXS) measurements [24–27]. It is important to note that the
LM that emerges near the same QCP in the strong coupling
limit of the Hubbard model [25] exists over the whole Bril-
louin zone and its energy is much lower than the charge gap
because it is obtained from a pure spin model. In contrast,
the LM that we are proposing for Sr3Ir2O7 only exists in
finite regions of momentum space, around the wave vectors
q = 0 and q = (π, π ), because it is induced by strong charge
fluctuations (U ∼ Uc). Indeed, the mode disappears inside the
particle-hole continuum for wave vectors that are far enough
from q = 0 and q = (π, π ).

Our results then suggest that Sr3Ir2O7 is a realization of
the long-sought excitonic insulator that was predicted almost
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60 years ago [28–30]. However, higher resolution RIXS ex-
periments are needed to confirm this prediction.

II. MODEL

We consider a bilayer single-orbital Hubbard model H =
−HK + HU, with HU = U

∑
r nr↑nr↓ and

HK = t
∑
r,ν

c†
r cr+aν

+ tz
∑

r⊥

c†
(r⊥,1)e

i α
2 εrσz c(r⊥,2)+H.c., (1)

where t, tz, α,U ∈ R, c†
r ≡ [c†

↑,r, c†
↓,r], is the Nambu spinor of

the electron field [r ≡ (r⊥, l ), l = 1, 2 is the layer index, and
r⊥ = r1a1 + r2a2], and aν (ν = 1, 2) are the primitive vectors
of the square lattice of each layer. The sign εr takes the values
1 (−1) for r ∈ A (B) sublattice of the bipartite bilayer system.
This Hamiltonian is an effective model for a bilayer system
with finite SOC, which is realized in ruthenates and iridates.
For example, the large SOC of the bilayer iridates splits the
5d t2g orbitals of the Ir4+ ion into J = 1/2 and 3/2 multiplets
[31]. Consequently, H becomes a low-energy model for the
5d hole (5d5 electronic configuration) of the strontium iridates
after projecting the relevant multiorbital Hubbard model onto
the lowest energy J = 1/2 doublet. The phase α arises from
hopping matrix elements between dxz and dyz orbitals allowed
by staggered octahedral rotations. The phase of the intralayer
hopping is gauged away by applying a sublattice-dependent
gauge transformation.

III. MEAN FIELD APPROXIMATION

For α 	= 0, the model (1) has an easy z-axis spin anisotropy
and the ground state of the AFM phase can have Néel
ordering, 〈Sμ

r 〉 = (−1)γr Mδμz, where γr = (1 + εr)/2, Sμ
r =

1/2c†
r σ

μcr (μ = x, y, z), and M is the magnetization. A mean
field decoupling of HU leads to

HMF
U =−UM

∑
r

(−1)γr c†
r σzcr + 1

2
Un

∑
r

c†
r cr + C, (2)

where C = UM2Ns − 1
4Un2Ns, Ns is the number of lattice

sites, n = N−1
s

∑
r〈c†

r cr〉 is the electron density, and the sec-
ond term can be absorbed into the chemical potential.

By Fourier transforming annihilation and creation opera-
tors,

cσ,r = 1√
Nu

∑
k∈BZ

ei(k⊥·r⊥+kzl )cγ σ,k, r ∈ sublattice γ , (3)

where Nu = 1
2Ns is the number of unit cells, and k ≡ (k⊥, kz )

runs over the first Brillouin zone (BZ): k⊥ = k1b′
1 + k2b′

2,
with b′

1 = (1/2,−1/2), b′
2 = (1/2, 1/2), k1, k2 ∈ [0, 2π ), and

kz = 0, π , we obtain the momentum space representation of

HMF =
∑
k∈BZ

c†
kH

MF
k ck, (4)

with

HMF
k =

(
UMσz ε

(1)
k − tz cos(kz )e−i α

2 σz

ε
(1)
k − tz cos(kz )ei α

2 σz −UMσz

)
,

ck ≡ (cA↑,k, cA↓,k, cB↑,k, cB↓,k )T and

ε
(1)
k = −2t

(
cos

k1 + k2

2
+ cos

k1 − k2

2

)
. (5)

HMF
k is diagonalized by a unitary 4 × 4 matrix U (k),

cγ σ,k =
∑

n

U(γ σ ),n(k)ψn,k, (6)

where n ≡ (s, σ ) with s = ±, σ =↑,↓ and each column of
U (k) is an eigenvector of HMF

k :

Xs↑(k)=

⎛
⎜⎜⎜⎜⎝

x↑k

√
1+sz↑k

2

0

s
√

1−sz↑k

2

0

⎞
⎟⎟⎟⎟⎠, Xs↓(k)=

⎛
⎜⎜⎜⎜⎝

0

x↓k

√
1−sz↓k

2

0

s
√

1+sz↓k

2

⎞
⎟⎟⎟⎟⎠, (7)

with

xσk = bσk

|bσk| , zσk = δ√
δ2 + |bσk|2

,

bσk = ε
(1)
k − tz cos(kz )e−iσ α

2 , (8)

and δ = UM. The corresponding eigenenergies, εsσ (k) =
s
√
δ2 + |bσk|2, are independent of the spin flavor, |bσk|2 = b2

k
and zσk ≡ zk, because of the U(1) invariance of H under
global spin rotations about the z axis. The noninteracting
system is then metallic when the band gap at each k point,

�k = 2
√

δ2 + b2
k = 2|bk|, closes on a nodal line bk = 0 of

band crossing points that coincides with the FS [see Fig. 1(a)].
Because we are considering a bilayer system, the half-filled

condition corresponds to an integer number of electrons per
unit cell, implying that the ground state of the noninteracting
(U = 0) system can either be a metal or a band insulator,
as illustrated in Fig. 1(a). For α = 0, the metal to insulator
transition occurs via a semimetallic state with small and iden-
tical electron and hole pockets that shrink into a quadratic
Fermi point. For instance, for tz = 0, the FS is the square
defined by the equations k1 + k2 = ±π and k1 − k2 = ±π .
Upon increasing |tz|, while keeping α = 0, the square shrinks
into a circular pocket that finally disappears for |tz| > 4|t |. In
contrast, the noninteracting system is always a band insulator
for α 	= 0.

The on-site repulsion U induces AFM ordering via a QPT
that depends on the nature of the noninteracting state. In both
cases, noninteracting metal and insulator, the longitudinal
AFM susceptibility (q = 0) at ω = 0 is given by

χ
(γ1,z);(γ2,z)
0 = (−1)γ1+γ2

1

2Nu

∑
k∈BZ

1

|bk| , (9)

where γ1,2 = A,B are sublattice indices. Note that the an-
tiferromagnetic susceptibility can diverge at q = 0 because
the nonmagnetic unit cell contains one site of each sublat-
tice. From the mean field calculation, the critical interaction
strength is given by

U −1
c = 1

2Nu

∑
k∈BZ

1

|bk| . (10)
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FIG. 1. (a) Schematic picture for the band structure of noninter-
acting metal and band insulator. (b) Phase boundaries in the mean
field approximation for α = 0, 10−4, 10−3, 10−2, 10−1, 0.5, and 1.45
(from top to bottom). For α = 0 and U = 0, the system is a metal
for |tz/t | < 4 and a band insulator for |tz/t | > 4. The metal be-
comes an AFM insulator for an infinitesimally small U . For α 	= 0,
the present model (1) exhibits a continuous phase transition from the
band insulator to the AFM insulator at a finite U/t . The solid circle
symbol indicates the estimated parameter set for the bilayer iridate
Sr3Ir2O7 with α = 1.45. (c) Energy diagram as a function of U for
the parameter set relevant to Sr3Ir2O7. The red dashed line indicates
the energy of the Sz = ±1 exciton that becomes the transverse mode
for U > Uc. The blue dotted line indicates the energy of the Sz = 0
exciton that becomes a longitudinal mode for U > Uc. The gray area
indicates the particle-hole continuum. From a comparison with RIXS
data [24–27], we estimate that U = 0.33 eV for Sr3Ir2O7.

The resultant phase boundaries for several values of α are
shown in Fig. 1(b).

For α = 0 and U = 0, the system is metallic for |tz/t | < 4.
In this case, the perfect nesting due to the coincidence of
the particle and hole Fermi surfaces leads to a logarithmic
divergence of χ

(γ1,z);(γ2,z)
0 (q, ω = 0) at q = 0. Note that the

divergence becomes ln2 q for a square FS (tz = 0) because of
the Van Hove singularity in the density of states at the Fermi
level (the corners of the square correspond to saddle points of
the dispersion relation). In other words, the metal becomes
an AFM insulator for an infinitesimally small value of U ,
implying that the critical interaction strength Uc is equal to
zero. In contrast, the system becomes a band insulator (finite
charge gap) for α 	= 0 because the sublattice symmetry is no
longer present. As shown in Fig. 1(b), the metal-insulator
transition at U = 0 is then replaced by a continuous QPT
between the band and the AFM insulators at a finite U value,

U = Uc, because the integral (10) is now convergent. This
phase diagram clearly shows the significance of the spin-orbit
coupling: The proximity to the critical point is caused by a
finite α even for small tz/t . The physical interpretation of
the difference between the metallic and the band-insulating
cases will become clearer upon analyzing the behavior of the
magnetic excitations.

The order parameter is determined by solving the self-
consistent mean field equation

M = 1

2Nu

∑
k

zk. (11)

Near the critical point U = Uc, we obtain M ∝ (t/U )e−1/(ρ0U )

for the metal, where ρ0 the density of states at the Fermi
level, and M = 2

√
(U − Uc)/(DU 4

c ) for the band insulator
with D = 1

Nu

∑
k∈BZ |bk|−3.

IV. EXCITON CONDENSATION

In view of the U (1) invariance of H and the AFM ground
state, the transverse and longitudinal spin fluctuations are
decoupled from each other. Within the random phase approx-
imation (RPA), the magnetic susceptibilities of the transverse
and the longitudinal modes are given by

χ+−(q, iωn) = 1

τ 0 − Uχ+−
0 (q, iωn)

χ+−
0 (q, iωn), (12)

χ zz(q, iωn) = 1

τ 0 − U
2 χ zz

0 (q, iωn)
χ zz

0 (q, iωn), (13)

respectively, where τ0 is the 2 × 2 identity matrix. Here
χ+− and χ zz refer to 2 × 2 matrices in the sublattice space,
while χ+−

0 and χ zz
0 are the bare magnetic susceptibilities. See

Appendix A for details of the RPA calculation.
The eigenfrequencies ωq of the collective transverse modes

(magnons) can be extracted from the poles of the transverse
RPA susceptibility: det[τ 0 − Uχ+−

0 (q, ωq)] = 0. The spec-
trum is fully gapped because the U(1) symmetry of H is not
spontaneously broken by the AFM ordering along the z axis.
As shown in Fig. 1(c), the transverse modes remain gapped
at U = Uc and they become the Sz = ±1 exciton modes of
nonmagnetic band insulator for U < Uc. Note that this gap
closes in the absence of spin-orbit coupling (α = 0) because
the Hamiltonian becomes SU(2) invariant.

The most interesting feature is the emergence of a LM
below the particle-hole continuum around the � point of the
second Brillouin zone [q = (π, π, π )]. The origin of this
mode can be understood by analyzing the excitation spec-
trum of the band insulator for U < Uc. The bare magnetic
susceptibility at q = 0, which is equivalent to (π, π, π ), is
χ zz

0 (0, ω) = �(ω)(τ 0 − τ x ), where τ x is the Pauli matrix and

�(ω) = 1

2Nu

∑
k∈BZ

1

|bk|
1

1 − (
ω

2bk

)2 . (14)

The function �(ω) is real, and it increases monotonically
with ω up to the lower edge of the particle-hole continuum
ωph = 2min(bk), where it diverges: �(ω = 0) = 1/Uc and
limω→ωph �(ω) = ∞. The putative pole of the longitudinal
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susceptibility is determined by the condition

�(ω) = 1/U, (15)

which implies that a pole must exist in the energy window
0 � ω � ωph for 0 < U < Uc. As long as Uc is finite, i.e., the
noninteracting system is a band insulator, the pole appears just
below the gap � = ωph that signals the onset of the particle-
hole continuum. This pole corresponds to the formation of an
Sz = 0 exciton. Upon examining the transverse susceptibility,
we also find a doubly degenerate pole associated with the
formation of Sz = ±1 excitons [see Fig. 1(c)], whose energy
is higher than the energy of the Sz = 0 exciton because of the
easy-axis anisotropy. We note that the three excitonic states
become degenerate in the absence of spin-orbit interaction
because H is SU(2) invariant in that limit. The binding en-
ergy exhibits the singular behavior Eb ∝ ωph exp(−κωph/U ),
characteristic of 2D systems in the weak-coupling limit (κ is a
nonuniversal number). As shown in Fig. 1(c), the Sz = 0 exci-
ton becomes soft at U = Uc and ωL � 2

√
2(Uc − U )/(DU 2

c )
for U � Uc. The condensation of this mode signals the onset
of the Néel phase with magnetic moments pointing along the
z axis due to the effective easy-axis anisotropy.

In the AFM phase (U > Uc), the bare magnetic suscepti-
bility at q = 0 is given by

�(ω) = 1

2UM

1

Nu

∑
k∈BZ

zk
1 − z2

k

1 − (
ω

2UM

)2
z2

k

. (16)

Once again, �(ω) is real, and d�/dω � 0 for ω � ωph =
2
√

(UM )2 + min(bk)2. If the noninteracting state is a band
insulator (finite Uc), it holds that bk > 0 for any k, imply-
ing that a pole must then exist in the window 0 � ω � ωph

because �(ω = 0) < 1/U and �(ωph) > 1/U . For U � Uc,
the exciton energy scales as ωL = 4

√
(U − Uc)/(DU 2

c ). Upon
further increasing U , ωL increases quickly and approaches
the lower edge of the particle-hole continuum asymptotically.
This behavior can be understood by considering the large-U
limit. In this limit, the effective particle-hole interaction that
provides the “glue” for the formation of the LM is the ex-
change interaction, on the order of t2

z /U , along the vertical
bonds, implying that the binding energy of the LM must
vanish for U → ∞. The particle and the hole break only
one AFM link when they occupy the two sites of the same
vertical bond, while they break two vertical links when they
occupy two different vertical bonds. In contrast, the binding
energy of the low-energy transverse modes is on the order of
U because the particle and the hole occupy the same site. See
Appendix B for the analysis of the exciton wave function.

The situation is qualitatively different for a metallic non-
interacting system with perfect FS nesting. If min(bk) = 0,
the condition (15) cannot be fulfilled because �(ω < ωph) �
�(ωph) = 1/U . Therefore, the LM of the AFM phase is ab-
sent in this case.

V. LONGITUDINAL MODE OF BILAYER IRIDATE

From the above analysis, we predict that the bilayer iri-
date Sr3Ir2O7 should exhibit a LM in a relatively small
region around the center of the Brillouin zone. This predic-
tion is qualitatively different from a previous interpretation

of the RIXS data [25], based on a pure spin model (i.e.,
strong-coupling limit), that reports the existence of a LM
over the whole Brillouin zone. The effective Hamiltonian (1)
for Sr3Ir2O7 can be obtained by constructing a tight-binding
model of the t2g orbitals and projecting it onto Jeff = 1/2
lowest energy doublet [32]. The resulting parameters of the
effective single-orbital Hubbard model can be optimized to
reproduce the experimentally observed magnon dispersion
[24–27]: α = 1.45 and t = 0.11, tz = 0.09,U = 0.33 in units
of eV. This value of α ≈ π/2 produces a strong easy-axis
anisotropy, realized in a tetragonal elongation of octahedra
consistent with |t | > |tz|, as estimated for Sr3Ir2O7 [32].

The dynamical spin structure factor

Sμν (q, ω) =
∫ ∞

∞
dteitω

〈
Sμ

q (t )Sν
−q(0)

〉
, (17)

where Sμ
q = 1√

N

∑
r Sμ

r eiq·r, is obtained from the dynamical
spin susceptibility given in Eqs. (12) and (13). Figure 2
shows the out-of-phase (qz = π ) transverse (OT) response,
Sxx(q, ω) = Syy(q, ω), and the out-of-phase longitudinal (OL)
response, Szz(q, ω), for U = 0.33, Uc ≈ 0.28, and 0.23 eV.
The in-phase, or qz = 0, transverse (IT) response is not shown
because it is practically identical to the OT response [24].
This is a direct consequence of the strong easy-axis effec-
tive interlayer exchange that suppresses the single magnon
tunneling between the two layers. In the large-U limit,
the effective interlayer exchange includes only Ising and
Dzyaloshinskii-Moriya exchange interactions that do not split
the two degenerate single-layer modes. This anisotropy is
also responsible for the large spin gap revealed by RIXS
measurements [24]. No excitation peak is found below the
particle-hole continuum in the in-phase longitudinal response.
To match the RIXS peak at ( π

2 , π
2 ), we added the intralayer

next nearest neighbor hopping 0.012 eV ≈ t/10, which only
changes the eigenenergy in the above argument. The overall
dispersion curve for U = 0.33 eV, shown in Figs. 2(a) and
2(b), is consistent with the RIXS measurements [24–27]. The
resultant charge gap (≈130 meV) is also consistent with the
experimental observation [23]. The structure of the continuum
reflects the underlying electron bands. Unfortunately, the res-
olution of the reported RIXS data [24–27] is not enough to
extract structures in the continuum. It would be of interest to
compare the structure and the onset of the continuum to our
calculation.

The most salient feature of the results shown in Fig. 2 is
the sharp OL mode near q⊥ = (0, 0) and (π, π ). Interestingly,
the sharp OL mode appears only at restricted wave vectors
because the particle-hole continuum exists in the same energy
scale. The OL mode becomes gapless at U = Uc, while the
OT mode remains gapped, as shown in Figs. 2(c) and 2(d);
the exciton peaks in the band insulator for U < Uc remain
sharp, as shown in Figs. 2(e) and 2(f). The U dependence
of the energy of this OL mode has important consequences
for its stability. While the kinematic constraints do not allow
for its decay into two transverse modes for the parameters of
Sr3Ir2O7, the fact that ωL (ωT ) is of order U (t2/U ) in the
large-U/t limit implies that the decay becomes kinematically
allowed above a certain value of U . In other words, the sharp
OL mode that we predict for Sr3Ir2O7 is protected by the
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FIG. 2. Dynamical spin structure factors of the out-of-phase mode: (a) in-plane or transverse Sxx (q, ω) = Syy(q, ω) component and (b) out-
of-plane or longitudinal component Szz(q, ω) for U = 0.33 eV; (c) Sxx (q, ω) = Syy(q, ω) and (d) Szz(q, ω) for U = Uc ≈ 0.28 eV; and (e)
Sxx (q, ω) = Syy(q, ω) and (f) Szz(q, ω) for U = 0.23 eV. The hopping parameters were chosen to reproduce the RIXS data of the bilayer iridate
Sr3Ir2O7 [24–27]: t = 0.11 eV, tz = 0.09 eV, α = 1.45, and the intralayer next nearest neighbor hopping 0.012 eV. The broadening factor is
η = 10−4 eV. Intensity larger than the maximum value in the scale (color) bar is plotted in the same color.

large spin gap generated by the easy-axis anisotropy and by
the relatively small value of U/t . Thus, the sharpness of the
OL peak and the fact that ωL and ωT are comparable energy
scales are clear indicators of the proximity of Sr3Ir2O7 to
the QCP at U = Uc. Because the real material has a small
interbilayer hopping, the dimension of the effective theory
that describes this QCP, D = 3 + 1, coincides with the upper
critical dimension (Gaussian fixed point). This means that the
mean field theory adopted here is correct up to logarithmic
corrections.

Finally, we note that higher order processes through the
Jeff = 3/2 orbitals induce further neighbor hopping terms
that can make the noninteracting system semimetallic without
the FS nesting. In this case, a first-order metal-to-insulator

transition occurs at a finite value of U [32], implying that
there are two alternative scenarios for suppressing the AFM
order via reduction of the coupling strength (U/t) in bilayer
iridates. For the case of Sr3Ir2O7, we predict that, if the
material transitions into a band insulator, a QCP must exist
at Uc ≈ 0.28 eV, which is only 15% smaller than the esti-
mated value (U = 0.33 eV) at ambient pressure. The coupling
strength U/t can be reduced by applying high pressure [33].
In this scenario, the LM becomes soft at U = Uc. In con-
trast, if the transition is of first order, the material becomes
metallic without the softening of the LM. While absent in a
metallic phase, the characteristic Sz = 0 exciton peak appears
in the bilayer spin-orbit band insulator for U < Uc, as shown
in Fig. 2(f).
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VI. SUMMARY AND DISCUSSION

We have reported the existence of a sharp LM in anti-
ferromagnetic bilayer Mott insulators with large spin-orbit
coupling. Whenever the noninteracting system is a band in-
sulator, Sz = 0,±1 excitons emerge from the particle-hole
continuum for an infinitesimally small value of U . For ma-
terials with easy-axis anisotropy, such as the bilayer iridate
Sr3Ir2O7, the Ising-like AFM ordering results from the con-
densation of Sz = 0 excitons at a critical value U = Uc. If
the noninteracting system is a metal with FS nesting, the
formation and condensation of the particle-hole pairs that pro-
duce the magnetic moments occur simultaneously at Uc = 0+.
Similarly to the case of single-layer Mott insulators, such as
Sr2IrO4, the LM is absent in the resulting AFM state.

We emphasize that the LM that we discussed in this work
exists as a sharp mode only close enough to the QCP between
the AFM phase and the paramagnetic band insulator. A similar
QCP still exists in the large-U limit, where it divides the AFM
state from a quantum paramagnetic spin state, whose mean
field description is a product state of rung singlets [25], which
is adiabatically connected with the band insulator. Note that
such a mean field state can only be captured by expanding the
variational space of product single-site sates that is assumed
by the conventional AFM mean field approach used in this
work. However, our estimate of the hopping amplitudes for
Sr3Ir2O7, consistent with the effective model obtained from
the three-orbital model [32], leads to Jz/J = (tz/t )2 ≈ 0.67 in
the strong coupling limit. This value of the exchange coupling
ratio is significantly smaller than the critical value (Jz/J )c.
The bond-operator mean field theory gives (Jz/J )c = 4 for the
isotropic and the easy-axis cases [16,25], while the exact value
for the SU(2) invariant case is very close to (Jz/J )c = 2.5221
according to quantum Monte Carlo simulations [34]. There-
fore, as we discussed in the previous section, the sharp LM
mode does not survive in the large-U limit of the Hubbard
model of Sr3Ir2O7 (the LM loses its sharpness far enough
from the QCP because the kinematic constraints allow it to
decay into pairs of transverse modes). Moreover, as shown in
Fig. 2, the sharp LM appears only at restricted wave vectors
because the particle-hole continuum exists in the same energy
scale. This characteristic feature of Sr3Ir2O7 indicates that
this material is an excitonic insulator [28–30] near the critical
point U = Uc. In other words, the proximity of Sr3Ir2O7 to
quantum criticality is caused by strong charge fluctuations,
which are absent in the pure spin model.

Finally, it is worth mentioning that the longitudinal mode
can also exist in bilayer Mott insulators with easy-plane
anisotropy. The corresponding XY -AFM state results from
the condensation of the Sz = ±1 excitons, while the Sz = 0
exciton remains gapped at U = Uc and becomes the LM for
U > Uc. The main difference is that this LM, also known
as “Higgs mode,” is critically damped in (3+1)D because it
is allowed to decay into two transverse magnons (Goldstone
modes) of the AFM state [11–13,15,35,36]. It is of great
interest to seek the sharp LM and the Higgs mode in other
physical systems. Recently, fermionic systems described by
bilayer Hubbard models have been realized in cold atoms [37],
implying that the exciton condensation that we have discussed
here can also be realized in these systems.

FIG. 3. (a) Free fermion propagator in the background of the
magnetic order: −G0(q), where q ≡ (q, iωn). (b) Bare interac-
tion vertex − 1

Nuβ
Vσ1σ4;σ2σ3 . (c) Bare and (d) RPA spin-charge

susceptibility.
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APPENDIX A: RANDOM PHASE APPROXIMATION (RPA)

In view of the U (1) invariance of H and of the ground state,
the transverse and longitudinal spin fluctuations are decoupled
from each other. The same is true for the charge fluctuations.
Consequently, we rewrite the (bare) interaction vertex in three
different forms which account for the longitudinal and trans-
verse spin fluctuations, respectively,

Hint = 1

2

∑
r

∑
{σi}

Vσ1σ4;σ2σ3 c†
σ1,rc

†
σ2,rcσ3,rcσ4,r, (A1)

where the interaction vertex takes three equivalent forms,

Vσ1σ4;σ2σ3 = 1

2
U

(
σ 0

σ1σ4
σ 0

σ2σ3
− σ z

σ1σ4
σ z

σ2σ3

)
(A2)

= 1

2
Uσ 0

σ1σ4
σ 0

σ2σ3
− Uσ+

σ1σ4
σ−

σ2σ3
(A3)

= 1

2
Uσ 0

σ1σ4
σ 0

σ2σ3
− Uσ−

σ1σ4
σ+

σ2σ3
, (A4)

σ 0 is the 2 × 2 identity matrix, and σ± = 1
2 (σ x ± iσ y).

We are ready to compute the dynamic spin-charge suscepti-
bility within the RPA. Figures 3(a) and 3(b) show the fermion
propagator and the bare vertex, respectively. The free fermion
Green’s function

G0(q, iωn) =
∑

n=±,σ=↑,↓

Pnσ (q)

iωn − εnσ (q)
(A5)

is represented by a solid line, where Pnσ (q) =
|Xnσ (q)〉〈Xnσ (q)| is the projector on the eigenstate |Xnσ (q)〉 of
the mean field Hamiltonian.
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The (bare) dynamic spin-charge susceptibility of the non-
interacting mean field Hamiltonian is given by

χ
(γ1,μ);(γ2,ν)
0 (q, iωn)

= 1

Nu

∑
k

∑
k,l

nF (εlσ ′ (k + q)) − nF (εkσ (k))
iωn − (εlσ ′ (k + q) − εkσ (k))

F (γ1,μ);(γ2,ν)
kσ ;lσ ′ ,

(A6)

where γ1, γ2 = A,B are sublattice indices and μ, ν = 0,±, z
are charge-spin indices. Here we have introduced the polar-
ization factor

F (γ1,μ);(γ2,ν)
kσ ;lσ ′ (k; q) = Tr

[
Pkσ (k)�μ

γ1
Plσ ′ (k + q)�ν

γ2

]

= 〈Xkσ (k)|�μ
γ1

|Xlσ ′ (k + q)〉〈Xlσ ′ (k + q)|�ν
γ2

|Xkσ (k)〉,
(A7)

with �μ
γ ≡ 1

2 (τ0 + εγ τz ) ⊗ σμ, where εγ takes the values 1
(−1) for γ = A(B), and τ0 and τz are the 2 × 2 identity
and the Pauli matrix of the sublattice space, respectively. The
diagram of χ0 is shown in Fig. 3(c). Because of the U (1) spin
rotation symmetry about the z axis, F (γ1,μ);(γ2,ν)

kσ ;lσ ′ (k; q) has the
following structure:

F (γ1,μ);(γ2,ν)

=

⎛
⎜⎜⎝
F (γ1,0);(γ2,0) 0 0 0

0 0 F (γ1,+);(γ2,−) 0
0 F (γ1,−);(γ2,+) 0 0
0 0 0 F (γ1,z);(γ2,z)

⎞
⎟⎟⎠.

(A8)

The same structure holds for χ
(γ1,μ);(γ2,ν)
0 , confirming that

the transverse spin fluctuations, longitudinal spin fluctuations,
and charge fluctuations are decoupled from each other. In the
following, we focus on the spin channel, which is of main
interest for this work.

Figure 3(d) represents the magnetic susceptibility at the
RPA level. The results are

χ+−
RPA(q, iωn) = 1

τ 0 − Uχ+−
0 (q, iωn)

χ+−
0 (q, iωn), (A9)

χ−+
RPA(q, iωn) = 1

τ 0 − Uχ−+
0 (q, iωn)

χ−+
0 (q, iωn) (A10)

for the transverse channel and

χ zz
RPA(q, iωn) = 1

τ 0 − U
2 χ zz

0 (q, iωn)
χ zz

0 (q, iωn) (A11)

for the longitudinal channel. Note that χ+−
RPA, χ−+

RPA, and χ zz
RPA

are 2 × 2 matrices in the sublattice space, while χ+−
0 , χ−+

0 ,
and χ zz

0 are the corresponding bare magnetic susceptibilities,
respectively.

APPENDIX B: EXCITON WAVE FUNCTION

We here investigate the wave function of the exciton
formed by multiple particle-hole pairs with Sz = 0. In the
large-U limit, it is mainly composed of a single particle-hole
pair because the energy cost of creating a particle-hole is of

FIG. 4. The particle-hole Green’s function and the T matrix un-
der the RPA.

order ∼U . The wave function of the pair is anticipated to
be a tightly bound state because the mean field bandwidth of
an electron/hole ∼t2/U is comparable to the binding energy
ζ t2

z /U , where ζ � 0.88 obtained by solving the pole equation
for the relevant set of the hopping parameters.

To determine the size of the bound state, we consider the
particle-hole Green’s function

iG (2)
(γ1σ1,γ

′
1σ

′
1 );(γ2σ2,γ

′
2σ

′
2 )(Q, ω; k, q)

=
∫ ∞

−∞
dteiωt 〈G|Tt c

†
γ1σ1

(
k − Q

2
, t

)
cγ ′

1σ
′
1

(
k + Q

2
, t

)

× c†
γ ′

2σ
′
2

(
q + Q

2
, 0

)
cγ2σ2

(
q − Q

2
, 0

)
|G〉. (B1)

The exciton gives rise to a pole at ω = ωL(Q) for the center-
of-mass momentum Q:

iG (2)
(γ1σ1,γ

′
1σ

′
1 );(γ2σ2,γ

′
2σ

′
2 )(Q, ω; k, q)

∼
ψγ1σ1;γ ′

1σ
′
1
(k)ψ∗

γ2σ2,γ
′
2σ

′
2
(q)

ω − ωL(Q) + i0+ + regular term, (B2)

where ψγ1σ1;γ ′
1σ

′
1
(k) = 〈G|c†

γ1σ1
(k − Q

2 )cγ ′
1σ

′
1
(k + Q

2 )|bQ〉, |bQ〉
is the exciton eigenstate with center of mass momentum Q,
and ωL(Q) is the exciton energy measured from the ground
state. The probability amplitude to find a hole with spin σ1 at
r1 and an electron with spin σ2 at r2 is obtained by Fourier
transforming the wave function ψγ1σ1;γ ′

1σ
′
1
(k):

ψσ1;σ2 (r1 ∈ γ1, r2 ∈ γ2)

= 〈G|c†
σ1

(r1)cσ2 (r2)|b〉

= eiQ·(r1+r2 )/2 1

Nu

∑
k

ψγ1σ1;γ2σ2 (k)eik·(r2−r1 ). (B3)

As shown in Fig. 4, the particle-hole Green’s function is
determined by the T matrix:

iG (2)
(γ1σ1,γ

′
1σ

′
1 );(γ2σ2,γ

′
2σ

′
2 )(Q, ω; k, q)

= iG(2)
(γ1σ1,γ

′
1σ

′
1 );(γ2σ2,γ

′
2σ

′
2 )(Q, ω; k, q)

+ iG(2)
(γ1σ1,γ

′
1σ

′
1 );(γ3σ3,γ

′
3σ

′
3 )(Q, ω; k, k′)

× (−i)T(γ3σ3,γ
′
3σ

′
3 );(γ4σ4,γ

′
4σ

′
4 )(Q, ω; k′, q′)

× iG(2)
(γ4σ4,γ

′
4σ

′
4 );(γ2σ2,γ

′
2σ

′
2 )(Q, ω; q′, q). (B4)
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Here iG(2) is the noninteracting particle-hole Green’s function

iG(2)
(γ1σ1,γ

′
1σ

′
1 );(γ2σ2,γ

′
2σ

′
2 )(Q, ω; k, q) =

∫ ∞

−∞
dteiωt 〈G|Tt c

†
γ1σ1

(
k − Q

2
, t

)
cγ ′

1σ
′
1

(
k + Q

2
, t

)
c†
γ ′

2σ
′
2

(
q + Q

2
, 0

)
cγ2σ2

(
q − Q

2
, 0

)
|G〉

(B5)

= δk,q

∫ ∞

−∞
dteiωt Gγ ′

1σ
′
1;γ ′

2σ
′
2

(
k + Q

2
, t

)
Gγ2σ2;γ1σ1

(
k − Q

2
,−t

)
(B6)

= δk,q

∫ ∞

−∞

dν

2π
Gγ ′

1σ
′
1;γ ′

2σ
′
2

(
k + Q

2
, ν + ω

2

)
Gγ2σ2;γ1σ1

(
k − Q

2
, ν − ω

2

)
(B7)

= iδk,qδσ1σ2δσ ′
1σ

′
2

[[
P1,σ ′

1

(
k + Q

2

)]
γ ′

1σ
′
1;γ ′

2σ
′
2

[
P−1,σ1

(
k − Q

2

)]
γ2σ2;γ1σ1

ω − (
ε1,k+ Q

2
− ε−1,k− Q

2

)

−
[
P−1,σ ′

1

(
k + Q

2

)]
γ ′

1σ
′
1;γ ′

2σ
′
2

[
P1,σ1

(
k − Q

2

)]
γ2σ2;γ1σ1

ω + ε1,k− Q
2

− ε−1,k+ Q
2

]
, (B8)

where Ps,σ (k) = |Xs,σ (k)〉〈Xs,σ (k)| is the projector to the (s, σ ) eigenstate at k. In the RPA (see Fig. 4), the T matrix is given by

−iT(γ3σ3,γ
′
3σ

′
3 );(γ4σ4,γ

′
4σ

′
4 )(Q, ω; k′, q′) = i

U

2
σ z

σ3σ
′
3
σ z

σ4σ
′
4
δγ3γ

′
3
δγ4γ

′
4
δγ3γ4 + i

U

2
σ z

σ3σ
′
3
δγ3γ

′
3
(−i)χ (γ3z,γ4z)

RPA (Q, ω)i
U

2
σ z

σ4σ
′
4
δγ4γ

′
4
. (B9)

Note that the bare Hubbard interaction is written in terms
of the longitudinal component of the spin operator, Hint =∑

r[(1/4)(nr)2 − (Sz
r )2] with nr = ∑

σ c†
σ (r)cσ (r) and Sz

r =
(1/2)

∑
σ σcσ (r)†cσ (r). Under the RPA, the T matrix that

describes the renormalized interaction between electrons in-
cludes contributions from longitudinal spin fluctuations.

Let us consider the exciton at Q = 0, which has the lowest
energy ωL(Q = 0) ≡ ωL. Near the exciton pole, the longitudi-
nal RPA susceptibility is given by

χ
(γ2z,γ ′

2z)
RPA (0, ω) ∼ − (−1)γ2+γ ′

2

U 2�′(ωL )

1

ω − ωL + i0+ , (B10)

where

�′(ωL ) = ωL

4(UM )3

1

Nu

∑
k∈BZ

z3
k

(
1 − z2

k

)
[
1 − (

ωL
2UM

)2
z2

k

]2 (B11)

for U > Uc. In the vicinity of the critical point Uc, it
takes the asymptotic form �′(ωL ) � UM 1

Nu

∑
k |bk|−3 ∝√

U − Uc. The longitudinal RPA susceptibility, therefore, ac-
quires a diverging spectral weight ∝ 1/

√
U − Uc, implying

strong longitudinal spin fluctuations. In the large-U limit,

�′(ωL ) → 1

Nu

∑
k

2b2
k(

ζ t2 + 2b2
k

)2 ∼ O(1), (B12)

and the spectral weight of the longitudinal RPA susceptibility
approaches zero as U −2.

According to Eq. (B9), the exciton mode also appears as a
pole of the particle-hole Green’s function. For instance,

G (2)
(γ1σ1,γ

′
1σ

′
1 );(γ2σ2,γ

′
2σ

′
2 )(0, ω; k, q)

∼ 1

ω − ωL + i0+
1

�′(ωL )
σ1σ2δσ1σ

′
1
δσ2σ

′
2

×
∑
γ3

(−1)γ3 G(2)
(γ1σ1,γ

′
1σ1 );(γ3σ1,γ3σ1 )(0, ωL; k, k)

×
∑
γ4

(−1)γ4 G(2)
(γ4σ2,γ4σ2 );(γ2σ2,γ

′
2σ2 )(0, ωL; q, q)

+ regular terms. (B13)

The spectral weight of the exciton pole is equal to the projec-
tion of the exciton wave function to the two-magnon sector

ψγσ ;γ ′σ ′ (k)

= σ√
�′(ωL )

δσσ ′
∑
γ3

(−1)γ3 G(2)
(γ σ ;γ ′σ );(γ3σ,γ3σ )(0, ωL; k, k).

(B14)

For each combination of sublattices, it reads

ψAσ ;Aσ ′ (k) = σ

2
√

�′(ωL )
δσσ ′

(
1 − z2

k

)
× ε1,k − ε−1,k

ω2
L − (ε1,k − ε−1,k )2

, (B15)

ψBσ ;Bσ ′ (k) = −ψAσ ;Aσ ′ (k), (B16)

ψAσ ;Bσ ′ (k) = σ√
�′(ωL )

δσσ ′x∗
σk

√
1 − z2

k

2

×
[

1 − σ zk

ωL − (ε1,k − ε−1,k )
+ 1 + σ zk

ωL + ε1,k − ε−1,k

]
,

(B17)

ψBσ ;Aσ (k) = ψ∗
Aσ̄ ;Bσ̄ (k). (B18)

In the large-U limit, ψAσ ;Aσ ′ (k) ∼ O(U −1), ψA↑;B↑(k) =
ψ∗

B↓;A↓(k) ∼ O(U −2), and ψA↓;B↓(k) = ψ∗
B↑;A↑(k) ∼ O(1).

The asymptotic form of the nonzero amplitude reads

ψA↓;B↓(k) = ψ∗
B↑;A↑(k)

= 1√
�′(ωL )

2b∗
k

ζ t2 + 2
(
b2

k − minq b2
q

) , (B19)
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FIG. 5. Probability distribution |ψ↓↓(0, r2)|2 for several strengths of the on-site coupling U . A hole with spin ↓ is assumed located at r1 = 0
on layer 1. The critical coupling is Uc ≈ 0.277 eV for the hopping parameters relevant to Sr3Ir2O7, while the on-site Hubbard interaction is
estimated to be U = 0.33 eV (= 1.19Uc ) for the material. M is the magnitude of the local ordered magnetic moment. The distribution function
|ψ↓↓(0, r2)|2 is normalized for each value of U , so that the sum over r2 is equal to one.

where ζ � 0.88 determines the exciton binding energy Eb ≡
ωph − ωL � ζ t2

z /U . The amplitude ψ↓↓(r1 ∈ A, r2 ∈ B) de-
termines the spectral weight of the configuration with one
hole with spin ↓ at r1 ∈ A and one electron with spin ↓ at
r2 ∈ B. Since the ordered moment is −M on sublattice A and
M on sublattice B, the exciton is created by moving either
↓ spin from sublattice A to B or a ↑ spin from sublattice
B to A. On the condition that a hole with spin ↓ is pinned

at r1 = 0 (sublattice A and layer 1), the distribution of the
spectral weight, i.e., |ψ↓↓(0, r2)|2, is shown in Fig. 5. In the
large-U limit, a hole and an electron occupy different sublat-
tices [Fig. 5(h)]. The bound state with the particle-hole pair
occupying a vertical bond has the largest spectral weight and
the probability of finding the particle and the hole on different
layers is higher than the probability of finding them on the
same layer. As a result of the strong binding energy relative to
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the bandwidth of the single electron or hole (∼Eb), the size of
the bound state is comparable to one lattice constant.

Figure 5 shows the evolution of the real space distribution
of the particle-hole pair as a function of U . The ordered
magnetic moment, M = |〈G|Sz

r |G〉| decreases upon reduc-
ing U/t within the ordered phase [Figs. 5(e)–5(g)] and the
probability of finding the particle and the hole on the same
site increases. Thus, Sz

r |G〉 provides a reasonably good ap-
proximation of the exciton eigenstate. At U = Uc, we find
ψA↓;B↓(k) = ψ∗

B↑;A↑(k) = 0 [Fig. 5(d)]. The magnetically
ordered state emerges as a superposition of the nonmag-
netic ground state of the band insulator and states containing
multiple coherent excitons. The choice of the phase factor car-
ried by each condensing exciton, equal to 0 or π , corresponds
to the Z2 time-reversal symmetry breaking (M > 0 or <0 on

either sublattice). Note that the magnetic moments on the two
sublattices must be opposite because of the relative “−” sign
between ψσ ;σ (r1 ∈ A, r2 ∈ A) and ψσ ;σ (r1 ∈ B, r2 ∈ B); i.e.,
the system develops Néel magnetic ordering for U > Uc.

The time-reversal symmetry is restored as U de-
creases further below Uc (in the band insulator), and
the wave function of the exciton becomes extended [see
Figs. 5(a)–5(c)], as expected from the reduction of the bind-
ing energy. For zero binding energy (ζ = 0), the integral

1
Nu

∑
k ψA↓;B↓(k)eik·(r2−r1 ) that determines the real space

wave function ψ↓↓(r1 ∈ A, r2 ∈ B) is dominated by the sin-
gular points k0 that minimize the particle-hole excitation
energy 2

√
δ2 + b2

k. In the simplest case where there is a unique
singular point k0, ψ↓↓(r1 ∈ A, r2 ∈ B) ∝ 1

Nu
eik0·(r2−r1 ) takes

the form of a plane wave.
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