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Energy diffusion and absorption in chaotic systems with rapid periodic driving
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When a chaotic, ergodic Hamiltonian system with N degrees of freedom is subject to sufficiently rapid
periodic driving, its energy evolves diffusively. We derive a Fokker-Planck equation that governs the evolution
of the system’s probability distribution in energy space, and we provide explicit expressions for the energy
drift and diffusion rates. Our analysis suggests that the system generically relaxes to a long-lived prethermal
state characterized by minimal energy absorption, eventually followed by more rapid heating. When N > 1,
the system ultimately absorbs energy indefinitely from the drive, or at least until an infinite temperature state is

reached.
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I. INTRODUCTION

Time-periodic driving facilitates a rich range of classical
and quantum dynamical behaviors, including synchronization
and resonance [1-4], localization [5-8], and chaos [1,9]. Re-
cent theoretical and experimental work has aimed to identify
nonequilibrium phases of matter that might emerge in pe-
riodically driven systems [10-12]. Phenomena such as time
crystallization [11-17] and prethermalization [12,17-28] re-
veal that periodic driving can stabilize systems in a variety of
interesting and useful states.

Energy absorption poses a potential obstacle to such sta-
bilization of nonequilibrium states of matter. A driven open
system in a nonequilibrium steady state attains a balance
in which energy absorbed from the drive is dissipated into
an environment, such as a thermal bath. But if a system is
isolated, save its interaction with the drive, then maintaining
a stable state requires the suppression of energy absorption
from the drive. Much work has been devoted to understanding
energy absorption and the conditions under which it might
be suppressed, in periodically driven, isolated classical and
quantum systems [18,20,23-25,29-39].

In this paper, we study the general problem of energy ab-
sorption in isolated classical chaotic systems subject to rapid
periodic driving. We argue that the energetic dynamics of
such systems are diffusive, and we derive a Fokker-Planck
equation for the evolution of the system’s energy probability
distribution, n(E, t). The drift and diffusion coefficients in this

*whodson@umd.edu
Tcjarzyns @umd.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

2643-1564/2021/3(1)/013219(9) 013219-1

equation, characterizing energy absorption and the spreading
of the energy distribution, are given explicitly in terms of the
dynamics of the undriven system—much as in the case of
ordinary linear response theory (LRT) [40] but without the as-
sumption of weak driving. For many-body systems, our results
suggest a scenario marked by three stages: initial relaxation to
an equilibriumlike prethermal state [12,18-28], followed by a
long interval of minimal energy absorption, and finally rapid
absorption toward an infinite-temperature state.

Our description provides a comprehensive, quantitative ac-
count of energy absorption in rapidly and periodically driven
chaotic systems. It reveals how chaos in phase space fa-
cilitates stochastic energy evolution, how energy diffusion
leads to the breakdown of the prethermal regime, and how
energy absorption rates are determined by the underlying, un-
driven Hamiltonian dynamics. Our framework also suggests
a generic explanation for the exponential-in-frequency sup-
pression of energy absorption observed in a range of systems
[12,18,20,23,24,27,28,31,35,36,39]. Finally, we argue that the
classical results that we obtain are relevant to energy absorp-
tion in quantum systems, in an appropriate semiclassical limit.

In Sec. I1, we define the problem we will study. In Sec. III,
we argue that the energy of a rapidly driven chaotic system
evolves diffusively, and we derive the Fokker-Planck equation
that describes this evolution. In Sec. IV, we analyze energy
absorption and prethermalization in the context of our energy
diffusion model. In Sec. V, we briefly consider the quantum
counterpart of our classical problem, and we conclude in
Sec. VL.

II. SETUP

Our object of study is a classical Hamiltonian system with
N > 2 degrees of freedom. At time ¢, the microscopic state of
the system is specified by a phase space point z; = z = (q, p),
where the N-vectors q and p specify canonical coordinates
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and momenta. The system evolves under Hamilton’s equa-
tions of motion, generated by a Hamiltonian H = H(z, t):

dq 0H dp  0H

dt  dp dt  dq’
For an ensemble of trajectories, the phase space probability
distribution p(z, t) obeys the Liouville equation,

ap _

ar
where {-, -} denotes the Poisson bracket [41]. We take H(z, )
to be a periodic function of time, with period 7', and we
decompose this Hamiltonian into its time average Hy(z) =
T-! fOT dt H(z,t), and a remainder V(z,1) =V (z,t +T)
with vanishing average:

H(z,t) = Hy(z) + V(z,1). 3)

We will refer to Hy(z) as the bare or undriven Hamiltonian,
and to V(z, t) as the drive. The former determines the evolu-
tion of the system in complete isolation, that is, when V = 0.
We define the system’s energy E (¢) to be the bare Hamiltonian
evaluated at z;: E(t) = Hy(z;). When V = 0, the energy is
a constant of the motion: any trajectory z, is constrained to
evolve on an energy shell, that is, a level surface of Hy(z). The
evolution of the energy when V £ 0 will be our central focus.
The magnitude of the drive V (z, ¢) is arbitrary; in particular,
we do not assume it to be small.

We assume that the undriven dynamics are chaotic and
ergodic on each energy shell of Hy. Such dynamics exhibit
mixing as trajectories diverge from one another exponentially
with time [9]. This leads to a loss of statistical dependence be-
tween states of the system at different times, as reflected in the
decay of correlations—in effect, the system loses its memory
of previously visited states. After a characteristic mixing time,
any smooth initial distribution on the energy shell evolves to
a distribution that for practical purposes is microcanonical,
or thermal [40,42]. Thus chaos offers a way to understand
the self-thermalizing properties of many-body systems such
as gases and liquids, while also providing low-dimensional
analogs, such as chaotic billiard systems, that are accessible
to numerical or analytical study.

We are interested in the limit of high driving frequency
=2 /T. When w — o0, the effect of the drive averages to
zero over each period, as the system cannot appreciably react
to the drive in such a short time. In this limit, the evolution
generated by the driven Hamiltonian approaches the undriven
evolution: For given initial conditions zp, and over a fixed
time interval 0 < ¢ < 7, the trajectory z, that evolves under
H(z,t) converges, as @ — 00, to the trajectory z° that evolves
under Hy(z) [43,44]. This limit can be attained regardless of
the strength of the drive, V(z,¢). In our case, we assume w
is sufficiently high such that driven and undriven trajectories
remain close over timescales characteristic of the decay of
correlations.

These considerations lead to the following picture. For
sufficiently short times, energy is approximately conserved
and the driven trajectories z; generated by H(z, t) are similar
to the undriven trajectories z° generated by Hy(z), allowing us
to use the latter to estimate correlation functions that will arise
in our analysis. These correlation functions, as we shall see,

ey
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will in turn describe how the system absorbs energy from the
external drive on much longer timescales.

III. ENERGY DIFFUSION

Given the assumptions mentioned in Sec. II, we now argue
that the energy of the driven system evolves diffusively. For
simplicity, we consider monochromatic driving:

V(z, 1) = V(z)cos(wr). )

Our analysis can be generalized to arbitrary time-periodic
driving by decomposing V(z,¢) in a Fourier series with fun-
damental frequency w.

A. Argument for energy diffusion

To begin, we consider a system that evolves over a time
interval 0 < ¢t < At, from initial conditions zy sampled from
a microcanonical distribution at energy Ey:

1
0(z0,0) = pg,(20) = m(S(EO — Hy(zp)). 5

Here

0
(E)= o = /der(Ho(Z) _E) ©)

is the classical density of states,

QE) = / d20(E — Hy(2)) 7)

is the phase space volume enclosed by the energy shell E,
which we assume to be finite for all £, and the integrals
are over phase space. Let AE(zp) denote the net change in
the system’s energy from ¢t =0 to t = At. By Hamilton’s
equations, AE (zp) is the time integral of the power

dE  d . g

e EHo(z,) = —cos(wt)V (z), ®
where V (z) = {V, Hy}. The quantity AE can be viewed as a
random variable, whose value is determined by the sampled
initial conditions zy. Understanding the statistics of AE in
the high-frequency driving regime, for an appropriate choice
of At (to be clarified below), will be the key to establishing
diffusion in energy space.

[We note in passing that if the undriven Hamiltonian has
the form Hy = Zn(pi /2my,) + Up({q,}) and if the drive V de-
pends on coordinates {q,} but not momenta {p,}, then Eq. (8)
becomes dE /dt = Zn F, - v,, where F, is the driving force
acting on the nth particle, and v, is that particle’s velocity.]

We now explicitly assume the driving is rapid. To begin,
we impose the condition

T < tc(Ep), 9

where T = 27 /w is the drive period and 7¢(E)) is a character-
istic timescale over which chaotic mixing on the energy shell
Ey produces the decay of correlations. Heuristically, Eq. (9)
implies that a trajectory z, travels only a negligible distance
during one period of driving. This condition produces the av-
eraging over oscillations that (as mentioned in Sec. II) results
in driven trajectories z; resembling their undriven counterparts
z?. Let us now choose At so that over the interval [0, At] the
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driven trajectories in our ensemble remain close to the initial
energy shell Ey. Chaotic mixing ensures then that a micro-
canonical distribution is approximately maintained. Thus for
any t € [0, At], the ensemble of points z, are approximately
distributed according to the initial microcanonical ensemble.

With this picture in mind, let us divide the time inter-
val [0, At] into M > 1| subintervals of equal duration §¢ =
At /M, and consider AE = Zi SE; as a sum of subinterval
energy changes §E;, i =1,2---M. Each increment §E; is
itself a random variable, determined by integrating the power
Eq. (8) along the trajectory z; over the subinterval. By the
arguments of the previous paragraph, the §E;’s have nearly
identical, microcanonical statistics, provided we choose &t
(and therefore also At) to be an integer multiple of the driving
period T to ensure that each subinterval begins at the same
phase of the drive.

Chaotic mixing on the energy shell Ey produces the de-
cay of correlations. Let us further choose &t to be longer
than the characteristic correlation time t-(Ey), so each §E; is
approximately statistically independent from the others. The
energy change AE is then a sum of M > 1 approximately
independent and identically distributed increments S§E;: the
system effectively performs a random walk on the energy axis.
By the central limit theorem, AE is a normally distributed
random variable, whose mean and variance grow (for fixed
4t) in proportion to the number of increments M, equivalently
the time elapsed At.

The statistical behavior just described is characteristic of a
diffusive process in energy space, motivating us to model it by
a Fokker-Planck equation [45]. Letting

m&wz/ﬁw@mm—Emmo (10)

denote the energy distribution, we postulate that the time
evolution of 7 is given by

an

9 2
— = —B—E(gm) + (g2m). (1D

a

ot 2 JE?
The drift and diffusion coefficients g;(E, w) and g>(E, w)
characterize, respectively, the rate at which the distribution »
shifts and spreads on the energy axis; see Egs. (13) and (14)
below. These coefficients depend on the system energy £ and
the driving frequency w. Energy diffusion and its description
in terms of the Fokker-Planck equation have been studied
in various contexts involving externally driven Hamiltonian
systems [32,46-56]. Before deriving expressions for g; and
&> in the high-frequency driving regime, it is worth examining
the central role that a separation of timescales plays in our
analysis.

We have assumed, after Eq. (9), that A¢ is much smaller
than the timescale tg(w, Ep) over which the energy of the
system changes significantly. This condition ensures that the
energy increments §E; have approximately identical micro-
canonical statistics. We have also assumed that the interval
At contains many subintervals of duration 8¢, and that §t >
tc(Ep), guaranteeing approximate statistical independence
among the increments 6E;. Thus, our analysis involves the
hierarchy of timescales:

T < te(Ep) K At L (o, Ey). (12)

Since Ty — 00 as w — 00, this hierarchy can be satisfied for
any particular energy shell Ey by setting w sufficiently large.
We conclude that Eq. (11) is valid over an interval of the
energy axis whose extent is determined by, and increases with,
the value of w.

The above arguments suggest that the energy diffusion
description is valid on a coarse-grained timescale of order
At. On shorter timescales, computing the fine details of the
system’s energy evolution requires the full Hamiltonian equa-
tions of motion Eq. (1). These details vary greatly from system
to system. However, as we will see, the characteristics of the
energy diffusion process ultimately depend only on a few key
details of these system-specific dynamics, as captured in the
coefficients g; and g.

B. Drift and diffusion coefficients
Under Eq. (11), an initial distribution n(E, 0) = §(E — Ey)
evolves after a time At < tg to a distribution n(E, At) with
mean and variance [45]:

Mean(E) = Ey + g1(Eo, w)At, (13)

Var(E) = g2(Ey, w)At. (14)

We can thus determine g, by calculating Var(E), the energy
spread acquired by an ensemble of trajectories with initial
energy Ey, evolved for a time At under the driven Hamilto-
nian. We perform this calculation in Sec. A 1 of the Appendix,
obtaining, in the limit of large w,

2(E, 0) = %S(w;E) > 0, (15)
S(w;E) = /oo dt e ™ C(t;E), (16)

where
Ce:B =@V -V@IE)  an

is the microcanonical autocorrelation function of the ob-
servable V (z). Specifically, the averages denoted by (-) are
computed by sampling initial conditions zg from a micro-
canonical ensemble at energy E, then evolving for time
t under Hy(z). By the Wiener-Khinchin theorem [57], the
Fourier transform of C(¢; E) is the power spectrum of V(z?)
at energy E, denoted by S(w; E). Note that Eq. (15) gives
g» entirely in terms of properties of the undriven system, as
C(t; E) and thus S(w; E) are defined in terms of the undriven
trajectories z..

In solving for g, we approximated driven trajectories z,
by their undriven counterparts z°. As a result, we expect that
Eq. (15) contains correction terms that become negligible in
the high-frequency limit @ — oo.

In Sec. A2 of the Appendix, we use Liouville’s theorem,
which expresses the incompressibility of phase space volume
under Hamiltonian dynamics [40] to obtain the following ex-
pression for the drift coefficient g; in terms of g,(E, w) and
the density of states X(E) Eq. (6):

E - L9 by 18
§1(E.0) = 7= —(8:X). (1)
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This result is a fluctuation-dissipation relation, similar to
others previously established for various driven Hamiltonian
systems [47-49,51-54].

Using Egs. (15) and (18), the Fokker-Planck Eq. (11) takes
the compact form

o _ 11[321(1)]. (19)
ot  40E E\Y
Equation (19) is our main result. It describes the stochastic
evolution of the system’s energy, under rapid driving, in terms
of quantities S(w; E') and X(F) that characterize the undriven
system.

As discussed earlier, we expect Eq. (19) to be valid over a
region of the energy axis whose extent depends on w. In the
next section, we assume o is sufficiently large that Eq. (19) is
valid over the entire energy axis [58].

IV. ENERGY ABSORPTION AND PRETHERMALIZATION

A. Energy absorption

We now consider energy absorption, focusing on many-
body systems. Under what conditions does the system absorb
energy from the rapid drive? Multiplying the Fokker-Planck
Eq. (11) by E and integrating over energy, we obtain

d(E)
dt
where (f) = [ dE nf for any f(E). Defining a microcanoni-

cal temperature 7, (E) via

1 0
— =, @1
T, OE

= (&1(E, w)), (20)

where s(E) = kglnX(E) is the microcanonical entropy and kg
is Boltzmann’s constant, Eq. (18) becomes
0g2(E, w)

giE,w) = 3E

[gz(E , ) + kgT}, } 22)

1
2k5T,
The expression in square brackets is an expansion of g,(E +
kT, w) for small kgT,, truncated after first order. For a
system with N degrees of freedom, the difference between E
and E + kgT,, corresponds to an energy change of kgT}, /N per
degree of freedom. When N >> 1 this change is negligible and
Egs. (15), (20), (22) give

d{E) _ <S(w;E)>
dt 4kpT, I’

= (23)

For a many-body system with an unbounded phase space,
such as a gas or liquid, the density of states X(E) increases
with energy, hence 7,,(E) > 0 and Egs. (15) and (23) imply
that the average energy of the system continually increases
with time, as expected intuitively.

If the phase space of the system is bounded, then we expect
T,(E) < 0 at some energies. For example, for N classical
spins described by Hy =B -, S,, T,(E) < 0 when E > 0.
Thus d(E)/dt can be negative. In this situation, we can view
the normalized density of states, & (E) = X(E)/ [dE"S(E"),
as the infinite temperature energy distribution, obtained
by considering the canonical energy distribution 7 (E)
Y(E)e E/ksTe in the limit 7, — oo. If g,(E) is strictly positive

for all E, ensuring that there are no insurmountable barriers
along the energy axis, then Eq. (19) describes an ergodic
Markov process, and - (E) is the unique stationary distri-
bution to which any initial distribution evolves as t — 0o
[59,60].

We thus identify two possible energetic fates of a many-
body system in the rapid driving regime. If the phase space
is unbounded, then the average energy of the system increases
indefinitely whereas if the system admits a normalized station-
ary distribution X (E), then the system evolves to this infinite
temperature distribution.

B. Prethermalization

In either case, the energy dynamics predicted by the energy
diffusion description relate to the phenomenon of prethermal-
ization. A driven system is said to prethermalize if it reaches
thermal equilibrium with respect to an effective Hamiltonian
on short to intermediate timescales before ultimately gaining
energy at far longer times [12,18-28]. In our case, if the
system is prepared in a nonmicrocanonical (i.e., nonequilib-
rium) distribution on a particular energy shell Ey, then after
a characteristic mixing time the distribution on this energy
shell becomes effectively microcanonical, i.e., prethermaliza-
tion occurs with respect to Hy, at nearly constant energy.
On longer timescales, the energy dynamics are governed by
the Fokker-Planck Eq. (19), and the system absorbs energy
from the drive V (¢) Eq. (23). For large w, this absorption can
be exceedingly slow, as the power spectrum S(w; E) decays
faster than any power of w~' for any smooth H, [61]. This
is consistent with observed exponential-in-frequency suppres-
sion of energy absorption in a range of classical and quantum
model systems [12,18,20,23,24,27,28,31,35,36,39]. Prether-
malization thus occurs when w lies deep within the tail of the
power spectrum.

Following the above-mentioned initial relaxation, energy
absorption is slow but does not vanish. As the system energy
E gradually grows, the intrinsic correlation time t¢(E') gener-
ically decreases with increasing particle velocities, hence the
power spectrum S(w; E') broadens. Eventually, at sufficiently
large E, the drive frequency might no longer be located in the
far tail of the power spectrum: This marks the onset of un-
suppressed energy absorption toward the infinite-temperature
state. If the phase space is bounded, then w can be chosen
so that energy absorption is suppressed on all energy shells;
in this case, energy absorption remains very slow throughout
the system’s evolution toward the infinite-temperature energy
distribution Z(E).

Energy absorption from periodic driving has also been
studied using the Floquet-Magnus (FM) expansion, which,
for time-periodic H(z,t), expresses the associated Floquet
Hamiltonian Hr(z) as a perturbative expansion in powers
of w™!. Hy is a time-independent Hamiltonian whose dy-
namics coincide with those of H(f) at stroboscopic times
t =0,T,2T.... At high frequencies and short timescales, the
evolution obtained by truncating the FM expansion at some
order is expected to be a good approximation of the exact
dynamics [18,44,62—-64]. See, e.g., the fourth-order (in o™
expression for Hr(z) derived in Refs. [44,62] for a system in
one degree of freedom. By contrast it appears that our results
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are not obtainable via the FM expansion. For smooth Hj, the
coefficient g,(E, w) decays faster than any power of ™' at
large w (as mentioned earlier), and thus cannot be described
accurately by an FM-like expansion in powers of ™. Indeed,
this might have been anticipated, as high-frequency driving
cannot induce unbounded energy absorption unless the FM
expansion diverges [18,21,33,63].

V. QUANTUM-CLASSICAL CORRESPONDENCE

Energy absorption, prethermalization, and relaxation to the
infinite temperature state have been documented for a variety
of periodically driven quantum systems [18,29,30,33,34,54].
It is instructive to ask how the classical energy diffusion
described by Eq. (19) might emerge, in agreement with
the correspondence principle, as the semiclassical limit of
quantum dynamics. We now briefly describe a model that
illustrates this correspondence; similar analyses may be found
elsewhere in the literature on energy diffusion [53,65].

Consider a quantum system governed by a Hamiltonian
Hy + V cos(wt), the counterpart of Eq. (3). Let us model the
system’s evolution as a random walk in the spectrum of 1-70,
with stochastic quantum jumps from one energy level to an-
other. By Fermi’s golden rule, the transition rate from energy
E to E £ hw is given by

s = — Vo Po(Ey) (24)
:I:—Zh mnl”P(Ly) ,

where V,,, = (m|V|n) is the matrix element of V associated
with the energy levels E,, and E,, of Hy; the overbar denotes an
average over a narrow range of matrix elements with E,, ~ E
and E, ~ E + liw; and p(E) = Z(E)/h" is the semiclassical
density of states. As i — 0, the spectrum of I-?o becomes
dense and our random walk model leads naturally to a de-
scription in terms of energy diffusion, with drift and diffusion
coefficients:

g1 = ([ —T)(hw), g =Ty +T )’ (25

A semiclassical estimate for matrix elements of quantized
chaotic systems [66,67] gives
-1 Sy (w _, E)

X(E)

where E = (E,, + E,)/2. Here, Sy(w; E) is the power spec-
trum for the classical observable V' and is related to S(w; E)
(the power spectrum for V) via § = *Sy. Combining re-
sults, we find that Eq. (25) converges to the classical results
Egs. (18) and (15) as i — 0. While this analysis is based
on a heuristic model that ignores quantum coherences, it
suggests that our classical energy diffusion picture is rele-
vant for understanding periodically driven quantum systems;
in particular, it provides a semiclassical explanation for the

observed exponential-in-frequency suppression of energy ab-
sorption [12,18,24,27,28,31,35,36,39].

Vi |* , (26)

VI. CONCLUSION

We have analyzed the diffusive energy dynamics of
chaotic, ergodic Hamiltonian systems under rapid periodic
driving. Observing that the system’s dynamics are only
weakly affected by very rapid driving, we have estab-
lished a Fokker-Planck equation governing the evolution of

the system’s energy probability distribution. Our analysis
predicts a generic, long-lived prethermal state, and for many-
body systems our results point to two possible energetic
fates: indefinite energy growth or relaxation to the infinite-
temperature equilibrium state. In the semiclassical limit, a
model of energy absorption for periodically driven, quantized
chaotic systems coincides with our purely classical energy
diffusion description.

A central feature of our Fokker-Planck equation is that the
drift and diffusion coefficients g; and g, are determined by the
undriven dynamics. A similar situation arises in LRT, where
transport coefficients, such as electrical conductivities, in a
system subject to weak time-periodic driving, are expressed
in terms of correlation functions computed in the absence of
driving [40]. In LRT, these results are obtained perturbatively
through a formal expansion in powers of the driving strength.
It is unclear whether our results can similarly be obtained
through a perturbative expansion. A natural candidate for a
small parameter in our case is the inverse frequency w™!, but
this seems to lead to the FM expansion, which as already
noted at the end of Sec. IV B is somewhat at odds with our
analysis. Both this discrepancy, and the question of whether
our results can be obtained through a formal perturbative
expansion, bear further investigation.

Low-dimensional billiard systems—in which a particle in
a cavity alternates between straight-line motion and specular
reflection off the cavity walls—offer an ideal testing ground
for the theory presented in this paper, as certain billiard
shapes are rigorously proven [68—70] to generate chaotic,
ergodic motion. Energy absorption in driven billiard systems,
sometimes known as Fermi acceleration, is a well-studied
phenomenon [32,52,71-74], although much of the existing
literature focuses on the case of slow driving. In a forthcoming
work, we will present numerical evidence for the validity of
the Fokker-Planck Eq. (19) for a particle in a chaotic billiard
subject to a spatially uniform, rapidly time-periodic force. For
this system, the driven and undriven trajectories of the particle
can be computed to machine precision and Eq. (19) can be
solved analytically, allowing for an especially precise test of
the energy diffusion description.

Our results may also be tested for previously studied many-
body classical systems, such as a many-body generalization
of the kicked rotor model [9,75] that exhibits unbounded
energy absorption in a range of parameter regimes [25,37,38].
Energy absorption has also been studied in the classical driven
Heisenberg spin chain [4,20,23]. For these models and others,
we expect our analysis to apply only if the time-averaged
Hamiltonian H, generates chaotic and ergodic dynamics.
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APPENDIX

Here, we obtain an expression for the energy diffu-
sion coefficient g,, given by Eq. (15). We then derive the
fluctuation-dissipation relation Eq. (18).
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1. Calculation of g,

We begin with relation Eq. (14). According to this
equation, calculating g, amounts to computing Var(E), the
variance in energy acquired by an ensemble of trajectories
with initial energy Ej, evolved for a time At under the driven
Hamiltonian. Specifically, we consider an ensemble of driven
trajectories evolving from microcanonically sampled initial
conditions at ¢+ = 0. Upon integrating Eq. (8) along these
trajectories, we obtain (with no approximations so far)

At pAr
Var(E):/ / dt dt’ cos(wt) cos(wt")Creq(?, 1 Ep),
o Jo
(A1)

where Coeq(t, 15 Eo) = (V(2)V (z)) — (V@) (V(z)) is a
nonequilibrium correlation function and angular brackets (-)
denote an ensemble average. In the high-frequency limit v —
00, as driven trajectories z; approach their undriven coun-
terparts zf), Cheq(t, 1’5 Ep) can be replaced by the equilibrium
correlation function

C' = 1:E0) = V(@) (@) = (V@)V (=)

which depends only on the difference ¢ — ¢, due to the time-
translation symmetry of the microcanonical distribution under
the undriven dynamics.

Replacing Ceq(t, t'; Eg) by C(t' —t; Ep) in Eq. (Al), and
using standard manipulations to evaluate the double integral
(see, e.g., Ref. [76]), we arrive at

(A2)

1
Var(E) ~ ES(w; Ep)At, (A3)
where
o0 .
S(w; Ey) =/ dt e ™' C(t; Ep) (A4)
—00

is the power spectrum of V(z?), which is equal to the Fourier
transform of C(¢; Ey) by the Wiener-Khinchin theorem [57].
The approximation in Eq. (A3) contains correction terms that
are sublinear in At. Comparing Eq. (A3) with Eq. (14) and
relabeling Ey as E, we obtain Eq. (15), our final expression
for g».

2. Calculation of g;

We now derive Eq. (18), which expresses a fluctuation-
dissipation relation between the drift and diffusion coeffi-
cients g; and g,. To do so, we first note that the constant
function p(z) =1 is a stationary solution to the Liouville
Eq. (2). This reflects the incompressibility of phase space
volume under Hamiltonian dynamics (Liouville’s theorem)
[40]. Since p = 1 is stationary under the dynamics in phase
space, the corresponding (unnormalized) distribution in en-
ergy space should be stationary under the Fokker-Planck
equation. This energy distribution, obtained by marginaliz-
ing over the constant solution p = 1, is the density of states
Y(E)—see Eq. (6). Setting n(E,t) = X(E) as a stationary
solution of the Fokker-Planck Eq. (11), we have

d
O=_ﬁ|:gl (AS)

s 10 s
29E 27|

Thus the quantity in square brackets is constant as a function
of E. We label this constant by «:

10
=812 — -— (&)
o =g 535 82%)
We now aim to show that « = 0, which then immediately
implies the fluctuation-dissipation relation Eq. (18).
To proceed, we first use Eq. (A6) to eliminate g; from the
Fokker-Planck Eq. (11), obtaining

an a /n 10 5 a /n
o “aE(z) *3%E [gz OE (z)]
In the main text, in arguing that the system energy evolves
diffusively, we considered trajectories with a common initial
energy Ejp, and we arrived at the hierarchy of timescales
Eq. (12) required for the validity of the energy diffusion
picture: T K 1c(Ey) K At KL tg(w, Ey). Since tx — 00 as
w — 00, this hierarchy suggests that for a given, sufficiently
large value of w, there is a range of energies over which
Eq. (A7) is valid. This range can be enlarged by increasing
the value of w, but there might exist no value @* such that
Eq. (A7) is valid over the entire energy axis for all o > w*.
Thus let us fix the value of w and let [a, b] denote a finite inter-
val of the energy axis, such that Eq. (A7) is valid for energies
a < E < b. The existence of such an interval is sufficient to
establish that « = 0, as we now show.
Consider an ensemble of trajectories evolving under
H (z,t) from an initial phase space distribution that is uniform
up to a cutoff Ey € (a, b),

p(z,0) = cO(Ey — Ho(2)),

(A6)

(A7)

(A8)

where 6(-) is the unit step function and ¢~! = Q(Ey) is the
volume of phase space enclosed by the energy shell Ey (which
was assumed finite in Sec. III). The corresponding energy
distribution is

n(E,0) = /dz5(E — Hy)p(z,0)

=cX(E)0(Ey — E).

(A9)

Ho(z) = E,

,\- \
g
/ R
L4 ’ ~
; / \
! / )
; ;
! \ H
| 3 ;
5 4
\ Mol
¥

Ho(z) =2
t=0 t=6t

FIG. 1. Schematic depiction of phase space. On the left, the
initial distribution is uniform, p(z,0) = ¢ (shaded), up to a cutoff
energy Ey. The figure on the right shows the distribution a short time
later, after evolution under H(z, t); p(z, t) = ¢ in the shaded region.
Only in the annular region between the two energy shells a and b
(dashed circles) does p(z, t) vary with time for ¢ € [0, 6¢]. Asterisks
depict initial and final conditions for a representative trajectory.
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As this ensemble of trajectories evolves in time, the value
of the density p at any (z,t) is either ¢ or 0, by Liouville’s
theorem. For a sufficiently short but finite interval 0 < ¢ <
8t, p(z,t) remains constant outside the region of phase space
between the two energy shells Hy = a and Hy = b (see Fig. 1),
hence

cX(FE)

ifE <a
MEJ)Z{O

ifE > b, (A10)
We emphasize that Eq. (A10) is exact, and a direct conse-
quence of Liouville’s theorem.

Equation (A10) implies that for ¢ € [0, ¢] there is no net
flow of probability into or out of the energy interval [a, b]:

d b
0=— E,t)dE. All
dhln( ) (A1)

We can use Eq. (A7), which is valid in [a, b], along with
Eq. (A10) to evaluate the right side of Eq. (A11), obtaining

o=[el3) +3em ()]
=|—al= = —(= = wc,

=) T 28%E\T) |,
hence o = 0. By Eq. (A6), this establishes the fluctuation-
dissipation relation Eq. (18).
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