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Crossover in the dynamical critical exponent of a quenched two-dimensional Bose gas
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We study the phase-ordering dynamics of a uniform Bose gas in two dimensions following a quench into the
ordered phase. We explore the crossover between dissipative and conservative evolution by performing numerical
simulations within the classical field methodology. Regardless of the dissipation strength, we find clear evidence
for universal scaling, with dynamical critical exponent z characterizing the growth of the correlation length.
In the dissipative limit we find growth consistent with the logarithmically corrected law [t/ log(t/t0)]1/z, and
exponent z = 2, in agreement with previous studies. Decreasing the dissipation towards the conservative limit,
we find strong numerical evidence for the expected growth law t1/z. However, we observe a smooth crossover
in z that converges to an anomalous value distinctly lower than 2 at a small finite dissipation strength. We
show that this lower exponent may be attributable to a power-law vortex mobility arising from vortex-sound
interactions.
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I. INTRODUCTION

A many-body system quenched from a disordered to an or-
dered phase has long been a topic of interest in nonequilibrium
physics. Following the quench, the system relaxes toward a
new equilibrium configuration via a process of domain coars-
ening, with an associated growth of the correlation length
Lc(t ). The dynamical scaling hypothesis posits that at suffi-
ciently late times the system should approach a statistically
invariant state in which Lc becomes the only relevant length
scale. In this state, the correlation length is predicted to grow
∼t1/z, where z is the dynamical critical exponent [1]. In the
classical theory of phase-ordering kinetics coarsening is de-
scribed in terms of the dynamics and annealing of topological
defects, with conservation laws and dimensionality playing
a key role in determining z [1]. Extensive numerical studies
in two-dimensional (2D) systems such as Ising [2,3] and XY
[4–6] models provided broad support for this simple physical
picture.

In recent years, ultracold Bose gases have become an
established platform for the exploration of nonequilibrium
dynamics in a quantum setting. Owing to their exquisite tun-
ability, experiments were able to use these gases to probe
physics such as the Kibble-Zurek mechanism [7–10] and
quantum turbulence [11–14], as well as scale-invariant dy-
namics following a quench, similar to the scenario described
above [15–18]. In this last context, the concept of nonthermal
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fixed points [19–25] has emerged as a powerful theoretical
description of scaling behavior in which topological defects
appear to play a less crucial role than in phase-ordering
kinetics [25].

Theoretical studies addressed coarsening following an in-
stantaneous quench in 2D bosonic systems such as binary
[26] and spinor [27,28] condensates and driven-dissipative
systems [29–32]. However, in the apparently simple case of
a quenched scalar 2D Bose gas there remain open questions
regarding the link between coarsening behavior and con-
servation laws in the dynamics. These stretch back to the
well-known classification of dynamical universality classes
established in Ref. [33]. What the precise value of z is
for conservative dynamics, and how z varies with the dis-
sipation strength, remain important open questions. These
questions are of particular relevance in Bose gases, where
there exist both conservative and nonconservative classical
field descriptions of the dynamics [34]. The former con-
serve energy and particle number [35,36]. The latter include
dissipation [37–41]; they have no conserved quantities, and
in the dissipative limit they reduce to a purely relaxational
time-dependent Ginzburg-Landau equation. Hence, for non-
conservative dynamics the relevant dynamical universality
class would appear to be Model A [33]. There is general
theoretical and numerical agreement that for Model A, z = 2
with logarithmic corrections [5,6,42–44]. However, as noted
in Ref. [33], the coarsening behavior of a Bose gas with
conservative dynamics is theoretically less tractable. Previ-
ous numerical studies in this scenario measured contradictory
exponents z ∼ 1 [35] (with no quoted uncertainty) and z =
1.8(3) [24,45]; meanwhile, the authors of Refs. [46,47] stud-
ied the related conservative XY model and proposed that
z = 2 but with a different form of logarithmic corrections
to Model A. Simulations of coarsening in a nonconservative
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Bose gas have yielded exponents z = 2.0(2) [48] and z =
1.9(2) [24,45], although the weak dissipation included in
such works places these results between the purely dissipative
Model A and the conservative limit. Additionally, while the
authors of Refs. [24,35,48] did not include logarithmic cor-
rections, they also did not rule out their relevance. As such, an
overall picture remains elusive.

Here, we revisit the problem of coarsening in a 2D
scalar Bose gas after an instantaneous quench. We apply
two classical field methods—the (conservative) projected
Gross-Pitaevskii equation (PGPE) and the (nonconservative)
stochastic projected Gross-Pitaevskii equation (SPGPE)—and
explore the crossover between the conservative and fully dis-
sipative (Model A) limits. Our large-scale simulations, large
ensemble sizes, and careful analysis of fitting and system-
atic uncertainties allow us to tightly constrain the exponent
values, yielding strong evidence of a crossover in the value
of z between the dissipative and conservative limits. In the
dissipative limit, we find an exponent consistent with z = 2
with logarithmic corrections, in good agreement with previ-
ous results for Model A. For decreasing dissipation, we find
that the exponent decreases to z ≈ 1.7 in the conservative
limit for the parameters explored here. We analyze the vortex
motion and find that the decrease in z may be attributable
to a power-law vortex mobility resulting from vortex-sound
interactions.

II. SIMULATIONS

To describe a Bose gas at finite temperature, we adopt a
classical field model [34]

dψ = P
{
−i

α

h̄
LGPψdt + γ

h̄
(μ − LGP)ψdt + dW

}
, (1)

where LGP = −(h̄2/2m)∇2 + g|ψ |2. In this model, the gas is
represented with a complex scalar field ψ (r, t ), which in-
cludes contributions from all highly occupied single-particle
modes of the system, up to some chosen cutoff in the
single-particle energy spectrum. The gas is considered to be
in contact with a thermal reservoir at temperature T and
with chemical potential μ (corresponding to the above-cutoff
atoms), with which it can exchange both energy and parti-
cles. The projection operator P ensures that no population is
transferred outside the chosen subset of single-particle modes
during the evolution, while the constants m and g correspond
to the particle mass and the 2D interaction strength, respec-
tively. The dimensionless effective dissipation rate γ controls
the strength of the coupling between the system and the bath,
and dW (r, t ) is a complex Gaussian noise term satisfying
〈dW ∗(r, t )dW (r′, t )〉 = (2γ kBT/h̄)δ(r − r′)dt . With α = 1,
this model is known generally as the SPGPE [49]. The rate
γ in the SPGPE can be predicted a priori [34,41] in (near-)
equilibrium situations [50]. Far from equilibrium, quantitative
agreement with experiments is improved by treating γ as a
free parameter, typically with γ � 0.02 [7,50–52]. Here, by
varying γ freely we explore the range applicable to exper-
iments and also eludicate the conservative and dissipative
(Model A) limits. In the limit γ → 0, the coupling is removed,
and Eq. (1) reduces to the PGPE, for which both the energy
E = ∫

(h̄2|∇ψ |2/2m + g|ψ |4/2)dr and norm N = ∫ |ψ |2dr

FIG. 1. Evolution of the phase of the field ψ in the γ = 0 sys-
tem. Panels (a)–(c) correspond to times μt/h̄ ≈ {200, 2000, 20 000},
respectively. White (black) squares indicate the locations of vortices
(antivortices). See Appendix B and the Supplemental Material [56]
for movies of the evolution.

are conserved under time evolution. For γ 
 1, on the other
hand, the first term on the right-hand side of Eq. (1) be-
comes negligible, and the dissipative Model A is recovered.
In practice, we set α = 0 to access Model A, and use α = 1
otherwise.

In this work, we consider a system in a doubly periodic
square domain of size L × L. The properties of the thermal
bath (μ and T ) are held fixed, and only the dissipation rate
γ is varied. Two quench protocols are used depending on the
choice of γ . For γ > 0 we begin with ψ = 0 and instanta-
neously switch on the reservoir coupling at time t = 0, forcing
the classical field density to grow nonadiabatically. For γ = 0,
we populate a disk of modes in wave number space uniformly
and with random phase, while constraining the energy and
particle densities to both match the γ > 0 simulations at late
times (see Appendix A for further details). Both types of
quench initialize the system far from equilibrium, with a high
density of quantized vortices and antivortices.

The single-particle modes for our chosen geometry are
plane waves satisfying |k| < kcut for some wave-number cut-
off kcut. To prevent aliasing, the wave-number cutoff is set
to kcut = π/(2�x) (half the Nyquist wave number of the
grid), with a numerical grid spacing of �x ≈ 0.7 ξ , where
ξ = h̄/(mμ)1/2 is the healing length. We set T ≈ 2.1 μ/kB

and g ≈ 0.17 h̄2/m in Eq. (1), resulting in an occupation of
∼1 particle per mode at the cutoff [34]. This corresponds to
a quench deep into the ordered phase. Quenches for other
parameters, as well as quenches between two temperatures
within the ordered phase [5,43,53], are an interesting avenue
for future work. The γ > 0 SPGPE is solved numerically
using XMDS2 [54], while the γ = 0 PGPE is parallelized
on nVidia Tesla V100 GPUs using CUDA [55], allowing for
the significantly longer evolution time required in this limit.
The system and ensemble sizes are respectively chosen to
be L ≈ 262 ξ and N = 400 for γ > 0.1, and L ≈ 363 ξ and
N = 256 for γ � 0.1.

III. ANALYSIS

Following the quench, the Bose gas begins to relax and
the vortex number decreases via the annihilation of vortex-
antivortex pairs. This process is illustrated in Fig. 1, where the
phase, arg{ψ}, is shown at three times during the evolution of
the PGPE. The vortex density is seen to decrease over time,
allowing regions of phase coherence to develop.
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FIG. 2. Scaling behavior with α = 1, and dissipation rates (a) γ = 0 and (b) γ = 1. Ensemble-averaged scaling function F (r, t ) plotted
against radial distance r (i), both before (inset) and after (main frame) rescaling by the correlation length Lc(t ). The time at which each curve
has been sampled is denoted by the colorbar in the insets, and a grey dot signifies the threshold F0 = 0.5 used to define Lc. Evolution of
the mean correlation length Lc(t ) (ii) and vortex density nv(t ) (iii). In columns (ii,iii), the chosen scaling region is highlighted, and the best
power-law fit to the data within that region is shown as a black dashed line (offset for visibility). In these four panels, the left insets are
histograms showing the distribution of exponents z measured from fits to subsets of the data within the highlighted region, while the right inset
shows the compensated correlation length (ii) and vortex density (iii) as a function of time (horizontal axis same as for main frames).

As a measure of the spatial coherence of the field at a given
time, we calculate the first-order correlation function

G(r, t ) = 〈ψ∗(r + r′, t )ψ (r′, t )〉√
〈|ψ (r + r′, t )|2〉〈|ψ (r′, t )|2〉 . (2)

The angular brackets in this expression correspond to an aver-
age over both stochastic realizations and the coordinate r′. The
scaling hypothesis asserts that a universal form for this corre-
lator, G(r, t ) = Geq(r)F (r, t ), should emerge at late times [1].
Here, Geq(r) = G(r, t → ∞) is the equilibrium correlation
function and F is a scaling function that should have the form
F (r, t ) = F (r/Lc(t )), with F (0) = 1. The correlation length
Lc(t ) in this expression is defined as the average distance
over which equilibrium correlations are established at time t ,
corresponding to the average size of the phase domains.

We calculate F (r, t ) from our simulations by measuring
both G(r, t ) and Geq(r), where the second term is obtained
from a temporal and ensemble average of G(r, t ) once
the system has equilibrated (equilibration is inferred from
the stabilisation of the k = 0 mode population). Below the
Berezinskii-Kosterlitz-Thouless transition [57–59], we expect
that Geq(r) ∼ r−η for r 
 ξ , where 0 � η(T ) � 0.25 is a
temperature-dependent exponent [60]. We find that η ≈ 0.06
for our parameters, using a method described in Ref. [61].
We measure the correlation length Lc(t ) as the radial distance

satisfying F (Lc, t ) = F0, where we set F0 = 0.5 (Appendix C
provides further details regarding the choice of threshold).
This choice assists in excluding discretization effects at small
scales and finite-size effects at large scales. Similarly, we
should extract Lc(t ) over a scaling window in time that both
suppresses finite-size effects at long times and excludes ini-
tial transients. In practice we end the window as soon as
Lc(t ) > L/4 in any one of the simulations in the ensemble;
this stringent condition generally corresponds to an average
Lc(t ) of ∼L/10 at the end of the window. We start the window
as early as possible while ensuring that there are minimal
deviations from the unique scaling function F [r/Lc(t )] (we
quantify this in Appendix D).

IV. RESULTS

A. Evidence of universal scaling

The evolution of F (r, t ) is displayed in Figs. 2(a,i) and
2(b,i) for γ = 0 and γ = 1, respectively, and a collapse of
the data onto a single unique curve is evident over the time
windows shown. In Figs. 2(a,ii) and 2(b,ii), the evolution of
Lc(t ) is shown for the same two γ values, and in both cases the
data are well described by Lc(t ) ∼ t1/z within the highlighted
scaling window. To measure the exponent z in each case, we
fit a power law to the data across all possible subintervals
of �8 consecutive points within the scaling window. This
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FIG. 3. Measured dynamical critical exponent z as a function
of dimensionless dissipation rate γ . The error bars on each point
correspond to the fitting uncertainty described in the text.

yields a distribution of z values characterizing the statistical
uncertainty associated with temporal variations in the scaling
of Lc(t ) (left inset of each frame). We measure z to be the
mean of this distribution and estimate its statistical uncertainty
to be the standard deviation. For these two cases, we obtain
z = 1.68(4) (γ = 0) and z = 2.19(3) (γ = 1). As an illus-
tration of the goodness-of-fit, we also plot the compensated
correlation length L̄c(t ) = Lc(t )/Lfit

c (t ) [right insets of column
(ii)]. Its value remains close to unity within the highlighted
scaling window, and for some extent outside it.

Dynamical scaling is also expected to manifest in the decay
of the vortex density nv(t ) [24,62,63], with nv(t ) ∼ L−2

c (t ) ∼
t−2/z for randomly distributed defects. The mean vortex den-
sity is shown in Figs. 2(a,iii) and 2(b,iii), and a fit to the
data within the highlighted window is found in the same way
as for the Lc(t ) curves. The left and right insets, as in col-
umn (ii), correspond respectively to the histogram of z values
from repeated fits, and the compensated mean vortex density
n̄v(t ) = nv(t )/nfit

v (t ). From this data, we measure z = 1.74(3)
for γ = 0 and z = 2.32(7) for γ = 1; both of these values are
slightly larger than those obtained from the corresponding fits
to Lc(t ). We note, however, that measuring z from nv(t ) is a
less rigorous approach because the vortices are not guaranteed
to remain uniformly distributed. Indeed, within the scaling
windows we measure negative nearest-neighbor vortex corre-
lations, indicating a tendency toward dipole pairing of vortices
and antivortices (see Appendix E). This effect is stronger for
the larger γ .

B. Measurements of the dynamical critical exponent

We repeated the analysis shown in Fig. 2 for a range of γ

values, and find equally clear evidence for dynamical scaling
in all cases. As above, the exponent z is measured from fits to
both Lc(t ) and nv(t ) in each case. We find a smooth crossover
from z ≈ 2.3 in Model A (γ → ∞) to z ≈ 1.7 in the PGPE
(γ = 0), as shown in Fig. 3 [64]. This clearly shows that
the coarsening behavior of the system changes as one crosses
between Model A and conservative dynamics. We performed
several additional simulations and analyses to verify the ro-
bustness of this result (details are provided in Appendix C).

In the context of Model A dynamics, it has long been
argued that z = 2 with logarithmic corrections [43,44]. These
corrections are predicted to modify the scaling such that
[5,6,30,48]

Lc ∼ [t/ log(t/t0)]1/z, (3)

and hence Lc ∼ t1/z only in the limit t 
 t0 for some mi-
croscopic timescale t0. We find that a fit to Eq. (3) using
our Model A Lc(t ) data gives an exponent of z = 2 if we
choose t0 = 0.5 h̄/μ [65], although we note that the fit quality
is no better than an uncorrected power law. Nonetheless, this
establishes consistency between our results and the predicted
behavior for Model A. Log-corrected exponents fitted using
the same t0 at other values of γ are shown in Fig. 3, although
existing arguments for this form of log corrections only apply
to Model A [66].

C. Origin of z < 2

To elucidate the origin of the measured crossover in z, we
assemble movies of the evolution with vortex tracking (see
Appendix B and the Supplemental Material [56]). We observe
a distinct qualitative change in the dynamics of vortices as γ is
varied. For γ � 1, nearest-neighbor vortex dipoles travel ap-
proximately perpendicular to their separation vector, and can
traverse many times the average interdefect distance before
annihilating. By contrast, dipoles experience mutual attraction
when γ � 1, and hence vortices rarely travel beyond their
closest neighbors before annihilating. We additionally observe
that for γ � 1 the vortices rapidly evolve to a state where
mutual attraction becomes overwhelmed by fluctuations. It
therefore seems possible that the crossover in z may be ex-
plained in terms of vortex motion.

We start by assuming that (i) the correlation length grows
at a rate determined by the mean vortex velocity ūv ∼ dLc/dt ;
(ii) the characteristic vortex velocity is determined by inter-
vortex interactions and takes the form ūv ∼ μv(Lc)/Lc, where
μv(Lc) is the vortex mobility (see, e.g., Ref. [43]). We there-
fore must have

dLc

dt
∼ μv(Lc)

Lc
, (4)

which can be integrated to yield z. A simple description of
vortex motion in a Bose gas is a weakly damped point-vortex
model, in which the vortices are taken to be point-particles
with long-range interactions [67,68]. In this idealized case μv

is a constant by construction and therefore Eq. (4) predicts
Lc ∼ t1/2, i.e., z = 2. If we instead assume a mobility μv ∼
1/ log(Lc/ξ ) in Eq. (4), we arrive at Eq. (3) with z = 2 [43,44]
and t0 on the order of h̄/μ [5,6], which is in accordance with
our fitting to Eq. (3) as described in the previous section.

A possible origin for z < 2 in the conservative limit is a
power-law mobility μv ∼ Lε

c [69], yielding Lc ∼ t1/(2−ε), i.e.,

z = 2 − ε. (5)

Our PGPE (γ = 0) data allow us to perform a measurement of
the exponent ε and thus test this possibility. To do so, we first
track the defects between adjacent time samples, and calculate
a finite difference velocity uk (t ) = [rk (t ) − rk (t − �t )]/�t ,
where uk and rk are the velocity and position of the kth vortex,
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FIG. 4. Comparison of (a) vortex density evolution and (b) scal-
ing of the mean vortex velocity between the PGPE and the
point-vortex (PV) model. The PGPE data are plotted only within
the temporal scaling window identified in Fig. 2(a). Dashed lines
show power laws for comparison with the data. For improved vis-
ibility in (a), the PV vortex density data are offset by multiplying
nv(t ) → 1.3nv(t ). The velocity is expressed in relation to the sound
speed cs = μξ/h̄.

respectively, and �t is the sampling time step. This velocity is
then averaged over all vortices in the system and all configura-
tions in the ensemble to obtain ūv(t ). Although simplistic, this
measurement appears to capture the overall behavior of the
mean vortex velocity. Expressed in relation to the vortex den-
sity, we expect ūv ∼ n(1−ε)/2

v for a power-law mobility [using
assumption (ii) above and taking nv ∼ L−2

c ]. The PGPE nv(t )
data from within the scaling window are shown in Fig. 4(a),
for which z = 1.74(3), as stated in Sec. IV A. The ūv(nv)
data are presented in Fig. 4(b), with a power-law fit giving
ūv ∼ n0.37(5)

v , i.e., ε = 0.27(9). The measurements of z and ε

are in accordance with the prediction (5); hence we conclude
that the exponent z < 2 as measured in the PGPE is consistent
with a power-law vortex mobility, with ε > 0. In Appendix F,
we also demonstrate that assumption (i) is reasonably satisfied
for this data set.

These results support a direct relation between z and the
vortex dynamics, but raise the question of the origin of the
power-law mobility. To investigate further, we perform sim-
ulations of the aforementioned weakly damped point-vortex
(PV) model. In this model, the velocity uk of vortex k is
given by

uk = (1 − γPVsk ẑ × )u(0)
k , (6)

where

u(0)
k = π h̄

mL

∑
j 
=k

s j

∞∑
q=−∞

(
sin(2πy jk/L)

cosh[2π (x jk/L−q)]−cos(2πy jk/L)

× − sin(2πx jk/L)

cosh[2π (y jk/L − q)] − cos(2πx jk/L)

)
(7)

is the conservative equation of motion for a configuration
of point vortices at locations {xk, yk} in a square domain of
sidelength L with periodic boundary conditions [67]. Here,
sk = ±1 is the circulation sign of vortex k, x jk = x j − xk

(likewise for y jk), and γPV � 1 is a phenomenological damp-
ing parameter that models the loss of energy to sound waves
present in the PGPE. As initial conditions, we use the vortex
positions extracted from our N = 256 PGPE simulations at
t = 3400 h̄/μ, which is the beginning of the scaling window

(on average, ≈130 vortices remain at that time). We then
solve the above equations using a semi-implicit integration
scheme, with the inner sum truncated to −3 � q � 3 [70].
We incorporate defect annihilation into the PV simulations by
removing vortex-antivortex pairs if they come within ξ of one
another.

Under time evolution, the point-vortex density is seen
to decay, as shown in Fig. 4(a). We find that a choice of
γPV = 0.01 results in almost immediate power-law scaling
nv(t ) ∼ t−2/z, in agreement with the PGPE. The vortex con-
figuration also remains similar to the PGPE throughout the
evolution, as evidenced by the nearest-neighbor vortex corre-
lations (see Appendix E). However, the exponent as measured
from a power-law fit within the window 6000 � μt/h̄ �
10 000 gives z = 1.99(1), consistent with z = 2 (other values
of γPV delay the onset of power-law scaling, but eventually
also result in z ≈ 2). The mean point-vortex velocity ūv is
obtained by averaging Eq. (6) over all vortices, and the re-
sulting ūv(nv) scaling is shown in Fig. 4(b). A power-law fit
gives ε = 0.04(4), in agreement with Eq. (5) for z ≈ 2, and
consistent with a constant vortex mobility as expected. The
value ε > 0 measured in the PGPE must therefore arise from a
beyond-point-vortex effect, suggesting that it may result from
vortex-sound interactions, which are absent in the PV model.

Turning to our Model A data, we are unable to reliably
measure the mobility directly because the slow drift velocity
resulting from vortex interactions is overwhelmed by a fluctu-
ating fast velocity arising from the noise. This issue also arises
in the SPGPE for γ � 0.1.

D. Scaling of the dipole pair distribution

In Refs. [53,71], an analytic model was introduced for
describing the relaxational dynamics of a two-dimensional
superfluid following a temperature quench. In this description,
the system is represented as a vortex-dipole pair distri-
bution function �(r, t ) whose evolution is governed by a
Fokker-Planck equation. The distribution �(r, t ) represents
the probability of finding a vortex dipole of separation r in
the vortex configuration, and can be integrated to give the
mean vortex density nv(t ) = 2

∫
�(r, t )d2r (the prefactor here

accounts for the two vortices per dipole). In Ref. [53], it
was predicted that the dipole distribution should obey a scal-
ing form �(r, t ) ∼ L−ζ

c (t )Fd[r/Lc(t )] with scaling function
Fd, assuming that Lc ∼ t1/z. The exponent ζ is predicted to
depend on the initial and final temperatures of the quench;
but in particular, ζ = 4 for quenches from the Berezinskii-
Kosterlitz-Thouless critical temperature.

Given that relaxational dynamics are assumed in
Refs. [53,71], our Model A simulations are the closest
point of comparison to the predictions stated above. Although
there is an inherent ambiguity in assigning a configuration
of vortices into a set of dipoles, we nonetheless attempt
a measurement of �(r, t ) using the same prescription as
in Ref. [6]. We first rank in increasing order the distance
between every possible pair of opposite circulation vortices
in the system (taking into account the periodic boundary
conditions). Beginning with the smallest pair, we proceed
sequentially through this list, assigning a pair as a dipole only
if neither of its constituent vortices was already assigned to
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FIG. 5. Evolution of the dipole pair distribution �(r, t ) for our
Model A (γ → ∞) simulation. The rescaled (raw) data are displayed
in the main frame (inset), with the time indicated in each by the
colorbar.

another dipole. In this way, we assemble a unique list of Nv/2
pairs, where every vortex is paired exactly once (Nv is the
total number of vortices in the system). We then construct
a histogram nd(r, t ) of all dipole sizes r in the system, and
average the distribution over all simulations in the ensemble.
Finally, we define �(r, t ) = nd(r, t )/(2πrL2); here, the factor
of L2 converts to a spatial density, while the factor of 2πr
accounts for the number of ways of configuring a dipole of
size r.

Figure 5 shows the resulting distribution �(r, t ) for times
within our identified scaling window (see Sec. III). Upon
rescaling the data according to the above prediction with
ζ = 4, a convincing collapse is obtained. We also observe
a power-law tail in the dipole distribution, �(r, t ) ∼ r−3, for
r � Lc. The peak visible in the smallest radial bin can be
attributed to thermal dipoles [72] that appear throughout the
system during the dynamics. We conclude that our Model A
data are consistent with this vortex-dipole description of the
coarsening process.

V. CONCLUSION

We investigated the coarsening of a scalar 2D Bose gas
following an instantaneous quench into the ordered phase.
By varying the dimensionless dissipation rate γ , we explored
the crossover between purely relaxational (Model A, γ → ∞)
and conservative (γ = 0) dynamics. Our results for Model A
were consistent with dynamical critical exponent z = 2 with
logarithmic corrections, the generally agreed result in the lit-
erature. Our central result was that for decreasing dissipation
rate γ we continued to observe universal scaling in time, but
with a smooth reduction in the exponent towards a value z < 2
in the conservative limit. We found evidence that the deviation
from z = 2 may be attributed to an anomalous power-law vor-
tex mobility that arises from interactions between vortices and
sound waves. For Bose gas experiments, γ � 0.02 is typical
[7,50–52], suggesting that this anomalous behavior is likely to
be observable. Sudden quenches into the ordered phase were
recently implemented in a homogeneous three-dimensional

Bose gas experiment [18]; similar quenches could soon be
possible in quasi-2D setups. In future, it will be interesting to
further investigate the source of the power-law vortex mobility
identified here.

Data supporting this publication are openly available under
a Creative Commons CC-BY-4.0 License found in Ref. [73].
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APPENDIX A: TECHNICAL DETAILS OF THE PGPE
INITIAL CONDITION

For the γ = 0 (PGPE) simulations, a careful choice of
initial condition must be made because of the constraints
of conservation of energy and particle number (as de-
scribed in Sec. II). To facilitate direct comparison between
the γ = 0 and γ > 0 cases, the mean energy and parti-
cle densities for the γ = 0 initial states are chosen to be
equal to their ensemble-averaged values, ε̄ = Ē/L2 and n̄ =
N̄/L2, in the γ > 0 system after equilibration (i.e., at t →
∞). This is achieved by initiating the wave function as a
populated disk of radius kd in wave-number space, ψ =∑

|k|<kd

√
nk exp [i(k · r + φk )]. The populations nk are cho-

sen to be uniform and to ensure the correct mean density
n̄. The phase φk of each mode is initially randomized, and
a Powell minimization algorithm [74] is subsequently used
to adjust the phases to achieve mean energy-density ε̄. The
radius of the disk is set to kd = 0.2 kcut.

APPENDIX B: DYNAMICAL MOVIES

Included in the Supplemental Material are movies of the
classical field dynamics for γ = {0, 0.1, 1,∞} [the last of
these is achieved by setting α = 0, γ = 1 in Eq. (1)]. From
left to right, the panels in these movies correspond to the
classical field density |ψ (r, t )|2, the phase arg{ψ (r, t )}, and
the locations of vortices and antivortices, obtained by numer-
ically identifying all phase windings of ±2π in the field. At
each time, the number of vortices and antivortices is shown in
the lower left of the leftmost panel, and the physical time is
shown in the upper left. For brevity, the rate at which physical
time passes in the movies increases at the beginning of each
decade in physical time (when this happens, the movie briefly
pauses). For the γ > 0 movies, the ψ = 0 initial condition is
used, and the mean density is seen to grow rapidly, plateau-
ing by t ∼ 100 h̄/μ. Note that there is no input temperature
parameter T for the γ = 0 simulation, but we chose the effec-
tive equilibrium temperature to be the same as for γ > 0 by
restricting the number and energy density (details of the γ = 0
initial condition are provided in Appendix A). In all movies,
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FIG. 6. Critical exponent z measured from power-law fits to Lc(t )
as a function of dimensionless dissipation rate γ . Here Lc(t ) is
extracted using three different scaling function thresholds F0.

tightly bound thermal dipoles [72] are seen to spontaneously
appear in the superfluid from time to time, surviving only
briefly before annihilating again.

APPENDIX C: POSSIBLE SYSTEMATIC EFFECTS

1. Choice of threshold

We find that the choice of scaling function threshold F0

(used for defining the correlation length) has a slight system-
atic effect on the power-law scaling of Lc(t ). In Fig. 6, the
critical exponent z measured from power-law fits to Lc(t ) is
shown as a function of dissipation rate γ , with the correlation
length extracted using three different choices of F0. The fitting
is carried out in the same way as described in Sec. IV A.
Evidently, a larger F0 gives rise to a slightly larger measured

FIG. 7. Evolution of Lc(t ) in various system sizes L for γ = 0
(the PGPE). To give an indication of where finite-size effects begin
to dominate, the data points are replaced by dotted lines of the cor-
responding color at all times for which Lc(t ) > L/4. The power-law
fit to the scaling window of the L = 363 ξ case is shown as a black
dashed line. The plateau at late times corresponds to the maximum
possible correlation length of Lc = L/2. The ensemble size N for
each system is given in brackets in the legend.

FIG. 8. The measured value of z from fits to Lc(t ) in different
system sizes L for (a) γ = 0 and (b) γ = 1.

exponent z (on average). As noted in Sec. III, F0 should be
chosen to minimize both discretization effects at small scales
and finite-size effects at large scales. As such, we do not
explore thresholds outside of 0.3 � F0 � 0.7 here.

2. Lack of finite-size effects

It is expected that an infinitely large system undergoing
dynamical scaling should exhibit power-law growth of Lc(t )
indefinitely [1]. In a finite system of size L, on the other
hand, scaling must eventually cease once Lc(t ) grows to ∼L.
However, with increasing L, we expect power-law growth to
continue for increasingly long times before finite-size effects
dominate. To demonstrate that this is the case in our simula-
tions, we repeat our γ = 0 quench at six values of L (with
fixed grid spacing ≈0.7 ξ ). Figure 7 shows the resulting Lc(t )
evolution. To indicate the time at which finite-size effects
begin to strongly affect the correlation length for each L, we
show the data as dashed lines for Lc(t ) > L/4 (note that this
condition is less stringent than that described in Sec. III for
choosing the end of our fitting windows). We find that the
scaling regime is only convincingly reached in the largest
three system sizes shown here.

FIG. 9. Measured critical exponent z as a function of dimension-
less dissipation rate γ . The blue circles and red diamonds are the
same as in Fig. 3, while the additional data correspond to quenches
at γ = {0, 1} with a doubled system size L and multiple quenches
at γ > 0 using our alternative nonzero density initial condition (IC).
Where multiple sets of data fall onto a single γ value, the points are
symmetrically offset along the horizontal axis for clarity.
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FIG. 10. Comparison of scaling behavior between the zero (orange/triangles) and nonzero (blue/circles) density initial conditions for
dissipation rates (a) γ = 0.1, (b) γ = 0.5, and (c) γ → ∞. Ensemble-averaged scaling function F (r, t ) plotted against radial distance r (i),
both before (inset) and after (main frame) rescaling by the correlation length Lc(t ). The time at which each curve is sampled is denoted by the
color bar in the insets, and a grey dot signifies the threshold F0 = 0.5 used to define Lc. Evolution of the mean correlation length Lc(t ) (ii) and
vortex density nv(t ) (iii). In columns (ii,iii), the scaling window is highlighted in the appropriate color, and the best power-law fit to the data is
shown as an orange dotted (blue dashed) line for the zero (nonzero) density initial condition (offset for clarity). The initial and final times of
the scaling window ti and t f can be read off the horizontal axis in columns (ii,iii).

As L is increased, we also expect that the exponent z as
measured from a power-law fit to Lc(t ) should display conver-
gence of the best-fit value, as well as reduced uncertainty. We
show that this is the case in Fig. 8 by comparing z as measured
from three L values with both γ = 0 [Fig. 8(a)] and γ = 1
[Fig. 8(b)]. The central L values here are the same as those
defined in Sec. II. To determine z in each case, we apply the
same fitting technique as described in the Sec. IV A. Since the
duration of the scaling window increases with increasing L
(as evidenced by Fig. 7), for consistency we use a minimum
fitting window of Ns/4 points when constructing the z his-
togram. Here, Ns is the number of sampled points within the
scaling window. We also fix the ensemble size to N = 64 for
these measurements. In Fig. 8, the error in the z measurement
is seen to decrease with L, as expected. For γ = 1, the z value
measured in the L = 131 ξ system does not overlap with the

values from the larger systems, suggesting that this system is
not sufficiently large to obtain an accurate measurement of z.

For comparison with all of our z(γ ) data, we include the z
values measured from the doubled system sizes at γ = {0, 1}
in Fig. 9, alongside the data from Fig. 3.

3. Lack of initial condition dependence

In the theory of phase ordering kinetics [1], it is generally
expected that the precise form of initial conditions used to
initiate the coarsening behavior should play no role in deter-
mining the observed scaling. To confirm that this holds for
our system, we repeated our γ = {0.1, 0.5,∞} simulations
using the nonzero density initial condition that was used for
the γ = 0 simulations (see description in previous section).
We do this using a system size of L ≈ 363 ξ , and ensembles of
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FIG. 11. Evolution of �F (t ) for γ = {0, 1}. The scaling window
for γ = 0 (γ = 1) is denoted by the right (left) highlighted region.
The dotted line denotes the threshold value of �F = 0.01.

N = 64 (N = 256) trajectories for γ = {0.5,∞} (γ = 0.1).
In Fig. 10, we compare the evolution of the scaling func-
tion [column (i)], correlation length [column (ii)], and vortex
density [column (iii)] for the two initial conditions, with
γ = {0.1, 0.5,∞} in rows (a), (b), and (c), respectively. The
procedures used to identify the scaling windows and perform
fits to the data were carried out as described in Secs. III and
IV A. For all γ values, the rescaled F (r, t ) data [main frames
of column (i)] are almost indistinguishable between the two
initial conditions. Likewise, the observed power-law scaling
in columns (ii) and (iii) appears to be almost unaffected by the
initial condition, despite substantial differences in the curves
at early times. We note that for the zero (nonzero) initial den-
sity configurations, the curves approach the scaling law from
steeper (shallower) evolution. This provides strong evidence
that the system has reached a universal scaling regime.

Figure 9 displays the critical exponents z measured from
fits to both Lc(t ) and nv(t ) in these simulations. In all cases,
these exponents are consistent (within our estimated uncer-

FIG. 12. Nearest-neighbor vortex correlator Cnn(t ) for α = 1,
and γ = {0, 1}, as in Fig. 2. The scaling window for γ = 0 (γ = 1) is
denoted by the right (left) highlighted region. Also shown is the cor-
relator measured from our point-vortex simulations (see Sec. IV C).
The dotted line corresponds to the minimum possible value of −1.

FIG. 13. Comparison between the two sides of Eq. (F1) for our
γ = 0 simulations. Blue circles show the correlation length (main
frame) and its numerical derivative (inset), while pink triangles show
the mean vortex velocity (inset) and its integral (main frame). The
black dashed line in the main frame shows the power-law fit to
Lc(t ) and the highlighted region identifies the scaling window [as
in Fig. 2(a,ii)]. The black dotted line in the inset shows a smoothed
spline fit to the numerically differentiated Lc(t ) data. In both panels,
A = 0.036 is used to give the best agreement within the scaling
window.

tainties) with the exponents measured for the same γ value
using the zero density initial condition.

APPENDIX D: QUANTIFICATION OF THE SCALING
FUNCTION COLLAPSE

To quantify the precision of the collapse of the scaling
function F (r, t ), we define the metric

�F (t ) = maxr{|F (r/Lc(t ), t ) − F (r/Lc(t ′), t ′)|}, (D1)

where t ′ is a reference time, which we choose to be the
end of the scaling window (as defined in Sec. III). A value
of �F � 1 indicates good agreement between the measured
scaling functions at the two times t and t ′.

In Fig. 11, we plot �F (t ) for γ = {0, 1} (for comparison
with Fig. 2). From this data, it can be seen that the beginning
of the scaling windows as chosen by eye (highlighted regions)
correspond to �F (t ) ≈ 0.01. Our windows therefore comprise
collapses that are accurate to within a maximum deviation of
≈1%.

APPENDIX E: ANALYSIS OF THE VORTEX
CONFIGURATION

As an indicator of the vortex configuration at a given time,
we calculate the nearest-neighbor correlator

Cnn = 1

Nv

Nv∑
k

sksnn
k , (E1)

where Nv is the total number of vortices, sk = ±1 is the
circulation sign of vortex k, and snn

k is the circulation sign of its
nearest neighbor. A value of −1 � Cnn � 0 indicates a vortex
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configuration predominantly paired into dipoles, 0 � Cnn � 1
indicates clustering of same-sign vortices, and Cnn ≈ 0 corre-
sponds to an approximately random vortex distribution [70].

Figure 12 shows the evolution of the mean Cnn(t ) as mea-
sured from the γ = 0 and γ = 1 simulations (for comparison
with Fig. 2). Throughout the evolution, Cnn < 0 in both cases,
indicating that the vortices are in the dipolar regime. Interest-
ingly, the vortices are distributed quite differently within the
respective scaling windows, as evidenced by the significantly
different values of Cnn.

APPENDIX F: RELATIONSHIP BETWEEN MEAN VORTEX
VELOCITY AND CORRELATION LENGTH

In Sec. IV C we assume that in the γ = 0 system the mean
vortex velocity and the correlation length are related via

dLc

dt
= Aūv(t ) (F1)

for some dimensionless factor A. Here we provide evidence
from our γ = 0 simulations to support this relationship.

We first numerically differentiate Lc(t ) (using a second-
order central difference method) to obtain the left-hand side

of Eq. (F1); the result is shown in the inset of Fig. 13 (blue
circles). To reduce the effect of noise arising from numerical
differentiation, we also show a smoothed spline fit to the data
(dotted line). For comparison, we plot on the same axis ūv(t )
as measured from our vortex tracking (pink triangles). The
two datasets are seen to broadly agree for all times shown.

As a secondary method of affirming Eq. (F1), we integrate
both sides to give Lc(t ) = A

∫
ūv(t )dt . Assuming ūv(t ) ∼ tβ

within the scaling window, the integral on the right-hand
side of this equation yields

∫
ūv(t )dt = t ūv(t )/(1 + β ). In the

main frame of Fig. 13, we plot Lc(t ) [blue circles; same data
as in Fig. 2(a,ii)], alongside the above form of the integral∫

ūv(t )dt (pink triangles). While the integration method only
applies within the scaling window, it provides a cleaner com-
parison than numerical differentiation.

With both of the above methods, we find the proportion-
ality factor in Eq. (F1) to be A ≈ 0.04 within the scaling
window. This factor should quantify how much of the mean
vortex velocity contributes to the rate of change of the cor-
relation length. It may therefore be loosely interpreted as the
effective dissipation rate for the γ = 0 system that arises from
loss of energy to sound waves. However, we note that the
precise value of A is susceptible to systematic shifts based on
the manner in which both Lc(t ) and ūv(t ) are measured.
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Proukakis, and M. H. Szymańska, Dynamical Critical Expo-
nents in Driven-Dissipative Quantum Systems, Phys. Rev. Lett.
121, 095302 (2018).

[31] V. N. Gladilin and M. Wouters, Multivortex states and dynam-
ics in nonequilibrium polariton condensates, J. Phys. A: Math.
Theor. 52, 395303 (2019).

[32] Q. Mei, K. Ji, and M. Wouters, Spatiotemporal scaling of two-
dimensional nonequilibrium exciton-polariton systems with
weak interactions, Phys. Rev. B 103, 045302 (2021).

[33] P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical
phenomena, Rev. Mod. Phys. 49, 435 (1977).

[34] P. B. Blakie, A. S. Bradley, M. J. Davis, R. J. Ballagh, and
C. W. Gardiner, Dynamics and statistical mechanics of ultra-
cold Bose gases using c-field techniques, Adv. Phys. 57, 363
(2008).

[35] K. Damle, S. N. Majumdar, and S. Sachdev, Phase ordering
kinetics of the Bose gas, Phys. Rev. A 54, 5037 (1996).

[36] M. J. Davis, S. A. Morgan, and K. Burnett, Simulations of
Bose Fields at Finite Temperature, Phys. Rev. Lett. 87, 160402
(2001).

[37] H. Stoof, Coherent versus incoherent dynamics during bose-
einstein condensation in atomic gases, J. Low Temp. Phys. 114,
11 (1999).

[38] H. T. C. Stoof and M. J. Bijlsma, Dynamics of fluctuating Bose–
Einstein condensates, J. Low Temp. Phys. 124, 431 (2001).

[39] C. W. Gardiner, J. R. Anglin, and T. I. A. Fudge, The stochastic
Gross-Pitaevskii equation, J. Phys. B: At. Mol. Opt. Phys. 35,
1555 (2002).

[40] C. W. Gardiner and M. J. Davis, The stochastic Gross–
Pitaevskii equation: II, J. Phys. B: At. Mol. Opt. Phys. 36, 4731
(2003).

[41] A. S. Bradley, C. W. Gardiner, and M. J. Davis, Bose-Einstein
condensation from a rotating thermal cloud: Vortex nucleation
and lattice formation, Phys. Rev. A 77, 033616 (2008).

[42] B. I. Halperin, P. C. Hohenberg, and S.-K. Ma, Calculation of
Dynamic Critical Properties Using Wilson’s Expansion Meth-
ods, Phys. Rev. Lett. 29, 1548 (1972).

[43] B. Yurke, A. N. Pargellis, T. Kovacs, and D. A. Huse, Coarsen-
ing dynamics of the XY model, Phys. Rev. E 47, 1525 (1993).

[44] A. D. Rutenberg and A. J. Bray, Energy-scaling approach to
phase-ordering growth laws, Phys. Rev. E 51, 5499 (1995).

[45] The quoted measurements in Ref. [24] are βg = 0.56(8) (con-
servative) and βg = 0.53(5) (nonconservative). These hold for
quenches avoiding a strongly anomalous nonthermal fixed point
associated with vortex clustering [70,75,76]. Our conversion
assumes the relation z = 1/βg, with the uncertainty rounded to
one significant figure.

[46] K. Koo, W. Baek, B. Kim, and S. J. Lee, Coarsening dynamics
in a two-dimensional XY model with Hamiltonian dynamics, J.
Korean Phys. Soc. 49, 1977 (2006).

[47] K. Nam, W. Baek, B. Kim, and S. J. Lee, Coarsening of
two-dimensional XY model with Hamiltonian dynamics: Log-
arithmically divergent vortex mobility, J. Stat. Mech. (2012)
P11023.

[48] P. Comaron, F. Larcher, F. Dalfovo, and N. P. Proukakis,
Quench dynamics of an ultracold two-dimensional Bose gas,
Phys. Rev. A 100, 033618 (2019).

[49] The SPGPE was established in Refs. [39–41]. In the ter-
minology of Ref. [34] we use the simple growth SPGPE.
Non-projected stochastic Gross–Pitaevskii equations have also
been developed [37,38].

[50] S. J. Rooney, T. W. Neely, B. P. Anderson, and A. S.
Bradley, Persistent-current formation in a high-temperature
Bose-Einstein condensate: An experimental test for classical-
field theory, Phys. Rev. A 88, 063620 (2013).

[51] M. Ota, F. Larcher, F. Dalfovo, L. Pitaevskii, N. P. Proukakis,
and S. Stringari, Collisionless Sound in a Uniform Two-
Dimensional Bose Gas, Phys. Rev. Lett. 121, 145302 (2018).

[52] I.-K. Liu, S. Donadello, G. Lamporesi, G. Ferrari, S.-C. Gou, F.
Dalfovo, and N. P. Proukakis, Dynamical equilibration across a
quenched phase transition in a trapped quantum gas, Commun.
Phys. 1, 24 (2018).

[53] A. Forrester, H.-C. Chu, and G. A. Williams, Exact So-
lution for Vortex Dynamics in Temperature Quenches of
Two-Dimensional Superfluids, Phys. Rev. Lett. 110, 165303
(2013).

[54] G. R. Dennis, J. J. Hope, and M. T. Johnsson, XMDS2: Fast,
scalable simulation of coupled stochastic partial differential
equations, Comput. Phys. Commun. 184, 201 (2013).

[55] NVIDIA Corporation, CUDA Toolkit Documentation, Version
10.0 (2018).

[56] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.3.013212 for movies of the time
evolution.

[57] V. L. Berezinskii, Destruction of long-range order in one-
dimensional and two-dimensional systems having a continuous
symmetry group. I. Classical systems, Zh. Eksp. Theor. Fiz. 59,
907 (1971) [Sov. Phys. JETP 32, 493 (1971)].

013212-11

https://doi.org/10.1016/j.nuclphysb.2008.12.017
https://doi.org/10.1103/PhysRevA.81.033611
https://doi.org/10.1103/PhysRevB.84.020506
https://doi.org/10.1103/PhysRevD.92.025041
https://doi.org/10.1088/1367-2630/aa7eeb
https://doi.org/10.1103/PhysRevA.95.053605
https://doi.org/10.1103/PhysRevLett.113.095702
https://doi.org/10.1103/PhysRevLett.116.025301
https://doi.org/10.1103/PhysRevLett.119.255301
https://doi.org/10.1103/PhysRevB.95.075306
https://doi.org/10.1103/PhysRevLett.121.095302
https://doi.org/10.1088/1751-8121/ab3abc
https://doi.org/10.1103/PhysRevB.103.045302
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1080/00018730802564254
https://doi.org/10.1103/PhysRevA.54.5037
https://doi.org/10.1103/PhysRevLett.87.160402
https://doi.org/10.1023/A:1021897703053
https://doi.org/10.1023/A:1017519118408
https://doi.org/10.1088/0953-4075/35/6/310
https://doi.org/10.1088/0953-4075/36/23/010
https://doi.org/10.1103/PhysRevA.77.033616
https://doi.org/10.1103/PhysRevLett.29.1548
https://doi.org/10.1103/PhysRevE.47.1525
https://doi.org/10.1103/PhysRevE.51.5499
https://doi.org/10.1088/1742-5468/2012/11/P11023
https://doi.org/10.1103/PhysRevA.100.033618
https://doi.org/10.1103/PhysRevA.88.063620
https://doi.org/10.1103/PhysRevLett.121.145302
https://doi.org/10.1038/s42005-018-0023-6
https://doi.org/10.1103/PhysRevLett.110.165303
https://doi.org/10.1016/j.cpc.2012.08.016
http://link.aps.org/supplemental/10.1103/PhysRevResearch.3.013212


GROSZEK, COMARON, PROUKAKIS, AND BILLAM PHYSICAL REVIEW RESEARCH 3, 013212 (2021)

[58] V. L. Berezinskii, Destruction of long-range order in one-
dimensional and two-dimensional systems having a continuous
symmetry group. II. Quantum systems, Zh. Eksp. Theor. Fiz.
61, 1144 (1972) [Sov. Phys. JETP 34, 610 (1972)].

[59] J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and
phase transitions in two-dimensional systems, J. Phys. C: Solid
State Phys. 6, 1181 (1973).

[60] C. J. Pethick and H. Smith, Bose-Einstein Condensation in
Dilute Gases, 2nd ed. (Cambridge University Press, Cambridge,
England, 2008).

[61] S. Nazarenko, M. Onorato, and D. Proment, Bose-Einstein con-
densation and Berezinskii-Kosterlitz-Thouless transition in the
two-dimensional nonlinear Schrödinger model, Phys. Rev. A
90, 013624 (2014).

[62] A. W. Baggaley and C. F. Barenghi, Decay of homogeneous
two-dimensional quantum turbulence, Phys. Rev. A 97, 033601
(2018).

[63] A. J. Groszek, M. J. Davis, and T. P. Simula, Decay-
ing quantum turbulence in a two-dimensional Bose-Einstein
condensate at finite temperature, SciPost Phys. 8, 039
(2020).

[64] In fact, the SPGPE becomes independent of γ for γ � 0.1, with
z ≈ 1.7 in this region.

[65] Consistency with z = 2 (to within our estimated uncertainties)
is maintained for 0.3 h̄/μ � t0 � 1.0 h̄/μ.

[66] Outside the Model A limit we rescale t0 by the length of
the temporal unit vector in the complex plane: t0 → 0.5(α2 +
γ 2)−1/2 h̄/μ.

[67] J. B. Weiss and J. C. McWilliams, Nonergodicity of point vor-
tices, Phys. Fluids A 3, 835 (1991).

[68] T. P. Billam, M. T. Reeves, and A. S. Bradley, Spectral energy
transport in two-dimensional quantum vortex dynamics, Phys.
Rev. A 91, 023615 (2015).

[69] T. P. Simula (private communication).
[70] T. P. Billam, M. T. Reeves, B. P. Anderson, and A. S.

Bradley, Onsager-Kraichnan Condensation in Decaying Two-
Dimensional Quantum Turbulence, Phys. Rev. Lett. 112,
145301 (2014).

[71] H.-C. Chu and G. A. Williams, Quenched Kosterlitz-Thouless
Superfluid Transitions, Phys. Rev. Lett. 86, 2585 (2001).

[72] T. P. Simula and P. B. Blakie, Thermal Activation of Vortex–
Antivortex Pairs in Quasi-Two-Dimensional Bose–Einstein
Condensates, Phys. Rev. Lett. 96, 020404 (2006).

[73] A. J. Groszek, P. Comaron, N. P. Proukakis, and T. P. Billam,
Data supporting publication: Crossover in the dynamical critical
exponent of a quenched two-dimensional Bose gas (2020), doi:
10.25405/data.ncl.14150093.

[74] M. J. D. Powell, An efficient method for finding the minimum of
a function of several variables without calculating derivatives,
Comput. J. 7, 155 (1964).

[75] T. Simula, M. J. Davis, and K. Helmerson, Emergence of Order
from Turbulence in an Isolated Planar Superfluid, Phys. Rev.
Lett. 113, 165302 (2014).

[76] A. J. Groszek, M. J. Davis, D. M. Paganin, K. Helmerson,
and T. P. Simula, Vortex Thermometry for Turbulent Two-
Dimensional Fluids, Phys. Rev. Lett. 120, 034504 (2018).

013212-12

https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1103/PhysRevA.90.013624
https://doi.org/10.1103/PhysRevA.97.033601
https://doi.org/10.21468/SciPostPhys.8.3.039
https://doi.org/10.1063/1.858014
https://doi.org/10.1103/PhysRevA.91.023615
https://doi.org/10.1103/PhysRevLett.112.145301
https://doi.org/10.1103/PhysRevLett.86.2585
https://doi.org/10.1103/PhysRevLett.96.020404
https://doi.org/10.25405/data.ncl.14150093
https://doi.org/10.1093/comjnl/7.2.155
https://doi.org/10.1103/PhysRevLett.113.165302
https://doi.org/10.1103/PhysRevLett.120.034504

