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Ollivier-Ricci curvature convergence in random geometric graphs
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Connections between continuous and discrete worlds tend to be elusive. One example is curvature. Even
though there exist numerous nonequivalent definitions of graph curvature, none is known to converge in any
limit to any traditional definition of curvature of a Riemannian manifold. Here we show that Ollivier curvature
of random geometric graphs in any Riemannian manifold converges in the continuum limit to Ricci curvature of
the underlying manifold, but only if the definition of Ollivier graph curvature is properly generalized to apply
to mesoscopic graph neighborhoods. This result establishes a rigorous link between a definition of curvature
applicable to networks and a traditional definition of curvature of smooth spaces.
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I. INTRODUCTION

Curvature is one of the most basic geometric characteristics
of space. The original definitions of curvature apply only to
smooth Riemannian or Lorentzian manifolds, but there exist
numerous extensions of curvature definitions applicable to
graphs, simplicial complexes, and other discrete structures.
For a variety of reasons, these extensions have recently seen a
surge of interest in areas as diverse as network or data science
and quantum gravity.

In network science, graph curvature is interesting in gen-
eral since many real-world networks were found to possess
different flavors of geometry [1]. Measuring network curva-
ture is then a way to learn what this geometry really is [2].
On the application side, graph curvature was used to charac-
terize congestion in telecommunication networks [3,4], detect
cancer cells [5], predict COVID-19 spreading [6] and stock
market fluctuations [7], analyze robustness and other proper-
ties of the Internet, financial, and brain networks [8–12], and
in a number of classic applications such as community infer-
ence [13] and network embedding in machine learning [14].
In a majority of these applications, graph curvature appears as
a signature of a (pathological) event or property of interest.
How reliable such a signature is for a task at hand depends on
whether the used definition of graph curvature does what is
intended—that it is indeed curvature, and not something else.
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In general relativity, scalar Ricci curvature is a key
player since it appears in the Einstein-Hilbert action whose
least-action extremization leads to Einstein’s equations [15].
Therefore, various extensions of Ricci curvature to discrete
structures representing “quantum spacetimes” have been con-
sidered. The first step in that direction was based on replacing
continuum manifolds with simplicial complexes [16]. To that
end, variations of the seminal definition of discrete cur-
vature by Regge [17] were developed and utilized. More
recently, a collection of more minimalistic structures was
considered, such as causal sets [18–27] and random graphs
[28–33]. Yet another class of approaches aimed at explain-
ing spacetime emergence from “quantum bits” appears in
space-from-entanglement proposals such as ER=EPR or ten-
sor networks [34–40]. In all these examples, one can hope that
a particular discrete structure represents Planck-scale gravi-
tational physics, only if discrete curvature of this structure
converges to Ricci curvature of classical spacetime in the
continuum limit. If such convergence does not hold in a partic-
ular approach, then the approach does not agree with general
relativity, so it cannot be considered realistic, regardless of
how attractive it is in other respects.

Quite contrary to the continuum world of Riemannian and
Lorentzian manifolds where there is no real ambiguity regard-
ing the definition of curvature, there exist not one or two but
very many nonequivalent definitions of curvature applicable
to graphs. We briefly review the most prominent definitions
in the next section. Unfortunately, none of these definitions
are known to converge in the continuum limit to any tradi-
tional curvature of any Riemannian manifold. Therefore, it
is often unclear how one should interpret different measure-
ments of different curvatures in different graphs and networks,
raising question concerning reliability and generalizability of
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predictions based on such measurements. Similarly, the eva-
siveness of classical limit in some approaches to quantum
gravity can be often linked to unclarities concerning whether
discrete “quantum” curvature converges to a continuous clas-
sical one. These and other problems related to curvature
convergence become particularly acute in view of growing ev-
idence that different graph curvature definitions may disagree
even about the sign of curvature in some paradigmatic graphs
and networks [41,42].

Here we show that Ollivier curvature [43–45] of random
geometric graphs [46–48] in any Riemannian manifold con-
verges to Ricci curvature of the manifold in the continuum
limit. Unfortunately, this convergence does not and cannot
hold for the standard definition of Ollivier curvature of micro-
scopic one-link neighborhoods in sparse unweighted graphs
[49]. Fortunately, we find a natural generalization of Ol-
livier curvature applicable to mesoscopic neighborhoods in
unweighted and weighted graphs. This generalization is a not-
previously-considered key ingredient that allows us to prove
the curvature convergence. Our proofs hold only when the
sizes of mesoscopic graph neighborhoods fall within certain
windows that depend on graph density and on how graph
edges are weighted. We also perform large-scale simulations
that agree with our proofs and suggest that the convergence
windows are actually much wider than the limits imposed by
our proof techniques.

These results link rigorously a definition of graph cur-
vature to the traditional Ricci curvature of a Riemannian
manifold. To the best of our knowledge, the closest, in spirit,
previous results are Cheeger et al.’s proof [50] of Regge’s
seminal observation [17] that an angle-defect-based curvature
of increasingly finer-grained simplicial triangulations of a
manifold converges to its Ricci curvature, and the more recent
demonstration [21,22] that the Benincasa-Dowker action of
causal sets converges to its classical counterpart in the contin-
uum limit.

To proceed, we first recall the Ollivier curvature defini-
tion in perspective of other curvature definitions applicable
to graphs and networks, Sec. II. We then describe our gen-
eralization of the Ollivier curvature definition to mesoscopic
neighborhoods in graphs in general and in random geometric
graphs in particular, Sec. III. We then state our main results in
Sec. IV, and conclude with a discussion of their implications
and caveats in Sec. V.

II. GRAPH CURVATURE DEFINITIONS

There are many nonequivalent definitions of curvature ap-
plicable to graphs. It is impossible to list them all. Here we
mention some notable ones due to Steiner [51], Regge [17,50],
Bakry-Émery [52], Gromov [53,54], Higuchi [55], Eckmann-
Moses [56], Forman [57–59], Lin-Yau [60,61], Knill [62,63],
Keller [64,65], and hybrids thereof [66]. We first outline
the taxonomy of these curvatures and basic ideas behind
their definitions to put Ollivier curvature [43–45] in perspec-
tive, and then recall the detailed definition of the latter for
completeness.

With a few exceptions, the discrete curvature definitions
above fall into the following classes.

A. Direct approaches

The first class of definitions comes from relatively di-
rect extensions of continuous curvature to nonsmooth objects
such as simplices, simplicial complexes, or more general
complexes. Since graphs are 1-dimensional simplicial com-
plexes, any notion of curvature applicable to complexes
applies to graphs as well. Casting cliques in graphs as higher-
dimensional simplices turns graphs into higher-dimensional
complexes, so that curvature definitions applicable to higher-
dimensional complexes are also applicable to graphs.

One subclass of such approaches first defines curvature
of polyhedra using the Gauss-Bonnet theorem that relates
the curvature of a surface to its Euler’s characteristic. This
definition is then extended to general simplicial complexes.
Curvatures defined by Steiner [51], Regge [17,50], Knill
[62,63], and Keller [64,65] all fall into this category.

Forman curvature [57–59] follows similar ideas, but is
slightly different in that it uses the Bochner-Weitzenböck
formula that relates the Laplacian of a Riemannian manifold
to its discrete approximation, which is then used to derive
a discrete version of curvature applicable to a very general
class of complexes. The definition of Forman curvature for
unweighted graphs is one of the simplest. If a graph is con-
sidered as a 1-complex, so that only nodes (0-simplices) and
links (1-simplices) are considered, then the Forman curvature
F1(i, j) of a link between nodes i and j of degrees ki and
k j is F1(i, j) = 4 − (ki + k j ). If the graph is considered as a
2-complex, so that triangles are also considered, and �i, j is
the number of triangles containing the link, then the definition
becomes F2(i, j) = F1(i, j) + 3�i, j .

B. Indirect approaches

Another class of ideas behind discrete curvature is less di-
rect as these are based on more sophisticated curvature-related
properties of smooth spaces.

One such idea, pioneered by Bakry and Emery [52], relies
on the characterization of Ricci curvature via curvature-
dimension inequalities. The curvature-dimension inequality
establishes a lower bound for the Ricci curvature of a Rieman-
nian manifold based on the gradient of harmonic functions on
it. The inequality is an immediate consequence of Bochner’s
identity that relates Ricci curvature to the gradient of har-
monic functions. It was an important insight by Bakry and
Emery that the curvature-dimension inequality can be lifted
from manifolds and considered as a substitute of the lower
bound for Ricci curvature in spaces where direct discretiza-
tions of Ricci curvature are not possible. In addition to
the Bakry-Emery definition [52], the definitions of Lin-Yau
[60,61] also fall into this category.

The key point behind this type of approaches to discrete
curvature is to base its definitions on some fundamental non-
trivial curvature-related properties that transcend well beyond
the limits of smooth spaces.

C. Ollivier curvature

Ollivier curvature belongs to the second class of ap-
proaches outlined above. The fundamental aspect of Ricci
curvature that Ollivier curvature embarks on to sail to the
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discrete world is somewhat different from—although related
to—the curvature-dimension inequalities. This aspect is of a
less analytic and more geometric nature. It deals with how
balls shrink or expand under parallel transport. Recall that if
Ricci curvature of a space is negative, zero, or positive, then
under parallel transport, balls in this space expand, stay the
same, or shrink, respectively.

To capture this property, one needs to consider the Wasser-
stein, also known as transportation, distance W (μ1, μ2)
between two probability distributions μ1, μ2 in any nice (Pol-
ish to be exact) metric space:

W (μ1, μ2) = inf
μ∈�(μ1,μ2 )

∫
d (x, y)μ(x, y) dx dy, (1)

where d (x, y) is the distance between points x and y in the
space, and the infimum is taken over all possible transporta-
tion plans which are joint probability distributions μ whose
marginals are μ1 and μ2. If μ1, μ2 are represented by sand
piles, then W (μ1, μ2) is the minimum cost to transport pile
μ1 into pile μ2, where the grain of sand at x gets transported
to y incurring cost d (x, y).

Let x and y be now two points at a small distance
dM (x, y) = δ in a Riemannian manifold M, and let μ1 = μx

and μ2 = μy be the normalized restrictions of the volume
form in M onto the balls BM (x, δ), BM (y, δ) of radius δ cen-
tered at x, y, i.e.,

μx(z) = vol(z)

vol[BM (x, δ)]
if z ∈ BM (x, δ), (2)

μy(z) = vol(z)

vol[BM (y, δ)]
if z ∈ BM (y, δ), (3)

where vol(z) dz is the volume element in M. Ollivier curvature
between x and y is then defined by

κM (x, y) = 1 − WM (μx, μy)

δ
. (4)

We note that this curvature definition depends on the ball
radius δ which can be any positive real number. It was shown
in [44] that

lim
δ→0

κM (x, y)

δ2
= Ric(v, v)

2(D + 2)
, (5)

where D is M’s dimension, and Ric(v, v) is the Ricci curva-
ture at x along v which is the unit tangent vector at x pointing
along the geodesic from x to y. Ricci curvature Ric(v, v)
is equal to the average of sectional curvatures at x over all
tangent planes containing v.

In words, the important convergence result in (5) says
that in Riemannian manifolds, the rescaled Ollivier curvature
converges to Ricci curvature in the limit of small ball sizes
δ → 0.

It is relatively straightforward to extend the definition of
Ollivier curvature from manifolds M to simple unweighted
graphs G, but there are important differences. The most cru-
cial one is that in smooth spaces M the Ollivier ball radius
δ appearing in the Ollivier curvature definition (4) can be
any positive real number, which can tend to zero to prove
the convergence in (5). In unweighted graphs G, however,
the possible nonzero values of the distance—and so of the
δ—are positive integers, the hop lengths of shortest paths

between pairs of nodes. The smallest possible nonzero dis-
tance is δ = 1, the graph distance dG(x, y) between directly
connected nodes x and y. Presumably because of the “δ better
be small” logic, the Ollivier ball radius δ was routinely set to
its smallest possible value δ = 1 in the definition of Ollivier
graph curvature appearing in the past literature, even though δ

in graphs can certainly be set to any positive integer value.
If δ = 1, then the balls BG(x, 1) and BG(y, 1) of radius 1

around nodes x and y are the sets of the neighbors of x and y,
while the probability distributions μx and μy become the uni-
form distributions over these sets: μx = 1/kx and μy = 1/ky,
where kx and ky are the degrees of x and y. These distribu-
tions govern the standard random walk in the graph. Thus
defined, Ollivier graph curvature was shown to be bounded
by −2 and 1, with the bounds achieved on infinite double
stars and complete graphs [49]. The Ollivier graph curvature
in this definition was measured in a great variety of synthetic
and real-world networks [5,8,9,13,41,42,49,67]. It was also
investigated at great depths in connection to quantum gravity
[28–33].

However, it is evident that Ollivier curvature of graphs as
defined above cannot converge to Ricci curvature of manifolds
under any circumstances, simply because δ is no longer real
but integer, so that limδ→0 makes no sense, and because Ol-
livier graph curvature is always between −2 and 1, while Ricci
curvature of a Riemannian manifold can be any real number.
Therefore, in the next section, we generalize the Ollivier graph
curvature definition to make it much more versatile, capturing
a much wider spectrum of graph properties that are not neces-
sarily microscopic.

III. MESOSCOPIC GRAPH NEIGHBORHOODS

A. General idea

The main limitation of the Ollivier graph curvature defi-
nition in the previous section is that it is “too microscopic.”
It limits the curvature-related considerations to graph balls or
neighborhoods of the radius of one hop, δ = 1. Such neigh-
borhoods may be too small to “feel” any curvature in a general
case. Recall that microscopically, any smooth curved space
is locally flat. This observation instructs us to consider much
larger mesoscopic graph neighborhoods with δ � 1. Unfortu-
nately, this instruction cannot be correct either, because to talk
about any curvature convergence, we really need δ � 1 since
δ must go to zero in the key convergence equation (5), which
is the main motivation to set δ to its smallest possible value 1
in graphs.

The combination of the calls for δ � 1 and δ � 1 looks
like a clear sign of unhealthy pathology, suggesting aban-
doning any hopes for Ollivier-to-Ricci curvature convergence
in graphs. And indeed we believe it is obvious that there
cannot be any such convergence in unweighted graphs, simply
because δ cannot be less than 1 in them.

However, these observations do not preclude the curvature
convergence in weighted graphs with positive real weights.
In such graphs, the Ollivier ball radius δ is back to being
a positive real number, which can tend to zero because link
weights can tend to zero with some characteristic rate ε. Sup-
pose also that ε and δ tend to zero such that ε � δ. Then, on
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FIG. 1. Random geometric graphs in (a) Riemannian space
and (b) Lorentzian spacetime. The figure visualizes the flat two-
dimensional Euclidian plane (a) and Minkowski spacetime (b),
where distances are the �2 and �1 norms, respectively. Nodes are
sprinkled randomly via the Poisson point process with rate r = n.
The blue regions are the balls BM (x, εn) of radius t = εn around
node x located at the origin. In (b) this ball is the intersection of
the past light cone centered at time t = εn with the future light cone
centered at time t = −εn. Node x is connected to all other nodes
in the graph that happen to lie within these blue balls. The yellow
regions are the Ollivier balls BM (x, δn) of radius δn � εn. Node y is
at distance δn from x. Vector v (not shown) is the tangent vector at x
toward y. The probability distribution μx is the uniform distribution
over all the nodes z that happen to lie within distance δn from x in
the graph, z ∈ BG(x, δn). These are not exactly the nodes lying with
the yellow Ollivier balls, but at large n the difference is negligible,
Appendix A 2.

the one hand, we have that δ → 0 as needed for convergence
(5), while on the other hand, the hopwise lengths of the radii of
Ollivier’s balls are δ/ε � 1, so that their sizes actually grow
in terms of number of nodes. This way we simultaneously
satisfy the two requirements above: the Ollivier balls are small
(δ � 1) and large (δ/ε � 1) at the same time, and hence we
call them mesoscopic. It is intuitive to think of ε and δ as the
microscopic and mesoscopic scales of the system.

The outlined approach is very general and can be imple-
mented in a variety of situations. In particular, the graphs do
not really have to be weighted, but δ must necessarily play
a role of a properly rescaled graph distance. In the next sec-
tion, we make these ideas concrete in application to random
geometric graphs.

B. Random geometric graphs

To describe our implementation of the general ideas from
the previous subsection in application to random geometric
graphs (RGGs), we first recall what RGGs are.

Given any Riemannian manifold, which henceforth we
will often call just space, the RGGs in it are defined con-
structively via the following two-step procedure: (1) sprinkle
points uniformly at random in the space via a Poisson point
process of rate r > 0 driven by the volume form defined by
the metric in the space [68], and (2) connect by edges all pairs
of points whose pairwise distances in the space are smaller
than threshold t > 0, Fig. 1(a). In topology, RGGs are a very
fundamental object because they are 1-skeletons of Vietoris-
Rips complexes [69] whose topology was proven to converge
to the space topology under very mild assumptions [70]. In

that context, our results below show that in a proper sense, the
geometry of RGGs also converges to the space geometry.

We are now ready to describe our ε, δ settings with RGGs
in the continuum limit n → ∞ suitable for curvature conver-
gence investigations.

Given any nice D-dimensional Riemannian manifold M,
we first fix any point x in it and any unit tangent vector v at x.
We are concerned with Ricci curvature at x in the v direction.
For a given n, we add the second point y at distance δn from
x, dM (x, y) = δn, along the geodesic from x in the v direction.
The distance δn is also the radius of the balls in the Ollivier
curvature definition above, so that it goes to zero in the limit,
δn → 0.

We then add the Poisson point process (PPP) of rate r ∼ n
in M to the two nonrandom points x, y. Henceforth, f (n) ∼
g(n) means f (n)/g(n) → c ∈ (0,∞), and f (n) ≈ g(n) means
c = 1. The connection distance threshold t in RGGs defined
on top of this PPP + {x, y} is then set to t = εn → 0. That
is, all pairs of points are linked in RGG G if the distance
between them in M does not exceed εn. In the continuum
limit n → ∞ of this setup, our PPP samples the manifold in-
creasingly densely (as there are on average r ∼ n vertices in G
per unit volume in M), while the RGGs become increasingly
“microscopic” (as their edges span M’s distances no greater
than εn → 0).

Every created edge is then weighted as described in the
next section. For any two vertices z1 and z2 in RGG G, we thus
have two distances defined: the manifold distance dM (z1, z2)
and the graph distance dG(z1, z2), which is the length of the
shortest path between z1 and z2 in the weighted graph G.

The Ollivier balls centered at x, y are then the sets of
G’s vertices z lying within weighted graph distances dG �
δn from vertices x, y: BG(x, δn) = {z ∈ G : dG(x, z) � δn},
BG(y, δn) = {z ∈ G : dG(y, z) � δn}. The probability distribu-
tions μx, μy are the uniform distributions on the vertex sets
BG(x, δn), BG(y, δn):

μx(z) = 1

|BG(x, δn)| if z ∈ BG(x, δn), (6)

μy(z) = 1

|BG(y, δn)| if z ∈ BG(y, δn). (7)

Finally, Ollivier graph curvature κG(x, y) is defined by the
same equation (4), except that probability distributions μx, μy

are given by Eqs. (6) and (7), Fig. 1(a):

κG(x, y) = 1 − WG(μx, μy)

δn
. (8)

We reiterate that as opposed to previous literature on Ol-
livier graph curvature, we do not require the RGG connection
radius εn to be equal to the Ollivier ball radius δn, Fig. 1(a).
However, we do not exclude this possibility either. In fact, we
will see in the next section that the Ollivier-to-Ricci curvature
convergence does hold even with εn = δn if links are weighted
by the manifold distances between the linked nodes, and if
graphs are sufficiently dense. That is, our only requirements
to εn and δn are that they both must go zero, and that εn � δn.
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IV. RESULTS

We obtain curvature convergence results for two different
schemes of edge weighting in our random geometric graphs.
We consider them separately in the next two sections.

A. Space distance weights

We first state our results for the settings in the previous
section with the weights wi j of all edges i, j in RGGs G set
equal to the distances between i and j in manifold M:

wi j = dM (i, j). (9)

With these settings, we can show that in the continuum
limit, rescaled Ollivier curvature in random graph G con-
verges to Ricci curvature in manifold M,

lim
n→∞

〈∣∣∣∣κG(x, y)

δ2
n

− Ric(v, v)

2(D + 2)

∣∣∣∣
〉

= 0, (10)

if the RGG connectivity radius εn and Ollivier ball radius δn

shrink to zero with n as

εn ∼ n−α, δn ∼ n−β, (11)

with exponents α, β satisfying

0 < β � α, α + 2β <
1

D
. (12)

The connectivity and Ollivier balls can be equal and can
shrink at the same rate,

εn ∼ δn ∼ n−α, (13)

in which case (12) becomes

α <
1

3D
. (14)

The expectation 〈·〉 in (10) is with respect to the RGG
ensemble, in which κG(x, y) is random. The result in (10) is
strong in the sense that it implies not only the convergence
of the expected value of Ollivier graph curvature to Ricci
curvature generalizing (5) to graphs,

lim
n→∞

〈κG(x, y)〉
δ2

n

= Ric(v, v)

2(D + 2)
, (15)

but also the concentration of random κG(x, y) around its ex-
pected value,

lim
n→∞ Prob

[∣∣∣∣κG(x, y)

δ2
n

− Ric(v, v)

2(D + 2)

∣∣∣∣ > ε

]
= 0 (16)

for any ε > 0.
We note that the conditions (12) allow graphs to be arbitrar-

ily sparse, but not exactly ultrasparse. We call graphs dense,
sparse, and ultrasparse (also truly sparse) if their expected
average degree

k̄n ∼ n vol[BM (·, εn)] ∼ nεD
n ∼ n1−αD (17)

is O(n), o(n), and ∼ constant, respectively. Observe that the
exponent β in (12) cannot be exactly zero because the Ollivier
balls must shrink for the sake of convergence, but it can be ar-
bitrarily close to zero. The closer the β to zero, the closer the α

can be to 1/D according to (12), while α = 1/D corresponds

to the ultrasparse case with k̄n ∼ constant. We note though
that the closer the β to zero, the slower the convergence,
simply because the Ollivier balls shrink too slowly in this case.

Another important observation is that the case with εn =
δn corresponds to the traditional definition of Ollivier graph
curvature with microscopic one-hop neighborhoods. In this
case, Eq. (14) says that we cannot prove the convergence
anywhere close to the ultrasparse limit with α = 1/D, and
our simulations suggest that there is no convergence there
indeed.

In general, the sparser the graphs, the more problematic the
convergence becomes. This is because the sparser the graphs,
the smaller the connection radius εn. As discussed in Sec. III,
if εn is too small, and if δn = εn, then all balls are of the radius
of one hop, and such microscopic neighborhoods may not
“feel” any curvature; all they can “feel” is locally Euclidean
flatness.

1. Proofs

Our proof of (10), outlined in Appendix A, is not trivial. It
consists of three major steps.

First, we extend the weighted shortest path distance in
RGGs G to space M. We do so by defining the following
auxiliary distance in M. For any pair of points x, y ∈ M we
add x and y as nodes to the graph G, and connect them to
all other nodes in G within some distance λn � εn from x, y
in M. The auxiliary manifold distance between x, y is then
the distance between them in the extended graph. We must
select λn very carefully, to make sure the auxiliary distance is
a sufficiently good approximation of the true distance in M.

Once we have this auxiliary distance in M, we need to
approximate the Ollivier balls in RGGs G with the corre-
sponding balls in M. That is, on the one hand we have sets
of nodes within graph distance δn from node x, while on the
other hand we have sets of nodes within manifold distance
δn from x. We work out this approximation by deriving an
upper bound on the Wasserstein distance between the uniform
probability distributions on these two balls. This allows us
to work with balls defined by manifold distances, instead of
graph distances.

Finally, the most nontrivial step, we must relate the discrete
uniform probability distribution defined on finite sets of nodes
in balls in G to the corresponding nonuniform continuous
distributions defined on the continuum of points in balls in
M. To this end, using a result on matching two Poisson point
processes, we first bound the Wasserstein distance between
these two distributions in Euclidean space. We finally extend
this result to non-Euclidean M, using the local flatness of the
space together with the fact that the neighborhoods that we
consider shrink as δn → 0.

Overall, at each step of this proof, we introduce an approxi-
mation error to the relation between the Wasserstein distances
in graphs G and manifold M. The crux of each step is that it
must be done with care to ensure that the introduced error is
upper bounded by δ3

n → 0. This is because if the error is that
small, then (10) follows from (5). The further details behind
how we achieve this at each step of the proof can be found in
Appendix A.
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2. Simulations

The fact that we can prove the Ollivier → Ricci conver-
gence only under the conditions (12) does not mean that there
is no convergence outside of this parameter region, and this is
indeed what we observe in simulations.

For simulations we select the sphere, torus, and the Bolza
surface as the three 2D manifolds of constant Ricci curvature
+1, 0, and −1. The Bolza surface [71,72] is the simplest
hyperbolic 2D manifold of genus 2 with no boundaries. We
consider the Bolza surface, versus something simpler of neg-
ative curvature, such as a hyperbolic disk, because we want
our manifolds to have no boundaries. We want this, because
computing Ollivier curvature in simulations is a major chal-
lenge at large n, so that we do not want any boundary effects at
any n.

We then fix x and y as described above, sprinkle n points
on the three manifolds uniformly at random according to
the manifold volume form, and link all pairs of points at
distances � εn on the manifold. We then find the Ollivier
balls BG(x, δn), BG(y, δn), set up the uniform probability dis-
tributions μx = 1/|BG(x, δn)|, μy = 1/|BG(y, δn)| on them,
and compute all the pairwise distances dG(xi, y j ) in graph
G between nodes i ∈ BG(x, δn) and j ∈ BG(y, δn) whose co-
ordinates are xi and y j . All these data allow us to compute
the Wasserstein distance WG(μx, μy) by solving the linear
program

WG(μx, μy) = min
ρi j

∑
i, j

dG(xi, y j )ρi jμx, such that

∑
i

ρi jμx = μy, 0 � ρi j � 1,
∑

j

ρi j = 1, (18)

where the minimization is over transportation plans ρi j whose
entries describe pairwise movements of probability masses.
Having computed this WG(μx, μy), Ollivier curvature is fi-
nally given by (8). Further details on the simulations are in
Appendix C.

The results are shown in Fig. 2. Remarkably, we observe
that rescaled Ollivier curvature in our RGGs converges to
Ricci curvature of the underlying manifold not only in the
parameter regime accessible to our proofs, Fig. 2(a), but also
well outside of this regime, for much sparser graphs, Fig. 2(b).
In particular, we observe that the convergence is as good for
truly sparse graphs with constant average degree as for denser
graphs.

B. εn weights

On the one hand, we may be not too happy that the
weighted RGGs considered in the previous section contain too
much information about the manifold in their edge weights
wi j = dM (i, j), helping the convergence “too much.” On the
other hand, we cannot be happy at all if edges are un-
weighted, wi j = 1, because in this case there cannot be any
curvature convergence whatsoever for the reasons discussed
in Sec. III. The maximum-happiness point appears to be the
middle-ground possibility discussed in Sec. III—all edges are
weighted by the same weight decaying to zero and playing
the role of a system scale, à la the Planck scale. This “Planck
scale” in our case is the RGG connectivity radius εn. That is,

FIG. 2. Ollivier-Ricci curvature convergence in constant-
curvature random geometric graphs. Panel (a) shows the simulation
data for rescaled Ollivier curvature (8) in (9)-weighted random
geometric graphs on the (D = 2)-dimensional torus, sphere, and
Bolza surface. The scaling exponents of the connectivity and the
Ollivier ball radii (11) in the graphs are set to α = β = 0.16 < 1/6
lying within the proof-accessible regime (14). Panel (b) shows
apparent convergence for α = {1/4, 1/2} and β = 1/4. Both of
these two settings lie well outside of the proof-accessible regime
(12), while α = 1/2 corresponds to truly sparse graphs with constant
average degree. The error bars represent the standard error σ/

√
ns,

where σ is the standard deviation and ns = 10 × 217/n is the number
of sampled random graphs of size n. The smallest graph size n is
chosen to ensure the graphs are connected, while the largest size
n = 217 is bounded by memory constraints of the MOSEK package.

the weights wi j of all edges i, j in our RGGs in this section
are

wi j = εn. (19)

This weighting scheme is equivalent to saying that we
actually work with unweighted graphs, except that we mul-
tiply by εn all distances in them, which are hop lengths of
shortest paths. If dG(z1, z2) is the shortest path hop distance
between vertices z1 and z2 in the unweighted RGG G, then the
rescaled graphs distance d ′

G(z1, z2) = εndG(z1, z2) is actually
a good approximation to the manifold distance dM (z1, z2).
Unfortunately, how good this approximation is (characterized
by stretch d ′

G/dM) has been rigorously quantified only for the
RGGs in the Euclidean plane [73]. Since the distances we
approximate are bounded by the Ollivier ball radius δn that
tends to zero, and since any Riemannian manifold is locally
Euclidean, our results below relying on [73] hold for any 2D
manifold. In fact, it turns out that the results in [73] are strong
enough for our proof strategy in the weighted case to work
essentially without a change in this unweighted case as well,
Appendix B. While our result below holds only for D = 2,
analogous results for higher dimensions can be worked out
as soon as stretch results for higher-dimensional RGGs are
obtained.

The result in Appendix B is that with weights in (19), the
Ollivier → Ricci convergence holds in the same strong sense
(10) if

0 < β <
1

9
, 3β < α <

1 − 3β

2
. (20)

Similarly to the weighted case, these conditions allow for
arbitrarily sparse but not ultrasparse graphs (β → 0, α →
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1/2). Unlike the weighted case, these conditions imply that,
as expected, the convergence is slower: β < 1/9 (2D un-
weighted) versus β < 1/6 (2D weighted). Another difference
with the weighted case is that these conditions do not allow
for the connectivity radius εn to be the same as the Ollivier
ball radius δn: α � 3β ⇒ δn � εn. We believe this is not a
deficiency in our proof techniques, but a reflection of reality.
It seems obvious that one must consider mesoscopic neigh-
borhoods of size δn � εn in unweighted graphs since one-hop
microscopic εn neighborhoods in these graphs are too small to
feel any curvature.

V. DISCUSSION

We have established a rigorous connection between cur-
vatures of discrete and continuous objects—random graphs
and Riemannian manifolds. Anecdotally, this connection is
reminiscent of what Riemann had in mind working on the
foundations of Riemannian geometry [74]. The closest result
to ours, which deals with convergence of curvature of simpli-
cial triangulations of manifolds in Regge calculus [17,50] and
its many derivatives [75], is very different. Informally, while
any simplex in any simplicial triangulation of any manifold is
a chunk of space, graphs are much more primordial objects in
that they do not have any space attached to them whatsoever.

We saw why the convergence of discrete curvature to a
continuous one is such a delicate matter. If we use the stan-
dard simple definition of Ollivier graph curvature, then the
immediately obvious observation is that there cannot be any
convergence. We really have to consider mesoscopic regions
in graphs with properly rescaled distances for the convergence
to take place, an observation that has been entirely overlooked
in the past. Even then the graph density and mesoscopic re-
gion sizes cannot be arbitrary, but should enter in a delicate
interplay. These nontrivial delicate points are one reason why
there are so few results on discrete → continuous curvature
convergence.

Our convergence proofs can likely be improved since our
simulations suggest that the convergence holds well outside of
the parameter regimes accessible by our proof techniques. Our
simulations can be improved as well. We could not simulate
graphs large enough to see any convergence in εn-weighted
graphs, where the convergence is slow. In any case, the in-
vestigation of the exact boundaries between regimes where
the convergence does and does not take place is a wide open
problem, both for Ollivier curvature and for all other discrete
curvature definitions mentioned in Sec. II, for most of which
it is not even known under what circumstances, if any, they do
converge.

If some discrete curvature does not converge to a contin-
uous one for some discrete structure, then it may very well
happen that this discrete curvature tells us something very
different about the structure from what is intended. In such
a case, why should we call this “curvature” curvature? This
problem is not semantic but practical. If we are sure that graph
curvature converges to manifold curvature, then we can be
also sure that our graph curvature can be used to learn reliably
manifold geometry—an exciting bit of news for manifold
learning and many other network or data science applications
mentioned in the introduction. As an example of the other

extreme, if we are sure that curvature of some tensor network
does not converge to Ricci curvature of classical spacetime,
then we can be also sure that this tensor network is not a good
model of quantum spacetime.

As far as possible applications to quantum gravity are con-
cerned, our results are an important but very high-level step
that does not touch on many critical aspects. We comment on
some of them.

First of all, we proved the convergence of curvature only
for graph links and paths. Their curvatures first need to be
averaged to result in scalar Ollivier-Ricci curvature at a vertex,
and then integrated over vertex sets to yield a discrete version
of the Einstein-Hilbert action. Is there any convergence in
this case, and if so, then under what circumstances? Such
convergence results would indicate unambiguously that the
discrete Einstein-Hilbert action can be constructed from Ol-
livier curvature.

A much more difficult problem is the following. What we
have solved is the direct problem of graph curvature conver-
gence to space curvature when space is there. The problem in
quantum gravity is actually the inverse problem of geometro-
genesis [28,29,76]—there is no space, only a discrete quantum
structure, which must “look like” space in the classical limit.
That is, an illusion of continuous space must somehow emerge
in the limit.

One strategy to address this problem is conceptually sim-
ilar to [77]. One can consider a canonical maximum-entropy
Gibbs ensemble of random graphs with fixed values of Ol-
livier curvature on links, paths, or vertices. The questions
then are as follows: is this ensemble equivalent (in the con-
tinuum limit) to the ensemble of random geometric graphs
on a Riemannian manifold with the corresponding values of
Ricci curvature, and do we have any (second-order) phase
transitions in this ensemble? If the answer to the first question
is yes, then the graphs in this ensemble do look like spatial
graphs, even though there is no space in their definition. If
the connection between Ollivier curvature and the Einstein-
Hilbert action is there, then the temperature parameter in this
ensemble must be analogous to the gravitational coupling
constant. In that context, the settings considered in this paper
are particularly interesting. Indeed, since Ollivier curvature
(8) is well defined for any shortest path between any pairs
of nodes x, y located at any distance in the graph, one can
probe graph curvature at any scale for renormalization and
other purposes.

Finally, yet another critical issue is the issue of time,
causality, and Lorentzian metric signature. There are two
schools of thought concerning the issue. The first school
believes that time and Lorentzian signature must be also emer-
gent. This route is followed, for example, in the combinatorial
quantum gravity program [28,29], where time and causality
are expected to appear only in the continuum limit above a
certain scale, below which spacetime is Riemannian, turning
into a random graph at a second-order phase transition defin-
ing quantum gravity nonperturbatively.

The second school builds in time and causality ab initio,
as in causal sets or causal dynamical triangulation. For our
results to be applicable in these settings, one needs first to ex-
tend them from Riemannian spaces to Lorentzian spacetimes.
To the best of our knowledge, no notion of random geometric
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graphs or Rips complexes has been defined for Lorentzian
manifolds. Since intersections of past and future light cones,
Fig. 1(b), known as causal diamonds or Alexandroff sets, play
the role of balls in Lorentzian geometry—specifically, the
topology defined by Alexandroff sets agrees with the base
topology in any nice Lorentzian spacetime [78]—we propose
to define Lorentzian random geometric graphs as shown in
Fig. 1(b). This definition is very different from causal sets,
where any two time-like-separated nodes are linked, and there
are no other links. In the Fig. 1(b) definition of Lorentzian
random geometric graphs, there are both time-like and space-
like links but only between nodes within causal diamonds of a
finite size. Can Ollivier curvature be defined for these graphs
and shown to converge to Ricci curvature of the underlying
Lorentzian manifold?
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APPENDIX A: OLLIVIER → RICCI CONVERGENCE IN
DISTANCE-WEIGHTED RGGs

Here we outline the main steps and ingredients in our
curvature convergence proof. All further lower-level details
can be found in [79].

Let μM
x and μM

y denote the normalized restrictions
of the volume form in manifold M onto the balls
BM (x, δn), BM (y, δn) in M, while μG

x and μG
y denote the uni-

form probability distribution over nodes lying within the balls
BG(x, δn), BG(y, δn) in weighted RGG G. Observe that if〈∣∣WG

(
μG

x , μG
y

) − WM
(
μM

x , μM
y

)∣∣〉 � δ3
n, (A1)

then (10) follows from (5). Indeed, if (A1) holds, then

〈|κG(x, y) − κM (x, y)|〉 =
〈∣∣WG

(
μG

x , μG
y

) − WM
(
μM

x , μM
y

)∣∣〉
δn

� δ2
n,

so that 〈∣∣∣∣κG(x, y)

δ2
n

− κM (x, y)

δ2
n

∣∣∣∣
〉

� 1.

The main idea of the proof is thus to show (A1). We
proceed in three steps.

FIG. 3. Illustration of the construction of the extended graph
distance d̃M . The blue points are nodes of the RGG and the two
black points are the selected points on the manifold. The blue circles
indicate the connection radius εn, while the black circles have radius
λn. In this example x is connected to node v1 and y to node v6.

1. Approximating graph distances by manifold distances

The first difficulty we face is that the Wasserstein distances
WG and WM are in different spaces with different distances:
on the one hand we have RGG G with weighted shortest path
distance dG, and on the other hand we have the manifold M
with distances dM . How can we compare the two then? We
simply extend dG to a new distance d̃M on M, such that the
difference between the new and original Wasserstein distances
W̃M and WM is � δ3

n .
This extension is accomplished by the following proce-

dure. Let

λn = ln(n)2/Dn−1/D, (A2)

so that

nλD
n → ∞. (A3)

If the conditions (12) hold, then we have

λn � εn, (A4)

λn � δ3
n . (A5)

Given any two points x, y in M we extend the RGG G
by adding x and y to the set of G’s nodes, and connecting
both x and y to all other nodes in G whose distance from x
and y, respectively, in the manifold is less than λn, Fig. 3.
We then define the new manifold distance d̃M (x, y) as the
weighted shortest path distance in the extended graph. This
new manifold distance d̃M is well defined, with probability
converging to 1, because the expected number of points of a
PPP of rate n in a ball of radius λn is n vol[BM (x, λn)] ∼ nλD

n ,
so that the probability to find a graph vertex within distance
λn from any point x in M is given by 1 − e−n vol[BM (x,λn )] which
converges to 1 thanks to (A3). Observe that if x and y happen
to be already nodes in G, then the new manifold distance
between them is the graph distance, d̃M (x, y) = dG(x, y).

We now have to show that for any two points x and y in
M, the distance d̃M (x, y) = dM (x, y) + o(δ3

n ). As evident from
Fig. 3, d̃M (x, y) � dM (x, y). For the upper bound, let us par-
tition the geodesic between x and y into m = �3dM (x, y)/εn�
sections of equal length, and let c1 = x, c2, . . . , cm, cm+1 = y
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FIG. 4. Approximating the manifold distance by the extended
weighted shortest path graph distance.

denote the m + 1 end points of this partition, Fig. 4. Consider
the m + 1 balls BM (ci, λn/4). The probability that every ball
contains a graph vertex converges to 1. Denote those m + 1
vertices by v1, . . . , vm+1. We then observe the following:

(1) the node v1 is at distance at most λn/2 from x, and so
is vm from y;

(2) the distance between each consecutive pair of nodes v

is bounded by

dM (vi, vi+1) � dM (x, y)/m + λn � εn/3 + λn;

(3) dG(vi, vi+1) � dM (ci, ci+1) + λn.
From these observations and (A4), we conclude that each

consecutive pair of nodes v is connected in the RGG and

d̃M (x, y) � λn +
m∑

i=1

dM (vi, vi+1)

� λn + dM (x, y)(1 + 3λn/εn).

If dM (x, y) � Cδn, for some C > 0, then

|dM (x, y) − d̃M (x, y)| � dM (x, y)
3λn

εn
+ λn (A6)

� 3Cλnδnε
−1
n + λn (A7)

∼ ln(n)
2
D n− 1

D −β+α + λn. (A8)

The second term in the last equation is � δ3
n by (A5), and so

is the first term if (12) holds. We therefore conclude that

d̃M (x, y) = dM (x, y) + o
(
δ3

n

)
.

Finally, the Wasserstein distances WM and W̃M are defined
by distances dM and d̃M , respectively. Therefore we immedi-
ately conclude that

|WM (μ1, μ2) − W̃M (μ1, μ2)| � δ3
n

for any two probability distributions μ1 and μ2 on M. If now
x, y are also any two nodes of our RGG G, then dG(x, y) =
d̃M (x, y), so that it follows that if μ1 and μ2 are defined on
G’s nodes, then

|WM (μ1, μ2) − WG(μ1, μ2)| � δ3
n . (A9)

The calculations above thus show that from now on we can
always work only with the Wasserstein distance WM in the
space M, and this indeed is what we do in the next steps.

2. Approximating probability distributions in graphs

The next hurdle we need to overcome is comparing
the uniform probability distribution μG

x on BG(x, δn) with
μM

x , the normalized restriction of the volume form to
BM (x, δn). The main difficulty here lies in that dM (x, z) � δn

does not necessarily imply that dG(x, z) � δn. In general,

the shape of the intersection BG(x, δn) ∩ BM (x, δn) can be
highly nontrivial. We tame this shape by introducing a new
probability distribution μ̂G

x which is the uniform probability
distribution on the set BG := BM (x, δn) ∩ G which is the set of
G’s nodes that happen to lie within distance δn from x in the
space, i.e., all nodes in the rose ball in Fig. 1(a). Observe that
BG(x, δn) ⊆ BG since dG(x, y) � dM (x, y). The main goal of
this step is to show that 〈WM (μG

x , μ̂G
x )〉 � δ3

n .
First, consider (A6). If the conditions (12) hold, then λn �

δ3
n and λn/εn � δ2

n . It follows then that there exists a ξn � δn

such that

|dM (x, y) − dG(x, y)| � dM (x, y)ξ 2
n + ξ 3

n . (A10)

For instance, we can take the ξn to be

ξn = max
{√

3λn/εn, λ
1/3
n

}
.

Define now the new radii δ±
n = (δn ± ξ 3

n )/(1 ∓ ξ 2
n ), and note

that δ−
n < δn < δ+

n , so that

BM (x, δ−
n ) ⊂ BM (x, δn) ⊂ BM (x, δ+

n ).

Let B±
G := BM (x, δ±

n ) ∩ G and μ±
x denote the uniform prob-

ability distribution on B±
G . We then obtain an upper bound

for WM (μ̂G
x , μ+

x ) by considering the following joint probabil-
ity distribution, also known as transport plan, μ for (u, v) ∈
BG × B+

G :

μ(u, v) =

⎧⎪⎪⎨
⎪⎪⎩

1
|B+

G | , if u = v ∈ BG,

1
|BG||B+

G | , if u ∈ BG, v ∈ B+
G \ BG,

0, otherwise.

Since the Wasserstein distance WM (μ̂G
x , μ+

x ) is the infimum
over all joint distributions (1), and since μ̂G

x and μ+
x are

discrete, it follows that

WM
(
μ̂G

x , μ+
x

)
�

∑
u∈BG,v∈B+

G

dM (u, v)μ(u, v)

=
∑

u∈BG,v∈B+
G\BG

dM (u, v)

|BG||B+
G |

� 2δ+
n

|B+
G \ BG|
|B+

G | .

Since we are dealing with a PPP, both |B+
G \ BG| and |B+

G | are
Poisson distributed with diverging means. Although they are
not completely independent, it can be shown that〈 |B+

G\BG|
|B+

G |
〉

∼ 〈|B+
G\BG|〉

〈|B+
G\BG|〉 + 〈|BG|〉 ∼ (δ+

n )D − (δ−
n )D

δD
n

.

This fraction is of the order ξ 2
n � δ2

n , so that we conclude〈
WM

(
μ̂G

x , μ+
x

)〉 � δ+
n δ2

n ∼ δ3
n .

Finally, let node z lie in the manifold ball of radius δ−
n

around node x, dM (x, z) � δ−
n . Then (A10) implies that the

graph distance between x and z is upper bounded by δn:

dG(x, z) � dM (x, z)
(
1+ξ 2

n

)+ξ 3
n � δn−ξ 3

n

1+ξ 2
n

(
1+ξ 2

n

)+ξ 3
n = δn.
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This means that z ∈ BG(x, δn), so that we have the following
sandwich:

B−
G ⊆ BG(x, δn) ⊆ B+

G .

Using calculations similar to the ones above for this sandwich,
we obtain 〈

WM
(
μG

x , μ+
x

)〉 � δ3
n .

Therefore, by the triangle inequality of the WM distance,〈
WM

(
μG

x , μ̂G
x

)〉
�

〈
WM

(
μG

x , μ+
x

)〉 + 〈
WM

(
μ+

x , μ̂G
x

)〉 � δ3
n .

(A11)
The calculations above thus show that from now on we can

work with the probability distribution μ̂G
x instead of μG

x . The
former is more convenient to work with than the latter because
it is over G’s nodes that happen to lie within manifold ball
BM (x, δn), the rose ball in Fig. 1(a).

3. Going from discrete to continuous probability distributions

The final step is to go from the discrete probability distri-
bution μ̂G

x to the continuous distribution μM
x . Similarly to the

goal of the previous section, the task is to show that〈
WM

(
μ̂G

x , μM
x

)〉 � δ3
n . (A12)

This is done by applying results on the matching distance
between a PPP and points of a grid on the same space [80–83].

Note that both μ̂G
x and μM

x are now defined on BM (x, δn).
We now need to devise a transport plan from μ̂G

x to μM
x

that assigns to any (measurable) set A ⊆ BM (x, δn) how much
mass from each PPP point in BG = G ∩ BM (x, δn) is used to
make up μM

x (A). We do so as follows.
First, suppose that space M is flat, the D-dimensional Eu-

clidean space. We construct our transport plan in three steps:
(1) we first place a grid on the space;
(2) we next find a minimal matching between this grid and

the PPP points in BG; and
(3) finally, for each (measurable) set A in BM (x, δn), we

find all the PPP points in BG that are matched to the grid points
that lie in A.

Observe that this transport plan is such that every PPP
point, i.e., graph vertex in BG contributes an equal fraction
of its mass to make up μM

x (A). This plan is also such that
the largest distance any amount of mass has to move is given
by the largest matching distance. Relying on the results from
[80–83], it can then be shown that〈

WM
(
μ̂G

x , μM
x

)〉 ∼ ln(n)n−1/D � δ3
n, (A13)

where the last inequality holds if the conditions (12) are satis-
fied.

Next, we relax the condition that the space M is flat.
Indeed, it can be any nice Riemannian manifolds because
δn → 0, so that we can map the ball BM (x, δn) to the flat
D-dimensional tangent space at x using the exponential map.
We have to be careful here though, because the exponential
map does not preserve distances. Still, by fixing a sufficiently
small neighborhood U around the origin of the tangent space,
we can ensure that for large enough n, exp−1 BM (x, δn) ⊂ U ,

and the distances are distorted by a fixed small amount:

BD

(
0,

δn

1 + ξ

)
⊆ exp−1 BM (x, δn) ⊆ BD

(
0,

δn

1 − ξ

)
⊂ U,

where BD(0, δ) is the D-dimensional Euclidean ball of small
radius δ around the origin in the tangent space.

Finally, relying on this mapping and on the PPP mapping
theorem [68] that applies to U , we see that the mapped PPP
is still a PPP with intensity ∼n, now relative to the Euclidean
volume form. Moreover, since the mapped ball is sandwiched
between two balls whose radii scale as δn, the results for the
D-dimensional Euclidean space above yield matching lower
and upper bounds for the Wasserstein distance, from which
(A12) follows.

The combination of (A12), (A11), and (A9) yields (A1),
completing the proof.

APPENDIX B: OLLIVIER → RICCI CONVERGENCE
IN εn-WEIGHTED RGGs

We first observe that the last step in the proof outlined
in Appendix A does not rely on any graph distances at all.
Further, the key element in the second step is (A10), which is
also the fundamental ingredient in the first step in showing that
distance d̃M is a good approximation to distance dM , leading
to (A9). Therefore, the convergence proof for εn-weighted
graphs is complete as soon as (A10) is established for the new
graph distance d ′

G = εndG, where dG is now the vanilla short-
est path (hop count) distance in graph G. We also note that we
have to do this only for the 2-dimensional Euclidean space,
since the neighborhoods shrink and we can apply techniques
similar to the ones in Appendix A 3 to extend the result to any
curved manifold.

We first observe that the conditions (20) imply that εn �√
ln(n)/n. In this case, the main stretch result from [73] reads

|d ′
G(x, y) − dM (x, y)| � dM (x, y)γn + εn, (B1)

where γn = max{γ (1)
n , γ (2)

n , γ (3)
n }, and where the three γn’s

have somewhat complicated explicit expressions with differ-
ent constants and different scalings with n which can be shown
to be

γ (1)
n ∼

(
ln n

nε2
n

) 2
3

, γ (2)
n ∼

(
ln n

nε2
n

)2

, and γ (3)
n ∼

(
1

nε2
n

) 2
3

,

if the conditions (20) hold. Since these conditions also imply
that nε2

n → ∞, it follows that

γn ∼
(

ln n

nε2
n

) 2
3

(B2)

in our case.
The εn in (B1) is � δ3

n if the lower bound in the second
condition in (20) holds. Therefore, to translate (B1) to (A10),
all we need to do is to show that γn � δ2

n . If this holds, then
we can simply take the ξn in (A10) to be ξn = max{√γn, ε

1/3
n }.

The requirement γn � δ2
n is satisfied if

ln n

nε2
nδ

3
n

∼ ln(n) n2α+3β−1 � 1, (B3)

013211-10



OLLIVIER-RICCI CURVATURE CONVERGENCE IN … PHYSICAL REVIEW RESEARCH 3, 013211 (2021)

which is indeed true if the upper bound in the second condition
in (20) holds.

APPENDIX C: NUMERICAL METHODS

The computation of Ollivier graph curvature in simulations
consists of three tasks: graph construction, distance matrix
computation, and Wasserstein distance computation. We rely
on a hybrid multicore solution which parallelizes each of these
tasks, with the first two utilizing custom CUDA methods split
among multiple GPUs, and the last utilizing multiple CPU
cores via the MOSEK software package.

1. Graph construction

We construct random geometric graphs of size n by first
sampling n points uniformly at random, according to the man-
ifold volume form, on the surface of a unit torus, sphere, and
Bolza surface. This is trivial for the first two manifolds, and
less so for the Bolza surface.

The simplest representation of the Bolza surface [71,72] is
the hyperbolic octagon with vertices at complex coordinates

ok = R exp

[
iπ

4

(
1

2
+ k

)]
, k = 0, 1, . . . , 7, (C1)

where R = 2−1/4 in the Poincaré disk model of the hyperbolic
plane. When the opposite sides of this octagon are glued, the
Bolza surface of constant curvature −1 is formed. To sprinkle
points uniformly at random onto this octagon, we first sprinkle
them uniformly at random, according to the volume form in
the Poincaré model, which in the polar coordinates is

dV = 4r dr dθ

(1 − r2)2
, (C2)

onto the Poincaré disk of radius R, and then remove those
points that lie in this disk but do not lie in the octagon. We do
this removal in the Klein disk model of the hyperbolic plane,
because geodesics—octagon sides, in particular—are straight
lines there. The map to go from the Poincaré (r, θ ) to Klein
(rK , θ ) polar coordinates is (rK , θ ) = (2r/(1 + r2), θ ), and in
the latter coordinates, the coordinates of points that lie in the
octagon meet the condition rK < rc[φ(θ )], where

rc(φ) = RK
cos(π/8)

cos(π/8 − φ)
, φ ∈ [0, π/4], (C3)

φ(θ ) =
(
θ − π

8
[1 + 2k(θ )]

)
mod 2π, (C4)

k(θ ) =
⌊

4

π

(
θ − π

8

)⌋
mod 8, (C5)

where RK = 2R/(1 + R2) = 25/4/(1 + √
2) is the octagon ra-

dius in the Klein model. The nodes that do not pass this
test are thrown out. The remaining nodes lie in the octagon,
and we work back with their Poincaré coordinates, (r, θ ) =
(1/rK −

√
1/r2

K − 1, θ ).
After all the n nodes are sprinkled, we add two additional

nodes x, y separated by distance δn, which are the centers
of the two balls BG(x, δn), BG(y, δn). Given the coordinates
of all the n + 2 nodes, all node pairs are linked whenever

their pairwise distance on the surface is below the connection
threshold εn. The distances on the torus and the sphere are

dT (x1, y1; x2, y2) =
[(

1

2
−

∣∣∣∣1

2
− |x1 − x2|

∣∣∣∣
)2

+
(

1

2
−

∣∣∣∣1

2
− |y1 − y2|

∣∣∣∣
)2]1/2

, (C6)

dS (θ1, φ1; θ2, φ2) = arccos [cos θ1 cos θ2

+ sin θ1 sin θ2 cos(φ1 − φ2)]. (C7)

On the Bolza surface, the distance formula is more compli-
cated. We describe it next.

The Bolza surface can also be considered as the factor
space H2/F [72], where H2 is the hyperbolic plane, and the
Fuchsian group F is defined by its eight generators

gk =
(

a beikπ/4

be−ikπ/4 a

)
, k = 0, 1, . . . , 7, (C8)

where a = 1 + √
2 and b = √

a2 − 1. This group acts on the
hyperbolic plane by linear fractional transformations. Let N
be the set of the 48 elements of F given by

ĝk,� =
�∏

t=0

gk+3t , (C9)

where k = 0, 1, . . . , 7 and � = 0, 1, . . . , 5. One can check
that these elements map the original octagon to its 48 either
side- or vertex-adjacent octagons in the tessellation of the
hyperbolic plane induced by these identical octagons. Define
N0 := N ∪ I to be these 48 elements plus the identity ele-
ment I . One can show that the distance on the Bolza surface
between two points with complex coordinates z1, z2 (z = reiθ )
is given by

dB(z1, z2) = min
ĝ∈N0

dH (z1, ĝz2), where (C10)

dH (z1, z2) = 2arctanh

∣∣∣∣ z1 − z2

1 − z∗
1z2

∣∣∣∣ (C11)

is the hyperbolic distance between the points in the Poincaré
model.

We compute what nodes are linked in parallel using a
multi-GPU solution, where each thread works on one pair
of nodes, except in the case of the Bolza surface where each
thread computes one or two of 49 distances and each thread
block works on two node pairs. The adjacency matrix is first
tiled such that (1) the data required to generate each tile fit on
a single GPU and (2) the total number of tiles is a multiple of
the number of GPUs available. This decomposition provides a
scalable solution independent of the number or type of GPUs
present in the system. The algorithm is improved by using the
shared L1 memory cache to store the Bolza generators and
partial results, warp shuffling to accumulate results, function
templating to eliminate kernel branches, and asynchronous
CUDA calls to pipeline data transfers across different GPUs.

2. Distance matrix computation

After constructing the graph, we identify the balls
BG(x, δn) and BG(y, δn). When εn = δn, these are simply the
nearest neighbors of x and y, respectively; otherwise, they
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are calculated using Dijkstra’s algorithm [84]. For the largest
graphs we consider, the size of these balls can be up to tens
of thousands of nodes, resulting in over billions of pairwise
distances between the nodes in the two balls. The overall
simulation bottleneck is the computation of the matrix of the
weighted shortest-path distances between these large sets of
nodes.

We employ a custom multi-GPU A∗ search algorithm using
the methods described in [85]. The standard A∗ algorithm
works by constructing a priority queue of visited nodes z
using a binary heap. In computing the shortest path distance
between a source node xi and destination node y j , priorities
are assigned to node z in the queue according to the heuristic
function

f (z) = dG(xi, z) + h(z, y j ), (C12)

where dG(xi, z) is the weighted graph distance between z and
source xi ∈ BG(x, δn), while h(z, y j ) is the lower-bound esti-
mate of the distance between z and destination y j ∈ BG(y, δn).
As soon as new node z′ ∈ BG(y, δn) is added to the priority
queue, its weighted graph distance dG(xi, z′) is added to the
distance matrix.

The A∗ algorithm is implemented on a single GPU by
utilizing multiple priority queues, one per CUDA thread, so

that it is efficient for graphs with large average degrees of
the order of hundreds. Each priority queue extracts multiple
states, after which we detect duplicates using a technique
called parallel hashing with replacement, which is a modifica-
tion of the cuckoo hashing scheme that avoids hash conflicts
by allowing some duplicates to remain [85,86]. During this
step, the heuristic for extracted nodes is updated, and they are
re-added to the priority queues using a parallel heap insertion.
This procedure continues until the destination node y j has
been extracted by at least one of the priority queues.

3. Wasserstein distance computation

Having in place the distance matrix between the sets of
nodes in the two balls BG(x, δn) and BG(y, δn), we compute the
Wasserstein distance between the uniform probability distri-
butions on these balls by solving the linear program (18). For
the simulations presented here, we found it sufficient to use
the MOSEK package [87] as long as the number of variables,
given by |BG(x, δ)||BG(y, δ)|, is roughly less than 1.3 × 109,
past which we run out of memory. In most cases with smaller
balls, however, we solve the linear program quite quickly
using the standard primal-dual interior point method [88].
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