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Transport and spectral features in non-Hermitian open systems
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We study the transport and spectral properties of a non-Hermitian one-dimensional disordered lattice, the
diagonal matrix elements of which are random complex variables taking both positive (loss) and negative
(gain) imaginary values: Their distribution is either the usual rectangular one or a binary pair-correlated
one possessing, in its Hermitian version, delocalized states and unusual transport properties. Contrary to the
Hermitian case, all states in our non-Hermitian system are localized. In addition, the eigenvalue spectrum, for
the binary pair-correlated case, exhibits an unexpected intricate fractallike structure on the complex plane and
with increasing non-Hermitian disorder, the eigenvalues tend to coalesce in particular small areas of the complex
plane, a feature termed “eigenvalue condensation.” Despite the strong Anderson localization of all eigenstates,
the system appears to exhibit transport not by diffusion but by a new mechanism through sudden jumps between
states located even at distant sites. This seems to be a general feature of open non-Hermitian random systems.
The relation of our findings to recent experimental results is also discussed.
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I. INTRODUCTION

Anderson localization raising the possibility of suppression
of diffusion in disordered media [1] is a fundamental phe-
nomenon of wave physics and has been extensively studied
in both quantum and classical domain [2–9]. Its importance
in various fields, such as condensed matter physics, disor-
dered photonics and imaging, Bose-Einstein condensates, and
acoustic waves, is evident. However, with the exception of the
random laser community [10–12], the majority of the studies
regarding wave localization has been devoted to conservative
systems, in which Hermiticity of the Hamiltonian is ensured.
Whereas accurate control of the openness in many fields of
wave physics is difficult or even impossible, photonics pro-
vides an ideal area where such control is possible by today’s
available experimental techniques.

In particular, the recent introduction of the concepts
of parity-time (PT ) symmetry [13–20] and exceptional
points [21–25] in optics, which relies on the complex values
of the index of refraction, has led to the development of a new
research field, that of non-Hermitian photonics [26–33]. In
particular, the openness of these systems can be described in
terms of gain (amplification based on laser materials) and/or
loss (intrinsic decay mechanism) and their delicate interplay
leads to unexpected novel features. The rich behavior of these
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structures has triggered a plethora of experimental realizations
of various optical devices [34–48].

Quite recently there has been a renewed interest for non-
Hermitian Anderson localization problems [49–54], since it
was realized that in the context of optical physics one can
experimentally realize linear random non-Hermitian Hamil-
tonians, away from the highly nonlinear regime of random
lasers and the majority of abstract non-Hermitian random
matrices. The proposed complex random discrete models can
be considered the most relevant non-Hermitian analog of the
Anderson original problem. In this case, the non-Hermiticity
is a direct consequence of the complex nature of the index of
refraction, whereas the coupling between nearest neighbors
is real and fixed. Thus the fundamental questions of whether
the eigenmodes are localized or not and whether transport is
possible still remain open. Interestingly, in a recent novel ex-
periment [55] it was demonstrated that the non-Hermiticity of
a random medium with a rectangular distribution of disorder
can unexpectedly result to jumpy evolution dynamics despite
the strong localization of all corresponding eigenfunctions.
We emphasize that quite different non-Hermitian Anderson
models have been previously examined in a number of related
theoretical works [56–59] (see Appendix A).

II. FORMULATION

In this work we study for the first time the spectral and dy-
namic properties of one-dimensional (1D) waveguide lattices,
which are characterized by non-Hermitian disorder in the di-
agonal matrix elements εn = εR,n + iεI,n; the imaginary part,
εI,n, of the latter has either a rectangular distribution, defined
in Eq. (2a), usually centered around zero with a total width
equal to 2W (being thus a direct non-Hermitian extension
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FIG. 1. Schematic representation of the complex diagonal matrix
elements for the case of the non-Hermitian random binary pair-
correlated model of Eq. (2b).

of Anderson original paper) or has a binary pair-correlated
distribution, defined in Eq. (2b) and shown schematically in
Fig. 1 [being the non-Hermitian extension of the extensively
studied, random pair-correlated (dimer) model] [60–63],
which is the simplest disorder system that, in spite of be-
ing one-dimensional, still permits wave-packet delocalization,
as it has also been demonstrated experimentally [63] (see
Appendix B and in particular Fig. 8). In our non-Hermitian
binary pair-correlated model binary disorder though, we show
that delocalization is impossible for any value of the complex
diagonal elements. Furthermore, we find that such binary
disordered system exhibits various unexpected features, such
as fractallike spectrum, as well as regions in the complex
plane where many eigenvalue come arbitrarily close and form
“eigenvalue condensates.” However, despite the strong Ander-
son localization exhibited for all distributions employed in the
present work for the random variables εI,n, a new kind of non-
Hermitian transport dynamics seems to occur with sudden
jumps between eigenstates localized even around distant sites.
Our study may pave the way for future optical experiments
that demonstrate the counterintuitive dynamic properties of
non-Hermitian disordered lattices.

The paraxial wave propagation in a 1D waveguide array of
N coupled channels is described by the normalized coupled
mode equations:

i
∂ψn

∂z
+ c(ψn+1 + ψn−1) + εnψn = 0, (1)

where z is the propagation distance, ψn and εn are the envelope
of the electric field and the propagation constant of the nth
channel (which here plays the role of the on-site energy),
and c is the coupling constant between nearest neighbors,
which as usually we have set c = 1 for simplicity. For the
spectral properties of the model, we will consider stationary
right eigenstates of the form: ψn, j (z) = un, jeiω j z, where ω j is
a complex eigenvalue of the system. For our system the left
eigenstates are complex conjugate of the right as is explained
in more detail in Appendix A.

As mentioned, the Hermitian version of our model (where
all the εn are real random numbers) is either the original An-
derson model or the well-known case of binary pair-correlated
disorder possessing extended eigenstates (in spite of being
one dimensional) and exhibiting superdiffusive transport, as
has been analytically and experimentally [60–63] shown (see
Appendix B). In this work we set initially εR,n = Re(εn) = 0
and choose εI,n = Im(εn) to be a random variable with the
following distributions among others:

p(εI,n) =
{

1/2W if εI,n ∈ (−W,W )

0 otherwise
(2a)

FIG. 2. [(a)–(c)] Eigenvalue spectrum on the complex plane for
the non-Hermitian random binary pair-correlated model and for
(a) α = 0.1, (b) α = 0.5, and (c) α = 1. (d) Integral density of states
R(ω) as a function of the real part Re(ω) of the eigenvalues [R(ω)
counts all states with Re(ω j ) < ω]. All these results correspond to
N = 3000.

or

εI,2n = εI,2n+1 =
{

iα, with p1 = 1
2

−iα, with p2 = 1
2

, (2b)

with p1,2 being the associated probabilities, and α a real,
positive number describing the disorder’s amplitude. Thus the
distribution of Eq. (2b) is a binary one with short-range pair-
correlation such that each pair of two consecutive sites have
randomly either the value iα or −iα as shown schematically
in Fig. 1. Other distributions similar to Eq. (2a) were also
examined (see Appendix D).

III. SPECTRAL PROPERTIES FOR THE DISTRIBUTION
SHOWN IN EQ. (2b)

In Fig. 2 we present our result for the spectrum in the
complex plane, as well as the integral density of states for
various values of the randomness parameter α. The spectrum
for small values of α is concentrated near the real axis, except
for the edges whose imaginary part extends through (−α, α)
[Fig. 2(a)]. These results are reasonable and can be intuitively
associated with the density of states of the corresponding
Hermitian problem.

However, for α = 0.5 the picture is quite different. The
whole spectrum now tends to move away from the real axis
and to form an intricate fractallike structure in the com-
plex plane [Fig. 2(b)], which resembles the spectrum of
the quasiperiodic Harper model [64], in exhibiting a similar
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FIG. 3. Normalized level spacing distribution P(s), averaged
over the whole spectrum, for (a) α = 0.1 compared to a Wigner-
Dyson distribution (red curve, see Appendix A) and (b) α = 0.5,
fitted with a function of the form of Eq. (3) (red curve), with A ≈ 0.3,
β ≈ 0.72, and λ ≈ 0.24. An averaging over 50 realizations of disor-
dered systems with N = 2500 has been performed for these results.

regularity in spite of its randomness. In addition, a gap opens
around the imaginary axis Re(ω) = 0. We note that it is not
quite uncommon for non-Hermitian random matrices to ex-
hibit intricate fractallike spectra in the complex plane [59]. It
must be pointed out that these features are associated with the
binary pair-correlated character of our model; they disappear
in the absence of pair correlation and in the case of a rectangu-
lar distribution of the random variable. By increasing the value
of α the eigenvalues do not extend over the whole complex
plane, as one might expect, but they rather tend to “collapse”
into specific points of the complex plane [Fig. 2(c)] leading to
rather sparse spectrum. We term this behavior as “eigenvalue
condensation.” Such eigenvalue coalescence can be directly
shown if one plots the integral density of states R(ω) as a
function of the real part of the eigenvalues [Fig. 2(d)], where
R(ω) counts all states with the real part of the correspond-
ing eigenvalue less than ω. We can clearly see the steplike
behavior of the eigenvalues due to their condensation. If we
further increase the value of α, then the eigenvalues gradually
approach the lines with Im(ω) = ±α, i.e., they tend to take
the form of the diagonal matrix elements as expected, and the
intriguing yet unexplained pattern of the spectrum is lost.

In order to quantify the aforementioned change in the spec-
trum’s picture (Fig. 2), taking place for α between 0.1 and 0.5,
we examine the level spacing distribution P(s), where s is the
normalized minimum distance between two eigenvalues in the
complex plane: s|ω j ≡ min |ω j − ω j′ | (Fig. 3).

For α = 0.1 we get the expected Wigner-Dyson distri-

bution: PWD(s) = πs
2 e− πs2

4 and the eigenvalues show level
repulsion. On the other hand, if we set α = 0.5, then the
level spacing distribution resembles the Poisson distribution,
PP(s) = e−s. However, in contrast to PP(s), our histogram
[Fig. 3(b)] seems to exhibit a possible singularity as s → 0.
We found that the following expression:

PF (s) = As−βe−λs, (3)

provides a reasonable fitting to our data. We think that this
behavior is not inconsistent with the aforementioned eigen-
value condensation, since a large number of eigenvalues tend

FIG. 4. Localization length ξ (colorbar) of the eigenstates of the
non-Hermitian random pair-correlated lattice, as a function of the
corresponding eigenvalue ω j on the complex plane for α = 0.5. We
can see that the localization length does not exceed the value of
≈35 (N = 2000, five realizations of disorder are superimposed for
visualization purposes).

to coalesce. We found that, by increasing the size N of our
system, the histograms tend to be closer to the corresponding
analytic formulas.

IV. LOCALIZATION IN OUR SYSTEMS

The next important issue we would like to address is
whether or not delocalization in this non-Hermitian model is
possible. A direct and elegant way to see this is by considering
a periodic lattice with a single dimer defect. In this case,
one can analytically obtain an expression for the reflection
probability-|r|2 from the impurity [60] [see Eq. (B4) in Ap-
pendix]. For the non-Hermitian dimer, the expression reads:

|r|2 = α2(cos2 k + α2)

(1 + 2α2 − 2α sin k)2 − cos2 k
. (4)

The above relation clearly shows that the equation r = 0 can-
not be satisfied for imaginary on-site energies. This indicates
that, contrary to the Hermitian case, all the eigenstates are
localized. In order to verify this statement, we calculate the
localization length ξ using the transfer matrix method [65] and
plot ξ which corresponds to every eigenvalue on the complex
plane, as is shown in Fig. 4. The localization length is defined
as:

ξ ≡ − lim
n→∞

n

ln |un| . (5)

In practice, if N is much larger than ξ (in our case, N/ξ > 50),
then one obtains a reliable value of ξ as n → N . We can
clearly see that our assessment was correct, since N/ξ does
exceed the value of 50. Moreover, we find that ξ remains finite
for every value of α �= 0. The fact that all eigenstates of the
spectrum are localized, in contrast to the Hermitian case, is
one of the most direct consequences of the non-Hermiticity
on our system. As expected, the localization length is even
smaller than the one shown in Fig. 4 if the rectangular distri-
bution, Eq. (2a), is used with the same standard deviation.
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FIG. 5. (a) Normalized field intensity |φn|2 as a function of the
propagation distance’s logarithm log z. (b) Logarithm of the variance
M(z) as a function of log z (here we have set α = 1 and N = 501).

V. NEW KIND OF TRANSPORT BY JUMPS

Besides the interesting spectral properties of our model,
phenomena associated with the spreading of an initially local
excitation are the most intriguing and unexpected ones. These
phenomena appear for all distributions of εI,n we have tried
(see Appendices C and D) and, hence, we tend to believe that
it is a universal feature associated with non-Hermitian open
systems. In spite of the strong localization of the eigenstates,
the initial local excitation seems to propagate not by diffusion
(in this sense, Anderson’s conclusion for the absence of dif-
fusion is still valid) but by a new kind of mechanism beyond
Anderson, namely by apparently discontinuous jumps. One
way to systematically study the wave dynamics is by exam-
ining the evolution pattern and the variance M(z) of an initial
single channel, n = n0 excitation as a function of z; n0 was
chosen to be at the center of the lattice, thus, ψn(z = 0) =
δn,n0 . The variance is defined as follows:

M(z) ≡
∑

n

(n − n0)2|ψn(z)|2. (6)

For α = 0 the lattice is periodic and M ∼ z2, as ex-
pected, which indicates ballistic transport. If we set α �= 0,
although all states become exponentially localized, then M(z)
exhibits a very interesting and unexpected behavior. Our re-
sults are depicted in Fig. 5. We note that we have plotted
the power-normalized field amplitude: |φn| = |ψn|√

P (z)
, since the

field amplitude |ψn| diverges exponentially as z → ∞ due
to the presence of gain. P (z) ≡ ∑

n |ψn|2 as to force energy
conservation by this “external” normalization.

Even though all the eigenstates are localized, the wave
exhibits “non-Hermitian jumps” between even distant sites
and thus we obtain energy spreading which seems to continue
until the edges of the system are reached. This behavior is also
captured by the plot of the variance over z in Fig. 5(b), for the
same realization of disorder, which also exhibits a number of
finite jumps. This behavior seems to occur in open systems
with random complex εn and has not a Hermitian analog.
In order to understand the physical mechanism behind this
unexpected feature, we calculate the field at z = zmax = 104

for the same realization of disorder as in Fig. 5(a) and compare
it with the field profile of the most gainy mode, namely the

FIG. 6. Evolution of a single-channel excitation (N = 201) for
(a) a disordered Hermitian lattice (WR = 1) and (b) a disordered
non-Hermitian lattice with only loss (WR = 1,WI = 2). The field is
normalized is every step for visualization purposes.

mode which corresponds to the eigenvalue with the largest
value of the real part of iω (see Appendix D).

In trying to physically interpret these intriguing results we
have to stress two features of the eigenstates (left or right)
which are unique in disordered random non-Hermitian sys-
tems: (a) their complex eigenvalues ω j , which lead to either
infinite or zero amplitude as z → ∞ depending on the sign
of Im(ω j ), and (b) their nonorthogonality, which facilitates
transfer of energy from channel to channel, even between
distant channels. These two features seem to account for
the jumpy spread of energy; indeed, as we have pointed out
before, a gainy mode, i.e., one combining a large negative
value of Im(ω j ) with a large overlap with the initial (or any
intermediate) state, is in a privileged situation (compared with
a next neighboring channel) to be the recipient of an excita-
tion. We have confirmed this behavior by several numerical
experiments in which we artificially introduced states with a
large negative Im(ω j ) and located at selected sites. Always
the jumps occur at these sites even when they were far away
from the initial site. Can we conclude from these results
that disordered random non-Hermitian systems with a short
localization length allows a new type of transport by jumps
to privileged eigenstates? Before we could provide a positive
answer to this question we have to consider an obvious possi-
ble reservation. The reason is that one has to be careful when
referring to transport in non-Hermitian systems, because there
are no intrinsic conservation laws.

Notice, in this connection, that in our model at least two
physical effects coexist; one is the existence of eigenmodes
of quite different amplitudes as a result of the range of values
of the imaginary part of the eigenfrequencies inherent in an
open non-Hermitian system and the other is true transport of
the energy associated with the initial excitation due to the cou-
pling between adjacent channels and/or the nonorthogonality
of the eigenstates. One may think at first that the observed
jumps are an effect caused by gain. Thus to check this point
we consider the dynamics of a non-Hermitian lattice [−WR �
Re(εn) � WR; 0 � Im(εn) � WI : WR = 1,WI = 2], with only
loss (zero gain), based on a rectangular random distribution.
The intensity dynamics (power normalized to each step as be-
fore) is shown in the following Fig. 6. As we can see the jumps
are evident in the non-Hermitian lattice (right figure) in spite
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of the absence of any gain. Thus we can conclude that the ex-
ternal pumping of energy is not the reason for the jumps and,
in the absence of any other way, we tend to conclude that what
is observed is the actual transport of the initial excitation. For
comparison we show on the left of Fig. 6 the corresponding
Hermitian lattice (WR = 1,WI = 0) for the same realization
but with no loss. We suspect that, in view of the elimination of
amplification, the two physical mechanisms mentioned before
are responsible for the physical origin of these jumps, namely
the quite different amplitudes of the eigenmodes and their
nonorthogonality, two features which clearly distinguishes the
non-Hermitian case from the Hermitian one. Note that this
nonorthogonality can go to extreme in the sense that near an
exceptional point (if any) the eigenvalues of the underlying
system and the corresponding eigenvectors tend to simulta-
neously coalesce. For the case of externally forced energy
conservation and small z no jumps were observed, although
they appear for large enough z. Jumpy spread of the initial
excitation was also found in the cases where normalization
was replaced by gain saturation (as is quite usual experi-
mentally) (see Appendix D). Thus, taking into account our
own results and experimental [55] and other work [66,67] we
suppose that the phenomenon of unusual jumpy transport can
generally occur in Anderson-localized random non-Hermitian
open systems, where the nonorthogonality of the eigenstates
(left or right) and their quite different amplitudes seem to play
an important role.

VI. CONCLUSIONS

In conclusion, we have systematically studied for the
first time the spectral and wave dynamic characteristics of
non-Hermitian one-dimensional disordered lattices. Several
probability distributions for the random imaginary matrix el-
ements were considered. The most interesting and surprising
among our findings is the new kind of apparent transport in
spite of strong localization of the eigenstates not by diffusion
but through the sudden jumps even to distant sites; it seems
that the nonorthogonality of the eigenmodes and their quite
different amplitude play a significant role for what seems to
be a new mechanism for transport in open non-Hermitian
systems. For the case where the imaginary diagonal matrix
element possess the binary pair-correlated disorder interesting
spectral features were found: For intermediate degree of ran-
domness, the spectrum in the complex plane has a fractallike
intricate structure, while for higher values of the imaginary
randomness parameter α many eigenvalues are concentrated
in very small areas of the complex plane, a feature termed here
“eigenvalue condensation.” We believe that this systematic
study will open the way for the direct experimental realization
of these phenomena in integrated photonic waveguide struc-
tures and for their further physical clarification.
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APPENDIX A: BIORTHOGONALITY RELATIONS
AND NON-HERMITIAN EIGENVALUE PROBLEM

In order to find the eigenmodes of the system, we substitute
ψn, j (z) = un, jeiω j z in the evolution equation [Eq. (1)] and get
the following eigenvalue problem:

c(un+1, j + un−1, j ) + εn, jun, j = ω jun, j, (A1)

where ω j is the complex eigenvalue of the jth eigenmode,
j with j = 1, 2, . . . , N . In a more compact form the above
eigenvalue problem can be expressed in terms of a symmetric
tridiagonal matrix D with zeros in the main diagonal, c in the
±1 diagonals, and the identity matrix I (both matrices have
dimension N by N) by the following relation:

Hi j = Di j + εiIi j . (A2)

Since H is a non-Hermitian matrix, it is fully described by
a set of biorthogonal right |uR

j 〉 and left |uL
j 〉 eigenmodes. In

other words, we have the following right eigenvalue problem:

H
∣∣uR

j

〉 = ω j

∣∣uR
j

〉
, (A3)

and the corresponding left eigenvalue problem of the adjoint
matrix:

H†
∣∣uL

j

〉 = ω∗
j

∣∣uL
j

〉
. (A4)

The associated biorthogonality condition is〈
uL

j

∣∣uR
i

〉 = δi j . (A5)

In general the right and left eigenvectors are different and,
since the dynamics of the problem include both the right
and the left set of eigenfunctions, one needs to study both
of them. In our case though, the left and right eigenfunctions
are complex conjugate pairs since H† = H∗. This is a direct
outcome of the last symmetry relation of the H matrix.

Here we comment on the possibility of existence of a spe-
cial type of spectral degeneracies, the exceptional points. In
particular, exceptional points are non-Hermitian degeneracies
that correspond to points in parameter space at which the
eigenvalues of the underlying system and the corresponding
eigenvectors simultaneously coalesce. In our system we did
not find any exceptional points even in the case of parity-time
symmetric disorder.

We comment also that the histogram in Fig. 3(a) seems to
approach asymptotically the Wigner-Dyson distribution as the
size of the system keeps increasing.

Finally, we point out that the majority of related non-
Hermitian Anderson model studies refer to the Hatano-Nelson
Hamiltonian, which is non-Hermitian due to its asymmetric
couplings (off diagonal elements of the matrix) and therefore
is a nonreciprocal model. On the other hand, our Hamiltonian
is reciprocal and its non-Hermiticity arises from the openness
of the system, i.e., from the presence of dissipation and ampli-
fication (on the main diagonal of the matrix). That makes our
model essentially different from the Hatano-Nelson Hamilto-
nian. Also our model has been experimentally realized in the
context of guided wave and fiber loop optics [55], in contrast
to the Hatano-Nelson model which is more difficult to realize
in experiment. Beyond its theoretical importance our model is
directly related to integrated photonic structures, and hence it
is physically relevant.
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APPENDIX B: HERMITIAN BINARY DISORDER

The Hermitian one-dimensional model with binary disor-
der with or without short-range correlations has been studied
both theoretically and experimentally [60–63]. Nevertheless,
we redo here some of these calculations in order to be able to
compare the resulting figures with new results associated with
the non-Hermitian generalization.

Let us consider a waveguide array that exhibits a binary
distribution either εa or εb of its propagation constants (which
here play the role of the on-site energies in the context of
condensed matter physics), with the same probability p = 1

2
and without any correlations:

Binary disorder: εn =
{

εa, with p1 = 1
2

εb, with p2 = 1
2

, (B1)

where εa,b ∈ R (Hermitian case). We also assume that the
coupling coefficient between neighboring channels is constant
and equal to c.

To begin with we examine the evolution pattern assuming a
single-channel excitation in the middle of our lattice, namely:
ψn(z = 0) = δn,n0 , where n0 = κ + 1 (here we assume that
the total site number is odd N = 2κ + 1.). More specifically,
we are interested to consider the averaged variance of the
intensity pattern as a function of the propagation distance z:

M(z) =
〈∑

n

(n − n0)2|ψn(z)|2
〉
, (B2)

where 〈..〉 denotes averaging over many realizations of
disorder.

Our numerical calculations for this case are shown in
Figs. 7(a) and 7(b) and are in agreement with the correspond-
ing experimental results [63]. For εa = εb ⇒ δε ≡ εa − εb =
0 the lattice is periodic and M ∼ z2, which indicates ballistic
transport. If we set εa �= εb though, then all the states become
exponentially localized and M(z) saturates for large values of
z; we get localization in this case since M ∼ z0. The single-
channel excitation remains localized near its initial position.

However, one gets completely different physical results if
short-range order is introduced in this model. For that pur-
pose, we now consider a “dimer” waveguide array, where
each dimer consists of two subsequent channels with the same
propagation constant; this is a model originally introduced by
Dunlap et al. [60]:

Dimer array: ε2n = ε2n+1 =
{

εa, with p1 = 1
2

εb, with p2 = 1
2

. (B3)

Repeating the same calculations as in Ref. [60], we can see
that now, M ∼ zγ , in all the cases, where γ � 2, 3

2 , 1, and
0, which correspond to ballistic, superdiffusive, diffusive, and
localized motion accordingly (computed numbers are 1.99,
1.56, 0.98, and 0.15) for δε/c = 0, 1, 2, and 3, respectively.
These results indicate that the spectrum now possesses delo-
calized eigenvectors. Indeed, one can prove that eigenstates
with eigenvalue ω = εa,b are extended, as long as |δε| � 2c.
All the relevant results are presented in Fig. 7 and are again in
perfect agreement with the experimental ones [63].
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FIG. 7. (a) Field amplitude |ψn| as a function of the propagation
distance z for the uncorrelated case with δε = c. (b) Logarithm of the
averaged variance M as a function of the logarithm of the propagation
distance z for the uncorrelated case and for different values of δε

c .
[(c) and (d)] Same as in (a) and (b) but for the random dimer lattice
(see Ref. [63]).

A direct way to obtain a physical insight of these results is
to consider a periodic lattice with a single dimer defect. One
can show that the reflection probability from the impurity is
given by the following expression [60]:

|r|2 = δε2[δε + 2c cos(k)]2

δε2[δε + 2c cos(k)]2 + 4c4 sin2(k)
, (B4)

where k ≡ cos−1(ω/2c) is the Bloch wave number. From the
expression above one can easily show that waves with ω =
εa,b are perfectly transmitted (r = 0), provided that |δε| � 2c.
Furthermore, it was found that the total number of states
with localization length greater than the system’s size is of
measure

√
N [60]. Thus, in Fig. 7(c), the two propagating

peaks correspond to these ∼√
N delocalized states, leading

to transport, while the central peak indicating no propagation
is associated with the vast majority of localized states.

It is interesting to consider the criterion for localization
originally proposed by Anderson [1]; it was the asymptotic
behavior of the amplitude of the wave function around its
initial site, in the sense that absence of diffusion is associated
with the limit: limz→∞ |ψn0 (z)| being nonzero. Thus, it is
reasonable to examine the probability P(z) for the wave to be
located in its initial position as a function of the propagation
distance for the two cases of disorder discussed here.

In Fig. 8 we show plots of P(z) for the uncorrelated binary
[Fig. 8(a)] and the dimer array [Fig. 8(b)] for δε/c = 0, 1, and
2. The difference between the two graphs is small but crucial.
While in Fig. 8(a), and for δε �= 0 P(z), fluctuates around a
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FIG. 8. Probability P(z) for the wave to being found in its ini-
tial position as a function of the propagation distance z for (a) the
uncorrelated binary disorder and (b) the dimer case and for different
values of δε/c. An averaging over 50 realizations of disorder has
been performed for each plot. Inset: A zoom in the plot of P vs. z for
δε = c (green line) and the least-squares fitting of the curve (black
line). The slope of the line is shown in the title of the graph.

specific, constant value, in Fig. 8(b) P(z) slowly drops as z
increases, with a slope of ∼10−5, which is actually the value
of the localization length for ω near ε1,2. This is shown clearly
in the inset of Fig. 8(b), where a least-squares fit (black line)
is also plotted with P(z). This statement is in agreement with
Anderson criterion of localization, as it should be. However,
due to the many fluctuations and the very small value of
the linear fitting’s slope, P(z) is not a convenient numerical
criterion for localization in this case.

APPENDIX C: DYNAMICS IN NON-HERMITIAN BINARY
RANDOM LATTICES

In this section we discuss further new results regarding the
phenomenon of jumpy transport [55] in our non-Hermitian
binary pair-correlated disordered model.

Let us consider the wave evolution of a single-channel
excitation (in the middle of the lattice), as a function of the
propagation distance z. Since the spectrum contains eigenval-
ues that correspond to amplification, we amplitude normalize
the field in every step in order to obtain a physically meaning-
ful diffraction pattern. The result is depicted for a particular
realization in Fig. 9(a). We can clearly see a finite number of
jumps in the transverse direction. This dynamical behavior is
also reflected in the steplike discontinuities of the variance M
as is shown in the plot of the logarithm of the variance as a
function of log(z), in Fig. 9(b), as well as in the abrupt drop
in the amplitude of the initial site n0, in Fig. 9(c).

In order to highlight the underlying physical mechanism of
these transverse jumps, we calculate the eigenstate that corre-
sponds to the most gainy eigenvalue [black line in Fig. 9(d)].
The single-channel excitation at z = 0 excites many localized
eigenmodes that have complex eigenvalues. The superposition
of these modes generates a complex evolution pattern as a re-
sult of the interference of these nonorthogonal eigenstates. No
matter how small the amplitude of the projection coefficient
that corresponds to the most gainy eigenvalue, for long propa-
gation distances it will always dominate over the other modes.
Therefore, the location of the final jump is solely determined

FIG. 9. (a) Normalized field amplitude |φn| as a function of the
logarithm of the propagation distance z, under single-channel exci-
tation and a particular realization of the random lattice with α = 1
[see Eq. (2b) in main text]. (b) Logarithm of the averaged variance
M as a function of the logarithm of the propagation distance z.
(c) Probability P for the wave to return to its initial position as a
function of the propagation distance z. (d) Normalized field profile
|ψn| near the end of the lattice z = zmax (blue bars). The (normalized)
field profile of the most gainy eigenstate is also plotted here for
comparison (black line). The gain and loss distributions (imaginary
part of the potential) are depicted with red and green, respectively. In
all the above results the number of channels was N = 501.

by the most gainy eigenstate. This physical explanation of the
jumps is also supported by direct numerical simulations. In
Fig. 9(d) we can clearly see that the field near the end of the
lattice (z = zmax) is almost the same with the field profile of
the most gainy eigenstate, as we expected.

APPENDIX D: COMMENTS ON THE DYNAMICS
IN NON-HERMITIAN ANDERSON LATTICES

In this section we further discuss several aspects regard-
ing the dynamics in non-Hermitian disordered lattices with
uncorrelated disorder in both the real and imaginary parts.
Indeed one has to be careful when referring to transport for
non-Hermitian systems, because there are no conservation
laws. In the main text we discuss what happens if the random
non-Hermitian system possesses only loss and no gain at all.
We found that jumps are present in this case as well, thus
excluding the external supply of energy as an explanation and
apparently leaving the true transport by jumps as the real new
mechanism for propagation in these systems. We examined
also what happens if we do not consider any normalization,
for both weak and strong disorder. For weak disorder we can
demonstrate clearly the effect of gain or loss that leads to
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FIG. 10. Field amplitude |ψn| (not normalized) as a function of z
for (a) Hermitian disordered lattice (WR = 1) and (b) non-Hermitian
disordered lattice with saturable gain of the form iIm(εn)/(1 +
μ|ψn|2) (μ = 5,WI = WR = 1). The jumps are evident here as well.

unique asymmetric transport dynamics. Notice this picture is
true even for the realizations that the total power decreases
with the not-so-large propagation distance. The asymmetry
of the pattern seems to be the direct outcome of eigenstate
nonorthogonality; in such short propagation distances we do
not see jumps. The features of the non-Hermitian transport

though, are clear without performing any normalization. For
strong disorder we examine what happens where the gain is
of saturable type of the form iIm(εn)/(1 + μ|ψn|2); indeed
for strong disorder we consider the case of WR = 1,−WI �
Im(εn) � WI ,WI = 1, μ = 5. The jumps are evident here as
well, as we can see in Fig. 10. Note that here we do not
normalize the field, and the saturation of the gain limits the
amplification effect of eigenmodes.

The results of our findings can be summarized in three ba-
sic conclusions: (a) Field normalization in every propagation
step is a way to visualize the center of mass displacement and
is also experimentally possible in the fiber loop set-up. (b)
Jumps occur also in purely dissipative lattices (with zero gain)
and in forcibly energy conserving normalization, apparently
as a result of eigenstates nonorthogonality and their quite dif-
ferent amplitude. (c) Inclusion of saturable nonlinear gain also
allows for similar abrupt jumps in a random non-Hermitian
lattice and can be directly observed without the need of any
field normalization.

In conclusion, transport in non-Hermitian lattices is a diffi-
cult and fundamental topic of wave physics and the existence
of sudden jumps demonstrates its complexity. There are still
various open questions regarding the nature of wave-packet
evolution in such open systems.
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