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Focusing and Green’s function retrieval in three-dimensional inverse scattering revisited:
A single-sided Marchenko integral for the full wave field
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The Marchenko integral, key to inverse scattering problems across many disciplines, is a long-standing
equation that relates single-sided reflection data and Green’s functions for virtual source locations inside
of an inaccessible, one-dimensional volume. The concept was later expanded to two and three dimensions,
yielding important advances in imaging complex media, particularly in the context of geophysics. However,
this expansion is based on a set of coupled Marchenko equations which requires up and down decomposition
of the wave fields at both the level of the measurement surface and the level of the virtual source of the
desired Green’s function. The underlying theory implies that the recently developed Marchenko relations, while
enabling novel applications, carry intrinsic limitations. For example, this scheme cannot incorporate evanescent
or refracted waves, and in turn practical implementations must discard data to meet such requirements. We
present a derivation that circumvents these limitations, thereby yielding a Marchenko integral akin to those in
recent advances, but that is more general than previously assumed. We set up a wave equation based framework
to describe the physical concept of focusing functions by introducing homogeneous Green’s functions of the
second kind. Based on this, we derive integral representations for both closed and open boundary volumes.
Owing to our perspective on the integral formalism, we present an inverse scattering approach for retrieving
Green’s functions from single-sided reflection data—with the same practical applicability of recent methods but
without any limitations due to one-way decomposition. Finally, we illustrate the capability of the Marchenko
method to obtain the full wave field, including evanescent and refracted waves, within an unknown scattering
medium by means of a numerical example.
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I. INTRODUCTION

Imaging the interior of an object that is only accessible at
its boundary is a key problem in many fields, such as seis-
mology [1,2], helioseismology [3], quantum mechanics [4],
medical imaging [5–10], and nondestructive testing [11,12].
Imaging methods rely on acoustic, seismic [13], or electro-
magnetic [14] waves to probe the interior of objects with
sources and receivers located on their boundaries. The objec-
tive of inverse scattering theory [15] is the retrieval of the
physical characteristics of the medium from measuring its
remotely observed scattering response.

The Marchenko integral is an elementary equation in one-
dimensional inverse scattering theory [16–18]. While the
medium parameters, e.g., the scattering potential, can be
directly inferred from the Marchenko equation in one di-
mension [19], Broggini et al. [20,21] studied the Marchenko
integral’s capability to produce Green’s functions for vir-
tual sources inside of an inaccessible medium. In contrast
to popular interferometric methods for Green’s function re-
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trieval (e.g., Refs. [22–24]), the Marchenko method allows
for retrieving Green’s functions from single-sided reflection
measurements.

Recognizing the potential of Marchenko-based Green’s
function retrieval and its role in inverse scattering, Wapenaar
et al. [25–27] expanded the Marchenko theory to two and
three dimensions. Their derivation builds on up and down
decomposition of the involved wave fields, both at the acqui-
sition surface and at the depth level of the virtual source of
the Green’s function. They use convolution- and correlation-
type reciprocity theorems for these decomposed wave fields
and describe two different wave states in the true and the
truncated medium, i.e., a version of the true medium which
is reflection-free everywhere underneath the virtual source
location. Ultimately, this approach delivers a set of cou-
pled Marchenko equations. Their derivation implies several
limitations regarding the retrievable Green’s functions. First,
using up and down decomposition along with correlation-type
reciprocity in depth leads to neglect of evanescent waves
inside the medium under investigation. Second, using a trun-
cated medium leads to neglect of refracted and diving waves,
i.e., waves that would arrive before the direct arrival in
the truncated medium. These issues were partially addressed
later [28]. However, this recent study is based on the conven-
tional coupled Marchenko equations and currently limited to
laterally homogeneous media.

One of the main achievements of the three-dimensional
Marchenko method (e.g., Refs. [25,26,29]), in addition to
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the theoretical advancement, is the fact that those represen-
tations can be reliably translated into practical approaches
to retrieve the Green’s functions of real unknown media
from single-sided reflection data [30]. While there are certain
Marchenko-based primary estimation methods [31,32] that
require no a priori knowledge of the medium, solving the
three-dimensional Marchenko scheme for in-volume Green’s
functions requires knowledge of a background medium-
parameter model, i.e., a wave-speed model that allows for
approximating the direct arrivals of the intended Green’s
functions—but that does not contain information on the
unknown scatterers within the medium. Furthermore, the so-
lution is tied to certain causality arguments that generally hold
for one dimension but become less general in higher dimen-
sions [26]. Hence, complicated models with spatially varying,
strong-contrast medium perturbations can pose an issue for
the Marchenko method (e.g., Refs. [33,34]). Nonetheless,
the Marchenko integral proved to be a valuable extension
of existing Green’s function retrieval methods [35,36] and
is becoming widely used for geophysical applications (e.g.,
Refs. [30,37–39]).

In this paper, we present a more general, alternative strat-
egy to deriving Marchenko-type integral relations for Green’s
function retrieval from remote, single-sided scattering data.
We start by introducing homogeneous Green’s functions of
the second kind, which are an extension of the concept of con-
ventional homogeneous Green’s functions. Using reciprocity,
we obtain integral representations of these fields for both
closed and open boundary systems. The open boundary rep-
resentation is similar to the previously introduced Marchenko
equations [26], but it is obtained without the need for (i) defin-
ing an auxiliary, truncated medium wave state or (ii) imposing
wave-field decomposition within the medium at the location
of the desired Green’s function. Hence, the Marchenko inte-
gral we propose here can be used to obtain the full Green’s
function—with wave components propagating in all direc-
tions, i.e., including the medium’s evanescent and refracted
field response. Finally, relying on constraints used by previ-
ous approaches, we present a practical scheme to solve our
single-sided Marchenko equation for an unknown scattering
medium’s Green’s function. We illustrate our findings with a
numerical example.

II. INTEGRAL REPRESENTATIONS FOR FOCUSING
AND GREEN’S FUNCTIONS

In the following section, we present a derivation for in-
tegrals that relate so-called focusing functions and Green’s
functions. While previous derivations [26] do not include
evanescent and refracted waves, our approach is applicable
to the full wave field. We start by introducing a partial dif-
ferential equation (PDE) for focusing functions. Then we use
reciprocity to obtain integral representations.

A. The homogeneous Green’s function of the second kind

The acoustic wave equation in the frequency domain is
given by

L(x, ω)u(x, ω) = ρ(x)iωs(x, ω) (1)

with the wave operator

L(x, ω) = ρ(x)∇ · 1

ρ(x)
∇ + ω2

c2(x)
, (2)

where u(x, ω) is the acoustic pressure field at location x =
(x1, x2, x3) and frequency ω. The source function is of volume
injection rate density and denoted by s(x, ω); i.e., there are
no force sources. The medium is defined by density ρ(x) and
propagation velocity c(x). The variable i denotes the imagi-
nary unit. Although we consider acoustics in the frame of this
paper, the following derivations should be applicable for other
PDEs as well (e.g., Refs. [40,41]).

A Green’s function g(x, ω; x f ) is a wave field that obeys

L(x, ω)g(x, ω; x f ) = −ρ(x)iωδ(x − x f ). (3)

It is the medium’s response to a filtered impulse source at x f .
Adding the complex conjugate of Eq. (3) to Eq. (3) delivers
the so-called homogeneous Green’s function, i.e., a source-
free superposition of Green’s functions, according to

L(x, ω)(g(x, ω; x f ) + g∗(x, ω; x f )) = 0. (4)

In the context of this paper, we refer to this equation as the
homogeneous Green’s function of the first kind. The star de-
notes complex conjugation in the frequency domain, which is
similar to time reversal in the time domain. The Green’s func-
tion g(x, ω; x f ) is a causal wave field, i.e., the wave propagates
after the source triggering at time t = 0. Furthermore, it is an
outgoing wave field, i.e., with respect to a certain volume of
interest that contains the source location x f . Thus, g∗(x, ω; x f )
in Eq. (4) is an incoming wave field for times t < 0. This
wave field focuses at the source location and then, according
to Eq. (4), keeps on propagating as the forward Green’s func-
tion, i.e., as an outgoing field for times t > 0. At time t = 0,
when focusing occurs, both the incoming and outgoing fields
coalesce to equal impulsive sources of opposite polarity, thus
satisfying Eq. (4).

As a next step, we rewrite the time-reversed Green’s func-
tion; i.e., we replace it by

L(x, ω)g∗(x, ω; x f ) = L(x, ω)( f (x, ω; x f ) − f ∗(x, ω; x f )),
(5)

where

L(x, ω) f (x, ω; x f ) = ρ(x)iωδ(x − x f )

2
+ q(x, ω; x f ). (6)

These equations hold for real-valued q(x, ω; x f ), such that
q(x, ω; x f ) − q∗(x, ω; x f ) = 0. Apart from this restriction,
the source field q(x, ω; x f ) is arbitrary up to this point. Its ar-
gument x f does not actually represent a necessary dependence
but is kept for the sake of consistency. This reformulation
allows for replacing the Green’s function by a superposition
of so-called focusing fields f (x, ω; x f ). We note here that
although we refer to f (x, ω; x f ) as focusing fields, these are
more general than in previous definitions (e.g., Ref. [26]),
since they are tied to the arbitrary source fields q(x, ω; x f ).
The Green’s and focusing functions are different wave-field
realizations but obey the same source function. When mod-
eling numerically, we conventionally propagate the source
energy forward in time from t = 0. This representation is dif-
ferent in that the source produces causal and anticausal fields,
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suggesting the corresponding wave excitation may also be ac-
tive at t < 0 relative to reference origin time that is associated
with the Green’s function. Take, for instance, q(x, ω; x f ) = 0.
We can then write

f (x, ω; x f ) − f ∗(x, ω; x f ) = 1
2 g∗(x, ω; x f ) − 1

2 g(x, ω; x f ).
(7)

One way of visualizing the physics behind this choice is
to imagine an incoming field, in this case g∗(x, ω; x f ) with
half-amplitude, that interacts with the source at zero time. The
source energy is larger then the field energy, i.e., the incoming
field gets absorbed and additionally a new field, in this case
−g(x, ω; x f ) with half-amplitude, is created. Note that the
focusing function f (x, ω; x f ) is, in contrast to the Green’s
function, not unique—because q(x, ω; x f ) can be chosen ar-
bitrarily, so long as it satisfies Eq. (6).

We may now write the homogeneous Green’s function of
the second kind according to

L(x, ω)(g(x, ω; x f ) + f (x, ω; x f ) − f ∗(x, ω; x f )) = 0. (8)

Mathematically, this is equivalent to Eq. (4), but it gives an
additional physical insight. Let f (x, ω; x f ) be an incoming
field. This field focuses at x f and, afterward, keeps on prop-
agating as the forward Green’s function. On the way to the
focal point, however, it also produces a scattered field which
is not related to the Green’s function, namely the outgoing
field f ∗(x, ω; x f ). The choice which of the two, f (x, ω; x f ) or
− f ∗(x, ω; x f ), is the incoming field is, because of the fields’
time symmetry, indeed arbitrary. We call the field that satisfies
Eq. (8) the homogeneous Green’s function of the second kind,
for it is a source-free field that yields the causal Green’s
function. The involved fields, however, are not necessarily the
same as those in Eq. (4)—this distinction is essential to our
approach.

While we did not specify the source q(x, ω; x f ) in more
detail, this subsection introduced the general idea of the ho-
mogeneous Green’s function of the second kind. In the next
subsection, we discuss the interferometric representation of
the partial differential Eq. (8).

B. Integral representations

In this subsection, we derive an integral representation
for the wave fields in Eq. (8). The derivation is similar to
derivations for multidimensional convolution and deconvolu-
tion [42–44]. We start our derivation from the general form
of Rayleigh’s reciprocity theorem for acoustic waves [45,46],
i.e.,∫

xs∈∂V
(uAvB − uBvA) · dS

=
∫

x∈V
fA · vB + sBuA − fB · vA − sAuB dV

+
∫

x∈V
iω(κB − κA)uAuB − iω(ρB − ρA)vA · vB dV ,

(9)

where the superscripts A and B mark two different wave
states. In addition to the previously introduced pressure field
u = u(x, ω), we also require the particle velocity field v =

FIG. 1. Sketch of the wave-state setup for a closed boundary. The
rays indicate involved Green’s functions, i.e., from x̂ to xs, from xs to
xr, and from x̂ to xr.

(v1, v2, v3) = v(x, ω). The quantities f = (f1, f2, f3) = f(x, ω)
and s = s(x, ω) denote sources of volume force density and
volume injection rate density, respectively. The compress-
ibility is given by κ = κ (x) = 1/[ρ(x)c2(x)] and density by
ρ = ρ(x). We are investigating a volume V , bounded by the
smooth surface ∂V .

We consider two states with identical compressibility and
density in a lossless volume V , and thus the last integral in
Eq. (9) vanishes. Furthermore, we choose not to have any
force sources within the volume, i.e., fA = fB = 0. This yields
v = 1/(ρiω)∇u (e.g., Ref. [45]). Inside the volume, we use

sA = −δ(x − xr), (10)

uA = g(x, ω; xr), (11)

sB = 0, (12)

uB = p(x, ω; x̂). (13)

Note that xr lies in V , while the sources for uB are outside of
the volume. The variable x̂ shows the dependency of uB on
the source distribution and appearance of sB outside V . This
wave-state configuration is sketched in Fig. 1. Inserting these
definitions into Eq. (9) delivers

p(xr; x̂) =
∫

xs∈∂V

1

ρ(xs)iω
(g(xs; xr)∇p(xs; x̂)

− p(xs; x̂)∇g(xs; xr)) · dS, (14)

where we show dependencies on space but omit those on
frequency for brevity. Let the medium outside V be reflection
free. Then the Green’s function is purely outgoing, while
p(x; x̂) is both incoming and outgoing with respect to V .
Hence, we can write

p(x; x̂) = pin(x; x̂) + pout (x; x̂), (15)

where the superscripts mark incoming and outgoing fields,
respectively. Here we are neglecting waves that travel along
∂V . Using a far-field approximation (e.g., Refs. [22,47]) or
pseudodifferential operator theory [48], the latter circumvent-
ing the need for an approximation, one finds that the terms
g∇pout and pout∇g are identical, thus canceling each other. On
the other hand, the terms g∇pin and pin∇g deliver the same
outcome but with opposite sign, as pin is an incoming field
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and g an outgoing field. Therefore, Eq. (14) becomes

p(xr; x̂) = −
∫

xs∈∂V

2

ρ(xs)iω
∇g(xs; xr)pin(xs; x̂) · dS. (16)

If pin(x; x̂) happens to be a time-reversed field, i.e., pin∗(x; x̂),
this equation still holds when neglecting evanescent waves
on the boundary ∂V [49]. As a next step, we can insert the
fields from the wave Eq. (8) into Eq. (16). This is possible
because the respective overall field is source free; i.e., just
like our previously defined field p(x; x̂), it has no sources in
V . Furthermore, we replace the variable x̂ by x f in order to
emphasize the dependence on the focusing location x f . The
effective sources, however, are at x̂ and inject the incoming
field. This incoming field is then given by f (x; x f ), and thus
we get

g(xr; x f ) + f (xr; x f ) − f ∗(xr; x f )

= −
∫

xs∈∂V

2

ρ(xs)iω
∇g(xs; xr) f (xs; x f ) · dS. (17)

This is the integral form for a closed boundary. We note here
that this is the most general representation relating focusing
and Green’s functions, potentially having applications of its
own, which will be the subject of further research.

Ultimately, one is not limited to the case of a closed
boundary. This is important because one of our main goals
is to retrieve a medium Green’s function response from re-
mote, single-sided wave data—without access to enclosing
boundaries. To that end, let the volume be bounded by a
horizontal interface ∂V0, e.g., at x3 = 0, and a half-sphere ∂V1.
Setting the radius of the half-sphere to infinity and consid-
ering only the subset of focusing functions for which f (x ∈
∂V1; x f ) = 0 the contribution of the respective surface integral
vanishes. Incoming and outgoing fields are now down- and
up-going fields, respectively. Let xr and x̂ be immediately
below and above ∂V0, respectively; i.e., both are very close
to the surface but the receiver is still in V and the source
outside V . As the medium is reflection free outside V and
the down-going field pdown(x; x̂) is as such not propagating
along the horizontal boundary ∂V0, it follows that the field
p(xr; x̂) on the left-hand side of Eq. (16) becomes purely
up-going, i.e.,

pup(xr; x̂) =
∫

xs∈∂V0

2

ρ(xs)iω

∂

∂x3
g(xs; xr)pdown(xs; x̂) d2xs,

(18)

where we assume a downward-pointing x3 axis. This is also
sketched in Fig. 2. Inserting Eq. (8) into Eq. (18) again, we
now get

g(xr; x f ) − f ∗(xr; x f ) =
∫

xs∈∂V0

R(xs; xr) f (xs; x f ) d2xs,

(19)

with

R(xs; xr) = 2

ρ(xs)iω

∂

∂x3
g(xs; xr). (20)

This relation has exactly the same form as the single-sided
Green’s function representation shown by, e.g., Wapenaar

FIG. 2. Illustration of the wave-state setup for an open boundary.
Rays indicate involved Green’s functions.

et al. [26]. However, given our PDE-based derivation, the
wave fields in our equation are significantly more general
than previously understood. Because we rely on up and down
decomposition only on the surface ∂V0, the integral fully
accounts for evanescent waves inside the medium V . Fur-
thermore, the concept of a truncated model space becomes
unnecessary, so refracted and diving waves are included in
the representation. Additional notes regarding a comparison
with the traditional Marchenko scheme can be found in the
Appendix.

We want to stress that integral Eq. (17) is entirely general
with respect to the focusing function f (xs; x f ). If we con-
sider the special case of q(x; x f ) = 0, for instance, Eq. (17)
represents injecting the half-amplitude, time-reversed Green’s
function governing the half-amplitude homogeneous Green’s
function. In fact, it is well known that this time-reversal
homogeneous Green’s function retrieval works for closed
boundaries, but not for open boundaries, as depicted in
Eq. (19) [35]. This representation generally produces non-
physical artifacts. In the next section, we present a way of
solving a particular form of Eq. (19), i.e., the Marchenko
integral, for the Green’s and focusing function based on an
estimate of the first arrival of the Green’s function. We also
discuss the approach in the context of the aforementioned
artifacts arising from the open boundary representation.

III. SOLVING THE MARCHENKO INTEGRAL
FOR THE GREEN’S FUNCTION

In this section, we want to focus on solving the open
boundary Eq. (19) for the medium’s unknown Green’s func-
tion, based on having an estimate of its first arrival as a priori
information. The physical arguments closely follow those of
Wapenaar et al. [26]; however, we are directly solving the
more general uncoupled Marchenko integral, i.e., without up
and down decomposition. For the sake of brevity, we neglect
all arguments in the following equations and instead use the
discrete matrix-operator form [50] of Eq. (19), i.e.,

g − f ∗ = R f , (21)

where we assume any numerical integration details, such as
scaling, to be included within the discrete kernel of the R
operator. In this paper, we use the composite rectangle rule
for numerical integration. We want to stress that the focusing
function f which we investigate in the following is just one of
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many possible realizations of f (x; x f ) in Eq. (8), i.e., for a
particular source q(x; x f ). The realization that we are in-
terested in is defined by certain causality arguments, more
specifically, that f and g are separable in time-space domain
such that f is preceding g. These conditions are numerically
imposed by introducing the windowing function � [26,29].
This function acts as a mask; i.e., � is zero for times |t | >

td (xr; x f ) + ε and one elsewhere. In this context, td (xr; x f ) is
the first arrival time for a source at x f and a receiver at xr

and ε being greater zero accounts for the limited bandwidth
of the wavelet [51]. We postulate that this is the realization
of f (x; x f ) that is most compact in the time-space domain.
This focusing function has to extend up to the time-reversed
first arrival of the Green’s function in order to be able to
produce a focus at x f but can be assumed to be zero be-
fore it. In fact, this bound has to be symmetric in time,
since we cannot record anything before having injected en-
ergy; thus the up-going, time-reversed focusing function must
be zero before the time-reversed first arrival of the Green’s
function, too. These separability assumptions hold in the re-
flection regime; however, they break in complex media with
significant diffracted energy and laterally localized velocity
perturbations that induce caustics on the first arrivals.

When presenting the open boundary integral representation
above, we alluded to the fact that artifacts may arise in the
retrieval of the Green’s function. Such artifacts are well known
to arise from open-boundary systems when retrieving Green’s
functions by means of time reversal [35]. It is absolutely key
that we solve for the injected field instead of simply injecting,
e.g., the time-reversed Green’s function as done in the context
of time reversal. This important distinction is what makes our
Green’s function retrieval a full wave-field inverse scattering
approach, as opposed to a direct application of conventional
time-reversal principles. Hence, we find a focusing field that
only produces its own time-reversed copy with opposite sign
as well as the desired causal-only Green’s function when in-
jected from a single-sided measurement surface, but no noise
or artifacts by apparently missing boundary data. This specific
focusing function is therefore not only defined by the temporal
preconditioning, i.e., the window function �, but also by the
general form of the integral representation itself, i.e., f for an
open boundary is different from f for a closed boundary. The
window function � is designed such that

�g = gd , (22)

� f = f , (23)

where g = gd + gm, i.e., the sum of the first arrival gd and
the coda gm. Note that we use the subscript d which was
originally proposed in the Marchenko context to denote the
direct arrival in a truncated medium [26], but we are in fact
referring to the first arrival in the actual medium, which not
only propagates upward toward the boundary but also in all
other directions. This important difference means that, here,
gd and also the respective travel times td (xr; x f ) include diving
and refracted waves from the medium below x f . Because the
window operator is a filter in the time domain, it acts as a con-
volutional operator in the frequency domain [26]. Applying

this windowing to Eq. (21) gives

gd − f ∗ = �R f . (24)

This represents the three-dimensional Marchenko integral.
It follows from Eq. (19) when choosing the most compact
focusing function in time along with consequent causality
arguments. Time-reversing this relation yields

gd
∗ − f = �R∗ f ∗, (25)

noting that � is symmetric in time. Applying the window
operator � = I − � to Eq. (21), we also get

gm = �R f . (26)

Rearranging Eq. (24) for f ∗ and inserting it into Eq. (25), we
obtain

f = (I − �R∗�R)−1(gd
∗ − �R∗gd ). (27)

Inserting this into Eq. (26) and adding gd , we get

g = gd + �R(I − �R∗�R)−1(gd
∗ − �R∗gd ). (28)

This expression delivers the Green’s function for a virtual
source inside of an inaccessible volume measured at receivers
on the surface from an estimate of the first arrival of the
Green’s function gd , the windowing function �, and the
single-sided reflection data R. While R can be obtained from
a measurement, one needs to have an estimate of the phys-
ical medium to approximate gd . Generally, we assume that
a smooth, kinematically correct version of the actual model
is sufficient. Similarly, we require such a model to build the
windowing operator �, i.e., to find the first arrival times, e.g.,
via ray tracing.

Rather than solving for either g or f , we can also solve for

b ≡ R f = R(I − �R∗�R)−1(gd
∗ − �R∗gd ), (29)

such that both f and g follow from the respective filtering in
the time domain, i.e.,

g = gd + �b (30)

and

f ∗ = gd − �b. (31)

If the operator norm of �R∗�R is smaller than one, we can
use a Neumann series to estimate the inverse in Eqs. (27), (28),
and (29), i.e.,

(I − �R∗�R)−1 =
∞∑

k=0

(�R∗�R)k . (32)

Regarding the accordingly gained infinite series for g, i.e.,

g = gd + �Rgd
∗ − �R�R∗gd + · · ·, (33)

one can indeed derive the same result from the coupled
Marchenko equations [26]. However, the previous result as-
sumes up and down decomposition inside the volume, which
means that laterally propagating waves and those which are
evanescent in the vicinity of x f are excluded. Furthermore,
the previous gd is defined in a truncated medium and thus ex-
cludes refracted or diving waves that are often present in real
media. We derived the solution without the need of a truncated
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FIG. 3. Velocity model. The star denotes the location of an exem-
plary source for which we investigate its wave propagation through
the medium. The dark rectangle marks the volume of interest, which
is considered for this propagation study. The two black triangles refer
to virtual source locations that are examined in more detail in the
Appendix.

medium, circumventing up and down decomposition at the fo-
cusing level. As a result of this, our newly adjusted Marchenko
method is, in principle, able to retrieve the full wave-field
response of the medium. We did not prove that the focusing
function always exists under the above conditions, i.e., sepa-
rated from the Green’s function and for an open boundary. We
suspect, however, that it does as long as the model complexity
is moderate. If it exists, the inverse in Eqs. (27), (28), and (29)
exists and we can use the described method to estimate the
Green’s function. There are, of course, still limitations with
regard to, e.g., finite apertures [52], spatial sampling of the in-
tegrands [53,54], model complexity [33], band limitation [55],
and the accessible background model information. In the next
section, we show a numerical example in support of our theo-
retical findings and illustrate some remaining issues.

IV. NUMERICAL EXAMPLE: FULL WAVE-FIELD
RETRIEVAL IN A 2D HETEROGENEOUS MEDIUM

In this section, we investigate a numerical example in the
geophysical context. We want to show that the Marchenko
integral can be used to retrieve the full wave field, includ-
ing evanescent and refracted waves. Here, we focus on the
single-sided integral representation in Eq. (19) and solve it as
suggested in Eq. (33). Hence, we rely on wave-field obser-
vations at the horizontal upper boundary of a heterogeneous,
scattering half-space. In real-life applications, such measure-
ments are typically limited to a finite aperture, i.e., sources
and receivers only cover a certain extension of ∂V0. We use the
two-dimensional model in Fig. 3 with constant mass density
ρ = 2000 kg/m3. We rename x1 and x3 for two dimensions,
i.e., x = (x, z). We use 501 equally spaced receivers on the
surface and record 501 shots for sources on the same grid.
Note that the model is more complex than conventional ve-
locity media used for numerical studies of the Marchenko
integral (e.g., Refs. [26,36]); i.e., here we consider a shallow
high-velocity layer and relatively large velocity contrasts.

In order to visualize the estimated wave propagation
through the volume, we solve the Marchenko integral for
the Green’s functions of all points within the dark rectan-
gle in Fig. 3 according to Eq. (33)—regularly sampled from
x = 1192 m to x = 2808 m and from z = 0 m to z = 1600 m
at every 4 m both in x and z directions. Then we make use
of source-receiver reciprocity and choose the same receiver

location xr for all these Green’s functions to get the Green’s
function for a source at the respective surface location xr

measured at all x f in the volume under investigation.
We start by using the correct first arrival wave field gd and

window operator �, which in this particular case we obtain
from modeling in the correct velocity model. This is done
solely as a proof of concept, i.e., to show that the Marchenko
integral performs sufficiently well. Figure 4 presents five
snapshots of the wave propagation for a source in the top left
corner of the target volume. In the left column, we show gd .
As we are using the correct medium, these wave fields actually
show the correct Green’s function; however, they are masked
by � as we only use the first arrivals. In the right column, we
show the correct and estimated snapshots. The two wave fields
are superimposed and visualized in an alternating fashion to
facilitate their comparison. These snapshots show a very good
match between true and estimated fields. In particular, the
estimated wave fields include refracted and evanescent waves,
observable, e.g., in the region of the fourth layer; see arrows
in Figs. 4(d), 4(f), and 4(h). While one can only see a single
event in Fig. 4(d), Figs. 4(f), and 4(h) show a separate re-
fracted (vertical arrow) and evanescent (diagonal arrow) wave.
Looking more closely into the accuracy of the estimated field,
Fig. 5 depicts the absolute error of the true and the estimated
wave field at 0.6 s. Note that the color bar is clipped at
the same amplitudes as in Fig. 4. Hence, Fig. 5 shows that
the fields match well almost everywhere within the medium,
but it also reveals regions where the Marchenko field is re-
constructed slightly worse. These errors mainly manifest as
poorly matched amplitudes rather than unwanted wave-field
artifacts. The first of these poorly matched regions, marked
by I in Fig. 5, refers to the nearly horizontally traveling wave
near the surface. Given the up and down decomposition at the
surface ∂V0 in our derivation, it might be challenging for the
Marchenko integral to incorporate the energy of this particular
field that arrives at the receivers under such a near-horizontal
propagation angle. This would probably improve for wider
bandwidth and/or larger aperture data. Furthermore, the misfit
is right at the edge of the window function �, i.e., right after
the first arrival of the Green’s function. This makes it hard for
the method to retrieve accurate amplitudes. The second poorly
matched area, marked by II, refers to a rather steep, deeper
event. As this up-going wave front is yet to travel through the
fourth, high-velocity layer, its slope, i.e., in terms of horizontal
wave number, can be assumed to increase even further on its
way up. We surmise that this amplitude mismatch is mainly
caused by the limited aperture of the numerical experiment,
i.e., missing sources and receivers, especially at x > 4 km. We
want to stress that the Neumann expansion was truncated at a
constant term for this experiment. Including additional terms
may also lead to potentially further improved amplitudes for I
and II. Overall, our numerical example supports the claim that
our uncoupled Marchenko integral can be used to reproduce
the full nonlinear scattering of the Green’s function, including
evanescent and refracted waves within the medium. There are
still limits in the accuracy of the here retrieved wave fields
mainly related to the band limitation of the data, the window-
ing operator, and the limited extension of the measurement
surface.
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FIG. 4. Snapshots showing the wave propagation for the source
and area marked in Fig. 3. The left column, panels (a) to (i), shows
the first arrival. The right column, panels (b) to (j), shows the true
wave fields and the Marchenko solutions in an interlaced manner.
The bottom colors black and gray specify columns showing the true
and the estimated wave fields, respectively, separated by white lines.
The first row, panels (a) and (b), is for 0.3 s, panels (c) and (d) are
for 0.4 s, panels (e) and (f) for 0.5 s, panels (g) and (h) for 0.6 s, and
panels (i) and (j) for 0.7 s. The color bars are clipped at 1% of the
overall absolute maximum amplitude.

In most practical scenarios, one does not typically have ac-
cess to the correct first arrival. Therefore, we want to analyze
the outcomes for three different approximations of gd based on
smooth estimates of the correct wave-speed model, displayed

FIG. 5. Difference of the true and the estimated snapshot for
0.6 s; compare Fig. 4(h). The black contours show the geometry of
the velocity model. The color bar is clipped at the same values as in
Fig. 4.

in Fig. 6, with increasing degrees of inaccuracy relative to the
actual medium. Such models may be obtained by tomographic
inversion methods, for instance [56].

While the models are potentially too smooth to produce
reflections, they can be used to approximate the first arrival gd
and the window operator �. Then, the Marchenko integral can
be utilized to approximate all orders of scattering inside the
medium. Generally speaking, the estimated Green’s function
combines the kinematic information of the background model
in the first arrival with the reflection measurement, seeking to

FIG. 6. Smoothed versions of the model in Fig. 3. The smoothing
degree increases linearly from panels (a) to (b) to (c).
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FIG. 7. Snapshots showing the wave propagation for the source
and area marked in Fig. 3. Left and right columns show, as before,
the first arrival and the true/estimated wave field, respectively. Black
bottom color marks the true, and gray indicates the estimated wave-
field columns. The first row [panels (a) and (b)] is obtained for the
lightly smoothed velocity model in Fig. 6(a), the second row [panels
(c) and (d)] for the moderately smoothed model in Fig. 6(b), and the
last row [panels (e) and (f)] for the considerably smoothed model
in Fig. 6(c). The color bars are clipped at 1% of the overall absolute
maximum amplitude. All snapshots show the same propagation time,
i.e., 0.3 s.

find a consistent wave field that matches both. Figure 7 shows
the estimated wave fields for a propagation time of 0.3 s. At
first glance, all three estimated fields show comparable results.
While the reflections are not known a priori, we retrieve
them through the Marchenko scheme, using the information
from the smooth background models. It is, however, easily
observed that the estimated wave fields also contain a sig-
nificant amount of noise. There are artifacts, mostly in form
of apparently steep, coherent events. While they are lower
in amplitude than the desired signal, they are not negligible.
Furthermore, we observe that these artifacts become more
pronounced for smoother background models; i.e., the field
in Fig. 7(b) is better than that in Fig. 7(f). Figure 8 presents
the snapshots at a later propagation time of 0.6 s. Again, all
estimated fields appear to be of similar, good quality at first
sight. In fact, the wave fields seem to be better for higher
propagation times; i.e., there are fewer visible artifacts com-
pared to the earlier time counterparts in Fig. 7. Evanescent and
refracted waves are still retrieved, albeit with lower accuracy.
Upon closer inspection, however, there are still evident biases.

FIG. 8. Similar to Fig. 7, but for a propagation time of 0.6 s. The
big green windows in panels (d) and (f) show enlarged regions. Their
respective locations are marked by the small green windows.

Especially for the smoothest model, Fig. 6(c), the interlaced
snapshot, Fig. 8(f), reveals significant phase shifts between
true and estimated arrivals. This is a result of an inaccurate gd
estimate, which is observable by comparing the first arrivals in
the bottom right area of Fig. 8(f) between true and estimated
fields. This misfit affects all later reflections and produces sig-
nificant phase and amplitude errors at all orders of scattering.
Both local and coherent artifacts can be inspected in greater
detail in the enlarged regions in Figs. 8(d) and 8(f). While
the wave field is still rather good for the former, it reveals a
different shape and several pointlike structures in the latter. In
fact, these artifacts also relate to the stability of the Marchenko
integral. It is not evident that the inverse in Eqs. (27), (28),
and (29) should always exist, in particular when considering
complex media and/or inaccurate background models, the
latter reflecting upon the quality of the window operator �.
Empirically, we find this inverse to be generally stable for
moderately heterogeneous media, e.g., media where velocity
increases rather monotonically with depth. In these cases,
even strong smoothing of the true model delivers an appro-
priate � and a stable inverse. Furthermore, the Neumann
expansion in Eq. (33) appears to deliver a convergent series
then. For more complex settings, as, e.g., the model in Fig. 3,
the inverse can become unstable, in particular as the back-
ground models used to obtain � become smoother. We also
observed, in addition, that using a truncated model as required
by the original Marchenko approach [26] leads to even greater
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instability (see the Appendix). Finally, we point out that we
use a finite Neumann series to solve the Marchenko equation
in this paper, where the order of the last term can be thought
of as playing a regularization role. In fact, the leading-order
solution already yields an accurate first guess, while remain-
ing stable even for relatively inaccurate background models,
i.e.,

g ≈ gd + �Rgd
∗ − �R�R∗gd + �R�R∗�Rgd

∗

−�R�R∗�R�R∗gd . (34)

For the results shown in this paper, we use the tenth-order
truncated series. This order is chosen for its accuracy seems
adequate and the computational cost reasonable, while still
delivering sensibly regularized results for the investigated
smoothed models.

These numerical results support our hypothesis that the
Marchenko integral is generally valid for the full wave field.
The quality of the reconstructed wave fields is shown to de-
pend on the quality of the required a priori model in terms
of producing an accurate first arrival estimate. While we can
use smooth medium-parameter estimates, they can introduce
artifacts and phase shifts in the resulting wave fields. We
found these effects to be strong for highly complex media and
addressing a better practical scheme for Green’s function re-
trieval in such cases is the topic of current research. However,
with the current practical scheme, the Marchenko integral can
generally be used to obtain a rather reliable approximation of
the entire wave field within a volume of interest for a wide
range of medium configurations.

V. DISCUSSION

We present a derivation for the Marchenko integral which
proves that the equation is more general than previously as-
sumed. Introducing the concept of the homogeneous Green’s
function of the second kind is the key point in this derivation.
While previous versions of Marchenko representations target
very particular choices for the focusing function, e.g., defined
by means of the transmission operator of an auxiliary, trun-
cated medium [26], we present a generalization of focusing
functions, which encompasses previous choices but accom-
modates other approaches. Using conventional reciprocity
theorems, one can easily obtain integral representations that
relate the Green’s and focusing functions to observed reflec-
tion data. These data can be obtained either on a closed or an
open boundary, and for either case our respective Marchenko-
like formalism is well defined. Furthermore, we present a
general strategy for solving the uncoupled Marchenko in-
tegral to infer the medium’s response from open boundary
observations, i.e., for a single-sided reflection experiment.
The physical arguments that lead this solution are generally
equivalent to those of Wapenaar et al. [26]. To obtain the
Green’s function from Eq. (19), we rely on the special real-
ization of a focusing function that is most compact in time
space. This focusing function has the benefit of being sep-
arable from the Green’s function in time, thus allowing for a
solution of the Marchenko integral based on an estimate of the
first arrival gd . Additionally, the method circumvents artifacts
that are conventionally introduced by open boundary integral

representations, delivering, in principle, an unbiased Green’s
function estimate. Kiraz et al. [57] recently presented a heuris-
tic, iterative scheme to solve the closed boundary integral
Eq. (17) using the very same, time-compact, physical real-
ization of a focusing function. In this case, injecting f (x; x f )
into the medium delivers a wave field that, when adding its
complex conjugate, equals the homogeneous Green’s function
of the first kind. Our generalized framework for focusing
functions might be useful for future studies, e.g., directly
involving the partial differential Eq. (8). In particular, there
might be possibilities of including focusing functions in other
inverse scattering approaches without explicitly relying on the
Marchenko equation, such as full waveform inversion [2] or
the contrast source method [14].

Our numerical studies show that the Marchenko integral
can be used to obtain an accurate approximation of the full
wave-field Green’s function from only an estimate of its first
arrival and single-sided reflection data. The necessary a priori
estimate of the first arrival can be based on a reference model,
i.e., a smooth estimate of the actual model. We show how,
under this theory, the corresponding adaptions to the existing
Marchenko workflow produce reliable wave fields for rela-
tively complex models—with the key addition of retrieving
evanescent and refracted fields within an unknown scattering
medium. Furthermore, we present the estimated wave fields
for an entire volume, allowing for a more thorough, spatially
dependent analysis of propagation effects. Finally, we discuss
the impact of the accuracy of the background model used to
approximate gd . For complex media, a poor estimate of the
first arrival from an inaccurate reference model can produce
significant local artifacts and phase shifts in the recovered
fields, but it still allows for a good approximation of the
global, scattered field. When in doubt about the quality of
the reference medium in achieving sufficiently accurate first
arrival estimates, we suggest using a first-order truncated Neu-
mann series, generally allowing for a stable yet reasonably
accurate estimate of the Green’s function. Alternatively, one
may solve Eqs. (27), (28), and (29) directly using a numerical
solver such as LSQR [58,59].

As mentioned earlier, there are variations of the con-
ventional Marchenko scheme that can be used for primary
estimation; i.e., multiple reflections can be filtered out [31,32].
Such primary estimation schemes can be applied without
the need for a parameter, e.g., wave-speed, model, making
them rather attractive for processing wave-field data. It is
yet to be investigated how our findings can be linked to
these methods. While we only consider acoustic waves in
this paper, some studies already investigated the conventional
Marchenko method for elastic waves [60–62]. This extension
is valuable for certain data applications, e.g., seismic imag-
ing or medical elastography, and it will be a topic of future
research to connect our insights with these studies.

We note that the coupled Marchenko system [26] remains
very useful. In the example of geophysical applications, there
is reason to directly estimate the decomposed up- and down-
going Green’s functions at a certain level in the medium. This
allows for so-called redatuming and target-oriented imaging,
independent of model perturbations above the redatuming
level (e.g., Refs. [63,64]). The implicit model truncation,
however, that is inherent to the coupled Marchenko approach
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might be an issue in complex media. In these cases, it might
be beneficial to solve the uncoupled Marchenko integral first
(see Sec. III), and then decompose the estimated Green’s
functions afterward if desired or, alternatively, adjust the cou-
pled Marchenko equations to match our scheme. There are
also applications that can make use of the full Marchenko-
estimated wave field inside a volume of interest. Such a wave
field might, for instance, be used to estimate the scattering
potential, i.e., the perturbations of the medium that are miss-
ing in the reference model and induce the scattered wave
field [65,66]. It will be a topic of future research to see what
other ways there are for the Marchenko approach to add value
to related inverse scattering and imaging schemes and, in this
regard, for it to be applied not only in geophysical but also in,
e.g., medical applications and nondestructive testing.

VI. CONCLUSION

We introduce the homogeneous Green’s function of the
second kind, delivering a framework for focusing functions
that is substantially more general than in previous Marchenko-
related applications. Based on the resulting partial differential
equation, we can construct integral representations for the
involved wave fields. The single-sided representation is iden-
tical in its form to the previously derived three-dimensional
Marchenko relations; however, our derivation imposes signif-
icantly fewer limitations on the retrievable wave fields, while
accommodating also for closed boundary representations. As
such, we find that the Marchenko equation is therefore more
general than previously assumed and can indeed be used to
obtain the full wave-field response from an unknown scat-
tering medium including evanescent and refracted waves. For
practical Green’s function retrieval, we present a direct solu-
tion of the uncoupled Marchenko integral that follows certain
causality assumptions—in a manner analogous to the current
approach for the coupled Marchenko representation. It is only
in this step that we make use of a particular realization of the
focusing function that is purposefully chosen to be separated
from the Green’s function in time. Lastly, we show numerical
examples that illustrate the Marchenko integral’s capability
of estimating the entire, full field Green’s function from an
estimate of the first arrival and single-sided reflection data.
This paves the way for more complex data applications and a
potentially broader usage in related imaging sciences.
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APPENDIX: COMPARISON WITH THE CONVENTIONAL
MARCHENKO SCHEME

In the following, we illustrate and discuss differences
between our Marchenko-based Green’s function retrieval ap-
proach and the conventional method. For the theory of the
conventional method, we refer the interested reader to previ-
ous works (e.g., Refs. [25–27,29]).

FIG. 9. Time-reversed focusing function f ∗ (a) and Green’s
function g (b) obtained with our approach. Time-reversed focusing
function f ∗ (c) and Green’s function g (d) obtained with the con-
ventional approach. All fields are for the virtual source location xf

marked by the downwards pointing triangle in Figure 3 and show
the respective fields for all receivers xr on the surface of the model.
All color bars are clipped at the same value, i.e., at about 1% of the
absolute maximum amplitude of all four wave fields.

In the conventional approach, the focusing function
is defined as the inverse transmission response in a
truncated medium and its direct arrival is approximated
by the time-reversed direct Green’s function [26]. This
approximation of the direct arrival of the focusing function is
conventionally regarded as the necessary a priori information
when solving for a virtual Green’s function. However, the
approximation is known to be insufficiently accurate when
complex models are considered [67]. In our approach, we do
not define the focusing function via an inverse transmission
response. Instead, we show that there are many functions
f (x; x f ) that obey Eq. (19). It is only for the most compact
of these focusing functions in time-space domain, however,
that we are able to solve the system for the Green’s function.
Furthermore, we use a different window operator �, i.e., as
suggested by, e.g., Zhang et al. [51] versus the conventional
window [26]. This window operator shifts the a priori
information from the direct arrival of the focusing function
(in the conventional approach) to the first arrival of the
Green’s function (in our approach). Hence, we indeed require
an accurate guess of the first arrival Green’s function as
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FIG. 10. Similar to Fig. 9, but for the virtual source location xf

marked by the upward-pointing triangle in Fig. 3.

a priori information and not an inverse transmission response.
As already pointed out several times throughout the paper, we
never consider a truncated medium wave state. Therefore, the
required a priori information is the first arrival of the Green’s
function in the actual medium, including diving and/or re-
fracted waves—no approximations involved.

Our newly adjusted Marchenko scheme can incorporate
diving and refracted as well as evanescent waves. While we
show results to prove these points for our method above,
we want to compare them with the conventional approach
here to directly highlight differences. Figures 9 and 10 show
time-space domain focusing functions f (xr; x f ) and Green’s
functions g(xr; x f ) for the two virtual source locations marked
in Fig. 3, both using our approach and the conventional
approach. We use the correct first arrival and direct arrival
Green’s functions, respectively, where the latter is obtained
by modeling in the accordingly truncated, correct medium.
For both approaches, we use the same, unfiltered reflection
data, i.e., including also, e.g., refracted arrivals. The arrows
in Figs. 9(b) and 10(b) denote refracted waves that are recon-
structed by our scheme but not by the conventional one. The
conventional method can not obtain any Green’s function con-
tributions before the direct arrival in the truncated medium,
neglecting refracted waves and, in general, diving waves, as
they obey the same physics. Regarding evanescent waves, we
note that the traditional theory excludes them [26] while our
new theory includes them.

Last but not least, Figs. 9 and 10 illustrate the instability of
the conventional approach. Comparing the focusing functions
in Figs. 9(a) and 10(a) with those in Figs. 9(c) and 10(c), one
clearly sees largely increased amplitudes in the latter. This
indicates a divergence-related energy growth of the Neumann
series for the conventional approach.
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