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Emission of photons by atoms can occur into modes which extend into a region causally disconnected with
the emitter. For example, a uniformly accelerated ground-state atom emits a photon into the Unruh-Minkowski
mode which is exponentially larger in the causally disconnected region. This makes an impression that photon
emission is acausal. Here we show that conventional quantum optical analysis yields that a detector atom will
not detect the emitted photon in the region noncausally connected with the emitter. However, joint excitation
probability of atoms in the causally disconnected regions can be correlated due to entanglement of Minkowski
vacuum and be much larger than the product of independent excitation probabilities. Moreover, atoms uniformly
accelerated in the same Rindler wedge cannot become simultaneously excited without changing the state of
the field, that is, the Unruh-Minkowski photon emitted by one atom cannot be absorbed by the other atom. We
discuss examples demonstrating interesting features of Minkowski vacuum entanglement.
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I. INTRODUCTION

The principle of relativistic causality that signals should
propagate no faster than the speed of light is of fundamental
importance for the foundations of physics. If a signal could be
transmitted with superluminal velocity, then there would exist
a Lorentz frame in which the cause (switching on of the signal
source) would be later than the effect (arrival of the signal).
And one could then have a purely logical contradiction of the
type in which the effect could occur before its cause. In the lit-
erature it has been argued that quantum theory has issues with
the principle of relativistic causality (see, e.g., Refs. [1–6]).
In particular, the problems with causality beyond the rotating-
wave approximation are known in the Glauber-Kelley-Kleiner
photodetection theory [7–10]. Several ways to resolve the
issue have been suggested (see, e.g., Refs. [11–13]).

One can envision the problem with causality if we consider
a mode into which a photon is emitted by a ground-state atom
uniformly accelerated in Minkowski vacuum. The process of
photon emission is accompanied by the atom’s excitation.
This is known as the Unruh effect [14] (or the Fulling-Davies-
Unruh effect in full [14–16]). Interpretation of the effect
depends on a choice of the reference frame.

A noninertial observer having a proper constant acceler-
ation a, i.e., a Rindler observer [17], sees that space is filled
with thermal photons with Unruh temperature TU proportional
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to the acceleration [14],

TU = h̄a

2πkBc
. (1)

From the perspective of the accelerated observer, the ground-
state atoms accelerated through Minkowski vacuum, will be
promoted to the excited state by the absorption of the Rindler
particles (Unruh effect) [14]. However, an inertial observer
interprets the absorption of a Rindler particle as the emission
of a Minkowski particle [18], which is known as acceleration
radiation. From the perspective of the inertial observer, the
energy is gained from the atom’s kinetic energy. A similar
mechanism yields excitation of an atom freely falling in a
gravitational field [19] or an atom uniformly moving through
an optical cavity [20] or a fixed atom in the presence of an
accelerated mirror [21] .

For simplicity, in this paper we consider either dimension
1 + 1 or dimension 3 + 1 but restrict photons to have wave-
vector k parallel to the z axis. We assume that the field is scalar
and obeys the one-dimensional wave equation,

1

c2

∂2φ

∂t2
− ∂2φ

∂z2
= 0. (2)

The inner product of two field modes φ1(t, z) and φ2(t, z)
obeying Eq. (2) is defined as the Klein-Gordon inner product
which is a generalization of the Wronksian,

〈φ1, φ2〉 = i

2

∫ ∞

−∞
(φ∗

1π∗
2 − π1φ2)dz

= i

2c

∫ ∞

−∞

(
φ∗

1
∂φ2

∂t
− ∂φ∗

1

∂t
φ2

)
dz, (3)
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Atom 2

Atom 1

Minkowski space

FIG. 1. Atom 1 accelerates from −∞ to +∞ along the hyper-
bolic trajectory. Unruh acceleration radiation from atom 1 is shown
as wavy lines which is absorbed by the stationary detector atom 2.

where π = c ∂L/∂φ̇ = (1/c)∂φ∗/∂t is the conjugate momen-
tum. The inner product is independent of time and has the
following properties:

〈φ∗
1 , φ∗

1 〉 = −〈φ1, φ1〉, 〈φ1, φ
∗
1 〉 = 〈φ∗

1 , φ1〉 = 0. (4)

The modes,

φ1ν =
√

a

νc
(∓z − ct )i(νc/a)θ (∓z − ct ), (5)

φ2ν =
√

a

νc
(ct ± z)−i(νc/a)θ (ct ± z) (6)

are solutions of the wave equation (2) and are known as
Rindler modes. Here ν is the photon frequency in the Rindler
space [see Eq. (11) below]. For ν > 0 modes (5) and (6) have
positive norm [defined in Eq. (3)] which, however, diverges as
in the case of plane waves. The upper and the lower signs in
Eqs. (5) and (6) correspond to the left- and right-propagating
photons, respectively. The mode functions (5) and (6) are
nonzero in half of the t-z plane and form a complete basis
set.

The coordinate transformation t, z → t̄, z̄,

t = 1

α
eαz̄/c sinh (αt̄ ), (7)

z = c

α
eαz̄/c cosh (αt̄ ), (8)

where α = a/c > 0 is a constant, converts the Minkowski
space-time line element ds2 = c2dt2 − dz2 in the right
Rindler wedge z > c|t | to the Rindler line element [17],

ds2 = e2αz̄/c(c2dt̄2 − dz̄2). (9)

An atom moving along the trajectory z̄ = const in the t̄ − z̄
(Rindler) space has constant proper acceleration ā = ae−αz̄/c

and proper time τ = eαz̄/ct̄ . For z̄ = 0 the atom moves along

the trajectory (see Fig. 1),

t (τ ) = c

a
sinh

(
aτ

c

)
, z(τ ) = c2

a
cosh

(
aτ

c

)
, (10)

in the Minkowski space. The normal modes of scalar photons
(5) and (6) in the Rindler space take the same form as the usual
positive norm plane waves in the Minkowski metric, that is

φ1ν (t̄, z̄) ∝ e−iν(t̄±z̄/c), φ2ν (t̄, z̄) ∝ e−iν(t̄±z̄/c), (11)

where ν is the photon angular frequency in the Rindler space.
However, modes (11) are a mixture of positive and negative
frequency modes with respect to the physical Minkowski
space-time. Therefore, the vacuum state of these modes is not
Minkowski vacuum but rather Rindler vacuum.

Taking superposition of the Rindler-mode functions (5) and
(6), one can construct the so-called Unruh-Minkowski modes
[18],

F1ν (t, z) = |t ± z/c|i(νc/a)√
2 νc

a sinh
(

πνc
a

)
{

e−(πνc)/2a, t ± z/c > 0,

e(πνc)/2a, t ± z/c < 0,

= e−(πνc)/2a√
2 νc

a sinh
(

πνc
a

) (t ± z/c − iλ)i(νc/a), (12)

and

F2ν (t, z) = |t ± z/c|−i(νc/a)√
2 νc

a sinh
(

πνc
a

)
{

e(πνc/2a), t ± z/c > 0,

e−(πνc/2a), t ± z/c < 0,

= e(πνc/2a)√
2 νc

a sinh
(

πνc
a

) (t ± z/c − iλ)−i(νc/a). (13)

Here λ = 0+, ν > 0, and the ± sign corresponds to left- and
right-propagating photons, respectively. The mode functions
(12) and (13) differ by changing ν → −ν. They depend only
on the combinations t ± z/c, that is, describing waves travel-
ing with the speed of light c. In Fig. 2 we plot the absolute
value and the phase of F1ν (t, z) as a function of t ± z/c for
νc/a = 4. The mode function F1ν (t, z) is exponentially small
for t ± z/c > 0, whereas the mode function phase logarithmi-
cally diverges when |t ± z/c| → 0.

The Unruh-Minkowski modes (12) and (13) are solutions
of Eq. (2). They form a complete set and have positive norm
and, thus, are associated with the photon annihilation opera-
tors â1ν and â2ν . The negative-norm modes are the complex
conjugates of Eqs. (12) and (13) and correspond to the pho-
ton creation operators â†

1ν and â†
2ν . The vacuum state for the

Unruh-Minkowski photons is usual Minkowski vacuum |0M〉,
that is, â1ν |0M〉 = 0, â2ν |0M〉 = 0 for all ν.

Operators for the Rindler photons b̂ν and for the Unruh-
Minkowski photons âν are related by the Bogoliubov-like
transformation (see Appendix A),

b̂1ν = â1ν + e−πcν/aâ†
2ν√

1 − e−2πcν/a
, b̂2ν = â2ν + e−πcν/aâ†

1ν√
1 − e−2πcν/a

, (14)

which yields

b̂1ν |0M〉 = â†
2ν

|0M〉√
e2πcν/a − 1

, b̂2ν |0M〉 = â†
1ν

|0M〉√
e2πcν/a − 1

, (15)
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FIG. 2. The absolute value and the phase ϕ of F1ν (t, z) given by
Eq. (12) as a function of t ± z/c for νc/a = 4. |F1ν (t, z)| is multi-
plied by 20 for a better visualization.

and, therefore,

〈0M |b̂†
1ν b̂1ν |0M〉 = 〈0M |b̂†

2ν b̂2ν |0M〉 = 1

e2πcν/a − 1
. (16)

That is a uniformly accelerated observer in Minkowski vac-
uum sees the presence of Rindler photons with the average
mode occupation number given by the thermal Planck factor
with Unruh temperature (1). Equation (15) shows that cre-
ation of the Unruh-Minkowski photons (13) and (12) out of
Minkowski vacuum |0M〉 can be viewed as annihilation of the
Rindler photons (5) and (6), respectively.

A ground-state atom with transition frequency ω moving
in the right Rindler wedge with acceleration a (see Fig. 1)
emits the left-propagating photon into the Unruh-Minkowski
mode F1ω and the right-propagating photon into the mode
F2ω [18]. In Appendix B, we obtain this result by performing
calculations using the plane-wave modes as a basis set. The
mode functions F1ω and F2ω are nonzero in a region non-
causally connected with the emitting atom, namely, in the
left Rindler wedge z < −c|t |. Moreover, they are in a factor
e−πcω/a smaller in the causally connected region than outside
that region. This makes an impression that photon emission by
the accelerated atom is acausal and a detector atom 2 placed
in the noncausally connected region can become excited by
absorbing the photon emitted by the accelerated atom.

However, according to Eq. (15), emission of such Unruh-
Minkowski photons into the acausal region can be viewed as
annihilation of the Rindler photons having the mode function
that vanishes in the acausal region. Thus, from this perspec-
tive, there is no problem with causality.

Similar issues arise for the Fermi problem [11] where a
stationary atom 1 with transition frequency ω spontaneously
emits a photon which is then detected by atom 2. In particular,
the photon can be emitted into the right-propagating plane-

wave mode,

fω(t, z) = 1√
2ω

e−iω(t−z/c), (17)

which spreads into the noncausally connected region to the
left of emitting atom 1. This makes an impression that such
right-propagating photon can excite detector atom 2 located
to the left of emitting atom 1.

In this paper we investigate the issues of causality and vac-
uum entanglement in the framework of conventional quantum
optical analysis. In particular, we show that evolution of a
detector atom is independent of the emitter if they are located
in the causally disconnected regions. We also discuss interest-
ing properties of photon emission by uniformly accelerated
atoms. For example, we show that a photon emitted by a
uniformly accelerated atom can not be absorbed by another
atom accelerated in the same direction but can be absorbed by
an atom accelerated in the opposite direction.

In Minkowski vacuum, the number of Rindler photons
in the left and the right Rindler wedges is correlated. Since
uniformly accelerated ground-state atoms absorb Rindler pho-
tons, they can be used as sensors to test correlations between
the number of Rindler photons localized in different wedges.
Joint probability that two ground-state atoms become excited
and the field remains in Minkowski vacuum contain informa-
tion about the Rindler photon number correlations. In Sec. IV
we show that because of such correlations, the joint excitation
probability can be exponentially larger than the product of
independent excitation probabilities for the two atoms if they
move in opposite Rindler wedges. In contrast, if the atoms
move in the same wedge the joint excitation probability of
atoms, provided the field remains in Minkowski vacuum, is
equal to zero.

II. EVOLUTION OPERATOR FOR THE
DETECTOR-EMITTER SYSTEM

We consider a pair of two-level (a and b) atoms with
transition angular frequencies ω1 and ω2. Atom 2 serves as
a detector which tests the field produced by atom 1. The
interaction between the detector atom and the field can be
suddenly turned on and turned off at time t or change with
time adiabatically. Time-dependent coupling allows us to test
the state of the field at a particular moment of time, however,
it can also make the detector atom excited.

The interaction Hamiltonian between the atoms and the
field is

V̂ (t ) = V̂1(t ) + V̂2(t ), (18)

where

V̂1(t ) = g(σ̂1e−iω1t + σ̂
†
1 eiω1t )Ê [t, z1(t )], (19)

V̂2(t ) = f (t )g(σ̂2e−iω2t + σ̂
†
2 eiω2t )Ê [t, z2(t )], (20)

Ê (t, r) is the analog of the electric-field operator,

Ê (t, r) = ∂̂(t, r)

∂t
, (21)

and (t, r) is a scalar field. In these equations σ̂ and σ̂ † are
the atomic lowering and raising operators, and z1(t ) and z2(t )

013202-3



ANATOLY SVIDZINSKY et al. PHYSICAL REVIEW RESEARCH 3, 013202 (2021)

are trajectories of atoms 1 and 2. If we choose plane waves as
mode functions then

̂(t, r) =
∑

k

1√
2νk

(âke−iνkt+ik·r + â†
keiνkt−ik·r ), (22)

where νk = ck.
The evolution operator of the system obeys equation,

ih̄
∂Û (t )

∂t
= V̂ (t )Û (t ), (23)

with the initial condition Û (t0) = 1.
We introduce operators Û1(t ) and Û2(t ) which satisfy equa-

tions,

ih̄
∂Û1(t )

∂t
= V̂1(t )Û1(t ), (24)

ih̄
∂Û2(t )

∂t
= V̂2(t )Û2(t ), (25)

and the same initial conditions Û1,2(t0) = 1. The physical
meaning of Û1(t ) and Û2(t ) is the following. Û1(t ) is the
evolution operator of the system if the interaction between
field and atom 2 is turned off, that is, only atom 1 interacts
with the field. Û2(t ) is the evolution operator if the interaction
between field and atom 1 is turned off, that is only atom 2
interacts with the field.

Next we show that in the second order in the interaction V̂ ,
the evolution operator of system Û (t ) can be written as

Û (t ) ≈ Û1(t )Û2(t ) + 1

h̄2

∫ t

t0

dt ′′
∫ t ′′

t0

dt ′[V̂1(t ′), V̂2(t ′′)].

(26)
Indeed, let us consider the difference,

�̂(t ) = Û (t ) − Û1(t )Û2(t ).

Using Eqs. (23)–(25), we obtain

�̂(t ) =
∫ t

t0

dt ′′ ∂�̂(t ′′)
∂t ′′

= − i

h̄

∫ t

t0

dt ′′{V̂ (t ′′)Û (t ′′)

−V̂1(t ′′)Û1(t ′′)Û2(t ′′) − Û1(t ′′)V̂2(t ′′)Û2(t ′′)}.
With the required accuracy one can replace Û (t ′′) ≈
Û1(t ′′)Û2(t ′′) under the integral. Then we have

�̂(t ) ≈ i

h̄

∫ t

t0

dt ′′[Û1(t ′′), V̂2(t ′′)]Û2(t ′′).

In the second order one can take under the integral,

Û1(t ′′) ≈ 1 − i

h̄

∫ t ′′

t0

dt ′V̂1(t ′), (27)

and Û2(t ′′) ≈ 1, which gives

�̂(t ) ≈ 1

h̄2

∫ t

t0

dt
′′
∫ t ′′

t0

dt ′[V̂1(t ′), V̂2(t ′′)].

Thus, Eq. (26) is correct in the second order.
Equation (26) is useful to study the problem of causality

which we discuss next.

III. PHOTON EMISSION AND CAUSALITY

Let us assume that atom 1 emits a photon, e.g., by the accel-
eration radiation mechanism. Here we show that the excitation
probability of detector atom 2 is independent of the presence
of atom 1 if at the moment of detection the space-time posi-
tion of the detector (t, z2) is not causally connected with the
trajectory of atom 1. To be specific, we assume that initially
(at t0 = −∞) both atoms are in ground-state b and the field
is in Minkowski vacuum state |0M〉. That is, the initial-state
vector of the system is

|ψ0〉 = |b1b20〉. (28)

The evolution of the two-atom system is governed by the
evolution operator (26). The state vector of the system at time
t can be written as

|ψ (t )〉 = |ψb2 (t )〉|b2〉 + |ψa2 (t )〉|a2〉, (29)

where |ψb2 (t )〉 and |ψa2 (t )〉 are state vectors of atom 1 and
the field provided that atom 2 is in states b2 and a2, respec-
tively. The two states on the right-hand side of Eq. (29) are
orthogonal. The probability that at time t detector atom 2 is in
excited-state a2 is given by

P2(t ) = 〈ψa2 (t )|ψa2 (t )〉.
Using Eq. (26) and

Û2(t ) = 1 − i

h̄

∫ t

−∞
dt ′V̂2(t ′) + · · · , (30)

in the second order in the interaction we find

∣∣ψa2 (t )
〉|a2〉 =

(
− i

h̄
Û1(t )

∫ t

−∞
dt ′V̂2(t ′)

+ 1

h̄2

∫ t

t0

dt ′′
∫ t ′′

t0

dt ′[V̂1(t ′), V̂2(t ′′)]

)
|b1b20〉.

(31)

If atoms 1 and 2 are not causally connected, then the com-
mutator term in Eq. (31) does not contribute. Indeed, for the
one-dimensional problem, the commutator of two electric-
field operators is given by the derivative of the δ functions
corresponding to the right and left propagating modes (see
Appendix C),

[Ê (t ′, z1), Ê (t ′′, z2)] = ic

2

∂

∂z2
(δ[c(t ′ − t ′′) + z2 − z1]

− δ[c(t ′ − t ′′) + z1 − z2]). (32)

The term involving δ[c(t ′ − t ′′) + z1 − z2] shows that the
probability of photon absorption by the second atom at the
space-time point (t ′′, z2) is nonzero only if there is time t ′ such
that along the first atom trajectory the equation,

t ′′ − t ′ = 1

c
(z1 − z2)

has a solution. Physically this means that photon absorbed by
the second atom at (t ′′, z2) was emitted by the first atom at
a space-time point (t ′, z1) along the first atom trajectory and
was propagating to the left with the speed of light until the
moment of absorption (see Fig. 3).
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Atom 2

Atom 1

)

)

FIG. 3. Photon absorbed by atom 2 at a space-time point (t ′′, z2)
was emitted by atom 1 at a space-time point (t ′, z1) along atom’s
1 trajectory and was propagating with the speed of light c until the
moment of absorption. The photon’s trajectory is shown as a wavy
line with the slope 1/c.

Thus, if atoms 1 and 2 are not causally connected, we
obtain ∣∣ψa2 (t )

〉|a2〉 ≈ − i

h̄
Û1(t )

∫ t

−∞
dt ′V̂2(t ′)|b1b20〉.

Therefore, the probability of the detector atom excitation is
given by

Pa2 (t ) = 〈
ψa2 (t )

∣∣ψa2 (t )
〉

= 1

h̄2 〈b1b20|
∫ t

−∞
dt ′V̂2(t ′)Û †

1 (t )Û1(t )

×
∫ t

−∞
dt ′′V̂2(t ′′)|b1b20〉.

Using unitarity,

Û †
1 (t )Û1(t ) = 1,

we obtain

Pa2 (t ) = 1

h̄2 〈b20|
∫ t

−∞
dt ′V̂2(t ′)

∫ t

−∞
dt ′′V̂2(t ′′)|b20〉.

The matrix element does not involve operator V̂1. Therefore,
if detector atom 2 performs a measurement at a space-time
point which is causally disconnected from atom 1, then the
excitation probability of atom 2 is independent of the presence
of atom 1. This is true, in general, when the evolution operator
of the system can be written as Û (t ) = Û1(t )Û2(t ).

In particular, this result yields that the right-propagating
photon emitted by atom 1 cannot excite detector atom 2 lo-
cated to the left from atom 1 even though the mode function
of the emitted photon extends into the left region [22].

If detector atom 2 is stationary it is causally connected with
emitter atom 1 in the future Rindler wedge ct > |z| by the
left-propagating photons which can excite the detector (see
Fig. 1). However, if the interaction between the detector atom
and the field is turned off before the atom’s trajectory enters
the future Rindler wedge (see Fig. 4) detector atom 2 is no

Atom 2

Atom 1

FIG. 4. Coupling between detector atom 2 and field g(t ) is adi-
abatically switched off before the atom enters the future Rindler
wedge ct > |z|.

longer causally connected with photons emitted by atom 1.
If the switching is adiabatic, then the change in the coupling
constant with time does not yield excitation of the detector
atom, and the atom will remain in the ground state.

IV. PROBABILITY OF JOINT ATOM EXCITATION AND
VACUUM ENTANGLEMENT

In the previous section we showed that probability of de-
tector atom excitation Pa2 is independent of emitter atom 1
if the atoms are located in the causally disconnected regions.
The detector atom can get self-excited, e.g., by nonadiabatic
switching of the coupling between the atom and the field, by
moving with acceleration, or by other mechanisms.

One can write Pa2 as

Pa2 = Pa2b1 + Pa2a1 , (33)

where Pa2b1 and Pa2a1 are conditional probabilities that detector
atom 2 becomes excited and atom 1 is in the ground (b1) and
excited (a1) states, respectively. Due to quantum correlations
(vacuum entanglement) even if the two atoms are not causally
connected, the conditional probability Pa2a1 can be nonsepara-
ble, that is, Pa2a1 �= Pa2 Pa1 . This, however, does not contradict
causality.

To clarify this issue we consider atoms 1 and 2 which
are uniformly accelerated in the opposite Rindler wedges
with acceleration a in Minkowski vacuum (see Fig. 5). The
atom’s trajectories are causally disconnected, that is, the sig-
nal emitted by one of the atoms and propagating with the
speed of light, cannot reach the other atom. We assume that
initially both atoms are in the ground state and the field is in
Minkowski vacuum.

A ground-state atom having transition frequency ω mov-
ing in the right Rindler wedge with acceleration a emits a
left-propagating photon into the Unruh-Minkowski mode F1ω

and a right-propagating photon into the mode F2ω (see Ap-
pendix B). An atom accelerated in the left Rindler wedge
emits a right-propagating photon into the mode F1ω and a
left-propagating photon into the mode F2ω. That is, atoms 1
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Atom 2 Atom 1

Minkowski space

FIG. 5. Ground-state atoms 1 and 2 are uniformly accelerated in
the right and left Rindler wedges, respectively, and become excited
simultaneously with probability Pa1a2 .

and 2 emit photons into different Unruh-Minkowski modes
and, hence, the probability amplitudes of these processes do
not interfere. As a result, the conditional probability that both
atoms become excited and the two Unruh-Minkowski photons
are emitted is equal to Pa2 Pa1 .

However, joint excitation of the atoms can also leave the
state of the field in Minkowski vacuum |0M〉. We denote the
corresponding conditional probability as Pa2a10 and obtain

Pa2a1 = Pa2 Pa1 + Pa2a10. (34)

In Appendix D we show that Pa2a10 vanishes if the accel-
erated atoms have different transition frequencies ω1 �= ω2,

however, for ω1 = ω2 = ω,

Pa2a10 = e2πcω/aPa2 Pa1 . (35)

That is, Pa2a10 > Pa2 Pa1 for ω1 = ω2 and, hence, Pa2a1 >

Pa2 Pa1 . The fact that Pa2a1 can be greater than Pa2 Pa1 if the
atoms are not causally connected is a manifestation of vacuum
correlations (entanglement).

If both atoms become excited, the final state of the field
|ψa2a1〉 overlaps with the initial field state (Minkowski vac-
uum) provided ω1 = ω2. According to Appendix D,∣∣ψa2a1

〉 ∝ (
b̂R1ω1 + b̂L2ω1

)(
b̂R2ω2 + b̂L1ω2

)|0M〉, (36)

where b̂ν’s are annihilation operators of the Rindler photons
which are described by the mode functions (5) and (6). The
indices R and L refer to the right- and the left-propagating
photons, respectively. Recall that Minkowski vacuum is filled
with Rindler photons and, according to Eq. (36), the atoms
become excited by absorbing Rindler photons.

The operator b̂R2ω2 + b̂L1ω2 describes annihilation of the
right- and left-propagating Rindler photons which are causally
connected with atom 2, whereas b̂R1ω1 + b̂L2ω1 describes anni-
hilation of the Rindler photons which are causally connected
with atom 1. Each atom becomes excited by absorbing Rindler
photons with the mode functions which are restricted to the
region causally connected with the atom. This agrees with
causality.

However, the process of absorption of a pair of Rindler
photons, described by the operators b̂R1ωb̂R2ω or b̂L2ωb̂L1ω,
yields a state of the field which overlaps with the initial-state
|0M〉. As a consequence, the conditional probability Pa2a10 is
nonzero.

In the Minkowski vacuum state the number of Rindler
photons in the modes φ1ν and φ2ν is correlated. Using
relations (A7) and (A8) we obtain the following represen-
tation of Minkowski vacuum in terms of Rindler states (see
Appendix E),

|0M〉 =
∏
ν>0

(1 − e−2πcν/a) exp

[
exp

(
− πcν

a

)
(b̂†

R1ν b̂†
R2ν + b̂†

L1ν b̂†
L2ν )

]
|0R〉

=
∏
ν>0

(1 − e−2πcν/a)
∞∑

nR1ν = nR2ν = 0,

nL1ν = nL2ν = 0

e−π (nR1ν+nL1ν )cν/a|nR1ν, nR2ν〉|nL1ν, nL2ν〉, (37)

where |nR1ν, nR2ν〉 (|nL1ν, nL2ν〉) are states with nR1ν and nR2ν

(nL1ν and nL2ν) Rindler photons in the right- (left-) propagat-
ing modes φ1ν and φ2ν .

Due to vacuum correlations, if detector atom 2 becomes
excited by absorbing the right-propagating Rindler photon φ2ω

of frequency ω then with unit probability there is the nonzero
number of the right-propagating Rindler photons in mode φ1ω.
They excite atom 1. That is, atom 1 becomes excited with
a much higher probability provided that atom 2 detected a
photon. This is the reason why Pa2a1 > Pa2 Pa1 .

The same physical argument yields Pa2b1 < Pa2 Pb1 .
Namely, if atom 2 detected a photon then with unit probability
there is a nonzero number of Rindler photons which can excite

atom 1 and, thus, it is less likely that atom 1 will remain in the
ground state. However, the sum Pa2b1 + Pa2a1 is independent
of atom 1 as it was shown in the previous section.

Using Eq. (14) the state of the field obtained by absorption
of Rindler photons by two causally disconnected atoms in
Minkowski vacuum can be written as

b̂1ωb̂2ω|0M〉 = â1ωâ†
1ω + e−πcω/aâ†

2ωâ†
1ω

2 sinh(πcω/a)
|0M〉. (38)

The term â1ωâ†
1ω|0M〉 on the right-hand side of Eq. (38) can

be interpreted as emission of the Unruh-Minkowski pho-
ton F1ω by one atom followed by absorption of this photon
by the other atom. Such interpretation implies that causally
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21

Minkowski space

FIG. 6. Ground-state atoms 1 and 2 are uniformly accelerated in
the right Rindler wedge in Minkowski vacuum and become excited.

disconnected atoms can excite each other which is at odds
with causality. However, the term â1ωâ†

1ω|0M〉 cannot be con-
sidered separately from the other term â†

2ωâ†
1ω|0M〉 describing

emission of two Unruh-Minkowski photons in modes F1ω and
F2ω. According to Eq. (38), the combination of these terms
yields b̂1ωb̂2ω|0M〉 which describes a causal process.

Finally we mention the case when identical atoms 1 and
2 are uniformly accelerated in the right Rindler wedge in
Minkowski vacuum (see Fig. 6). In this case the atom’s trajec-
tories are causally connected. Atom 1 or 2 can become excited
by emitting a photon into the Unruh-Minkowski mode. Can
the other atom become excited by absorbing such a Unruh-
Minkowski photon? If such a process can occur, then the
final state of the field would be Minkowski vacuum, and the
conditional probability Pa2a10 would be nonzero.

It is easy to find Pa2a10 using a representation of Minkowski
vacuum in terms of the Rindler states given by Eq. (38). In the
Rindler picture Minkowski vacuum is filled with Rindler pho-
tons, and the accelerated atom becomes excited by absorbing
such photons. If both atoms move in the right Rindler wedge,
they can absorb photons only from the right-propagating
modes φR1ν or the left-propagating modes φL2ν . Each such
process changes the Fock states |nRν, nRν〉 or |nLν, nLν〉 in
Eq. (38) into |nRν − 1, nRν〉 or |nLν, nLν − 1〉, whereas the
number of the Rindler photons in modes φL1ν and φR2ν does
not change. As a consequence, if both atoms become excited,
the state of the field does not contain Fock states of the form
|nRν, nRν〉|nLν, nLν〉, and, hence, it is orthogonal to |0M〉. That
is if both atoms are uniformly accelerated in the same Rindler
wedge, then the probability that both atoms become excited
and the field remains in Minkowski vacuum is equal to zero
(Pa2a10 = 0).

This property can be understood from a negative frequency
perspective. Namely, the Unruh-Minkowski photon emitted

by a ground-state atom has negative frequency (negative en-
ergy) from the perspective of an atom accelerated in the
same direction and, as a consequence, such a photon cannot
be absorbed by the accelerated ground-state atom [23]. This
does not mean that the presence of the other atom makes no
difference. Each of the atoms as it is excited by the vacuum
fluctuations emits an Unruh-Minkowski photon, and these
emissions are largely independent of each other. There is,
however, a probability, if both atoms have the same (red-
shifted) frequency, namely, a1ω2 = a2ω1 that both will emit
the photon in the same mode. In this case one will get a
Dicke superradiance condition, and the probability that both
emit into that same mode is larger by a factor of 2 than the
square of the probability that both would emit into that mode
independently.

Using Eq. (14) the state of the field obtained by absorption
of identical Rindler photons by atoms moving in the same
Rindler wedge with equal acceleration a can be written as

b̂1ωb̂1ω|0M〉 = e−πcω/aâ†
2ωâ†

2ω

2 sinh(πcω/a)
|0M〉. (39)

That is, the absorption process can be interpreted as the stimu-
lated emission of two Unruh-Minkowski photons in the same
mode. The emitted photons interfere constructively which
yields a factor of

√
2 in the corresponding probability am-

plitude â†
2ωâ†

2ω|0M〉 = √
2|22ω〉. As a result, the probability

of the same-wedge atom’s simultaneous excitation without
specifying the state of the field is

Pa2a1 = 2Pa2 Pa1 . (40)

This should be compared with the result we obtained for the
atoms accelerated in the opposite wedges,

Pa2a1 = (e2πcω/a + 1)Pa2 Pa1 , (41)

which yields a larger value for the conditional probability.

V. TESTING VACUUM ENTANGLEMENT WITH A δ

FUNCTION DETECTOR

Detector atom 2 can become self-excited if coupling
between atom 2 and the field changes with time nonadiabat-
ically. In this section we assume that atom 2 is fixed at the
coordinate z2 and its coupling with the field changes with time
as a δ function. Namely, in the interaction Hamiltonian (20)
we take f (t ) = δ(t − T ). Thus, the detector atom tests the
state of the field at the space-time point (T, z2).

We assume that atom 1 with transition frequency ω1 is
uniformly accelerated in Minkowski vacuum and moves along
the trajectory (10) such that atom 1 is always located to the
right of detector atom 2 (see Fig. 7). We assume that the field
contains only right-propagating modes and coupling between
atom 1 and the field is switched off adiabatically before t = T .
Under these assumptions the two atoms are causally discon-
nected and the probability of their joint excitation can serve as
a measure of entanglement of Minkowski vacuum.

Atom 1 can become excited by absorbing a right-
propagating Rindler photon in mode φ1ω1 . According to
Eq. (38), absorption of such a photon by atom 1 implies that
with unit probability there is a nonzero number of Rindler
photons in the mode φ2ω1 which can excite the detector
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Atom 2

Atom 1

FIG. 7. Atom 1 is uniformly accelerated in the right Rindler
wedge, whereas detector atom 2 is fixed to the left from atom 1.
The coupling between detector atom 2 and the field changes with
time as δ(t − T ), whereas the coupling between atom 1 and the field
is switched off adiabatically before t = T . The field contains only
right-propagating modes and initially the field is in Minkowski vac-
uum. The probability of atom’s joint excitation serves as a measure
of entanglement of Minkowski vacuum.

atom in the space-time region t > z/c. Thus, the conditional
probability that both atoms become excited at time T yields
information about photon correlation in the Rindler-modes
φ1ν and φ2ν in Minkowski vacuum. The right-propagating
modes φ1ν and φ2ν are localized in the opposite sides of the
line t = z/c separating two causally disconnected regions.
The δ-function detector allows us to test the space-time de-
pendence of such correlations.

In Appendix F we calculate the conditional probability that
both atoms 1 and 2 are excited at time T and the field is in
Minkowski vacuum. We find that

Pa2a10(T, z2) ∝ e−[(2πcω1 )/a]θ (z2/c−T )

(z2/c − T )4 . (42)

Equation (42) shows that conditional probability Pa2a10(T, z2)
is in a factor exp(2πcω1/a) larger if detector atom 2 is located
in the region T > z2/c which is causally disconnected from
accelerated atom 1. The degree of correlations depends on
the proximity of the detector atom to the Rindler horizon
T = z2/c. Namely, the conditional probability Pa2a10 formally
diverges at T = z2/c and decays as a power law away from
the horizon line.

VI. SUMMARY

In this paper we show that the evolution of atoms located
in causally disconnected space-time regions is independent
of each other, that is, conventional quantum optical analy-
sis yields causal dynamics. This is true, in general, when
the evolution operator of the system can be factorized as
Û (t ) = Û1(t )Û2(t ). The result can be applied, e.g., to Unruh
acceleration radiation [14] or to the Fermi problem [11]. The
latter deals with the issue of causality in spontaneous emission
of a photon by a stationary atom.

The description of a state of the quantized electromagnetic
field in terms of photons depends on a choice of the basis set
for the field mode functions. As a consequence, the particle
content of Minkowski vacuum |0M〉 depends on the mode
functions we adopt to describe photons. For a plane-wave
basis set of the form

fν (t, z) = 1√
2ν

e−iν(t±z/c), ν > 0, (43)

the state of Minkowski vacuum is a state with no photons in
the modes (43). The mode functions (43) are nonzero in the
entire Minkowski space-time.

However, if, e.g., we choose Rindler-modes (5) and (6) as
a basis set, then in such a description, Minkowski vacuum
is filled with Rindler photons [see Eq. (38)]. The Rindler-
modes (5) and (6) are nonzero in the half-plane of Minkowski
space-time. According to Eq. (38), the number of photons in
the Rindler-modes φ1ν and φ2ν is correlated in Minkowski
vacuum. Namely, the photon numbers in the right- (left-)
propagating modes φ1ν and φ2ν are equal. This correlation
(entanglement) property of Minkowski vacuum described in
terms of the Rindler photons yields observable effects. Since
a uniformly accelerated atom can be excited by absorbing
a Rindler photon, such atoms can be used as a tool to test
Rindler photon content and correlations of Minkowski vac-
uum.

For example, ground-state atoms 1 and 2 uniformly accel-
erated in Minkowski vacuum in the opposite Rindler wedges
(see Fig. 5) are causally disconnected. However, they can
become excited simultaneously with a probability Pa2a1 much
greater than Pa2 Pa1 , where Pa2 and Pa1 are the excitation prob-
abilities of atoms 2 and 1 independently. This result does not
violate causality and can be understood as follows. In the
Rindler-mode picture, atom 1 becomes excited by absorbing
the Rindler photon from the right Rindler wedge. Because of
Minkowski vacuum correlations this implies that with unit
probability there is nonzero number of photons in the left
Rindler wedge and these photons excite atom 2. As a result,
the probability of joint excitation Pa2a1 can be greater than
Pa2 Pa1 .

Interpretation of this result in the Unruh-Minkowski pic-
ture might lead to an impression that causality is violated.
This is the case because Unruh-Minkowski modes (12) and
(13) extend in the region causally disconnected with the
atom. In the Unruh-Minkowski picture, an accelerated atom
becomes excited by emitting the Unruh-Minkowski photon
which then can be absorbed by the causally disconnected
atom accelerated in the opposite Rindler wedge. Emission of
a photon followed by its absorption in a causally disconnected
region might be interpreted as acausal dynamics. However, in
the Unruh-Minkowski picture there is another process which
leads to the simultaneous excitation of both atoms. Namely,
each atom can become excited independently by emitting the
Unruh-Minkowski photon so that the final state of the field has
two Unruh-Minkowski photons. According to Eq. (38), the
sum of these processes is equivalent to absorption of Rindler
photons from the causally connected regions, that is, summing
these two terms leads to causal dynamics.

Another interesting feature of Minkowski vacuum entan-
glement is that atoms uniformly accelerated in the same
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Rindler wedge (see Fig. 6) cannot become simultaneously
excited without changing the state of the field. That is that
the Unruh-Minkowski photon emitted by one atom cannot be
absorbed by another atom accelerated in the same direction
[23]. One might expect that one of the atoms would become
excited by absorbing the Unruh-Minkowski photon that the
other atom emitted. But it does not, both atoms emit photons,
leaving the state of the field with two particles rather than
none, if it were absorbed.

In principle, entanglement of Minkowski vacuum can
be harvested [24]. For example, entanglement can be ex-
tracted from the vacuum, delivered to the atoms, and distilled
into Einstein, Podolsky, and Rosen pairs used in quan-
tum information tasks [25]. Therefore, teleportation and
other entanglement assisted quantum communication tasks

can rely on the vacuum alone as a resource for entangle-
ment [25,26]. Recently entanglement harvesting protocols
have been applied to spacelike [27] and timelike [28,29]
separated detectors as well as situations involving uniform
accelerations [30].
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APPENDIX A: RELATION BETWEEN RINDLER AND UNRUH-MINKOWSKI MODE OPERATORS

To be specific, we consider only the right-propagating modes. In terms of the Rindler-modes (5) and (6) the field operator for
the right-propagating photons reads

̂ =
∫ ∞

0
dν(φ1ν b̂1ν + φ∗

1ν b̂†
1ν + φ2ν b̂2ν + φ∗

2ν b̂†
2ν ). (A1)

The right-propagating Unruh-Minkowski modes are defined as

F1ν = φ1ν + e−πcν/aφ∗
2ν√

1 − e−2πcν/a
, (A2)

F2ν = φ2ν + e−πcν/aφ∗
1ν√

1 − e−2πcν/a
. (A3)

Modes F1ν and F2ν are normalized in the same way as the Rindler modes and are orthogonal to each other 〈F1ν |F2ν〉 = 0. From
Eqs. (A2) and (A3) we obtain

φ1ν = F1ν − e−πcν/aF ∗
2ν√

1 − e−2πcν/a
, (A4)

φ2ν = F2ν − e−πcν/aF ∗
1ν√

1 − e−2πcν/a
. (A5)

Plugging this into Eq. (A1) and combining terms we find

̂ =
∫ ∞

0
dν

(
F1ν

b̂1ν − e−πcν/ab̂†
2ν√

1 − e−2πcν/a
+ F ∗

1ν

b̂†
1ν − e−πcν/ab̂2ν√

1 − e−2πcν/a
+ F2ν

b̂2ν − e−πcν/ab̂†
1ν√

1 − e−2πcν/a
+ F ∗

2ν

b̂†
2ν − e−πcν/ab̂1ν√

1 − e−2πcν/a

)
. (A6)

The operators in front of F1ν, F ∗
1ν, F2ν , and F ∗

2ν are associated with the Unruh-Minkowski mode operators â1ν, â†
1ν, â2ν , and

â†
2ν , respectively. Therefore,

â1ν = b̂1ν − e−πcν/ab̂†
2ν√

1 − e−2πcν/a
, â†

1ν = b̂†
1ν − e−πcν/ab̂2ν√

1 − e−2πcν/a
, (A7)

â2ν = b̂2ν − e−πcν/ab̂†
1ν√

1 − e−2πcν/a
, â†

2ν = b̂†
2ν − e−πcν/ab̂1ν√

1 − e−2πcν/a
. (A8)

These expressions can be inverted which yields relations between operators for the Rindler-modes b̂ν and the Unruh-Minkowski
modes âν ,

b̂1ν = â1ν + e−πcν/aâ†
2ν√

1 − e−2πcν/a
, b̂2ν = â2ν + e−πcν/aâ†

1ν√
1 − e−2πcν/a

. (A9)

APPENDIX B: PHOTON EMISSION BY A UNIFORMLY ACCELERATED ATOM

Here we consider electrically neutral two-level (a and b) atom with transition angular frequency ω which is uniformly
accelerated along the trajectory (10). Initially the field is in Minkowski vacuum, and the atom is in the ground state. We calculate
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the mode into which the atom emits a photon. We quantize the field using the right- and left-moving plane waves in Minkowski
space-time as a basis set,

fνR(t, z) = 1√
2ν

e−iν(t−z/c), fνL(t, z) = 1√
2ν

e−iν(t+z/c),

and assume that the field is scalar. The field operator in terms of fνR(t, z) and fνL(t, z) reads

̂(t, z) =
∫ ∞

0
dν[âνR fνR(t, z) + â†

νR f ∗
νR(t, z) + âνL fνL(t, z) + â†

νL f ∗
νL(t, z)], (B1)

where â†
νR and â†

νL are creation operators of the right- and left-propagating plane-wave photons with frequency ν. We will assume
the following form of the interaction Hamiltonian between the atom and the scalar field:

V̂ (τ ) = g(σ̂e−iωτ + σ̂ †eiωτ )
∂

∂τ
̂[t (τ ), z(τ )], (B2)

where g is the atom-field coupling constant and σ̂ is the atomic lowering operator. Since the atom feels the local value of the
field the operator ̂ is taken at the atom’s position t (τ ), z(τ ). The probability amplitude that the atom becomes excited, and the
photon is emitted into the right-moving mode fνR(t, z) is given by the matrix element,

AνR = − i

h̄
〈a1νR|

∫ ∞

−∞
dτ V̂ (τ )|b0〉 = − ig

h̄

∫ ∞

−∞
dτ eiωτ ∂

∂τ
f ∗
νR[t (τ ), z(τ )] = − ig√

2ν h̄

∫ ∞

−∞
dτ eiωτ ∂

∂τ
eiν[t (τ )−z(τ )/c].

Taking into account that along the atom’s trajectory,

t (τ ) − z(τ )/c = − c

a
e−aτ/c, (B3)

we obtain

AνR = − ig√
2ν h̄

∫ ∞

−∞
dτ eiωτ ∂

∂τ
e−(iνc/a)e−aτ/c = g

√
ν√

2h̄

∫ ∞

−∞
dτ eiωτ e−(iνc/a)e−aτ/c

e−aτ/c.

To find the mode function FR(t, z) into which the photon is emitted we need to multiply AνR by fνR(t, z) and integrate over all
mode frequencies ν,

FR(t, z) =
∫ ∞

0
dν AνR fνR(t, z) = g

2h̄

∫ ∞

0
dν

∫ ∞

−∞
dτ eiωτ e−aτ/ce−(iνc/a)e−aτ/c

e−iν(t−z/c).

The integral over frequency ν can be calculated using the formula,∫ ∞

0
eiνt dν = i

t + iλ
, (B4)

where λ → 0+. This yields

FR(t, z) = − ig

2h̄

∫ ∞

−∞
dτ

eiωτ e−aτ/c

u + c
a e−aτ/c − iλ

, (B5)

where

u = t − z/c.

The integration over proper time τ can be performed by closing the contour in the upper half of the complex plane and summing
up contributions from the poles. In the upper half-plane there is infinite number of poles which are obtained from the equation,

c

a
e−aτ/c = −u + iλ,

which gives the pole locations

τn = − c

a
ln

[
a

c
(u − iλ)

]
+ πc(2n − 1)

a
i, (B6)

where n = 1, 2, . . . is a positive integer. As a result, we obtain

FR(t, z) = −πg

h̄

(
− a

c

)−iωc/a

(u − iλ)−iωc/a
∞∑

n=1

e−2πcωn/a = −πg

h̄

(
− a

c

)−iωc/a (u − iλ)−iωc/a

e2πcω/a − 1
.

That is the right-propagating photon is emitted into the mode which has the form

FR(u) = N (u − iλ)−i(cω/a),
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where N is the normalization factor. It is known as the Unruh-Minkowski mode. The normalization factor is chosen such that
the Unruh-Minkowski modes and the Rindler-modes (5) and (6) have the same normalization.

Similar calculations yield for the left-moving mode,

FL(v) = N (v − iλ)i(cω/a),

where

v = t + z/c.

APPENDIX C: COMMUTATOR OF THE ELECTRIC-FIELD OPERATORS IN ONE DIMENSION

Using expression for the electric-field operator (21) in terms of plane-wave mode functions (22),

Ê (t, r) = −i
∑

k

√
νk

2
(âke−iνkt+ik·r − â†

keiνkt−ik·r ),

and νk = ck, we obtain the following expression for the commutator of the electric-field operators in one dimension,

[Ê (t ′, z1), Ê (t ′′, z2)] = 1

2

∑
k

νk (e−iνk (t ′−t ′′ )+ik·(z1−z2 ) − c.c.)

= c

4π

∫ ∞

0
dk k(e−ick(t ′−t ′′ )+ik(z1−z2 ) + e−ick(t ′−t ′′ )−ik(z1−z2 ) − c.c.)

= ic

4π

∂

∂z2

∫ ∞

−∞
dk(e−ick(t ′−t ′′ )+ik(z1−z2 ) − e−ick(t ′−t ′′ )−ik(z1−z2 ) ), (C1)

where we set the photon length to be equal to 1. Taking into account that∫ ∞

−∞
dk eik(z1−z2 ) = 2πδ(z1 − z2),

we find

[Ê (t ′, z1), Ê (t ′′, z2)] = ic

2

∂

∂z2
{δ[c(t ′ − t ′′) + z2 − z1] − δ[c(t ′ − t ′′) + z1 − z2]}. (C2)

APPENDIX D: SIMULTANEOUS EXCITATION OF TWO ATOMS ACCELERATED IN THE OPPOSITE RINDLER WEDGES

Here we consider two electrically neutral two-level (a and b) atoms with transition angular frequencies ω1 and ω2. We assume
that atom 1 accelerates in the right Rindler wedge along the trajectory,

t (τ ) = c

a
sinh

(
aτ

c

)
, z1(τ ) = c2

a
cosh

(
aτ

c

)
,

whereas atom 2 accelerates in the left Rindler wedge along the trajectory (see Fig. 5),

t (τ ) = c

a
sinh

(
aτ

c

)
, z2(τ ) = −c2

a
cosh

(
aτ

c

)
.

The acceleration of the atoms has the same magnitude but opposite sign.
The interaction Hamiltonian between the atoms and the field is

V̂ (τ ) = V̂1(τ ) + V̂2(τ ), (D1)

where

V̂1(τ ) = g(σ̂1e−iω1τ + σ̂
†
1 eiω1τ )

∂̂[t (τ ), z1(τ )]

∂τ
, (D2)

V̂2(τ ) = g(σ̂2e−iω2τ + σ̂
†
2 eiω2τ )

∂̂[t (τ ), z2(τ )]

∂τ
, (D3)

τ is the proper time of atoms 1 and 2, σ̂ is the atomic lowering operator, and g is the atom-field coupling constant. We write the
field operator ̂ in terms of the right- and left-propagating Rindler modes,

̂(t, z) = ̂R(t, z) + ̂L(t, z), (D4)
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where the field operators for the right- R and left- L propagating modes in the Minkowski coordinates are given by

̂R(t, z) =
∫ ∞

0

dν√
ν

[b̂R1νei(νc/a) ln[(a/c2 )(z−ct )]θ (z − ct ) + b̂R2νe−i(νc/a) ln[(a/c2 )(ct−z)]θ (ct − z)

+ b̂†
R1νe−i(νc/a) ln[(a/c2 )(z−ct )]θ (z − ct ) + b̂†

R2νei(νc/a) ln[(a/c2 )(ct−z)]θ (ct − z)],

̂L(t, z) =
∫ ∞

0

dν√
ν

[b̂L2νe−i(νc/a) ln[(a/c2 )(z+ct )]θ (z + ct ) + b̂L1νei(νc/a) ln[(a/c2 )(−z−ct )]θ (−ct − z)

+ b̂†
L2νei(νc/a) ln[(a/c2 )(z+ct )]θ (z + ct ) + b̂†

L1νe−i(νc/a) ln[(a/c2 )(−z−ct )]θ (−ct − z)],

b̂ν and b̂†
ν are annihilation and creation operators of the Rindler photons. Along the atomic trajectories we have

z1(τ ) − ct (τ ) = c2

a
e−(aτ/c), z1(τ ) + ct (τ ) = c2

a
e(aτ/c),

z2(τ ) − ct (τ ) = −c2

a
e(aτ/c), z2(τ ) + ct (τ ) = −c2

a
e−(aτ/c).

Therefore, along the atomic trajectories,

̂R[t (τ ), z1(τ )] =
∫ ∞

0

dν√
ν

(b̂R1νe−iντ + b̂†
R1νeiντ ),

̂L[t (τ ), z1(τ )] =
∫ ∞

0

dν√
ν

(b̂L2νe−iντ + b̂†
L2νeiντ ),

̂R[t (τ ), z2(τ )] =
∫ ∞

0

dν√
ν

(b̂R2νe−iντ + b̂†
R2νeiντ ),

̂L[t (τ ), z2(τ )] =
∫ ∞

0

dν√
ν

(b̂L1νe−iντ + b̂†
L1νeiντ ).

We assume that initially (at t0 = −∞) both atoms are in the ground-state b and the field is in Minkowski vacuum |0M〉. That
is, the initial-state vector of the system is

|ψ0〉 = |b1b20M〉.
We will use representation (26) for the evolution operator which is valid in the second order in the interaction V̂ . We are

interested in the probability that at t = +∞ both atoms become excited and the field remains in Minkowski vacuum state |0M〉.
Since atoms 1 and 2 move in the causally disconnected regions the second term on the right-hand side of Eq. (26) yields no
contribution.

In the first term one can take

Û1,2(t ) ≈ 1 − i

h̄

∫ t

t0

dt ′V̂1,2(t ′).

Thus, the probability that both atoms become excited and the field is in Minkowski vacuum state is given by

Pa1a20 = 1

h̄4

∣∣∣∣〈a1a20M |
∫ ∞

−∞
dτ ′V̂1(τ ′)

∫ ∞

−∞
dτ ′′V̂2(τ ′′)|b1b20M〉

∣∣∣∣
2

. (D5)

Plugging V̂1(τ ) and V̂2(τ ), and taking into account that∫ ∞

−∞
dτ ′eiω1τ

′ ∂̂[τ ′, z1(τ ′)]
∂τ ′ = −2π i

√
ω1

(
b̂R1ω1 + b̂L2ω1

)
,

∫ ∞

−∞
dτ ′′eiω2τ

′′ ∂̂[τ ′′, z2(τ ′′)]
∂τ ′′ = −2π i

√
ω2

(
b̂R2ω2 + b̂L1ω2

)
,

we obtain

Pa1a20 = 16π4g4ω1ω2

h̄4 |〈0M |(b̂R1ω1 b̂R2ω2 + b̂L2ω1 b̂L1ω2

)|0M〉|2.

One can calculate the matrix element using relations (14) between operators for the Rindler-modes b̂ν and the Unruh-
Minkowski modes âν [18],

b̂R1ν = âR1ν + e−πcν/aâ†
R2ν√

1 − e−2πcν/a
, b̂R2ν = âR2ν + e−πcν/aâ†

R1ν√
1 − e−2πcν/a

,

b̂L1ν = âL1ν + e−πcν/aâ†
L2ν√

1 − e−2πcν/a
, b̂L2ν = âL2ν + e−πcν/aâ†

L1ν√
1 − e−2πcν/a

.
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As a result, we obtain

〈0M |(b̂R1ω1 b̂R2ω2 + b̂L2ω1 b̂L1ω2

)|0M〉 = δω1ω2

sinh(πcω1/a)
,

and, therefore,

Pa1a20 = 16π4g4ω1ω2δω1ω2

h̄4 sinh2(πcω1/a)
. (D6)

On the other hand, the probability that atom 1 emits a photon into the right-moving Unruh-Minkowski mode with frequency
ω1 and becomes excited is given by

Pa1R = g2

h̄2

∣∣∣∣〈1UMω1R

∣∣ ∫ ∞

−∞
dτ ′eiω1τ

′ ∂̂[τ ′, z1(τ ′)]
∂τ ′ |0M〉

∣∣∣∣
2

= 2π2g2ω1e−πcω1/a

h̄2 sinh(πcω1/a)
. (D7)

The probability of photon emission into the left-moving Unruh-Minkowski mode is given by the same expression. Thus, we find

Pa2 = 4π2g2ω1e−πcω1/a

h̄2 sinh(πcω1/a)
.

Similarly, for the excitation probability of atom 2 we obtain

Pa2 = Pa2R + Pa2L = 4π2g2ω2e−πcω2/a

h̄2 sinh(πcω2/a)
.

Comparing this with Eq. (D6) we find that for ω1 = ω2,

Pa1a20 = e2πcω1/aPa1 Pa2 . (D8)

That is, Pa1a20 > Pa1 Pa2 .

APPENDIX E: BOGOLIUBOV TRANSFORMATION AND VACUUM STATE

Consider the following Bogoliubov transformation:

â = αb̂ − β ĉ†,

where â, b̂, and ĉ† are annihilation and creation operators of photons in modes a, b, and c; operator ĉ commutes with b̂ and
[b̂, b̂†] = 1.

We denote as |0a〉 and |0b〉 vacuum states for the operators â and b̂, respectively, that is â|0a〉 = 0 and b̂|0b〉 = 0. Here we
show that relation between |0a〉 and |0b〉 is

|0a〉 = Ne(β/α)b̂† ĉ† |0b〉 = N
∞∑

n=0

(
β

α

)n

|n, n〉, (E1)

where N is a normalization factor and |n, n〉 is a state with n photons in modes b and c. The value of N is fixed by normalization
〈0a|0a〉 = 1 which yields

N = 1√∑∞
n=0

(
β

α

)2n
=

√
1 −

(
β

α

)2

.

Using the identity,

b̂e(β/α)b̂† ĉ† = e(β/α)b̂† ĉ†

(
b̂ + β

α
ĉ†

)
, (E2)

we obtain

â|0a〉 = (αb̂ − β ĉ†)|0a〉 = N (αb̂ − β ĉ†)e(β/α)b̂† ĉ† |0b〉 = αNe(β/α)b̂† ĉ†
b̂|0b〉 = 0.

That is, state (E1) is the vacuum state for the operator â provided |0b〉 is the vacuum state for operator b̂.
To prove the identity (E2), or

e−γ b̂† ĉ†
b̂eγ b̂† ĉ† = b̂ + γ ĉ†,

where γ = β/α, we consider an operator,

Â(γ ) = e−γ b̂† ĉ†
b̂eγ b̂† ĉ†

.
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Operator Â(γ ) obeys the differential equation,

dÂ

dγ
= ĉ†e−γ b̂† ĉ†

[b̂, b̂†]eγ b̂† ĉ† = ĉ†

subject to the initial condition Â(γ = 0) = b̂. The solution of the differential equation is Â = b̂ + γ ĉ†.

APPENDIX F: δ-FUNCTION DETECTOR

Here we consider a pair of two-level (a and b) atoms with transition angular frequencies ω1 and ω2. We assume that atom 2
is fixed at a coordinate z2 and the other atom is moving along the z axis. Atom 2 serves as a detector which is suddenly switched
on and off at time t = T . We will model this process as a δ-function coupling in the interaction Hamiltonian between atom 2
and the field.

We are interested in the probability that both atoms become excited as a function of the position of detector atom z2 and time
T . The interaction Hamiltonian between the atoms and the field is given by Eqs. (18)–(21) in which f (t ) = δ(t − T ). We assume
that at the initial moment of time t0 < T both atoms are in the ground-state b and the field is in the Minkowski vacuum |0M〉.
That is, the initial-state vector of the system is

|ψ (t0)〉 = |b1b20〉.
If the interaction is weak, the state vector of the system at time t can be found using the perturbation theory. In the second

order, we obtain

|ψ (t )〉 ≈ |ψ (t0)〉 − i

h̄

∫ t

t0

dt ′V̂ (t ′)|ψ (t0)〉 − 1

h̄2

∫ t

t0

dt ′
∫ t ′

t0

dt ′′V̂ (t ′)V̂ (t ′′)|ψ (t0)〉. (F1)

The contribution to the probability amplitude that both atoms become excited and the field is in Minkowski vacuum
〈a1a20|ψ (t )〉 come from the cross terms. Plugging Eqs. (F1) and (18) into the probability amplitude gives

〈a1a20|ψ (t )〉 ≈ − 1

h̄2 〈a1a20|
∫ t

t0

dt ′
∫ t ′

t0

dt ′′[V̂1(t ′)V̂2(t ′′) + V̂2(t ′)V̂1(t ′′)]|b1b20〉.

Taking into account Eqs. (19) and (20) we obtain for t � T ,

〈a1a20|ψ (t )〉 ≈ − g2

h̄2 〈0|
∫ t

T
dt ′eiω1t ′+iω2T Ê [t ′, r1(t ′)]Ê (T, r2)|0〉 − g2

h̄2 〈0|
∫ T

t0

dt ′′eiω1t ′′+iω2T Ê (T, r2)Ê [t ′′, r1(t ′′)]|0〉. (F2)

One can disregard the first term on the right-hand side of Eq. (F2) if t = T , that is, if we calculate the excitation probability at
the moment of time when the δ-function detector makes the measurement. Plugging Eqs. (21) and (22) gives for t = T ,

〈a1a20|ψ (T )〉 ≈ − g2

2h̄2

∑
k

νk

∫ T

t0

dt ′eiω1t ′+iω2T eiνkt ′−ik·r1(t ′ )e−iνk T +ik·r2 .

For the one-dimensional problem replacing the sum over k by an integral,∑
k

→ 1

2π

∫ ∞

−∞
dk,

where we set the photon quantization length to be equal to 1, we obtain

〈a1a20|ψ (T )〉 ≈ − cg2

4π h̄2

∫ ∞

−∞
dk|k|

∫ T

−∞
dt ′eiω1t ′+iω2T eic|k|t ′−ikz1(t ′ )e−ic|k|T +ikz2 .

Since atom 1 is accelerated, the integration over t ′ should be replaced with the integration over the atom’s proper time τ .
Separating contributions from the right- and the left-propagating modes one can write the probability amplitude as

〈a1a20 |ψ (T )〉 ≈ − g2

4πch̄2 eiω2T

( ∫ ∞

0
dν νe−iν(T −z2/c)

∫ T

−∞
dτ eiν[t (τ )−z1(τ )/c]eiω1τ

+
∫ ∞

0
dν νe−iν(T +z2/c)

∫ T

−∞
dτ eiν[t (τ )+z1(τ )/c]eiω1τ

)
. (F3)

We calculate the integrals in Eq. (F3) for a uniformly accelerated atom 1. The atom’s trajectory is given by Eq. (10). We
assume that coupling between the field and atom 1 is switched on and off adiabatically before the measurement time T . Then
expressions under the integral over dτ in Eq. (F3) must be multiplied by a function g(τ ) which is equal to 1 when the interaction
is on and zero otherwise.
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Next we calculate the integral describing the contribution from the right-propagating photons,

IR =
∫ T

−∞
dτ g(τ )eiν[t (τ )−z1(τ )/c]eiω1τ =

∫ T

−∞
dτ g(τ )eiφ(τ ),

where

φ(τ ) = νt (τ ) − νz1(τ )/c + ω1τ.

Integrating by parts, one can write IR as

IR = g(τ )eiφ(τ )

i ∂φ

∂τ

∣∣∣∣∣
T

−∞
−

∫ T

−∞
dτ

∂g(τ )

∂τ

eiφ(τ )

i ∂φ

∂τ

+
∫ T

−∞
dτ

∂2φ

∂τ 2

g(τ )eiφ(τ )

i
(

∂φ

∂τ

)2 . (F4)

If the interaction is switched on and off adiabatically, one can disregard the first two terms on the right-hand side of Eq. (F4), and
in the last term extend the integration over τ to +∞. Atomic excitation can occur only from a nonadiabatic change in ∂φ/∂τ .
Inserting Eq. (10) into φ(τ ) we obtain

φ = −νc

a
e−aτ/c + ω1τ,

∂φ

∂τ
= ω1 + νe−aτ/c,

∂2φ

∂τ 2
= −aν

c
e−aτ/c,

and, therefore,

IR = iaν

c

∫ ∞

−∞
dτ

g(τ )e−i(νc/a)e−aτ/c
eiω1τ

(νe−aτ/2c + ω1eaτ/2c)2 .

The contribution to the integral comes from the region −c/a � τ � c/a. Assuming that g(τ ) = 1 in this region one can take
g(τ ) out of the integral. Then, performing the change in the integration variable to x = ν

ω1
e−aτ/c yields

IR = i

ω1

(
ν

ω1

)(icω1 )/a ∫ ∞

0
dx

e−i(cω1x)/ax−(icω1 )/a

(x + 1)2 .

The dependence on frequency ν is only present in the factor ν (icω1 )/a. The integral over x can be expressed in terms of the γ

function. Namely, ∫ ∞

0
dx

e−i(cω1x)/ax−(icω1/a)

(x + 1)2 = −i

(
icω1

a

)(icω1 )/a cω1

a
�

(
− icω1

a

)
,

and, therefore,

IR = c

a

(
iνc

a

)(icω1 )/a

�

(
− icω1

a

)
.

Next we calculate the integral over ν and obtain∫ ∞

0
dν νe−iν(T −z2/c)ν (icω1 )/a = −π i

sinh
(

πcω1
a

) 1 + icω1
a

�(− icω1
a )|z2/c − T |2+icω1/a

{
e−(πcω1 )/2a, z2

c − T > 0
e(πcω1 )/2a, T − z2

c > 0.

As a result, for the right-propagating modes,∫ ∞

0
dν νe−iν(T −z2/c)

∫ T

−∞
dτ eiν[t (τ )−z1(τ )/c]eiω1τ = −π

(
ic
a

)[(icω1 )/a]+1

sinh
(

πcω1
a

) 1 + icω1
a

|z2/c − T |2+ icω1
a

{
e−(πcω1 )/2a, z2

c − T > 0
e(πcω1 )/2a, T − z2

c > 0.

If we disregard the left-propagating modes [the second term in Eq. (F3)] then the probability that both atoms are excited at
time T and the field is in Minkowski vacuum is

Pa2a10(T, z2) = g4

16h̄4a2

1 + ( cω1
a

)2

sinh2
(

πcω1
a

) e−[(2πcω1 )/a]θ (z2/c−T )

(z2/c − T )4 , (F5)

where we used |iiα|2 = e−πα . Equation (F5) shows that the conditional probability Pa2a10(T, z2) is in the factor exp (2πcω1/a)
larger in the region z2/c − T < 0, which is causally disconnected from the accelerated atom 1.
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