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Rise and fall of non-Fermi liquid fixed points in multipolar Kondo problems
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Recently, it was shown that the multipolar Kondo problem, wherein a quantum impurity carrying higher-
rank multipolar moments interacts with conduction electrons, leads to novel non-Fermi liquid states. Because
of the multipolar character of the local moments, the form of the interaction with conduction electrons is
strongly dependent on the orbital symmetry of the conduction electrons via crystalline symmetry constraints.
This suggests that there may exist a variety of different non-Fermi liquid states in generic multipolar Kondo
problems depending on the character of conduction electrons. In this work, using renormalization group
analysis, we investigate a model where the multipolar local moment is coupled to conduction electrons with two
different orbital-symmetry components, namely, p-wave and f -wave symmetries. When each orbital-symmetry
component is present alone, non-Fermi liquid states with exactly the same thermodynamic singularities ap-
pear. When both orbital-symmetry components are allowed, however, a completely different non-Fermi liquid
state arises via the quantum fluctuations in the mixed scattering channels. This remarkable result suggests
that the multipolar Kondo problem presents unique opportunities for the discovery of unexpected non-Fermi
liquid states.
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I. INTRODUCTION

Classification of non-Fermi liquid states may hold a key for
understanding unconventional metallic and superconducting
phases in strongly interacting fermion systems [1–4]. This
is analogous to the standard paradigm of understanding a
plethora of broken-symmetry states as an instability of the
Fermi liquid ground state of weakly interacting electron sys-
tems. While Fermi liquid theory is based on well-defined
quasiparticles, non-Fermi liquids are broadly characterized by
the absence of such quasiparticles and the associated singular
thermodynamic signatures [5]. Hence, it is conceivable that
there may exist a variety of different non-Fermi liquid states,
which may be responsible for unconventional behaviors of
metallic, superconducting, and quantum critical regimes of
correlated quantum matter including high-Tc cuprates, heavy
fermions, and various two-dimensional materials with narrow
bands [6,7]. It is thus important to understand possibly differ-
ent origins of non-Fermi liquid ground states.

The conventional Kondo problem, wherein a single mag-
netic impurity interacts with conduction electron spins, has
been a fruitful playground for non-Fermi liquid physics. In
particular, non-Fermi liquid ground states arise when a num-
ber of channels of conduction electrons greater than or equal
to two is coupled to a spin- 1

2 impurity [8–11]. This valuable
lesson, however, has been largely limited to the cases when
the local moment only carries a dipole moment, which in-

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

teracts with conduction electron spins. In many f -electron
systems, for example, the local moments carry higher-rank
multipolar moments [12–21] and they do not interact solely
with the spin, but with more complicated bilinear operators of
electrons. Earlier studies in the case of the quadrupolar local
moment indeed found a non-Fermi liquid state in both the
multipolar lattice setting as well as in the single-multipolar
moment (impurity) limit via dilution of the f -electron ions
[22–27]. However, the full generality of the multipolar Kondo
problem has not been thoroughly investigated. Recently, some
of us have shown that a non-Fermi liquid state arises in
the multipolar Kondo problem in cubic systems, where the
local moment carries quadrupolar and octupolar moments,
which interact with conduction electrons with p-wave or-
bital symmetry (T2 representation of the local Td symmetry)
[28,29]. This non-Fermi liquid state is distinct from the well-
known multichannel Kondo non-Fermi liquid states. It was
also shown that it is still stable even when additional con-
duction electrons with eg orbital symmetry (E representation
of the local Td symmetry) are introduced. From the point of
view towards the classification of non-Fermi liquid states,
an important question is how one could control (understand)
the emergence (origin) of different kinds of non-Fermi liquid
states in the multipolar Kondo problem.

In this work, we consider the multipolar Kondo problem
in cubic systems, where the local moment with quadrupolar
and octupolar moments interacts with conduction electrons
with both p-wave (T2 representation of the local Td symme-
try) and f -wave (T1 representation of the local Td symmetry)
orbital symmetries. We use renormalization group (RG) anal-
ysis to investigate the presence of non-Fermi liquid fixed
points. When only the conduction electrons with f -wave or-
bital symmetry are present, it is shown that the emergent
non-Fermi liquid fixed points are characterized by the same

2643-1564/2021/3(1)/013189(11) 013189-1 Published by the American Physical Society

https://orcid.org/0000-0003-0567-850X
https://orcid.org/0000-0002-7845-7823
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.013189&domain=pdf&date_stamp=2021-02-26
https://doi.org/10.1103/PhysRevResearch.3.013189
https://creativecommons.org/licenses/by/4.0/


SCHULTZ, PATRI, AND KIM PHYSICAL REVIEW RESEARCH 3, 013189 (2021)

thermodynamic singularities as those of the non-Fermi liq-
uid fixed point found earlier in the p-wave model. Hence,
when the conduction electrons with p-wave and f -wave
orbital-symmetries are separately considered, they lead to the
same non-Fermi liquid behaviors. Remarkably, the situation
changes dramatically when the conduction electrons with both
orbital symmetries are introduced. This allows the Kondo
scattering processes in the mixed orbital-symmetry channels,
which leads to the destabilization of the original non-Fermi
liquid fixed points and the appearance of a different non-Fermi
liquid fixed point. Using RG analysis and a unitary transfor-
mation at the fixed point, we show that one of the non-Fermi
liquid fixed points is now characterized by a four-channel
Kondo non-Fermi liquid behavior. This tantalizing result sug-
gests that the effect of quantum fluctuations, in the presence
of multiple symmetry components and their interference, can
lead to unexpected non-Fermi liquid fixed points with differ-
ent thermodynamic behaviors.

The rest of the paper is organized as follows. In Sec. II,
we describe the microscopic constituent degrees of freedom
(local multipolar moment and conduction sea) that make up
the multipolar Kondo problem. In Sec. III, we present the
symmetry-permitted multipolar Kondo models with conduc-
tion electrons belonging to T1, T2, and T1 ⊗ T2. We also
present RG flow equations and the corresponding stable fixed
points. In Sec. V, we consider the intermediate fixed point
manifold tuned to a special point that provides clarity to the
model and the RG flow equations, and present the mapping of
the fixed-point Hamiltonian to the four-channel Kondo model.
In Sec. VI, we discuss the broader implications of our findings
and propose future directions of research.

II. CONSTITUENT DEGREES OF FREEDOM

The combination of spin-orbit (SO) coupling and crys-
talline electric fields places strong constraints on the shape of
localized electron wave functions. This restriction leads to the
formation of higher-rank multipolar moments that describe
localized anisotropic charge and magnetization densities. For
instance, in the case of a rare-earth Pr3+ ion subjected to a sur-
rounding tetrahedral (Td ) crystal field, the spin-orbit-coupled
J = 4 multiplet of the 4 f 2 electrons is split to give rise to a
low-lying (and well-isolated) �3g non-Kramers doublet [30].
This �3g doublet supports both time-reversal even quadrupolar

moments {Ô22 =
√

3
2 (Ĵ2

x − Ĵ2
y ), Ô20 = 1

2 (3Ĵ2
z − Ĵ2)} as well

as a time-reversal odd octupolar moment {T̂xyz =
√

15
6 Ĵx ĴyĴz};

we use the Stevens operators to describe the multipolar mo-
ments and the overline indicates a full symmetrization. These
moments can be compactly represented by the pseudospin- 1

2

operator Ŝ, the components of which

Ŝx = 1

2

(−Ô22

4

)
, Ŝy = 1

2

(−Ô20

4

)
, Ŝz = 1

2

( T̂xyz

3
√

5

)
(1)

satisfy a canonically normalized su(2) algebra. We em-
phasize that though the multipolar moments are written in

terms of pseudospin- 1
2 operators, their physical content (and

transformations under the symmetry elements) reflects their
underlying multipolar nature.

The immersion of multipolar moments in a metallic system
permits the local multipolar moment, according to symmetry,
to couple to and scatter conduction electrons. In this work,
we focus on scattering conduction electrons belonging to the
T1 representation ({x(y2 − z2), y(z2 − x2), z(x2 − y2)}) of the
Td group in conjunction with the T2 representation ({x, y, z}),
which was studied in an earlier work by some of the au-
thors. In the concrete example of the rare-earth multipolar
compounds Pr(Ti, V)2Al20, the aforementioned conduction
electron states are composed of “molecular orbitals” formed
by a linear combination of the Al atoms’ p electrons that
surround the Pr3+ ion [28,31]. The p electrons on the Al
atoms are not to be confused with the molecular orbital states
in the T2 (p-wave symmetry) representation. We note that
these conduction electrons are also equipped with their spin- 1

2
degree of freedom, which (as will be seen explicitly in the next
section) also participates in the Kondo scattering events.

III. MULTIPOLAR KONDO MODELS

The electrons belonging to the various irreducible rep-
resentations of Td participate in scattering events with the
impurity. In particular, there are intrairrep and interirrep scat-
tering events, where the conduction electrons scatter within
basis functions belonging to the same irrep and in different
irreps, respectively. Constrained by the local Td symmetry
about the rare-earth ion and time-reversal symmetry (TRS),
we consider the coupling of conduction electron bilinears
(possessing orbital and spin degrees of freedom) with the mul-
tipolar moments. We note that in performing the symmetry
analysis, it is operationally efficient to express the conduction
electron operators in the cubic harmonic basis, and the sym-
metry operations on said operators are listed in Appendix B.
However, since the multipolar moment resides on a site of
spin-orbit coupling, it is physically more natural to express the
conduction electron operators in terms of a composite spin ba-
sis | j′, mj′ 〉〈 j, mj | as well. We employ the spin-orbit-coupled
j basis for all models in this section.

A. T1-orbital Kondo model

The scattering of T1-representation conduction electrons
within the T1 irrep corresponds to initial and final orbital
angular momenta of � = 3; the subsequent spin-orbit-coupled
total spin j of these states is either 5

2 or 7
2 . It suffices to state

here that only certain linear combinations, Eqs. (2)–(4), of the
composite-spin kets appear in the Kondo Hamiltonian, which
we label as |χ (±)

i 〉, where i = 1, 2, 3,

|χ (±)
1 〉 = ±1

2

√
10

7

∣∣∣∣5

2
,
±1

2

〉
+ 1

4

√
30

7

∣∣∣∣7

2
,
±1

2

〉

−
√

6

4

∣∣∣∣7

2
,
∓7

2

〉
, (2)
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〉
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3 〉 =

√
2
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∣∣∣∣5

2
,
±5

2

〉
−
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,
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2
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,
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2

〉
, (4)

where the (±) superscript denotes two time-reversal related
pairs of these special linear combinations.

The Kondo interactions in Eqs. (5)–(7) involve three types
of terms with corresponding coupling constants FQ1, FQ2,
and FO, where their Latin subscripts indicate which mul-
tipolar moment is interacting with the conduction electron
bilinears, i.e., HT1

O describes interaction with the octupolar
moment, etc.:

HT1
Q1 = FQ1

∑
s=±1

[
Ŝx

{∣∣χ (s)
1

〉〈
χ

(s)
2

∣∣ + H.c.
}

+ Ŝy
{∣∣χ (s)

1

〉〈
χ

(s)
1

∣∣ − ∣∣χ (s)
2

〉〈
χ

(s)
2

∣∣}], (5)

HT1
Q2 = FQ2

∑
s=±1

[
Ŝx

{
s
∣∣χ (s)

1

〉〈
χ

(s)
3

∣∣} + Ŝy
{
s
∣∣χ (s)

2

〉〈
χ

(s)
3

∣∣} + H.c.
]
,

(6)

HT1
O = FO

∑
s=±1

Ŝz
[
i
∣∣χ (s)

1

〉〈χ (s)
2 | + H.c.

]
. (7)

We notice the two distinct sectors exhibited in this Hamil-
tonian: an electron in a |χ (±)

i 〉 state may only transition into
another |χ (±)

i′ 〉 state. The first quantized notation |α〉〈β| is used
in place of second quantization ĉ†

α ĉβ for the sole reason of
making the would-be subscripts more readable.

B. T2-orbital Kondo model

Scattering of conduction electrons within the T2 represen-
tation via the impurity leads to an interaction term which
is remarkably identical in form to that of the T1 electrons.
Indeed, the T2 model was the focus of an earlier work by
some of the authors [28], wherein the scattering involving
j = 3

2 and 1
2 electrons gave rise to a non-Fermi liquid fixed

point. We present in Table I the correspondence of the basis
states of the T1 and T2 irreps that allows one to notice the
isomorphic form of their corresponding Kondo models. We

TABLE I. Correspondence between T1 and T2 basis states in
spin-orbit composite basis for the purposes of constructing the T2

interaction Hamiltonian.

T1 |χ (+)
1 〉 |χ (+)

2 〉 |χ (+)
3 〉 |χ (−)

1 〉 |χ (−)
2 〉 |χ (−)

3 〉
� � � � � �

T2 | 3
2 , 3

2 〉 | 3
2 , −1

2 〉 | 1
2 , −1

2 〉 | 3
2 , −3

2 〉 | 3
2 , 1

2 〉 | 1
2 , 1

2 〉

present the T2 interaction Hamiltonian (along with its three
coupling constants PQ1, PQ2, and PO) in Appendix D 2.

C. T1 ⊗ T2 Kondo model

Due to the multitude of available orbitals, we now con-
sider electrons transitioning between the T1 and T2 molecular
orbitals via interaction with the multipolar impurity. The sym-
metry constraints introduce five further coupling constants
which we call XQ1, XQ2, XQ3, XO1, and XO2. This brings
us to a grand total of 11 couplings. Each individual oper-
ator here brings an electron in a j = 1

2 or 3
2 state to one

which is in a (superposition of) j = 5
2 or 7

2 state(s), or vice
versa. This explicitly indicates that electrons are switching
between states in the T1 or T2 representations. In the spin-
orbit-coupled basis, we observe that electrons in any of the six
states {|χ (+)

i 〉, | 3
2 , −3

2 〉, | 3
2 , 1

2 〉, | 1
2 , 1

2 〉} never transition to any
of the other six states {|χ (−)

i 〉, | 3
2 , 3

2 〉, | 3
2 , −1

2 〉, | 1
2 , −1

2 〉}, where
we recall that i = 1, 2, 3. This segregation of the scattering
conduction electrons into two sectors becomes an important
ingredient in understanding the nature of this model’s fixed
points. The explicit forms of the T1 ⊗ T2 Kondo interactions
are enumerated in Eqs. (8)–(12):

HT1⊗T2
Q1 = XQ1

∑
s=±1

[
Ŝx

{∣∣∣∣3

2
,

s

2

〉〈
χ

(s)
2

∣∣ −
∣∣∣∣3

2
,

3s

2

〉〈
χ

(−s)
1

∣∣}

+ Ŝy

{∣∣∣∣3

2
,

s

2

〉〈
χ

(s)
1

∣∣ +
∣∣∣∣3

2
,

3s

2

〉〈
χ

(−s)
2

∣∣} + H.c.

]
, (8)

HT1⊗T2
Q2 = XQ2

∑
s=±1

[
Ŝx

{
−s

∣∣∣∣1

2
,

s

2

〉〈
χ

(s)
2

∣∣}

+ Ŝy

{
s

∣∣∣∣1

2
,

s

2

〉〈
χ

(s)
1

∣∣} + H.c.

]
, (9)

HT1⊗T2
Q3 = XQ3

∑
s=±1

[
Ŝx

{
s

∣∣∣∣3

2
,

s

2

〉
〈χ (s)

3 |
}

+ Ŝy

{
s

∣∣∣∣3

2
,

3s

2

〉
〈χ (s)

3 |
}

+ H.c.

]
, (10)

HT1⊗T2
O1 = XO1

∑
s=±1

Ŝz

[
−i

∣∣∣∣1

2
,

s

2

〉
〈χ (s)

3 | + H.c.

]
, (11)

HT1⊗T2
O2 = XO2

∑
s=±1

Ŝz

[
i

∣∣∣∣3

2
,

3s

2

〉〈
χ

(−s)
1

∣∣+i

∣∣∣∣3

2
,

s

2

〉〈
χ

(s)
2

∣∣+H.c.

]
.

(12)

IV. RENORMALIZATION GROUP (RG) ANALYSIS

In Wilsonian RG, the coupling constants explicitly de-
pend on the UV cutoff D, which physically corresponds to
the conduction electron bandwidth in the multipolar Kondo
problem [32]. In this work, we employ perturbative renor-
malization group theory whereby the perturbatively computed
low-energy scattering rate is taken to be independent of the
high-energy cutoff. This leads to the coupling constants ex-
plicitly depending on D, and “flowing” as D is lowered. We
present the Feynman diagrams responsible for the RG flow
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equations in Appendix E. Of interest in this work are the stable
fixed points of the RG equations, which correspond to dif-
ferent low-energy theories. Indeed, the slope (�) of the flow
equations about a fixed point is related to the scaling dimen-
sion (1 + �) of the leading irrelevant operator of that low-
energy theory, and as such determines the behavior of physical
observables such as resistivity and specific-heat capacity. For
clarity, we note that the conduction electron densities of states
for the different irreps are in principle different; however,
these densities of states are implicitly absorbed into the below
couplings to yield dimensionless coupling constants.

A. T1,2 representation model

Perturbatively expanding the interaction vertices (5)–
(7) to third order in coupling constant strength re-
sults in the following flow equations for the coupling
constants:

dFQ1

d log D
= −2FOFQ1 + 2FQ1

(
F 2

O + F 2
Q1 + F 2

Q2

)
, (13)

dFQ2

d log D
= FOFQ2 + 2FQ2

(
F 2

O + F 2
Q1 + F 2

Q2

)
, (14)

dFO

d log D
= −2F 2

Q1 + F 2
Q2 + 4FO

(
F 2

Q1 + F 2
Q2

)
. (15)

There are three kinds of fixed points for the flow equa-
tions (13)–(15). The first is the trivial Gaussian fixed
point, where G = (FQ1, FQ2, FO) = (0, 0, 0), which is unsta-
ble and is therefore not of our interest. The second is M =
(FQ1, FQ2, FO) = (± 1

2 , 0, 1
2 ), which corresponds to the well-

known two-channel Kondo model [29]. The last fixed point is
N = (FQ1, FQ2, FO) = (0,± 1

4 ,− 1
4 ). We note that both M and

N are nontrivial and stable.
Since the T2 Kondo Hamiltonians are related to the T1 ones

via Table I, the β functions are identical to Eqs. (13)–(15)
with the replacement of FQ1, FQ2, and FO by PQ1, PQ2, and
PO, respectively. The corresponding (identical) fixed points M
and N have been explored in detail in previous work [28,29],
where it was shown that M is a two-channel Kondo problem,
and N is a novel point. These conclusions hold for the T1

model as well.

B. T1 ⊗ T2 mixing models

With the incorporation of interirrep scattering, the corre-
sponding flow equations naturally become more complicated.
The fixed-point solution sets now vary in dimension, and
there exist numerous unstable manifolds of fixed points, but
importantly two stable manifolds. Each of the two stable
manifolds is parametrized by one parameter, with the precise
forms of the solutions given in Appendix G. From the scaling
dimension of the leading irrelevant operator of each of the
stable manifolds, we identify one solution manifold describ-
ing two-channel Kondo behaviors, just like the point M in the
individual T1 and T2 models. However, the other solution is
not a direct extension of the N solution from the individual
T1 and T2 cases, but rather yields completely new behavior.
Indeed the original N fixed point becomes unstable with these
“mixing” terms, which suggests that the T2 orbitals act as a

relevant perturbation to the T1 orbitals, to yield a new fixed
manifold L.

V. NATURE OF EMERGENT INTERMEDIATE
FIXED-POINT MANIFOLD L

The above perturbative RG analysis discovered a stable
fixed-point manifold (L) parametrized by a single variable.
Since the scaling behavior of the leading irrelevant operator
is identical at any point on the manifold, we focus on a
specially tuned point that provides clarity to the model. This
point, L∗, is such that all of the coupling constants, except
for PQ2, PO, XQ3, and XO1, are conveniently set to zero. At
this point we fix the ratios between the surviving coupling
constants to be those at the fixed point: PQ2 = PO = −XQ3 =
XO1 = −g/4, where when g → 1 we arrive at the perturba-
tive fixed point L∗. Examining this point provides remarkable
insight in the nature of the RG flow and the intermediate
fixed-point Hamiltonian.

A. Renormalization group flow about intermediate-
tuned fixed point

With the above parametrization, the fixed-point Kondo
Hamiltonian arrives at the much simplified form as presented

Ŝx

ŜzŜy

Ŝz

Ŝx

Ŝy

χ
(+)
3

3
2
, 1

2

3
2
, −3

2
1
2
, 1

2

(a)

Ŝx

ŜzŜy

Ŝz

Ŝx

Ŝy

χ
(−)
3

3
2
, −1

2

3
2
, 3

2
1
2
, −1

2

(b)

FIG. 1. The L Hamiltonian tuned to the simplified fixed point HL∗

contains four states in the s = ± channels. This figure visualizes the
states and degrees of freedom accessible in HL∗ . (a), (b) Correspond
to the s = + and s = − channels, respectively.
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in Eq. (16) and schematically in Fig. 1:

HL∗ = −g

4

∑
s=±1

[
Ŝx

{
s

∣∣∣∣3

2
,

3s

2

〉〈
1

2
,
−s

2

∣∣∣∣ − s

∣∣∣∣3

2
,

s

2

〉〈
χ

(s)
3

∣∣}

+ Ŝy

{
s

∣∣∣∣3

2
,
−s

2

〉〈
1

2
,
−s

2

∣∣∣∣ − s

∣∣∣∣3

2
,

3s

2

〉
〈χ (s)

3 |
}

+ H.c.

]

− g

4

∑
s=±1

Ŝz

{
i

∣∣∣∣3

2
,
−3s

2

〉〈
3

2
,

s

2

∣∣∣∣− i

∣∣∣∣1

2
,

s

2

〉〈
χ

(s)
3

∣∣+H.c.

}
,

(16)

with the corresponding β function

dg

d log D
= −g2

2
+ g3

2
. (17)

The scaling dimension (1 + �) of the leading irrelevant oper-
ator can now be easily extracted from the slope of β(g) at the
fixed point g∗ = 1, i.e., � = 1

2 .

B. Mapping of intermediate-fixed-point Hamiltonian
to four-channel Kondo model

The form of the Kondo Hamiltonian in Eq. (16) possesses
an elegant structure: the multipolar impurity couples to two
“copies” (or channels) of a four-dimensional manifold of
states. We denote the four-dimensional states of the two chan-
nels by (s = +): {| 3

2 , −3
2 〉, | 3

2 , 1
2 〉, | 1

2 , 1
2 〉, |χ (+)

3 〉}, and (s = −):
{−| 3

2 , 3
2 〉,−| 3

2 , −1
2 〉, | 1

2 , −1
2 〉, |χ (−)

3 〉}, where the minus sign in-
dicates a unitary transformation in the conduction basis. The
Kondo Hamiltonian can then be rewritten using the SU(4)
generalized Gell-Mann matrices

HL∗ = g

2

∑
s=±

4∑
α,β=1

[Ŝx(T 4 − T 11)αβ + Ŝy(T 6 + T 9)αβ

+ Ŝz(T 2 + T 14)αβ]c†
s,αcs,β , (18)

where ĉ†
s,α is a conduction creation operator of spin-orbital

state α in the corresponding channel s; α, β sum over the
two aforementioned four-state sectors, and we use the stan-
dard notation for the SU(4) generators T . Intriguingly, these
combinations of SU(4) generators satisfy a canonical su(2)

algebra, i.e., [T 4 − T 11, T 6 + T 9] = i(T 2 + T 14), etc. Per-
forming a unitary transformation that diagonalizes (T 2 + T 14)
in each channel s rewrites the above Eq. (18) to

HL∗ = g

2

∑
s=±

4∑
α,β=1

[
Ŝx(T 6 + T 9)αβ + Ŝy(T 7 + T 10)αβ

+ Ŝz

(
2√
3

T 8 +
√

2

3
T 15

)
αβ

]
ψ†

s,αψs,β , (19)

where �ψ = U †�c is the conduction electron operator in the di-
agonalized basis, and a canonical transformation has been per-
formed on the multipolar impurity pseudospin operator, i.e.,
Ŝx,y → −Ŝx,y. We list the diagonalized basis in Appendix H.

TABLE II. Scaling dimension 1 + � of leading irrelevant op-
erator of different fixed manifolds. The resistivity ρ and specific
heat C at low temperatures can be calculated by using ρ ∼ T � and
C ∼ T 2�. The � in the third column is from two-loop order in
perturbation theory, whereas the fourth column scaling is from CFT
[29,33,34].

Model Fixed manifold � (Perturbative) � (Exact)

T1 only Two-channel (M ) 1 1/2
Novel (N ) 1/4 1/5

T2 only Two-channel (M ) 1 1/2
Novel (N ) 1/4 1/5

T1 ⊗ T2 Two-channel (M ) 1 1/2
Four-channel (L) 1/2 1/3

Expanding Eq. (19) into its components yields

HL∗ = g

2

∑
s=±

[Ŝx(ψ̂†
s,1ψ̂s,4 + ψ̂

†
s,4ψ̂s,1 + ψ̂

†
s,2ψ̂s,3 + ψ̂

†
s,3ψ̂s,2)

+ Ŝy(−iψ̂†
s,1ψ̂s,4 + iψ̂†

s,4ψ̂s,1 − iψ̂†
s,2ψ̂s,3 + iψ̂†

s,3ψ̂s,2)

+ Ŝz(ψ̂†
s,1ψ̂s,1−ψ̂

†
s,4ψ̂s,4 + ψ̂

†
s,2ψ̂s,2 − ψ̂

†
s,3ψ̂s,3)] (20)

= g

2

4∑
k=1

2∑
α,β=1

[
Ŝx

τ x
αβ

2
+ Ŝy

τ
y
αβ

2
+ Ŝz

τ z
αβ

2

]
ψ̂

†
k,α

ψ̂k,β . (21)

From the first equality, it is apparent that for given channel
s = ±, there are two additional channels, which are spanned
by states {1, 4} and {2, 3}, respectively; α, β denote the two
spin-orbital entangled states in this additional channel, and
are expressed by the pseudospin operator �τ in the second
equality. Remarkably, by examining the second equality, the
Kondo model is now identical to that of a four-channel Kondo
model. Drawing upon the conformal field theory (CFT) so-
lution for the four-channel Kondo model [33,34], the exact
scaling dimension of the leading irrelevant operator is related
to �CFT = 2

k+2 = 1
3 , as k = 4. Indeed, the obtained perturba-

tive scaling dimension is consistent with taking the large-k
limit and setting k → 4 in �CFT. We summarize all fixed
points in Table II. We note that though the Kondo model is
identical to that of a four-channel Kondo model, the physi-
cal content of the conduction electron “spin” and “channel”
are entangled combinations of conduction spin and orbital
degrees of freedom, unlike the ordinary four-channel Kondo
model where it is purely the spin of the conduction electron
participating in the quantum scattering events.

VI. DISCUSSIONS

In this work, we investigated possible non-Fermi liquid
states in multipolar Kondo models, where the conduction
electrons have two different orbital-symmetry components:
p wave (T2 representation) and f wave(T1 representation).
The model is chosen such that when only one of the orbital-
symmetry components is present, the nature of the emergent
non-Fermi liquid state is exactly the same. For example, these
models separately support the non-Fermi liquid fixed point
N described in the main text. However, when both compo-
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nents are present, the mixing between two orbital-symmetry
channels via the Kondo scattering processes is allowed. It is
shown that, due to the different orbital symmetries of two
components, quantum fluctuations in the mixing channels pro-
mote a completely different non-Fermi liquid fixed manifold,
denoted L in the main text, in the renormalization group flow.
We identified this fixed manifold L as the four-channel Kondo
non-Fermi liquid state.

In the case of multipolar Kondo problems, the type of
multipolar moment and symmetries of available conduction
electrons depends only on the local symmetry. In many crys-
tal symmetries, such as octahedral or tetragonal, there are
no irreducible representations with dimension greater than 3.
We have shown here that nontrivial behavior can arise from
three-dimensional irreps, and further nontrivialities can arise
by coupling two three-dimensional irreps together. In apparent
contrast, for a single two-dimensional irrep, e.g., E -symmetry
orbitals, the fixed point will often produce two-channel Kondo
behavior. This may appear to suggest that no interesting states
are present for lower-dimensional irreps. What we have shown
is that this is not necessarily the case; it may be that crystals
which have numerous two-dimensional irreducible represen-
tations can still support a variety of non-Fermi liquid fixed
points via the combination of different two-dimensional irreps
for conduction electrons.

Future directions for the work would be to investigate non-
Fermi liquid fixed points in other kinds of multipolar quantum
impurity systems. The nature of the impurity, for example, the
number of electrons on the impurity or the moments supported
by the surrounding crystal field, as well as the symmetries of
the conduction electron orbitals are all variables for further
study. Another direction would be a pursuit of the multipolar
Kondo lattice problem. Although a number of experiments
have established the existence of non-Fermi liquid behavior in
the lattice setting [35], developing a thorough understanding
from a theoretical view is still an active pursuit of the commu-
nity [36–39]. Examining the nature of our model in a lattice
setting would be an intriguing direction for future work. This
work places the first piece of the puzzle in the classification of
non-Fermi liquid fixed points in multipolar quantum impurity
systems. This classification may provide a unified framework
for an interesting subset of the strange metal states observed in
many modern theoretical and experimental works, leading us
towards a general understanding of non-Fermi liquid behavior.
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APPENDIX A: MULTIPOLAR IMPURITY

The impurity consists of two electrons in the 4 f configu-
ration. By Hund’s rules, the two electrons are (�1 = 3, m1 =
3, s1 =↓) and (�2 = 3, m2 = 2, s2 =↓), which lead to a J = 4
composite spin system as the ground state. In the presence
of the Td crystal field, this J = 4 representation decomposes
into the following irreducible representations �J=4 = A1g ⊕

Eg ⊕ T1g ⊕ T2g, where we have used the octahedral group no-
tation for these irreps. The two basis functions for Eg which
have J = 4 are {x4 − y4, 2z4 − x4 − y4}. Expressing these in
terms of spherical harmonics, we find that the two degenerate
ground states are

|x4 − y4〉 = ∣∣�(1)
3

〉 = 1

2

√
7

6
|4〉 − 1

2

√
5

3
|0〉 + 1

2

√
7

6
|−4〉,

(A1)

|2z4 − x4 − y4〉 = ∣∣�(2)
3

〉 = 1√
2
|2〉 + 1√

2
|−2〉, (A2)

where |m〉 = Y m
4 is the � = 4 spherical harmonic with z com-

ponent of angular momentum m, and |�(1,2)
3 〉 are mutually

orthogonal. We therefore define two new states

|↑〉 = 1√
2

(∣∣�(1)
3

〉 + i
∣∣�(2)

3

〉)
, (A3)

|↓〉 = 1√
2

(
i
∣∣�(1)

3

〉 + ∣∣�(2)
3

〉)
, (A4)

which, by a quick calculation, are seen to be orthogonal. To
determine the supported multipolar moments by these elec-
tronic wave functions, we sandwich all the possible Stevens
operators between |↑〉 and |↓〉. We determine nonvanishing
matrix elements for three Stevens operators in this 2 × 2 non-
Kramers doublet space:

Ô20 = 1

2

(
3Ĵ2

z − Ĵ
2)

, (A5)

Ô22 =
√

3

2

(
Ĵ2
+ + Ĵ2

−
)
, (A6)

T̂xyz =
√

15

6
Ĵx ĴyĴz. (A7)

We clarify that the overline includes an implicit division by
3! = 6, to account for the number of permutations. Addition-
ally, we clarify that the Ĵx, Ĵy, Ĵz operators are J = 4 spin
operators. The resulting 2 × 2 matrix expressions are

Ô22 = −4σ x, Ô20 = −4σ y, T̂xyz = 3
√

5σ z, (A8)

where σ x, σ y, σ z are the ordinary Pauli matrices, satisfying
[ σ i

2 , σ j

2 ] = iεi jk
σ k

2 . To make these Stevens operators, projected
into the space of the two degenerate ground states (i.e., into
pseudospin operators) we simply divide by the appropriate
coefficients to find that

Ŝx = 1

2

(
− Ô22

4

)
, Ŝy = 1

2

(
− Ô20

4

)
, Ŝz = 1

2

( T̂xyz

3
√

5

)
.

(A9)
We note that in the previous works [28,29], there was a minor
typographical error in the stated definition of the pseudospin
operators [missing the above 1

2 factor of Eq. (A9)]; neverthe-
less, the results from those works [28,29] employ the correct
definition of the pseudospin operators given in Eq. (A9) (i.e.,
with the factor of 1

2 ).

APPENDIX B: ACTION OF TETRAHEDRAL GROUP

In order to test which terms in the Hamiltonian are allowed,
we need to know how candidate terms transform under action
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TABLE III. Symmetry transformations of various objects under
two generators of the tetrahedral group.

Object T C31 S4z

x x z y
y y x −x
z z y −z

Ŝx Ŝx − 1
2 Ŝx +

√
3

2 Ŝy −Ŝx

Ŝy Ŝy −
√

3
2 Ŝx − 1

2 Ŝy Ŝy

Ŝz −Ŝz Ŝz −Ŝz

x(y2 − z2) x(y2 − z2) z(x2 − y2) −y(z2 − x2)
y(z2 − x2) y(z2 − x2) x(y2 − z2) x(y2 − z2)
z(x2 − y2) z(x2 − y2) y(z2 − x2) z(x2 − y2)
σ x −σ x σ z −σ y

σ y −σ y σ x σ x

σ z −σ z σ y σ z

of the tetrahedral group Td , and under time reversal T . The
most economical way to check all transformations is pick two
generators of Td , which are C31 and S4z.

The 11 Kondo Hamiltonians are constructed to be the most
general ones which respect time-reversal symmetry and the
tetrahedral symmetry (see Table III).

APPENDIX C: CUBIC BASIS TO COMPOSITE SPIN BASIS

In order to express the Hamiltonian with respect to the
composite spin basis, we first express the cubic harmonics
in terms of spherical harmonics. The three T1 and three T2

orbitals are expressed in the following linear combinations:

|x(y2 − z2)〉 =
√

5

4
(|3, 1〉 − |3,−1〉) +

√
3

4
(|3, 3〉−|3,−3〉),

(C1)

|y(z2 − x2)〉 = i
√

5

4
(|3, 1〉 + |3,−1〉)

− i
√

3

4
(|3, 3〉 + |3,−3〉), (C2)

|z(x2 − y2)〉 =
√

2

2
(|3, 2〉 + |3,−2〉), (C3)

|x〉 =
√

2

2
(−|1, 1〉 + |1,−1〉), (C4)

|y〉 = i
√

2

2
(|1, 1〉 + |1,−1〉), (C5)

|z〉 = |1, 0〉. (C6)

After doing this, we look at the total electronic state
|orbital〉 ⊗ |spin〉 and use the Clebsch-Gordan coefficients
to rewrite them in terms of the composite spin basis.
The Clebsch-Gordan transformation is enumerated in the

following equations:

|3, m〉
∣∣∣∣±1

2

〉
=

√
4 ± m

7

∣∣∣∣7

2
, m ± 1

2

〉
∓

√
3 ∓ m

7

∣∣∣∣5

2
, m ± 1

2

〉
,

(C7)

|1, m〉
∣∣∣∣±1

2

〉
=

√
2 ± m

3

∣∣∣∣3

2
, m ± 1

2

〉
∓

√
1 ∓ m

3

∣∣∣∣1

2
, m ± 1

2

〉
.

(C8)

APPENDIX D: MULTIPOLAR KONDO MODELS

To construct the multipolar Kondo interaction, we first start
by writing the Hamiltonian in terms of possible transitions
between cubic harmonic states corresponding to the basis
functions of T1 and T2. Although this is very simple to do
symmetry analysis on, the physical structure of this is not very
illuminating. To uncover the physics of the Hamiltonian, it is
advantageous to first take the cubic harmonics and write them
in terms of spherical harmonics, and then take the resulting
composite spin system and use the Clebsch-Gordan coeffi-
cients to express in terms of | j′, mj′ 〉〈 j, mj | operators using
the procedure in Appendix C.

1. T1-orbital Kondo model

As mentioned in the main text, transforming from cubic
basis to SO-coupled basis preserves the number of conduction
electrons, i.e., takes 3 × 2 = 6 conduction electron states for
three orbital states and a spin-up and -down state. This, how-
ever, appears to artificially introduce states to make (2 × 5

2 +
1) + (2 × 7

2 + 1) = 14 states. This is in fact not the case be-
cause only certain linear combinations of the composite-spin
kets appear in the Hamiltonian. We label these special linear
combinations [Eqs. (2)–(4) in the main text] by |χ (±)

i 〉, where
i = 1, 2, 3, and the (±) superscript denotes two time-reversal
related pairs of these special linear combinations. It should
also be noted that this transformation is unitary. This brings
us back to the six possible states, which one naturally expects.

To write the Hamiltonian for the T1 orbitals, we find the
symmetry-allowed terms according to Td symmetry and time-
reversal symmetry. We use the standard 3 × 3 Gell-Mann
matrices λk to express linear combinations of conduction or-
bitals. The use of these matrices simultaneously guarantees
self-adjointness. The conduction electron’s spin is described
with the standard σ Pauli matrices. We express the symmetry-
allowed Hamiltonians in Eqs. (D1)–(D3) in terms of three
coupling constants KQ1, KQ2, and KO:

HQ1 = KQ1ĉ†
0aα

[
σ z

αβλ2
abŜy + σ

y
αβλ5

ab

(√
3

2
Ŝx + 1

2
Ŝy

)

+ σ x
αβλ7

ab

(√
3

2
Ŝx − 1

2
Ŝy

)]
ĉ0bβ, (D1)

HQ2 = KQ2ĉ†
0aα

(
σ 0

αβλ3
abŜx − σ 0

αβλ8
abŜy

)
ĉ0bβ, (D2)

HO = KOĉ†
0aα

(
σ x

αβλ6
abŜz + σ

y
αβλ4

abŜz + σ z
αβλ1

abŜz
)
ĉ0bβ.

(D3)
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The parameters a, b run over orbital wave func-
tions with T1 symmetry. a = 1, 2, 3 corresponds to
|x(y2 − z2)〉, |y(z2 − x2)〉, and |z(x2 − y2)〉, respectively.
The parameters α, β run over the conduction electron’s spin,
either |↑〉 or |↓〉 for α = 1, 2, respectively. The subscript 0
denotes that these creation and annihilation operators are at
the origin (impurity site).

Note that these are not the same couplings as listed in
Sec. III A. After the change of basis, there is a more natural
way to group the operators, which calls for a redefinition of
the constants. The relationship between the two sets is FQ1 =
KQ1 − KQ2√

3
, FQ2 = KQ1√

2
+

√
2
3 KQ2, and FO = √

3KO. These F
constants also greatly simplify the forms of the β functions.

2. T2-orbital Kondo model

The T2 model, which is isomorphic to the T1-orbital model,
has been derived and studied in previous work [28]. The
version after change of basis was used in another previous
work [29], and this form is quoted here:

HT2
Q1 = PQ1

[
Ŝx

{∣∣∣∣3

2
,

1

2

〉〈
3

2
,
−3

2

∣∣∣∣ +
∣∣∣∣3

2
,

3

2

〉〈
3

2
,
−1

2

∣∣∣∣ + H.c.

}

+ Ŝy

{∣∣∣∣3

2
,
−3

2

〉〈
3

2
,
−3

2

∣∣∣∣ +
∣∣∣∣3

2
,

3

2

〉〈
3

2
,

3

2

∣∣∣∣
−

∣∣∣∣3

2
,

1

2

〉〈
3

2
,

1

2

∣∣∣∣ −
∣∣∣∣3

2
,
−1

2

〉〈
3

2
,
−1

2

∣∣∣∣
}]

, (D4)

HT2
Q2 = PQ2

[
Ŝx

{∣∣∣∣3

2
,

3

2

〉〈
1

2
,
−1

2

∣∣∣∣ −
∣∣∣∣3

2
,
−3

2

〉〈
1

2
,

1

2

∣∣∣∣
}

+ Ŝy

{∣∣∣∣3

2
,
−1

2

〉〈
1

2
,
−1

2

∣∣∣∣ −
∣∣∣∣3

2
,

1

2

〉〈
1

2
,

1

2

∣∣∣∣
}

+ H.c.

]
,

(D5)

HT2
O = POŜz

[
i

∣∣∣∣3

2
,
−3

2

〉〈
3

2
,

1

2

∣∣∣∣ + i

∣∣∣∣3

2
,

3

2

〉〈
3

2
,
−1

2

∣∣∣∣ + H.c.

]
.

(D6)

3. T1 ⊗ T2-orbital Kondo model

We now use all 12 states to construct possible transitions
between states in the different irreducible representations.
This leads to the interaction terms in the main text: Eqs. (8)–
(12).

APPENDIX E: MANY-BODY PERTURBATION THEORY

When doing perturbation theory, we need to expand n-
point Green functions, which requires suitable commutation
relations on the operators. Since spin operators satisfy a su(2)
algebra instead of a canonical anticommutation one, we need
to introduce Abrikosov pseudofermions via the relation in
(E1), with σ i the ith Pauli matrix

Ŝi = 1

2

∑
μ,μ′=↑,↓

f̂ †
μ′σ

i
μ′μ f̂μ. (E1)

This artificially allows the pseudofermion to change its
occupation number, instead of simply changing its state while

Γirr, conn
=

+

+

+

+

FIG. 2. Irreducible, connected Feynman diagrams to two-loop
order.

remaining at occupation 1. To remedy this, we apply the
Popov-Fedotov trick by introducing a complex chemical po-
tential λ = iπ

2β
for the pseudofermions, which exactly cancels

the empty and doubly occupied states from the partition func-
tion. In order to calculate the effective vertices at third-order
perturbation theory, we sum the two-particle irreducible con-
nected Feynman diagrams �irr, conn (see Fig. 2). Note that
two-particle reducible connected diagrams technically enter
the perturbation series, but they only impact the kinetic term,
not the vertices.

In the diagrams, the solid lines are conduction electron
free propagators Gc, and the dashed lines are pseudofermion
propagators Gf. Their mathematical forms are given in (E2),
where ξk = εk − μ is the dispersion relation measured from
the electron chemical potential, and λ is the complex chemical
potential for pseudofermions:

Gc(k, iω) = 1

iω − ξk
, Gf(iω) = 1

iω − λ
. (E2)

APPENDIX F: β FUNCTIONS

When we consider all 11 coupling constants, we end up
with a complicated set of flow equations. Here, D is the UV
cutoff, and we have absorbed the density of states into the
coupling constants. For simplicity, we define two functions
which appear repeatedly in the flow equations:

WQ = 2
(
F 2

O + F 2
Q1 + F 2

Q2 + P2
O + P2

Q1 + P2
Q2

+ X 2
O1 + 2X 2

O2 + 2X 2
Q1 + X 2

Q2 + X 2
Q3

)
, (F1)

WO = 4
(
F 2

Q1 + F 2
Q2 + P2

Q1 + P2
Q2 + 2X 2

Q1 + X 2
Q2 + X 2

Q3

)
,

(F2)

013189-8



RISE AND FALL OF NON-FERMI LIQUID FIXED … PHYSICAL REVIEW RESEARCH 3, 013189 (2021)

dFQ1

d log D
= −2FOFQ1 − 2XO2XQ1 + FQ1WQ, (F3)

dFQ2

d log D
= FOFQ2 + XO1XQ2 + XO2XQ3 + FQ2WQ, (F4)

dFO

d log D
= −2F 2

Q1 + F 2
Q2 − 2X 2

Q1 + X 2
Q2 + FOWO, (F5)

dPQ1

d log D
= −2POPQ1 + 2XO2XQ1 + PQ1WQ, (F6)

dPQ2

d log D
= POPQ2 − XO1XQ3 − XO2XQ2 + PQ2WQ, (F7)

dPO

d log D
= −2P2

Q1 + P2
Q2 − 2X 2

Q1 + X 2
Q3 + POWO, (F8)

dXQ1

d log D
= −FOXQ1 − FQ1XO2 − POXQ1 + PQ1XO2 + XQ1WQ,

(F9)

dXQ2

d log D
= FOXQ2 + FQ2XO1 − PQ2XO2 + XQ2WQ, (F10)

dXQ3

d log D
= FQ2XO2 + POXQ3 − PQ2XO1 + XQ3WQ, (F11)

dXO1

d log D
= 2FQ2XQ2 − 2PQ2XQ3 + XO1WO, (F12)

dXO2

d log D
= −2FQ1XQ1 + FQ2XQ3 + 2PQ1XQ1

− PQ2XQ2 + XO2WO. (F13)

APPENDIX G: FIXED POINTS

We find two stable fixed manifolds to the flow equations.
First, the two-channel fixed manifold M has two distinct
branches, whose equations are

XQ2 = 0, XQ3 = 0, XO1 = 0, FQ2 = 0,

PQ2 = 0, FO ∈
[

0,
1

2

]
, PO = 1

2
− FO,

XQ1 = ±√
POFO, XO2 = ∓√

POFO,

FQ1 = −FO, PQ1 = PO, (G1)

and there is another branch with

XQ2 = 0, XQ3 = 0, XO1 = 0, FQ2 = 0,

PQ2 = 0, FO ∈
[

0,
1

2

]
, PO = 1

2
− FO,

XQ1 = ±√
POFO, XO2 = ∓√

POFO,

FQ1 = FO, PQ1 = −PO. (G2)

Second, the fixed manifold L again has two distinct
branches, whose equations are

XQ1 = 0, XO1 = 1

4
, FQ1 = 0, PQ1 = 0,

FO ∈
[
−1

4
, 0

]
, PO = −1

4
− FO, XO2 = −√

FOPO,

XQ3 = ±PO − FO − 2
√

POFO − 1/4

2
√

1 + 8
√

FOPO

,

XQ2 = ±PO − FO + 2
√

POFO + 1/4

2
√

1 + 8
√

FOPO

,

FQ2 = ± FO − √
FOPO√

1 + 8
√

FOPO

, PQ2 = ± PO − √
FOPO√

1 + 8
√

FOPO

, (G3)

and there is another branch with

XQ1 = 0, XO1 = −1

4
, FQ1 = 0, PQ1 = 0,

FO ∈
[
−1

4
, 0

]
, PO = −1

4
− FO, XO2 = √

FOPO,

XQ3 = ±PO − FO − 2
√

POFO − 1/4

2
√

1 + 8
√

FOPO

,

XQ2 = ±PO − FO + 2
√

POFO + 1/4

2
√

1 + 8
√

FOPO

,

FQ2 = ∓ FO − √
POFO√

1 + 8
√

FOPO

, PQ2 = ∓ PO − √
POFO√

1 + 8
√

POFO

. (G4)

We note that the scaling behavior � is the same at any point
on a particular manifold.

APPENDIX H: UNITARY TRANSFORMATION MAPPING
KONDO MODEL TO FOUR-CHANNEL KONDO MODEL

As described in the main text, a series of unitary trans-
formations are performed that map the discovered fixed-point
manifold (L) to the four-channel Kondo model. For clarity, the
unitary transformation that diagonalizes (T 2 + T 14) in each
channel s yields eigenstates

ψ̂s,1 = 1√
2

(iĉs,1 + ĉs,2), (H1)

ψ̂s,2 = 1√
2

(iĉs,3 + ĉs,4), (H2)

ψ̂s,3 = 1√
2

(−iĉs,1 + ĉs,2), (H3)

ψ̂s,4 = 1√
2

(−iĉs,3 + ĉs,4). (H4)

APPENDIX I: STRONG COUPLING ANALYSIS

In order to establish the validity and existence of the
intermediate fixed point, it is important to verify that the
corresponding strong coupling limit is unstable. In the strong
coupling limit, we work with the Hamiltonian at the fixed
point in a single coupling constant (16). Taking g → ∞ elim-
inates the kinetic energy term to form a single-site system.
This single-site problem can be solved exactly to yield a
fourfold-degenerate ground state. The scattering within the
fourfold-degenerate manifold destabilizes the strong coupling
fixed point which requires flow back into the perturbative
window [40].
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These four states, in Eqs. (I1)–(I4), are found for the
choice PQ2 = PO = −XQ3 = XO1 = −1/4. There are alterna-
tive choices which will lead to the same degeneracy and
eigenvalues, but the eigenvectors will differ slightly. Here,
every operator is on the impurity site, and the |↑〉, |↓〉 kets
correspond to the state of the pseudospin. This is not to be
confused with the notation in Appendix C, where the tensor
product was between the two different degrees of freedom for
the conduction electron; here, the tensor product is between
the conduction electron state in the composite spin-orbit-
coupled basis and the pseudospin:

|ψ1〉 = 1

2

(
i

∣∣∣∣1

2
,

1

2

〉
− ∣∣χ (+)

3

〉) ⊗ |↑〉

+ 1

2

(
−i

∣∣∣∣3

2
,
−3

2

〉
+

∣∣∣∣3

2
,

1

2

〉)
⊗ |↓〉, (I1)

|ψ2〉 = 1

2

(
−i

∣∣∣∣3

2
,
−3

2

〉
−

∣∣∣∣3

2
,

1

2

〉)
⊗ |↑〉

+ 1

2

(
i

∣∣∣∣1

2
,

1

2

〉
+ ∣∣χ (+)

3

〉) ⊗ |↓〉, (I2)

|ψ3〉 = 1

2

(∣∣∣∣1

2
,
−1

2

〉
+ i

∣∣χ (−)
3

〉) ⊗ |↑〉

+ 1

2

(
i

∣∣∣∣3

2
,
−1

2

〉
+

∣∣∣∣3

2
,

3

2

〉)
⊗ |↓〉, (I3)

|ψ4〉 = 1

2

(∣∣∣∣3

2
,
−1

2

〉
+ i

∣∣∣∣3

2
,

3

2

〉)
⊗ |↓〉

+ 1

2

(
i

∣∣∣∣1

2
,
−1

2

〉
+ ∣∣χ (−)

3

〉) ⊗ |↓〉. (I4)

The next step in the strong coupling analysis is to consider
coupling of the impurity to the conduction electrons. The
impurity is at site 0, and the two additional sites to which
conduction electrons can hop are at ẑ and −ẑ. We perform
standard Slater-Koster tight binding for this kinetic term. We
note that not every transition is possible between the six pos-
sible orbitals (three T1 orbitals and three T2 orbitals) on each
site, and some hopping weights must be equal by symmetry.
The Slater-Koster analysis yields the 6 × 6 hopping matrix T .
The Hamiltonian for the system is thus

Ĥ = −
∑
abσ

Tab(ĉ†
ẑ,a,σ ĉ0b,σ + ĉ†

−ẑ,a,σ ĉ0,b,σ + H.c.) + ĤL∗ ,

(I5)
where HL∗ is same interaction Hamiltonian from Eq. (16). The
fourfold degeneracy of the single-site problem is split into
two twofold-degenerate doublets when this hopping is added.
The twofold degeneracy of the new ground state confirms the
instability of the strong coupling limit, and that the renormal-
ization group flow returns back to the discovered intermediate
fixed point.
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