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Higher-rank tensor non-Abelian field theory: Higher-moment or subdimensional polynomial global
symmetry, algebraic variety, Noether’s theorem, and gauging
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With a view toward a fracton theory in condensed matter, we introduce a higher-moment polynomial degree-p
global symmetry, acting on complex scalar/vector/tensor fields (e.g., ordinary or vector global symmetry for
p = 0 and p = 1 respectively). We relate this higher-moment global symmetry of n-dimensional space, to a lower
degree [either ordinary or higher-moment, e.g., degree-(p-�)] subdimensional or subsystem global symmetry on
layers of (n − �)-submanifolds. These submanifolds are algebraic affine varieties (i.e., solutions of polynomials).
The structure of layers of submanifolds as subvarieties can be studied via mathematical tools of embedding,
foliation, and algebraic geometry. We also generalize Noether’s theorem for this higher-moment polynomial
global symmetry. We can promote the higher-moment global symmetry to a local symmetry and derive a new
family of higher-rank-m symmetric tensor gauge theory by gauging, with m = p + 1. By further gauging a
discrete ZC

2 charge conjugation (particle-hole) symmetry, we derive a general class of rank-m tensor non-Abelian
gauge field theory (the gauge structure is noncommutative thus non-Abelian but not an ordinary group): a hybrid
class of (symmetric or nonsymmetric) higher-rank-m tensor gauge theory and antisymmetric tensor topological
field theory, generalizing Wang and Xu [Ann. Phys. 424, 168370 (2021)], interplaying between gapless and
gapped sectors.
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I. INTRODUCTION

Fracton orders [1,2] are the new kinds of orders in many-
body quantum matter systems. Fracton orders are defined
physically by exhibiting some of (if not all of) the following
properties:1

(1) For gapped fractons, their ground state degeneracy
(GSD) is similar to topological order [5] with GSD depending
on the topology of base space or spatial manifolds. Moreover,
they have extensive GSD depending on the system size and
the details of lattice sites and cutoffs [6,7].

(2) Fracton orders can also have excitations, either being
immobile in isolation or being mobile moving along in lower
dimensions or subdimensions [8,9].
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1We focus on the limited references essential to the construction of
our theories. We apologize for potentially leaving out some other
important works from the References. For more references in the
condensed matter literature, readers can find them in the reviews
[1,2]. For a short historical account of gauge theory and earlier
references, starting from the basics of Maxwell electromagnetism
and the Weyl gauge principle [3], readers can find these in Ref. [4].

(3) Fracton orders are associated with the long-range en-
tangled phases of quantum matter, obtainable by dynamically
gauging the subsystem global symmetries or subdimensional
global symmetries of the full quantum systems [9–11] (see
also earlier work [12,13] before the fracton concept is intro-
duced).

Motivated by the fracton order in condensed matter, re-
cently two of the present authors introduced a hybrid family
of tensor gauge field theories [4] mixing between the antisym-
metric tensor gauge fields and symmetric higher-rank tensor
gauge fields in a delicate way. Their purpose was to formulate
the first toy model of a gauge theory with a non-Abelian
continuous gauge structure for fracton order in condensed
matter (see reviews [1,2]). The toy model [4] suggested an
interplay between the following:

(1) The gapped antisymmetric tensor gauge topological
quantum field theory (TQFT) with topological order and

(2) The gapless symmetric higher-rank tensor gauge the-
ory with gapless higher-spin U(1)-gauge photon-like modes.

The higher-rank tensor gauge theory in Ref. [4] combines
the features of the following:

(1) Antisymmetric tensor topological field theory (TQFT):
We adopt a continuum TQFT formulation of group-
cohomology topological gauge theory (known as Dijkgraaf-
Witten theory or twisted gauge theory [14]) by antisymmetric
tensor differential form gauge fields (i.e., Kalb-Ramond fields
[15]). In Ref. [4] and here, we mainly use a particular
continuum TQFT formalism setup and notations presented
in Refs. [16–19] that can capture all finite Abelian unitary
gauge group and some non-Abelian unitary gauge group of
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Dijkgraaf-Witten theory with the group-cohomology cocycle
twist. (See also other related general formulations for non-
dynamical gauge background theories [20,21] and references
therein.)

(2) Symmetric tensor field theory: We will apply only a
specific class of symmetric higher-rank tensor gauge theories
or higher-spin theories studied in the condensed matter litera-
ture, e.g., Refs. [22–27], largely inspired by Pretko’s work.

Reference [4] finds a class of symmetric higher-rank tensor
gauge field theory (from Model 2 of the symmetric tensor field
theory) by gauging a higher-moment Abelian vector global
symmetry U(1)x(n)

2 and an ordinary 0-form global symmetry
known as a ZC

2 -charge conjugation (particle-hole) symmetry.
The higher-moment symmetry U(1)x(n) and the ZC

2 -charge
conjugation symmetry do not commute. As we shall elaborate
below, they form a semidirect product (denoted �) structure.
Reference [4] dynamically gauges the ZC

2 -charge conjugation
symmetry to gain a non-Abelian gauge structure:3[

ZC
2 �

(
U(1)x(n)

)]
. (1.1)

This gauge structure is the first example in the fracton order
literature satisfying the properties below:4

(1) Compact
(2) Continuous5

2Here we denote a vector global symmetry along n dimensions
as U(1)x(n) . The U(1)x(d+1) means the vector global symmetry in
a d + 1-dimensional spacetime, and the U(1)x(d ) means the vector
global symmetry in a d-dimensional space. The x means being set
of Cartesian coordinates for the spacetime. Throughout this article,
we focus on only a flat Euclidean or Minkowski spacetime (Rd+1 or
R1,d ) with Cartesian coordinates. The Cartesian coordinates can be
easily realized in square, rectangular, or cubic lattices in condensed
matter systems. On the other hand, it is difficult to imagine how to
rewrite the higher-moment global symmetry in curved coordinates
such as spherical or cylindrical coordinates, and how to realize them
in a lattice system with energy cutoffs in condensed matter. The
d + 1d means the d + 1 spacetime dimensions, with d spatial and
one time dimensions. The DD means the D spacetime dimensions.
The D̄D means the D̄ space dimensions. We denote by d + 1D the d
spatial and one time dimensions.

3This ZC
2 � (U(1)x(n) ) is not quite an ordinary group structure.

However, because the polynomial symmetry operation U(1)x(n) does
not commute with the unitary ZC

2 symmetry, we still stick to the stan-
dard convention to call the noncommutative structure a non-Abelian
structure. We also call the noncommutative gauge structure (although
not a gauge group) a non-Abelian gauge structure. We will later dy-
namically gauge the ZC

2 and the polynomial global symmetry U(1)x(n)

all together. We emphasize that the discrete charge conjugation ZC
2 is

a unitary global symmetry. This ZC
2 is distinct from another discrete

symmetry: antiunitary time-reversal symmetry (e.g., ZT
2 ).

4We denote the global symmetry in brackets [...] to imply that it is
dynamically gauged.

5We remind the readers that there are alternative means to construct
non-Abelian fracton orders with discrete gauge structures on a lattice
[28–32] (e.g., discrete gauge theories) instead of continuous gauge
structures. It is possible to Higgs down our model with continuous
gauge structures to obtain higher-rank non-Abelian tensor field theo-
ries with non-Abelian discrete gauge structures [33].

(3) Non-Abelian (gauging ZC
2 ) or Abelian (not gauging

ZC
2 ), with two disconnected pieces in the gauge structure due

to ZC
2 .

The U(1)x(n) actually means there are n-independent vec-
tor directions xi with i = 1, . . . , n. It is easier to understand
U(1)x(n) before gauging it. Thus, let us first recover the gauge
structure Eq. (1.1) from the ungauged global symmetry:

ZC
2 �

(
U(1) × U(1)x(n)

)
. (1.2)

We can perform an ordinary 0-form global symmetry U(1)
and a vector global symmetry U(1)x(n) transformation by
transforming a complex matter field � ∈ C (following the
pioneering work of Pretko [4,27])

� → eiQ(x)� = ei(�ixi+�0 )�. (1.3)

(1) When the �i (as a constant, independent of space-
time coordinates) is nonzero, we have a degree-1 polynomial
Q(x) = (�ixi + �0) of x which �ixi specifies the U(1)x(n)

vector global symmetry, while �0 specifies the U(1) ordinary
global symmetry. Since there are n independent �ixi, we
have indeed several copies of commuting U(1)x j -vector global
symmetry:

U(1)x(n) := U(1)x1 × U(1)x2

× · · · × U(1)xn =
n∏

j=1

U(1)x j . (1.4)

We name this global symmetry a degree-1 global symmetry,
due to the degree-1 polynomial Q(x) = (�ixi + �0).

(2) When the �i is zero, we have a degree-0 polynomial
(�0) independent of x. We name this global symmetry a
degree-0 global symmetry due to the degree-0 polynomial
Q(x) = �0.

If we gauge only the vector global symmetry U(1)x(n) but
not the ordinary symmetry U(1), we gain the [U(1)x(n) ] gauge
structure, while the remained U(1) is neither gauged nor
global symmetry anymore. This particular way of gauging
[U(1)x(n) ] introduces the compact symmetric rank-2 tensor
gauge field Ai j . Reference [4] dynamically gauges the discrete
ZC

2 symmetry which flips

Ai j → −Ai j

to gain the non-Abelian gauge structure.
To help the readers understanding the non-Abelian gauge

structure [ZC
2 � (U(1)x(n) )] in Eq. (1.1), here we show the

noncommutative symmetry operations between the U(1)x(n)

vector global symmetry transformation (Fig. 1) and the ZC
2

charge conjugation (particle-hole) symmetry transformation
on a complex bosonic scalar field �(x) ∈ C in cartoon figures;
see Fig. 2.

In this work, we follow the setup in Ref. [4] and proceed to
develop other families of theories. We consider the following
generalization:

(1) Higher-moment global symmetry for a complex scalar
charge field � ∈ C: A general polynomial degree-(m − 1)

013185-2
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x

y

x = 0
FIG. 1. The vector global symmetry Eq. (1.3) belongs to a

generalized class of higher-moment symmetry Eq. (1.5). For demon-
stration, here we show various �(x) fields sitting on discretized
lattice points on the (x, y) plane. The vector U(1) global symmetry
transformation acts on the complex charged matter �(x) ∈ C (the
rotor fields) as Eq. (1.3): � → eiQ(x)� := ei�·x�. The angle � · x
depends on a reference point (say, x = 0) and the distance x away
from the reference point. The clockwise angle (drawn in the gray
area) away from the 12 o’clock direction implies the complex phase
of �(x) ∈ C.

global symmetry6 on � allows a symmetry transformation

� → eiQ(x)� := ei(�i1 ,...,i m−1 xi1 ...xi m−1 +···+�i, j xix j+�ixi+�0 )�.

(1.5)

Here all �... in Eq. (1.5) are constants independent of space-
time coordinates. When we gauge such a higher-moment
polynomial degree-(m − 1) global symmetry, we will intro-
duce a rank-m compact symmetric tensor gauge field Ai1,...,i m .
This result is done in Sec. II.

Let us generalize the notation of the symmetry in Eq. (1.4)
into

U(1)xM
( n
M)

:=
∏

{ j1,..., jM }
U(1)x j1 ,...,x jM

, (1.6)

for each of different � j1,..., jM independent coefficients of the
symmetry generators from a degree M polynomial. Therefore,
for the full Eq. (1.5), if every coefficient � is allowed, then by
combining all the symmetry generators from degree 0, 1, . . .

to degree m − 1, we have the full symmetry structure:

U(1)x m−1
( n

m−1)
× · · · × U(1)x(n) × U(1) =

m−1∏
M=0

U(1)xM
( n
M)

. (1.7)

(2) Higher-moment global symmetry for a complex vector
charge field �I ∈ C (where the vector index is I , but each
�I still is a complex scalar field): A general polynomial

6Throughout our work, we define (m − 1) ≡ p for some integers
m � 1 and p � 0. The reason to choose m � 1 will become clear
later when we require constructing the Lagrangian from the mth
derivative term ∂ m log �.

degree-(m − 1) global symmetry on �I allows a symmetry
transformation

�I → eiQI (x)�I

:= ei(�I;i1 ,...,i m−1 xi1 ...xi m−1+···+�I;i, j xix j+�I;ixi+�I;0 )�I . (1.8)

The degree-(m − 1) polynomial QI (x) =
(�I;i1,...,i m−1xi1 . . . xi m−1 + · · · + �I;i, jxix j + �I;ixi + �I;0 )
has an index I .

(3) Higher-moment global symmetry for a complex rank-
M tensor charge field �I1,...,IM ∈ C (where the tensor index is
I1, . . . , IM , but each �I1,...,IM still is a complex scalar field):
A general polynomial degree-(m − 1) global symmetry on
�I1,...,IM allows a symmetry transformation

�I1,...,IM → eiQI1 ,...,IM (x)�I1,...,IM . (1.9)

(4) For all the above theories of higher-moment global
symmetries, we construct their corresponding gauge theories
by dynamically gauging the global symmetry (see Fig. 3).
We introduce the Abelian and non-Abelian tensor gauge field
and their gauge-invariant or covariant field strength tensor. We
can use the field strength to construct the gauge-invariant ki-
netic Lagrangian term of the non-Abelian tensor gauge theory,
shown in Secs. II A 2 and II A 3.

We also notice that Refs. [34,35] had also attempted
to study the polynomial types or higher-moment types of
global symmetries systematically. However, our motivations
are somehow different from Ref. [34], and our framework
is somehow different from Ref. [35]. We do not yet know
a precise correspondence between our results [4,33,36] and
theirs [34,35].

Our theory can be formulated as compatible with or with-
out Euclidean, Poincaré, isotropic, or anisotropic symmetry
in the d + 1-D spacetime, at least in ultraviolet high or in-
termediate energy field theory, but not yet to a lattice cutoff
scale; see more discussions in various versions of theories
in Ref. [4]. Thus for Euclidean or Poincaré symmetry, we
need to choose the n dimensions in U(1)x(n) as n = d + 1
for dimensions. For an anisotropic symmetry, we can choose
the n dimensions in U(1)x(n) as n � d for dimensions. Below
we shall keep the general index n in U(1)x(n) , and leave the
substitution of n free (to n = d + 1 or n � d) based on the
specific needs of readers.

In a companion work, we explore the types of sigma
model that can interpolate between the disorder phases (as
the present higher-rank tensor non-Abelian gauge theories)
and the ordered phases. Similar to the famous quantum phase
transition between insulator [U(1) symmetry disorder de-
scribed by a topological gauge theory or a disordered Sigma
model] and superfluid/superconductivity [U(1) global/gauge
symmetry-breaking order described by a Sigma model with
a U(1) target space with Goldstone modes], we can explore
phase structures of order-disorder phases by developing a
Sigma model [36]. A recent work studies the superfluid phase
of a pure Abelian fractonic matte field theory without gauge
fields [37], while we study instead both the ordered phase
(superfluid and a Sigma model) and the disordered phase of
non-Abelian gauged fractonic matte field theories with gauge
fields [36].
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II. SCALAR CHARGE, HIGHER-MOMENT POLYNOMIAL
DEGREE-(M-1) GLOBAL SYMMETRY, AND RANK-M

GAUGE THEORY

First, we consider how to gauge the following global sym-
metry for s scalar field � on the Rn, the n-dimensional space
or spacetime:

� → eiQ(x)�, (2.1)

where Q(x) is a polynomial with degree at most (m − 1) ≡ p
for some integers m � 1 and p � 0, say,

Q(x) := (
�i1,...,i m−1 xi1 . . . xim−1 + · · · + �i, jxix j +�ixi+�0

)
.

(2.2)
Note that the gauge transformation can be written as

log � → log � + iQ(x), (2.3)

and the only invariant quantity under this transformation is

∂ m log �, (2.4)

which is an order m symmetric tensor whose components are

∂i1 · · · ∂i m log �, (2.5)

where the spacetime indices ik ∈ {1, 2, . . . , n}, with k ∈
{1, 2, . . . , m}. In the next subsection, before gauging this
higher-moment symmetry, we construct the covariant opera-
tor [Pi1,...,im in Eq. (2.7)]. After gauging this higher-moment
symmetry, we also construct the gauge-invariant operator
(such as the Abelian gauge field strength in Sec. II A 2) or
gauge covariant operator [such as the covariant derivative on

FIG. 3. A demonstration of the local fluctuations (the dark gray)
that deviate away from the vector (degree-1 polynomial) global sym-
metry of Eq. (1.3) or higher-moment polynomial global symmetry
of Eq. (1.5). The light gray indicates higher-moment degree-(m-1)
global symmetry transformations (here we show m = 1). We will
introduce a gauge theory to compensate the local gauge fluctua-
tion in Sec. II by introducing a rank-m tensor gauge field Ai1,...,i m

[Eq. (2.16)] mediating between the matter � fields.

the matter field Di1,...,im [{�}] in Eq. (2.12) or the non-Abelian
gauge field strength in Sec. II A 3].

A. Polynomial with arbitrary degree

By the law of differentiation, we know that

∂i1 · · · ∂i m log � = Pi1,...,i m (�, . . . , ∂ m�)

�m
, (2.6)

x

y

x = 0

FIG. 2. Following the setup of Fig. 1, here we show the noncommutative nature of the ZC
2 � U(1)x(n) global symmetry by performing

the UZC
2
UU(1)x(n)

� transformation on the top route, versus the UU(1)x(n)
UZC

2
� transformation on the bottom route. The top route shows

UZC
2
UU(1)x(n)

� = UZC
2

(eiQ(x)�) = eiQ(x)�†. The bottom route shows UU(1)x(n)
UZC

2
� = UU(1)x(n)

(�†) = e−iQ(x)�†. In summary, we demonstrate

UZC
2
UU(1)x(n)

� �= UU(1)x(n)
UZC

2
�. Indeed, the noncommutative nature between the ZC

2 and the higher-moment global symmetry still holds, even

for a more general polynomial global symmetry [such as Eq. (1.5)’s transformation � → eiQ(x)� := ei(�i1,...,i m−1 xi1 ...xi m−1 +···+�i, j xix j+�ixi+�0 )
�].
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so this order m tensor P transforms as

Pi1,...,i m → ei mQ(x)Pi1,...,i m . (2.7)

Under a more general gauge transformation

� → eiη(x)�, (2.8)

we find that

log � → log � + iη(x). (2.9)

We shorthand ∂i1 · · · ∂i m := ∂ m so

∂m log � → ∂ m log � + i∂ mη(x). (2.10)

This implies

Pi1,...,i m (�, . . . , ∂ m�) → ei mη(x)
[
Pi1,...,i m (�, . . . , ∂ m�)

+ i∂i1 · · · ∂i mη(x)�m
]
. (2.11)

Therefore it is natural to introduce the connection-like sym-
metric rank-m tensor gauge field Ai1,...,i m and higher covariant
derivative

Di1,...,i m [{�}] := Pi1,...,i m (�, . . . , ∂ m�) − igAi1,...,i m�m,

(2.12)

where we implicitly sum over all possible indices as∑
{i1,...,i m}

Di1,...,i m [{�}] :=
∑

{i1,...,i m}

[
Pi1,...,i m (�, . . . , ∂ m�)

− igAi1,...,i m�m
]
, (2.13)

which transforms covariantly under a general gauge transfor-
mation

� → eiη(x)�. (2.14)

This implies that the tensor gauge field A transforms as

A → A + 1

g
∂ mη. (2.15)

More precisely, components by components, it transforms as

Ai1,...,i m → Ai1,...,i m + 1

g
∂i1,i2,...,i m−1,i mη

:= Ai1,...,i m + 1

g
∂i1∂i2 · · · ∂i m−1∂i mη. (2.16)

So a gauge-invariant term in the Lagrangian, involving the
interactions between the gauge field and the scalar field, is

|Di1,...,i m [{�}]|2 := [
Pi1,...,i m (�, . . . , ∂ m�) − igAi1,...,i m�m

]
× [Pi1,...,i m (�†, . . . , ∂ m�†)

+ igAi1,...,i m (�†)m]. (2.17)

1. Different meanings of “gauging”

We should mention that our gauging procedure is a gen-
eralization of Ref. [27], but our gauging procedure may be
different from some others in the literature [9–11,38,39]. This
implies that the meaning of “gauging” actually is not the
most unique refined statement—there can be different ways
of “gauging” although the initial global symmetry is the same.
“Gauging” can imply many different things:

(1) Promoting a global symmetry to a local symmetry,
and the local symmetry fluctuation is absorbed by the gauge
transformations of dynamical gauge fields. (This is our way of
gauging the higher-moment global symmetry [4,36].)

(2) Coupling the symmetry generator (the charge operator
or the charge current) of the higher-moment symmetry to a
background field. Then in the partition function, one makes
the background field dynamical by summing over all the al-
lowed background field configurations. This is also related to
the orbifold procedure in field theory or string theory.

(3) Gauging may also be interpreted as the condensation
of the “charged object” O of a global symmetry. The con-
densation means that the “charged object” becomes part of
the property of the ground state wave function. Suppose the
“charged object” O to be a local point operator or an extended
(line, surface, etc.) operator, then the ground state |�ground state〉
(i.e., vacuum) with the condensed “charged object” O means
that in the quantum mechanical sense, the ground state is in a
coherent state

Ô|�ground state〉 ∝ |�ground state〉. (2.18)

The Ô is correspondingly a local or an extended quantum
mechanical operator of the “charged object” O in field theory.
Intuitively Ô can be created and annihilated from the vacuum
for free—Ô can pop out or pop into the vacuum:

〈�ground state|Ô|�ground state〉 ∝ 〈Ô〉 �= 0, (2.19)

which is known as the condensation in the vacuum.
All these procedures are related to “gauging,” and although

we can gauge the same initial global symmetry, different
gauging procedures may (or may not) give rise to different
types of gauge theories. In our work, we study the gauging
from the perspectives of continuum field theory. We do not yet
attempt to make connections to other “gauging” procedures
done on the lattice [9–11,39], but leave that for future work.

2. Abelian gauge field strength and tensor gauge theory

Following Sec. II A, to construct a rank-(m + 1) gauge-
invariant Abelian gauge field strength, we simply define

Fμ,ν,i2,...,i m := ∂μAν,i2,...,i m − ∂νAμ,i2,...,i m . (2.20)

Here Fμ,ν,i1,...,i m is antisymmetric respect to μ ↔ ν. It is easy
to check the gauge invariance of Fμ,ν,i1,...,i m under the Abelian
gauge transformation Eq. (2.16):

Fμ,ν,i2,...,i m → ∂μ

(
Aν,i2,...,i m + 1

g
∂ν∂i2 · · · ∂i m

)

− ∂ν

(
Aμ,i2,...,i m + 1

g
∂μ∂i2 · · · ∂i mη

)
= Fμ,ν,i2,...,i m . (2.21)

It is easy to construct the gauge-invariant kinetic Lagrangian
term

|F̂μ,ν,i2,...,i m |2 := Fμ,ν,i2,...,i m Fμ,ν,i2,...,i m .

3. Non-Abelian gauge field strength and tensor gauge theory

We can also promote the Abelian gauge field strength
Eq. (2.20) to a non-Abelian gauge field strength; we follow

013185-5
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the trick of Ref. [4] by gauging the ordinary 0-form ZC
2 -charge

conjugation global symmetry. The ZC
2 acts on the rank-m

tensor gauge field via

Ai1,...,i m → −Ai1,...,i m . (2.22)

By promoting the global ZC
2 to a local symmetry, we introduce

a 1-form ZC
2 -gauge field C coupling to the 0-form symmetry

ZC
2 -charged object Ai1,...,i m with a gc coupling. The ZC

2 local
gauge transformation is

Ai1,...,i m → eiγc (x)Ai1,...,i m , Cν → Cν + 1

gc
∂νγc(x). (2.23)

Note that Ai1,...,i m is real-valued, so a generic eiγc (x) complex-
ifies the Ai1,...,i m . However, what we can do is restrict gauge
transformation so it is only ZC

2 -gauged [not U(1)C-gauged],

eiγc (x) := (−1)γ
′
c (x) ∈ {±1}, (2.24)

so γ ′
c (x) is an integer and Ai1,...,i m stays real. Thus γ ′

c (x)
jumps between even or odd integers in Z, while the ZC

2 -gauge
transformation can be suitably formulated on a lattice. We
can directly rewrite Eq. (2.23) on a simplicial complex or
a triangulable spacetime manifold. Follow Ref. [4], we also
define a covariant derivative with respect to ZC

2 :

Dc
μ := (∂μ − igcCμ). (2.25)

We need to combine U(1)x(n) -gauge transformation Eq. (2.16)
and ZC

2 -gauge transformation Eq. (2.23) to

Ai1,...,i m → eiγc (x)Ai1,...,i m + 1

(m!)g

(
Dc

(i1 Dc
i2 · · · Dc

i m )

)
[ηv (x)],

Cν → Cν + 1

gc
∂νγc(x). (2.26)

Here (Dc
(i1 Dc

i2 · · · Dc
i m )) := (Dc

i1 Dc
i2 · · · Dc

i m
+

Dc
i2 Dc

i1 · · · Dc
i m

+ · · · ) contains the permutation (m!)-terms,
which means to be a symmetrization over the subindices
under the lower bracket (i1, . . . , im ).

We thus can promote the Abelian gauge field strength
Eq. (2.20)’s Fμ,ν,i2,...,i m into a non-Abelian gauge field strength
F̂ c

μ,ν,i2,...,i m
after gauging ZC

2 :

F̂ c
μ,ν,i2,...,i m

:= Dc
μAν,i2,...,i m − Dc

νAμ,i2,...,i m

:= (∂μ − igcCμ)Aν,i2,...,i m − (∂ν − igcCν )Aμ,i2,...,i m .

(2.27)

This F̂ c
μ,ν,i2,...,i m

is covariant under the gauge transformation
Eq. (2.26): F̂ c

μ,ν,i2,...,i m
→ eiγc (x)F̂ c

μ,ν,i2,...,i m
. It is obvious that

we can construct the gauge-invariant kinetic Lagrangian term∣∣F̂ c
μ,ν,i2,...,i m

∣∣2
:= F̂ c

μ,ν,i2,...,i m
F̂ †c μ,ν,i2,...,i m ,

pairing F̂ c with its complex conjugation F̂ †c. We can propose
a schematic path integral form:

Zrk-m-sym-A
asym-BF

:=
∫ [

DAi1,...,i m

]
[DB][DC]

× exp

[
i
∫

Md+1

(∣∣F̂ c
μ,ν,i2,...,i m

∣∣2
dd+1x

+ 2

2π
B dC

)]
· ωd+1({CI}). (2.28)

Based on the knowledge of the lower degree-1 polynomial
gauge structure Eq. (1.1) and the higher-moment degree-(m −
1) polynomial symmetry Eq. (1.7), we can denote the gauge
structure for Eq. (2.28) as[

ZC
2 �

(
U(1)x m−1

( n
m−1)

)]
. (2.29)

If only the rank-m symmetry tensor gauge field Ai1,...,i m is
kept, then the lower degree polynomial symmetry in Eq. (1.7),
say, U(1)xM

( n
M)

for 0 � M � m − 2 would be neither a survived

global symmetry nor a gauged symmetry.
More generally, we introduce the index I for specifying the

different copies/layers of tensor gauge theories,

Zrk-m-sym-A
asym-BF

:=
∫ (

N∏
I=1

[
DAI,i1,...,i m

]
[DBI ][DCI ]

)

× exp

[
i
∫

Md+1
dd+1x

(
N∑

I=1

∣∣F̂ c
I,μ,ν,i2,...,i m

∣∣2

+ 2

2π

N∑
I=1

BI dCI

)]
· ωd+1({CI}), (2.30)

where the level-2 BF theory is used to constrain the flat
C gauge field to be a Z2-valued 1-form gauge field via a
Z2-valued (d − 1)-form gauge field B, based on the trick of
Ref. [4]. The cocycle ωd+1 ∈ Hd+1((ZC

2 )N ,R/Z) is a group
cohomology data [14] where we apply its continuum field the-
ory formulation [16–19] (see the overview [4]). The cocycle
ωd+1 couples different copies/layers of tensor gauge theories
together, which can be viewed as interlayer interaction effects.

Above we formulate a general degree polynomial as
a higher-moment global symmetry and construct the field
strength F for the gauge theory. Our theory presented in
Sec. II A is general. Let us take two special examples in the
next subsections, for a polynomial of degree 1 in Sec. II B and
degree 2 in Sec. II C.

B. Polynomial with degree 1: Vector symmetry

For a vector global symmetry of a polynomial with degree
1, the symmetry transformation on the scalar field and the
invariant quantity under this transformation are as follows:

� → eiQ(x)� = ei(�ixi+�0 )�, (2.31)

log � → log � + iQ(x) = log � + i(�ixi + �0), (2.32)

∂xi∂x j log � = Pxi,x j (�, ∂�, ∂2�)

�2

= �∂xi∂x j � − (∂xi�)(∂x j �)

�2
→ ∂xi∂x j log �,

(2.33)

∂i∂ j log � = �∂i∂ j� − (∂i�)(∂ j�)

�2
. (2.34)

In the last line, we simply shorthand xi, x j as i, j. To gauge,we
rewrite Q(x) as a local gauge parameter η(x),

∂i∂ j log � → ∂i∂ j log � + i∂i∂ jη(x). (2.35)
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This implies that we can write the gauge covariant operator
Di, j[{�}] via

Pi, j (�, ∂�, ∂2�)

:= [�∂i∂ j� − (∂i�)(∂ j�)]

→ ei2η(x)[Pi, j (�, ∂�, ∂2�) + i∂i∂ jη(x)]. (2.36)

Ai, j → Ai, j + 1

g
∂i∂ jη. (2.37)

Di, j[{�}] := Pi, j (�, ∂�, ∂2�) − igAi, j�
2

= [�∂i∂ j� − (∂i�)(∂ j�) − igAi, j�
2]. (2.38)

Physically we may define the symmetry transformation

ei�·x = ei2π (λ−1 )·x. (2.39)

So the λ is a vector of an effective wavelength while �� =
|�|�̂ = 2π

|λ| λ̂, with the unit vector �̂ = λ̂. So a gauge-invariant

term can be |Di, j[{�}]|2.
See another route of pursuit for the vector global symmetry

recently proposed by Seiberg [38].

C. Polynomial with degree 2: Higher-moment symmetry

For a vector global symmetry of a polynomial with degree
2, the symmetry transformation on the scalar field and the
invariant quantity under this transformation are as follows:

� → eiQ(x)� = ei(�i, j xix j+�ixi+�0 )�, (2.40)

log � → log �+iQ(x)= log � + i(�i, jxix j + �ixi + �0),

(2.41)

∂i∂ j∂k log � = Pi, j,k (�, . . . , ∂3�)

�3

:= �2(∂i∂ j∂k�) − �((∂k�)(∂i∂ j�) + (∂i�)(∂ j∂k�) + (∂ j�)(∂i∂k�)) + 2[(∂i�)(∂ j�)(∂k�)]

�3
.

:= �2(∂i∂ j∂k�) − 3�
(
∂(k�∂i∂ j)�

) + 2(∂i�)(∂ j�)(∂k�)

�3
. (2.42)

This implies that we can write the gauge covariant operator Di, j,k[{�}] via the following:

Pi, j,k (�, . . . , ∂3�) := �2(∂i∂ j∂k�) − �((∂k�)(∂i∂ j�) + (∂i�)(∂ j∂k�) + (∂ j�)(∂i∂k�)) + 2(∂i�)(∂ j�)(∂k�)

:= �2(∂i∂ j∂k�) − 3�
(
∂(k�∂i∂ j)�

) + 2(∂i�)(∂ j�)(∂k�) → ei3η(x)(Pi, j,k (�, . . . , ∂3�) + i∂i∂ j∂kη(x)).

(2.43)

Ai, j,k → Ai, j,k + 1

g
∂i∂ j∂kη. (2.44)

Di, j,k[{�}] := Pi, j,k (�, . . . , ∂3�) − igAi, j,k�
3. (2.45)

In the above we use the symmetrized tensor notation:
T(i1i2···ik ) = 1

k!

∑
σ∈Sk

Tiσ1iσ2···iσk , with parentheses (i jk) around
the indices being symmetrized. The Sk is the symmet-
ric group of k symbols. So a gauge-invariant term can be
|Di, j,k[{�}]|2.

III. VECTOR CHARGE, TENSOR CHARGE, AND
GENERAL HIGHER-MOMENT SYMMETRY

A. Vector charge

We may also consider more general higher-moment con-
servation laws with a set of number r fields �1, . . . , �r and
gauge transformations

�I → eiQI (x)�I (3.1)

where

QI ∈ VI ⊂ ⊕r
I=1VI = V ⊂ Rr ⊗ R[x1, . . . , xn]

= ⊕r
I=1R[x1, . . . , xn]. (3.2)

The VI denotes the vector space where the polynomial QI =
QI (x) lives. A special case is VI = R[x1, . . . , xn]. For this
vector space R[x1, . . . , xn], we have the vector addition in

terms of the polynomial addition, while we have the scalar
multiplication in terms of the scalar in the real number R
multiplying by the polynomial.

Note that the full vector space V is fully characterized
by another vector space D of differential operators, which
annihilate the space V . This space DI is not finite dimensional,
but we may take a finite dimensional subspace D̃ generating
the vector space D. Namely, we can take differential operators
DI

J such that ∑
I

DI
JQI = 0 (3.3)

for any QI ∈ V . If ∑
I

DI QI = 0 (3.4)

for any Q we have

DI =
∑

aJ DI
J (3.5)

for some aJ . In the previous example, we took homogeneous
polynomials of degree m.

Following the same logic, we may show that each elements
in D̃ gives an invariant field strength. To gauge this sym-
metry, we need to introduce gauge fields which one to one
correspond to elements in D̃. The gauge transformation law is
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transparent: they are just differential operators DI
J in D̃ acting

on the gauge variational parameter, say, ηI .
Let us be more concrete: under the gauge transformation

�I → eiQI (x)�I , we have log �I → log �I + iQI (x) and∑
I

DI
J log �I → DJ log �I (3.6)

as
∑

I D
I
JQI = 0.

We can compute∑
I

DI
J log �I = PJ

QJ
, (3.7)

where PJ is a polynomial in fields �I and their derivatives,
and QJ is a monomial in �I . Namely, QJ = ∏

I (�I )(nI
J ) is a

product of �I , where nI
J is an integer power of some �I .

Therefore we can see that the denominator QJ as a mono-
mial transforms in the following way and the same for the
numerator PJ :

QJ → eiζJ (x)QJ , (3.8)

PJ → eiζJ (x)PJ , (3.9)

for some polynomial ζJ = ζJ (x) depending on our data. Each
of these PJ corresponds to a covariant derivative under a
general gauge transformation

�I → eiηI (x)�I . (3.10)

We can compute∑
I

DI
J log �I = PJ

QJ
+ i

∑
I

DI
JηI , (3.11)

hence PJ transform as

PJ → eiζJ (x)PJ + i
∑

I

DI
JηIQJ . (3.12)

Therefore we introduce a covariant derivative

DJ [{�I}] := RJ ≡ PJ − igAJQJ , (3.13)

where under the gauge transformation of �I → eiηI (x)�I , we
have the gauge transformation of

AJ → AJ + 1

g

∑
I

DI
JηI . (3.14)

Then RJ transforms as RJ → eiζJ (x)RJ . We construct the
gauge-invariant matter-gauge field interaction term in the La-
grangian

|DJ [{�I}]|2 := |RJ |2 := (RJ )(R†
J )

= (PJ − igAJQJ )(P†
J + igAJQ†

J ). (3.15)

B. Tensor charge

It is embarrassingly easy to generalize to this tensor-index
complex scalar field for the global symmetry transformation:

�I1,...,IM → eiQI1 ,...,IM (x)�I1,...,IM , (3.16)

and the gauge symmetry transformation with a local depen-
dent gauge parameter ηI1,...,IM (x):

�I1,...,IM → eiηI1 ,...,IM (x)�I1,...,IM . (3.17)

Nonetheless, we just need to give a one-to-one map
(I1, . . . , IM ) → I , so the tensor indices can be mapped to a
vector index, which transforms the above two equations into

�I → eiαI (x)�I

and

�I → eiηI (x)�I ,

respectively. Thus the tensor charge higher-moment global
symmetry can be treated as the same way as the vector charge
higher-moment global symmetry in Sec. III B under the one-
to-one map (I1, . . . , IM ) → I .

C. Example 1: Vector charge with an exclusive
degree-1 polynomial

As a special case, we can recover the vector charged tensor
gauge theory by taking the vector space of degree-1 polyno-
mial

VI = {1, xI−1, xI+1}, (3.18)

which means that it is spanned by the vectors of 1, xI−1, and
xI+1. The global symmetry acts as

�I (x) → eiQI (x)�I (x) = eiQI (xI−1,xI+1 )�I (x)

= ei(�I+1xI−1−�I−1xI+1+�0 )�I (x). (3.19)

Here we may define

xI+l ′ := xI+l ′ mod n, with the subindex where I + l ′

:= I + l ′ mod n.

In fact, our specific example here is a generalization of one
example in Pretko [27].7 We may call this type of QI (x) =
QI (xI−1, xI+1) an exclusive polynomial which the QI excludes
the xI dependency, thus it is xI independent.

The vector space V is fully characterized by another vector
space D of differential operators, which annihilate V by differ-
ential. This space DI is not finite dimensional, but we may take
a finite dimensional subspace D̃ generating the vector space D,
here8

D̃ = {
∂(i=I )�I ,�J∂( j=J )�K + �K∂(k=K )�J

}
, (3.21)

where j = J and k = K are related by

j = k ± 1 mod n.

Here the spacetime index (i, j, k, . . . ) and the internal vector
index (I, J, K, . . . ) of � fields are locked.

Furthermore, we can effectively construct the gauge theory
explicitly, given by the rule of a gauge principle. For this

7Our result in Eq. (3.19) generalizes Pretko’s

�I (x) → ei
∑

J,K εIJK �J xK �I (x), (3.20)

where εIJK = εIJK is just a Levi-Civita symbol, or a so-called alter-
nating tensor.

8In this notation below �I → eiQI (x)�I = eiQI (xI−1,xI+1 )�I , we focus
just on the dependence of x only on QI (x), not �I .
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special case, we can recover the vector charged tensor gauge
theory and covariant derivatives:{

∂(i=I )�I − igAI�I , �J∂( j=J )�K + �K∂(k=K )�J

− igA( j=J )(k=K )�J�K
}
. (3.22)

In short, by locking i = I , j = J and k = K , we simply write

{∂i�i − igAi�i, � j∂ j�k + �k∂k� j − igA jk�J�K}.
(3.23)

We can effectively construct everything explicitly, given the
rule of gauge transformations:

�I → eiηI (x)�I , (3.24)

Ajk → Ajk + 1

g
(∂ jηk + ∂kη j ). (3.25)

D. Example 2: Vector charge with an inclusive
degree-1 polynomial

Let us consider another simple example: Given fields �1,
�2, . . . , and the higher-moment global symmetry:

�i → ei� xi�i. (3.26)

We may call this type of QI (x) = QI (xI ) an inclusive polyno-
mial, in which the QI include only the xI dependency. We have
an invariant Lagrangian term |�2∂1�1 − �1∂2�2|2. We can
introduce a tensor connection field A12, and then the covari-
ant derivative type of Lagrangian term |�2∂1�1 − �1∂2�2 −
igA12�1�2|2. More generally, we have

|�i∂ j� j − � j∂i�i − igAi j�i� j |2 (3.27)

invariant under a general gauge transformation

� j → eiη j (x)� j, (3.28)

Ai j → Ai j + 1

g
(∂iηi − ∂ jη j ), (3.29)

where i, j can be any coordinate since we have this specific
global symmetry: �i → ei� xi�i for any xi. Importantly, the
generic gauge field Ai j is not symmetric under i ↔ j.9 This
example reveals that the generic higher-moment global sym-
metry for a vector-index charge field, after gauging, does not
yield a symmetric tensor gauge field.

9Ai j can be made symmetric if we revise the transformation law, for
a specific pair of (i, j), such that �i → ei� xi �i and � j → e−i� x j � j ,
so that the Lagrangian term

|�i∂ j� j + � j∂i�i − igAi j�i� j |2

is invariant under a general gauge transformation

� j → eiη j (x)� j, Ai j → Ai j + 1

g
(∂iηi + ∂ jη j ).

E. Example 3: Vector charge with a mixed degree-1 polynomial

Consider the vector-index charge fields: � j . Consider the
higher-moment global symmetry:

� j → ei�x1� j,

where j = 1, 2, . . . We have an invariant Lagrangian term
|�2∂1�1 − �1∂1�2|2 and other invariant Lagrangian terms
|� j∂1�i − �i∂1� j |2. We can introduce a tensor gauge con-
nection field Ai j , and then the covariant derivative

� j∂1�i − �i∂1� j − iAi j�i� j (3.30)

is invariant under a general gauge transformation

� j → eiη j (x)� j, (3.31)

Ai j → Ai j + (∂1ηi − ∂1η j ). (3.32)

Again i, j can be any coordinate since we have this specific
global symmetry: �i → ei� x1�i for any xi. Importantly, sim-
ilarly to our results in Sec. III E, the generic gauge field Ai j is
not symmetric under i ↔ j

IV. GENERALIZING NOETHER’S THEOREM FOR
HIGHER-MOMENT GLOBAL SYMMETRY

Suppose we have a set of r fields �I (1 � I � r),
a Lagrangian term L which is invariant under a global
transformations �I → eiQI (x)�I where (Q1, . . . , Qr ) ∈ V ⊂
⊕r

I=1R[x1, . . . , xd ] is a specified vector space of allowed poly-
nomials.

Noether’s theorem guarantees that we have a conserved
current corresponding to each global symmetry. Suppose the
constant U(1) transformation for each field is a global symme-
try, Noether’s theorem says that we have a one form current

jI = jIμ dxμ, (4.1)

such that under the general infinitesimal variation

�I → eiεαI (x)�I , (4.2)

the Lagrangian density transforms as

δL = εαI ∧ � jI . (4.3)

The ε is an infinitesimal variational parameter. Here ρI = jI0

is the spatial density of the conserved charge.
Now let us take αI = QI (x) as the higher-moment global

symmetry polynomial for

�I → eiQI (x)�I .

As we said earlier, we see that
∫

δL = 0, and therefore∫
space

∑
I

ρI QI =
∫

space

∑
I

jI0QI (4.4)

is a conserved charge. That is, we have a conserved charge
for each of the global symmetry we have, and their number is
precisely the dimension of the vector space V we started with.

By doing the above calculation, we need to be careful about
the boundary conditions of the space manifold or the infinite
faraway field configurations of the space manifold. In most
cases, we can assume that the density of field configurations
decays sharply at the infinite faraway.
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Let us take QI (x) is a polynomial over the spatial coordi-
nates. Here are some examples:

(1) For a single field �, when Q(x) = � is a constant, we
have the usual Noether’s theorem for the ordinary U(1) global
symmetry, with a conserved charge:∫

space
ρ =

∫
space

j0. (4.5)

(2) For a single field �, when Q(x) = �ixi + �0 is a
linear degree-1 polynomial, we have a conservation theorem
for the vector U(1) global symmetry. This coincides with an
example of Pretko [24].

�0’s :
∫

space
ρ =

∫
space

j0. (4.6)

�i’s :
∫

space
ρxi =

∫
space

j0xi. (4.7)

There are the same number of conserved charges as the di-
mensions of the vector space (the independent parameters �0

and �i of the degree-1 polynomials).
(3) For a single field �, when we follow Eq. (2.2) with

Q(x) := (
�i1,...,i m−1 xi1 . . . xi m−1 + · · · + �i, jxix j + �ixi + �0

)
of a degree-(m − 1) polynomial, we have a conservation the-
orem for all independent �i1,...,ik

�i1,...,ik ’s :
∫

space
(ρ) · (x1 . . . xk ) =

∫
space

( j0) · (x1 . . . xk )

(4.8)

for the higher-moment U(1) global symmetry. There are the
same number of conserved charges as the dimensions of the
vector space (the independent parameters �i1,...,ik ).

(4) For a vector-index field �I , with

QI (x) := (
�I;i1,...,i m−1 xi1 . . . xi m−1

+ · · · + �I;i, jxix j + �I;ixi + �I;0
)
.

There are the same number of conserved charges as the di-
mensions of the vector space (the independent parameters
�I;i1,...,ik ).

(5) For a tensor-index field �I1,...,IM , we can map to a
vector-index field �I by a one-to-one map (I1, . . . , IM ) → I ,
thus the result follows from the previous remark.

In all cases, if we have additional constraints (such as
from the constraint of field strength, say, the electric tensor
in Ref. [24] to be traceless, say, Ẽ j

j = 0 for Ẽi j = −∂0Ai j +
∂i∂ jA0 = −∂t Ai j + ∂i∂ jA0 for the notation in Ref. [4]), then
we have additional conservation laws, not accounted for by
the previously counted number of conserved laws as the di-
mensions of the vector space of QI (x).

V. CONCLUSION AND RELATIONS TO
ALGEBRAIC GEOMETRY

In this section, we bridge the relations between our theories
(both the matter or the gauge theories) by physics construction
and the algebraic geometry in mathematics. We conclude with
some final comments.

A. Algebraic (affine) variety and subvariety

In mathematics, the polynomials are related to geometric
objects called the algebraic variety. More precisely, (affine)
varieties are defined as the solutions of polynomial equations.
The morphisms between them are maps defined by polynomi-
als. Here we review their basic definitions for both physicists
and mathematicians:

Definition 1. An affine algebraic variety over real numbers
R is the zero-locus in the affine space Rn of some finite family
of polynomials of n variables with coefficients in R.

Definition 2. A morphism, or a regular map, of
affine varieties is a function between affine varieties
which is polynomial in each coordinate: more precisely,
for affine varieties V ⊆ Rn and W ⊆ Rm, a morphism
from V to W is a map φ : V −→ W of the form
φ(a1, . . . , an) = ( f1(a1, . . . , an), . . . , fm(a1, . . . , an)),
where fi ∈ R[X1, . . . , Xn] for each i = 1, . . . , m. Here
(a1, . . . , an) ∈ V ⊆ Rn and φ(a1, . . . , an) ∈ W ⊆ Rm.

Definition 3. Given two affine varieties V,W ⊆ Rn, V is
called a subvariety of W, if V ⊆ W as subsets of Rn.

Definition 4. Two affine varieties V and W are isomorphic
if there exist morphisms φ : V −→ W and ψ : W −→ V such
that ψ ◦ φ = idV and φ ◦ ψ = idW , where id is the identity
map.

For example, x2 + y2 = 1 defines the unit circle and t2

4 +
w2 = 1 defines an ellipse, both on the plane R2. There is a
polynomial map t → 2x ,w → y which identifies circle and
ellipse, with the inverse given by a rescaling x → t/2 , y →
w, and therefore in algebraic geometry they are isomorphic.

In our setting, the higher-moment global symmetry trans-
formations are given by polynomials on the space (here we
focus on the Cartesian Rn or Rd defined earlier), and the
contours (or constant hypersurfaces) are given by solutions
of polynomials: they are subvarieties of our space (here on the
Cartesian Rn or Rd ).

We should mention that Refs. [8,9] has a different look
on the algebraic variety: the topological degeneracy of the
gapped fractonic topologically ordered state in Ref. [9] are
encoded also in an algebraic variety, which is defined by the
common zeros of a set of polynomials over a finite field.

In contrast, the algebraic variety in our case is a way to
organize the data of generalized higher-moment or subdimen-
sional polynomial global symmetry or its gauge theory. The
use of algebraic variety for our wide classes of theories does
not require being a gapped (fractonic) topological order. Our
theories include gapless or gapped theories.

B. From higher-moment to subdimensional or subsystem
polynomial global symmetry

Let us relate the algebraic (affine) variety and subvariety in
Sec. V A to the patterns of polynomials in the higher-moment
or subdimensional or subsystem polynomial global symmetry
or their gauge theories. The studies of subdimensional or
subsystem global symmetries can be traced back to as early as
Refs. [40,41] in the condensed matter literature. Here we gen-
eralize the concept to study the subdimensional or subsystem
polynomial global symmetry For instance, subsystem global
symmetry can act on lines [42,43] or planes [9,44,45], for the
bulk of 2+1D systems [42,43] or 3+1D systems [9,42,45].
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(1) From a degree-1 higher-moment symmetry to a degree-
0 ordinary global symmetry in subdimensions: Recall the
degree-1 polynomial global symmetry of Eq. (2.31), � →
eiQ(x)� = ei(�ixi+�0 )� acting on the matter field � on Rn.
We can relate this degree-1 polynomial global symmetry to
a degree-0 ordinary global symmetry by taking the constant
surface solution of

(�ixi + �0) = �constant

for a certain (n − 1)D subdimensional space (e.g., plane) of
xi ∈ Rn.

(2) From a degree-2 higher-moment symmetry to a
degree-1 higher-moment or degree-0 ordinary global sym-
metry: Recall the degree-2 polynomial global symmetry of
Eq. (2.40), � → eiQ(x)� = ei(�i, j xix j+�ixi+�0 )� acting on the
matter field � on Rn. We can relate this degree-2 polynomial
global symmetry to a degree-1 symmetry by restricting to an
appropriate constant xi = ci space for some specific xi. For
example, we have

(�i, jxix j + �ixi + �0) |(xi=ci )= (�i, jcix j + �ici + �0)

for a certain (n − 1)D subdimensional space of xi ∈ Rn.
Moreover, we can reduce to a degree-0 ordinary global
symmetry, if there is an intersecting subspace between the
constant spaces of xi = ci and x j = c j , e.g.,

(�i, jxix j + �ixi + �0) |(xi=ci,x j=c j )= (�i, jcic j + �ici + �0).

Depending on the �i, j and �i, there could be a different
constant surface by solving the polynomial with a different
set of constraints.

For example, given a two-variable quadratic equation

Q(x) := Q(x1, x2) = �1,1(x1)2 + �1,2x1x2 + �2,2(x2)2

+�1x1 + �2x2 + �0, (5.1)

we can solve the constant space to be an ellipse, a parabola,
or a hyperbola, and also possibly a circle, a line, or two
crossing lines, etc. The solution is a quadratic algebraic curves
through the well-known conic section. In other words, if we
apply the degree-2 polynomial global symmetry of eiQ(x) un-
der Eq. (5.1), we can find the degree-2 polynomial global
symmetry on the Rn reduced to the ordinary degree-0 global
symmetry on the algebraic curves (an ellipse, a parabola or a
hyperbola, etc.) through the well-known conic section.

(3) From a degree-(m − 1) higher-moment symmetry to
a subdimensional lower-degree (higher-moment or ordinary)
global symmetry: Recall the general degree-(m − 1) polyno-

mial global symmetry of Eq. (2.1),

� → eiQ(x)�,

where Q(x) is a polynomial with degree at most (m − 1), say,
Eq. (2.2),

Q(x) := (
�i1,...,i m−1 xi1 . . . xi m−1 +· · ·+�i, jxix j + �ixi + �0

)
.

We can reduce the degree-(m − 1) higher-moment symmetry
in Rn to a lower degree-(m − 2) higher-moment symmetry in
Rn−1 by restricting to a specific subspace

xi = ci.

More generally, we can solve the polynomial with cer-
tain constraints as a lower-degree polynomial. This is related
to the concepts of variety and subvariety in Sec. V A, and
the mathematical concepts of embedding and foliation of
subspaces. Indeed, the foliation concepts are powerful and
applied recently in fracton literature; see, e.g., Refs. [46,47].
It is also pointed out that the concept of spacetime embedding
may be treated as a quantum mechanical way as a quantized
excitation, named the embeddon [4]. Therefore, it will be
illuminating to revisit all the above gauge theories of higher-
moment or subdimensional polynomial global symmetry in a
fully quantum mechanical setup in the future.

Note added: Companion pieces to this work include
Ref. [4] and Ref. [36]. We thank Meng Cheng for pointing
out potentially related work [34] and references therein on the
study of the polynomial shift symmetries. This is a generaliza-
tion to allow for an extension of the constant shift symmetry
to a polynomial shift symmetry in the spatial coordinates.
Although the essences of our ideas and theirs are related, the
outcomes and motivations are dramatically different. We do
not yet know the precise correspondence between our results
and theirs.
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