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Gutzwiller hybrid quantum-classical computing approach for correlated materials
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Rapid progress in noisy intermediate-scale quantum (NISQ) computing technology has led to the development
of novel resource-efficient hybrid quantum-classical algorithms, such as the variational quantum eigensolver
(VQE), that can address open challenges in quantum chemistry, physics, and material science. Proof-of-principle
quantum chemistry simulations for small molecules have been demonstrated on NISQ devices. While several
approaches have been theoretically proposed for correlated materials, NISQ simulations of interacting periodic
models on current quantum devices have not yet been demonstrated. Here, we develop a hybrid quantum-
classical simulation framework for correlated electron systems based on the Gutzwiller variational embedding
approach. We implement this framework on Rigetti quantum processing units (QPUs) and apply it to the
periodic Anderson model, which describes a correlated heavy electron band hybridizing with noninteracting
conduction electrons. Our simulation results quantitatively reproduce the known ground state quantum phase
diagram including metallic, Kondo and Mott insulating phases. This is the first fully self-consistent hybrid
quantum-classical simulation of an infinite correlated lattice model executed on QPUs, demonstrating that
the Gutzwiller hybrid quantum-classical embedding framework is a powerful approach to simulate correlated
materials on NISQ hardware. This benchmark study also puts forth a concrete pathway towards practical
quantum advantage on NISQ devices.
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I. INTRODUCTION

Quantum computing holds the promise to revolutionize
modern high-performance computations in physics by pro-
viding exponential speedups compared to currently known
classical algorithms for a variety of important problems
such as simulating interacting quantum models [1–4]. Ac-
curately predicting the properties of competing phases or
simulating the dynamics of interacting quantum mechanical
many-body systems directly addresses grand challenges in
quantum chemistry and materials science [5–9].

While not being fully fault-tolerant, the currently avail-
able noisy intermediate-scale quantum (NISQ) hardware [10]
is still extremely powerful as recently demonstrated by the
Google team [11]. As the number of coherent gate operations
is limited, however, the development of resource efficient
algorithms with sufficiently short quantum circuits is crucial
in order to be able to tackle open scientific problems on NISQ
devices. One example is the variational quantum eigensolver
(VQE) algorithm to solve the eigenvalue problem [12,13]. It
has been successfully implemented on NISQ technology to
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compute the ground state energy of small molecules such as
H2, HHe+, LiH, and BeH2 [12,14–16]. The VQE algorithm
adopts a hybrid quantum-classical approach which combines
a quantum computation of a suitable cost function, such as
the Hamiltonian, with a classical method for optimization.
Instead of adiabatic state preparation followed by quantum
phase estimation [17,18], which requires deep circuits, VQE
employs shallow variational circuits to evolve a chosen initial
state into the target state. The cost function is then measured
as a weighted sum of expectation values for associated Pauli
terms. The variational parameters are classically optimized to
minimize the cost [12,13].

Different forms of the variational circuit in VQE, e.g.,
the unitary coupled cluster Ansatz (UCC) [13,19,20], the
qubit coupled cluster Ansatz [21,22], or a trotterized adiabatic
preparation Ansatz [23], have been discussed in the litera-
ture. A common issue of these variational Ansätze is that the
number of variational parameters rapidly increases with the
number of orbitals in the calculation, which makes the gen-
erally nonconvex classical optimization problem increasingly
difficult to solve. This is further complicated by the presence
of noise on real NISQ devices. While VQE algorithms have
been demonstrated on NISQ devices for small molecules,
computing properties of infinite periodic quantum materials
requires further algorithmic development.

Various quantum algorithms for efficiently solving periodic
correlated materials problems have been actively discussed
in the literature. For example, it has been shown that using
an adiabatic quantum variational approach with a dual plane
wave basis set leads to favorable scaling with respect to the
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number of basis orbitals for the circuit depth and the num-
ber of qubits required for periodic systems [24]. The Jellium
model has been proposed as a benchmark case for this ap-
proach on near-term devices. Another route is to follow the
long tradition in correlated materials theory to map infinite
periodic systems onto effective impurity models. Such an
approach has been very successful in classical computing of
correlated materials, e.g., the state-of-the-art dynamical mean-
field theory (DMFT) [25–28]. Quantum algorithms based on
adiabatic state preparation and phase estimation have been
suggested that solve for the impurity Green function repeat-
edly, upon reaching the convergence with the local lattice
Green function [29]. A hybrid quantum-classical approach
based on a simplified two-site version of DMFT has also
recently been described in Ref. [30,31], and it was proposed
to use a generalized VQE method to find both ground and
excited states of the impurity model [32]. Although quite
appealing, none of these proposed algorithms have yet been
demonstrated on a real NISQ device, because the resources
they require for the study of infinite periodic systems are still
beyond the current technology [33].

In this paper, we develop and demonstrate a novel resource-
efficient hybrid quantum-classical algorithm that can simulate
correlated materials on present-day NISQ devices. The algo-
rithm is based on the Gutzwiller variational wave function for
the interacting many-body ground state [34,35] and thus cap-
tures correlations beyond a simple mean-field Ansatz such as
Hartree-Fock. However, it requires significantly less resources
than DMFT and can thus be executed on current hardware.
We have implemented this Gutzwiller quantum-classical em-
bedding (GQCE) simulation framework on Rigetti’s quantum
cloud service (QCS) using PYQUIL [36,37], and used it to
perform the first self-consistent calculations of an infinite
periodic correlated electron model on a quantum computer.
As a nontrivial benchmark study we investigate the periodic
Anderson model (PAM) on Rigetti’s Aspen-4 quantum device.
Our results show that GQCE correctly describes the PAM
ground state phase diagram, which contains Kondo insulator,
correlated metal, and Mott insulator phases [25,38,39]. In
contrast to Hartree-Fock theory, the critical parameters for
the associated quantum phase transitions are also accurately
determined using GQCE. Our work demonstrates the current
capabilities of NISQ devices in the simulation of correlated
materials.

The GQCE approach is based on the powerful Gutzwiller
variational embedding theory [40,41], which is known to be
equivalent to the rotationally invariant slave-boson method in
the saddle-point approximation [41–44]. The Gutzwiller em-
bedding theory can capture many phenomena associated with
strong local electron correlations such as Mott-Hubbard tran-
sitions [41,45,46], unconventional superconductivity [47–49],
quantum spin liquids [50,51], and topological phases [52–54].
When combined with ab initio density-functional theory
(DFT), the Gutzwiller approach is well suited for study-
ing ground state properties of real correlated materials
[40,41,52,55–59].

Similar to DMFT, the Gutzwiller embedding method
maps the infinite interacting lattice model onto an effective
impurity problem consisting of a cluster of correlated or-
bitals embedded in a self-consistent medium. Unlike DMFT,

however, which solves for the fully frequency dependent im-
purity self-energy, the Gutzwiller theory requires only the
ground state single-particle density matrix of the embedding
correlated cluster. In practice, the Gutzwiller embedding ap-
proach amounts to finding a self-consistent solution of a set
of coupled eigenvalue equations. The method is therefore
ideally suited to be formulated as a hybrid quantum-classical
algorithm, where the ground state of the correlated impurity
cluster can be efficiently determined using VQE.

The GQCE calculations share the favorable polynomial
system size scaling of VQE in solving the interacting embed-
ding Hamiltonian. Therefore GQCE promises to be able to
consider larger embedding clusters, which take multiorbital or
spatial correlations into account. This is necessary to describe
the nonlocal electronic order parameters such a d-wave super-
conductivity [60–62], the impact of short-range fluctuations
on electronic properties [63], and composite order parameters
of vestigial phases [64]. In the near term, a robust VQE
solution of a 28-qubit Hubbard-type Hamiltonian, which is
equivalent to a Gutzwiller embedding Hamiltonian of a single
f -orbital site in rare-earth and actinide materials, would bring
the capabilities of GQCE calculations on NISQ devices to the
verge of what is currently possible on classical computers,
thus demonstrating practical quantum advantage.

II. HYBRID GUTZWILLER EMBEDDING FRAMEWORK

In this section, we introduce the key components of the
hybrid quantum-classical Gutzwiller embedding framework
and describe its implementation on NISQ QPUs. We highlight
several advantages of the quantum algorithm compared to its
purely classical counterpart, in particular the favorable poly-
nomial, compared to exponential, scaling of the algorithmic
complexity with the size of the real-space embedding cluster.
This is important as the Gutzwiller embedding method sys-
tematically approaches the exact solution as the cluster size
increases. Larger clusters also allow to describe qualitatively
new physical phenomena, for example, spatially extended or-
der parameters and correlations.

A. General GQCE framework

The GQCE framework is based on the Gutzwiller quan-
tum embedding theory to calculate ground state properties
of correlated electron materials [40,41], which was shown to
be equivalent to the rotationally invariant slave-boson (RISB)
method in the saddle-point approximation [41–44]. As the
formalism of Gutzwiller-slave-boson approach has been ex-
tensively presented previously [40–44], we here focus on
the novel hybrid quantum-classical implementation of the
method. Consider a generic multiband Hubbard Hamiltonian
with local onsite screened Coulomb interactions for periodic
systems

Ĥ =
∑

k

∑
μν

tkμν ĉ†
kμĉkν

+ 1

2

∑
Rl

∑
pqp′q′

∑
σσ ′

V l
pqp′q′ ĉ†

l pσ ĉ†
l p′σ ′ ĉlq′σ ′ ĉlqσ

, (1)
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where k is the crystal momentum, conjugate to the unit cell
position vector R. The unit cell can refer to a primitive unit
cell or a supercell. μ, ν are composite indices of the lattice
basis site and orbital, with spin included unless explicitly
labeled by σ . Orbitals include both uncorrelated orbitals with
negligible screened Coulomb interactions such as s and p or-
bitals, and correlated orbitals {φl p} with significant Coulomb
interactions such as d and f orbitals, which are explicitly
labeled by p and q at the lth correlated site, with the screened
Coulomb integral expressed as

V l
pqp′q′ =

∫∫
drdr′φ∗

l p(r)φlq(r)V (|r − r′|)φ∗
l p′ (r′)φlq′ (r′).

(2)

All the one-body terms, such as hopping, crystal-field splitting
and spin-orbit coupling, are included in tkμν . Note that the
Hamiltonian in Eq. (1) can describe idealized lattice models,
such as the Hubbard model, but also real (multiorbital) ma-
terials with parameters obtained from mean-field electronic
structure calculations such as density functional theory (DFT).
To facilitate later discussions, we recast the Hamiltonian (1) in
the following form:

Ĥ =
∑

k

∑
μν

εkμν ĉ†
kμĉkν

+
∑
Ri

Ĥloc
i [R]. (3)

Here we group the correlated orbital sites into clusters labeled
by i, which can include relevant uncorrelated orbitals as well.
For example, a cluster i can contain a fractionally occupied d
shell at correlated site l , but may also include additional neigh-
boring sites and orbitals to form a real-space multisite cluster.
The local interacting Hamiltonian Ĥloc

i [R] is defined at the ith
cluster, which is identical at different unit cell positions R. It
can generally be written as

Ĥloc
i =

∑
αβ

tiαβ ĉ†
iα ĉiβ + 1

2

∑
αβγ δ

∑
σσ ′

V i
αβγ δ ĉ†

iασ ĉ†
iγ σ ′ ĉiδσ ′ ĉiβσ .

(4)

The local Hamiltonian includes all the associated one-body
and two-body terms. α, β, γ , and δ label the orbital sites
in the correlated cluster, with spin included unless explicitly
labeled. The Coulomb matrix element V i

αβγ δ is nonzero only
within the same correlated shell at site l present in the ith
cluster, as described by the nonzero elements V l

pqrs [Eq. (2)].
Accordingly, εkμν is equal to tkμν in Eq. (1) subtracting the
one-body components defined on correlated clusters, which
have been merged to the local Hamiltonians in the second
term of Eq. (3). The Gutzwiller variational wave function
(GWF) is employed to evaluate the ground state property of
the Hamiltonian (3), which takes the form:

|
G〉 =
∏
Ri

P̂Ri |
0〉 , (5)

with a noninteracting wave function |
0〉 and correlation pro-
jector

P̂Ri =
∑
A,B

[�i]AB|A, Ri〉〈B, Ri|. (6)

The labels A, B enumerate the complete Fock states of the
local Hilbert space defined by filling the N so

i spin orbitals

FIG. 1. Schematic illustration of the generic GQCE framework.
Panel (a) shows an interacting quantum lattice model, exemplified by
a real-space cluster i described by Ĥloc

i and hopping amplitude t to
other sites. This interacting lattice model is self-consistently mapped
to a noninteracting quasiparticle lattice model shown in (b) and a
finite-size, interacting embedding model (representing the i cluster)
that is coupled to a noninteracting bath of the same size [see (c)].
The GQCE method requires finding a self-consistent solution of the
ground state of the coupled quasiparticle and embedding Hamiltoni-
ans. Within GQCE, the interacting embedding Hamiltonian is solved
on QPUs using quantum algorithms such as VQE. The quasiparticle
Hamiltonian can be efficiently simulated on classical processing
units (CPUs).

in the ith cluster with number of electrons Ne
i ∈ [0, N so

i ].
The variational parameter matrices {�i} are introduced in the
Gutzwiller projector P̂Ri to optimize local correlated sectors
of the noninteracting |
0〉.

As illustrated in Fig. 1, within the Gutzwiller embed-
ding theory, minimizing the total energy with respect to the
GWF, EG = min{|
0〉,�i} 〈
G|Ĥ|
G〉, leads to a set of coupled
eigenvalue equations at the Gutzwiller-rotationally invariant
slave-boson (GRISB) level [40,41]:

Ĥqp
G [R,R†; λ] |
0〉 = Ep |
0〉 , (7)

which describes a noninteracting quasiparticle system, and

Ĥemb
i [D,D†; λc] |i〉 = E c

i |i〉 , (8)

which describes the interacting embedding electron system of
the ith cluster.

More specifically, the quasiparticle Hamiltonian takes a
quadratic form:

Ĥqp
G [R,R†; λ] ≡ T̂G[R,R†] +

∑
iab

[λi]ab f̂ †
ia f̂ib, (9)

with the renormalized kinetic energy term defined as

T̂G[R,R†] = 1

Nk

∑
k

∑
μν

∑
ab

εkμνRaμR†
νb f̂ †

ka f̂kb, (10)

by a simple rule ĉkμ
→ ∑

a R†
μa f̂ka. Here, Nk is the to-

tal number of k points, and the square matrix R is the
so-called Gutzwiller renormalization factor for the noninter-
acting quasiparticles represented by f̂ operators labeled by
indices a and b, which run through the same number of
spin orbitals as the interacting labels α, β on the ith clus-
ter. The Gutzwiller quasiparticle spectral weight is given by
Z ≡ R†R, which is a measure of the electron correlation
effect and characterizes the Mott transition by some vanishing
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components [41,45]. The gravity center of the quasiparticles
is further renormalized by a matrix λ. The embedding Hamil-
tonian (8) is given by

Ĥemb
i [D,D†; λc] = Ĥloc

i +
∑
aα

(
[Di]aα ĉ†

iα f̂ia + H.c.
)

+
∑

ab

[λc
i ]ab f̂ib f̂ †

ia . (11)

It describes an interacting subsystem, namely the ith cluster
with Hamiltonian Ĥloc

i , coupled to a finite, noninteracting
bath, which is characterized by the matrix λc

i . The hybridiza-
tion coupling strength is given by the matrix Di. Here α

labels the spin and orbitals in the ith cluster, and a, b are the
spin-orbital labels of the bath sites.

B. Essentials of the GQCE algorithm

The GQCE algorithm is beyond the conventional mean-
field theory such as Hartree-Fock, whose solution is com-
pletely determined by an effective single-particle Hamilto-
nian. The GQCE calculation amounts to self-consistently
solving a set of eigenvalue equations (7) and (8), which
describe an interacting electron subsystems embedded in a
noninteracting quasiparticle bath.

The iterative procedure starts with finding the ground state
wave function |
0〉 of the quasiparticle Hamiltonian Hqp

G (9)
defined by an initial guess of {R, λ}. The noninteracting
wave function 
0 determines the matrices {D, λc} entering
the embedding Hamiltonians {Ĥemb

i } (11), which is subse-
quently solved for the ground state wave functions {i}. To
determine whether self-consistency is reached, one calculates
the expectation value E c

i and the single-particle density matrix
for each symmetrically-inequivalent embedding Hamiltonian
Ĥemb

i . Comparison to the corresponding quantities of the
quasiparticle Hamiltonian allows to define a vector error
function that vanishes at the self-consistent solution of two
coupled eigenvalue problems:[

F1
i

]
aα

≡
∑

c

[�pi(1 − �pi )]
− 1

2
ca 〈i| ĉ†

iα f̂ic |i〉 − [Ri]aα,

[
F2

i

]
ab ≡ 〈i| f̂ib f̂ †

ia |i〉 − [�pi]ab, (12)

where [�pi]ab = 〈
0| f̂ †
ia f̂ib |
0〉 is the quasiparticle density

matrix. Various numerical methods can be used to solve this
set of nonlinear equations given the above vector error func-
tion [65,66], and more details are given below.

In the above iterative procedure, the ground state solution
of the noninteracting quasiparticle Hamiltonian Hqp

G can be
efficiently calculated on classical computers, with compu-
tational time scaling as O(N3) with respect to the number
of orbitals N in the unit cell. The embedding Hamiltonian
Ĥemb

i on the other hand describes an interacting finite size
system. Therefore, exact diagonalization (ED) is used to find
its ground state. The classical computational resources and
time required to determine the ground state using ED scale
exponentially with the single-particle basis dimension Nemb

i
of the embedding Hamiltonian (11). In practice, a general
embedding Hamiltonian of an f -electron system, which is
represented by 14 ( f shell, ĉiα) + 14 (bath, f̂ia) = 28 spin
orbitals, is close to the limit that classical computers can
handle [40,41].

Importantly, the computational accuracy of the embedding
method can be systematically improved by increasing the
size of the Gutzwiller projector Pi to act on a larger corre-
lated cluster [67–69], which enlarges the orbital dimension
of the embedding Hamiltonian. The exponential scaling of
the ED solver with the orbital dimension therefore imposes a
limit to the maximal accuracy that the Gutzwiller embedding
approach can achieve on classical computers. To overcome
this fundamental limitation, we propose to efficiently solve
Ĥemb

i on QPUs using quantum algorithms such as VQE. This
scheme makes full use of the advantageous linear scaling of
the required number of qubits when increasing the size of the
embedding Hamiltonian. Therefore, simulations using 20 (28)
qubits can fully capture the complete manifold of Ĥemb

i of
local d orbitals ( f orbitals).

More specifically, in this work we use VQE with UCC
Ansatz at single and double excitation level (UCCSD)
[13,15,20] to solve for the ground state energy and one-
particle density matrix (OPDM) of the embedding Hamilto-
nian (11). The VQE-UCCSD calculation typically starts with
a Hartree-Fock (HF) calculation, and transforms Ĥemb

i (11)
from atomic orbital basis to molecular orbital (φ) representa-
tion, which can be cast in the form of a conventional molecular
Hamiltonian (apart from a constant):

Ĥemb =
∑

rs

h(1)
rs φ̂†

r φ̂s + 1

2

∑
rsr′s′

∑
σσ ′

h(2)
rsr′s′ φ̂

†
rσ φ̂

†
r′σ ′ φ̂s′σ ′ φ̂sσ .

(13)

Here, the cluster index i is omitted for simplicity. r and s label
HF molecular orbitals, with spin included unless explicitly
labeled. The ladder operator φ̂r is a linear combination of
{ĉiα, f̂ia} due to the basis transformation. The scalability of
VQE-UCCSD has been extensively discussed in the litera-
ture, for example, in Ref. [20]. For the above embedding
Hamiltonian with Nemb

i spin-orbital sites and fixing the num-
ber of electrons to half-filling, the number of gates scales as
O[(Nemb

i )5] using Jordan-Wigner transformation [70]. VQE-
UCCSD with a Bravyi-Kitaev mapping is expected to have
similar circuit complexity due to the implementation of Pauli
rotation gates in the exponential form [20,71]. The ground
state energy is obtained through Hamiltonian averaging [13].
Recently, it has been shown that the number of partitions for
distinct measurement circuits can be reduced to be O(Nemb

i )
with the gate counts to (Nemb

i )2/4 by employing the low-rank
tensor factorization of the Hamiltonian coefficients h(1) and
h(2) [72–74]. Importantly, only one-qubit Z and two-qubit
ZZ operators need to be measured as a result of tensor-
factorization, hence the exponential growth of measurement
error with respect to the Pauli operator length is reduced
to minimum [74]. Furthermore, it has been shown that the
number of repeated measurements to reach an accuracy of
ε of the total energy is much reduced from the upper bound
according to the Hamiltonian coefficients, (

∑
n |ωn|/ε)2, for

Hamiltonian H = ωnPn as a sum of Pauli terms {Pn} with
coefficients {ωn} [23,74]. Compared with typical ground state
energy calculations using VQE-UCCSD in quantum chem-
istry, the expectation values of OPDM operators {φ̂†

r φ̂s} will
only be measured with the final optimized VQE Ansatz. Fol-
lowing the above matrix factorization of h(1) for the sets
of commuting OPDM operators, the number of additional
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measurement circuits for OPDM also scales as O(Nemb
i ),

along with the favorite scaling of the number of measurements
to achieve certain accuracy.

We emphasize that the Gutzwiller embedding theory only
requires finding the ground state energy and OPDM, which
can be implemented successfully on present-day QPUs as we
show below. In contrast, DMFT often has a more complicated
embedding Hamiltonian. In the simple version of two-site
DMFT [30,31], the embedding Hamiltonian is of the same
complexity as that of GQCE. However, DMFT requires de-
termining the full frequency dependent embedding Green’s
function, which is challenging on current NISQ hardware,
since it requires simulating excited states as well [33].

Let us briefly comment on the possibility of using VQE
to directly optimize the GWF without resorting to the
GRISB (saddle-point) approximation [41–44]. The total en-
ergy 〈
G|Ĥ|
G〉 can in principle be directly evaluated by
Hamiltonian averaging by preparing the GWF on QPUs with-
out resorting to the GRISB approximation used in GQCE. The
GWF state could then be optimized subsequently using an
algorithm such as VQE. However, this GWF-VQE approach
requires a large number of qubits, equal to the number of
spin-orbital sites in the large Born-von Karman supercell of
a periodic system [75]. In contrast, within GQCE (which
exploits the GRISB) one only needs to find the ground state
of the much smaller many-body embedding model defined
in Eq. (19). In addition, the variational degrees of freedom
of the GWF, {�i}, represent a high-dimensional parameter
space, such that classical optimization poses a serious chal-
lenge. In contrast, within GQCE, the complex optimization
problem is mapped to a self-consistent solution of two coupled
ground state eigenvalue problems, which is numerically much
more straightforward. Although the total energy functionals of
GQCE and GWF-VQE generally differ at finite dimension d ,
they were shown to become identical in the infinite dimension
limit d → ∞ [76]. The benchmark calculation of the periodic
Anderson model that we present below is performed in the
d → ∞ limit. In addition, it was shown that even for finite
dimensional systems, GRISB often maintains the variational
nature in practice by producing an upper bound of the energy
that converges to the exact answer with increasing size of the
Gutzwiller projector [69]. To conclude, the GQCE approach is
more NISQ friendly than GWF-VQE and will thus be pursued
in the following.

C. Implementation of GQCE simulation framework

The GQCE framework is built on the open-source CyGutz
package, which is an implementation of the Gutzwiller em-
bedding approach in classical computers [59,77]. Here we
have developed the quantum computing module of GQCE
using both IBM Qiskit and Rigetti’s Forest SDK [36,37,78],
which is released as an open-source code [79]. The state vec-
tor simulator in IBM Qiskit and the wave function simulator
in Forest SDK have been employed for noiseless simulations.
The GQCE calculations on real quantum devices are conve-
niently performed through the quantum cloud service (QCS)
by Rigetti. The QCS provides a quantum machine image that
is co-located with the quantum infrastructure, which allows
fast virtual execution of hybrid quantum-classical programs

at low latency cost. Platform-level optimizations of parametric
compilation and active qubit reset, which dramatically reduce
the latency in the QCS platform, have been utilized in our
GQCE calculations. We employ the readout symmetrization
and error mitigation techniques for the measurements, as
implemented in Ref. [37], where error rates are first char-
acterized for the symmetrized readout, and the measured
observable expectation values are rescaled accordingly. Al-
though this readout error mitigation is not scalable due to
the exponential growth of the number of measurement cir-
cuits with the size of the Pauli term for calibrations, all the
necessary observable measurements in GQCE can be reduced
to one or two qubits by adopting the low-rank factorization
technique as discussed in Sec. II B. Additional error mitiga-
tion approaches, such as Richardson extrapolation techniques,
have been proposed and experimentally realized recently
[80,81]. As demonstrated below, use of these more advanced
strategies is not necessary for the benchmark calculations
with single-site decoupling here, but will be advantageous for
larger embedding clusters.

To determine convergence of the self-consistency loop, we
monitor the error vector function F (12), which describes
the change of the trial solution after one iteration of the
self-consistency loop. If F can be evaluated accurately, the
modified Powell hybrid method [65] can be the method of
choice to find a self-consistent solution of the coupled eigen-
value problem, as practiced in references [40,41,55,58]. The
Powell method employs information about the numerical Ja-
cobian. Since the noise level of current quantum devices due
to gate infidelities and decoherence is significant [80], F
cannot be accurately calculated on noisy QPUs. In practice,
the “exciting-mixing” method performs sufficiently well for
our purposes and we use it to solve the root problem of the
noisy nonlinear equations. It replaces numerical evaluations of
the Jacobian by a self-tuned diagonal Jacobian approximation,
and it is implemented in the SciPy library [66]. We demon-
strate that VQE calculations performed on Rigetti’s Aspen-4
QPU with standard readout symmetrization and calibration
yields sufficiently accurate results to reach self-consistency of
the GQCE calculation.

III. GQCE SOLUTION OF THE PERIODIC
ANDERSON MODEL

In this section, we present fully self-consistent GQCE
calculations of the infinite PAM on Rigetti’s Aspen-4 quan-
tum processing unit (QPU). This demonstrate the feasibility
of the GQCE framework on present-day NISQ hardware.
Here, we focus on the single-site embedding version of the
GQCE method as our goal is to carefully benchmark this
new framework. In the future, larger multisite and multiorbital
embedding Hamiltonians and interfacing GQCE with density-
functional theory will be able to address more realistic models
of correlated materials.

To perform a first nontrivial benchmark study of GQCE
for infinite systems, we consider the periodic Anderson model
(PAM) on the Bethe lattice in infinite dimension, as illustrated
in Fig. 2(a). The system is described by a Hamiltonian com-
posed of an itinerant c band, a local interacting d orbital and
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FIG. 2. Illustration of Gutzwiller hybrid quantum-classical em-
bedding algorithm used in solving the periodic Anderson model
(PAM). (a) Sketch of the PAM on the Bethe lattice, together with
the decoupled density of states of the itinerant c band (semicircle)
and the correlated d orbital (δ function). (b) Schematic view of the
coupled eigenvalue problems. It involves an interacting quantum
many-body embedding Hamiltonian, which is solved using VQE,
and a noninteracting effective quasiparticle Hamiltonian, which re-
sults from the Gutzwiller variational Ansatz. The model parameters
are defined in the text. (c) A quantum circuit to solve for the ground
state of the embedding Hamiltonian using a variational unitary cou-
pled cluster (UCC) quantum eigensolver. The circuit includes three
parts: initial HF state preparation, UCC Ansatz, and a measurement
of Pauli term X0X1, as indicated by the vertical dotted lines.

onsite hybridization between them [39],

Ĥ = Ĥc + Ĥd + Ĥhyb, (14)

where

Ĥc =
∑
Rσ

εcĉ†
Rσ ĉRσ −

∑
〈R,R′〉,σ

t ĉ†
Rσ ĉR′σ , (15)

Ĥhyb =
∑
Rσ

V
(
d̂†

Rσ ĉRσ
+ H.c.

)
(16)

and

Ĥd =
∑

R

Ĥloc[R] (17)

with

Ĥloc[R] = εd d̂†
Rσ d̂Rσ

+ 1

2

∑
σ

Ud̂†
Rσ̄ d̂Rσ̄ d̂†

Rσ d̂Rσ
. (18)

The center of the itinerant c band is given by εc and the
energy of the correlated d orbital is given by εd . U denotes the
intraorbital Hubbard interaction parameter on the d orbital,
and V the on-site hybridization strength between c and d
electrons. The spin index σ̄ indicates the opposite of σ . As
the d orbital is the only correlated group in the unit cell
labeled by R, the group index i is skipped in the model.
For reference, the Fourier transformation of Ĥc + Ĥhyb to the
momentum k space constitutes the first part of the generic
Hamiltonian (3). On a Bethe lattice in infinite dimensions
or with infinite nearest-neighbor connectivity, the conduction

band density of states (DOS) takes the semicircular form
ρc(ε) = 2

πD

√
1 − (ε/D)2, where D is the half bandwidth. We

set D = 1 in the following calculations. The model hosts a
diversity of paramagnetic electronic phases: a metal, band
insulator, Kondo insulator and Mott insulator. The different
phases are separated by quantum phase transitions. The model
has been extensively studied in the literature [25,38,39], and
highly accurate numerical results have been obtained using
DMFT [25–28], which becomes exact for systems in infinite
dimension. This makes the PAM model on the Bethe lattice an
ideal benchmark model for hybrid quantum-classical calcula-
tions of infinite correlated electron systems on NISQ devices.

In this work, we choose the particle-hole symmetric point
of Ĥd with Fermi level at 0, i.e., we set εd = −U/2, and also
fix V = 0.4 and U = 2. We determine the ground state phase
diagram as a function of conduction band energy center εc. In
this parameter space, the system starts with a Kondo insulating
(KI) phase for εc = 0. With increasing εc it first transforms
into a metallic (M) phase and finally enters the Mott-Hubbard
insulating (MI) regime undergoing a metal-insulator transition
[39]. From DMFT calculations using numerical renormaliza-
tion group (NRG) as an impurity solver [39,82], the zero
temperature quantum phase transitions occur at the critical
values of εKI-M

c = 0.07 and εM-MI
c = 1.08. These values can

be considered as numerically exact for this model.
To study the PAM, we consider a GWF (5) with the cor-

relation projector acting on the Hilbert space spanned by
the single particle d orbitals. This leads to a set of coupled
eigenvalue equations governed by a Gutzwiller embedding
Hamiltonian, which provides an accurate description of local
electron correlations, together with a noninteracting effective
quasiparticle Hamiltonian. The method is schematically illus-
trated in Fig. 2(b).

The Gutzwiller embedding Hamiltonian (11) holds a spe-
cific form, apart from a constant, as

Ĥemb =
∑

σ

εd d̂†
σ d̂σ + Ud̂†

↑d̂↑d̂†
↓d̂↓

+
∑

σ

(
Dd̂†

σ f̂σ + H.c.
) −

∑
σ

λc f̂ †
σ f̂σ . (19)

Here, D denotes the coupling strength between the d orbital
and a noninteracting bath orbital f with energy level −λc.
The general local one-body matrix such as the kinetic energy
renormalization matrix R and the coupling matrix D, have a
2 × 2 diagonal form with degenerate diagonal elements due
to spin-rotation symmetry in the paramagnetic state.

The nontrivial task is to solve for the ground state of the
interacting embedding Hamiltonian Ĥemb (19) using VQE
on quantum devices. We first transform Ĥemb to a molec-
ular orbital representation, using the orbitals obtained from
a spin-restricted Hartree-Fock (HF) calculation. Then, the
Hamiltonian is written in a qubit representation via standard
parity mapping [71,83]. Since the ground state at half-filling
Ne = 2 is restricted to total spin S = 0, the embedding Hamil-
tonian can be represented in a two-qubit basis exploiting Z2

symmetries as

Ĥemb = g01 + g1(Z0 − Z1) + g2(X0 + X1) + g3Z0Z1

+ g4(X0Z1 − Z0X1) + g5X0X1 . (20)
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FIG. 3. Convergence behavior of GQCE iterative calculations on Rigetti’s Aspen-4 quantum device. (a) Evolution of the system total
energy, (b) kinetic energy renormalization Z factor, and (c) the maximal element of the error vector F as a function of iteration number
in solving the set of Gutzwiller nonlinear self-consistency equations. Results obtained from a calculation on Aspen-4 (orange circles) are
compared to noiseless simulations using the state vector approach (blue line).

Here Xi, Yi, and Zi are Pauli operators acting on qubit i,
and the parameters {gα} are determined by parameters of the
embedding Hamiltonian (19) and the form of the HF molec-
ular orbitals. (see Appendix D for details.) The asymmetric
two-site embedding Hamiltonian is slightly more complex
than that of the hydrogen dimer H2, which is a widely used
example for the application of VQE in quantum chemistry
[15].

To find the ground state energy and single-particle density
matrix, we use VQE with an unitary coupled cluster (UCC)
Ansatz [12]. For a two-electron system, the UCCSD Ansatz
at single and double excitation level is known to be exact.
The single-excitation has no contribution to the ground state
energy according to Brillouin theorem [84]. Importantly, the
UCC Ansatz can be reduced to a particularly simple form in
two-qubit representation using a parity transformation [71,83]

|
ucc(θ )〉 = e−iθY0X1 |01〉 , (21)

where θ ∈ [−π, π ] is a variational parameter and |01〉 is the
spin-restricted HF ground state wave function. It is obtained
by standard self-consistent calculations using a quantum
chemistry PySCF package, which efficiently run on classical
computers [85].

To get the expectation value of the embedding Hamiltonian
(20) under the UCC wave function on quantum computers,
we group Pauli terms that are diagonal in a common tensor-
product basis. A typical quantum circuit, composed of the
initial HF state preparation, UCC Ansatz, and a measurement
of Pauli term X0X1, is shown in Fig. 2(c). In addition to Pauli
terms contained in Ĥemb, the Pauli term Y0 is also measured
with the optimized UCC Ansatz to derive the OPDM of the
embedding system. The VQE code is developed based on a
quantum computing library PYQUIL [36,37], where we use a
simultaneous perturbation stochastic approximation algorithm
to optimize the noisy objective function on real quantum com-
puting devices [86].

The quantum processing unit (QPU) used in this study is
Aspen-4. The device contains 13 qubits in total, among which
we choose qubit 0 and 1 for the calculations. The associated
two-qubit CZ-gate, which is one controlling factor for the

noise level of the calculation results, has a fidelity of about
95%.

IV. QUANTUM COMPUTING RESULTS OF PERIODIC
ANDERSON MODEL

The GQCE calculations on the PAM model are carried out
in two ways. First, we use a state vector simulator, which
represents an ideal fault-tolerant quantum computer with an
infinite number of measurements. Second, we use two qubits
on Rigetti’s Aspen-4 quantum device, which contains 13
qubits in total.

Figure 3 demonstrates the convergence of total energy,
kinetic energy renormalization factor Z ≡ R†R, and maximal
element of the error vector F (12) in our GQCE calculation
on Aspen-4 as a function of iteration number. The iterative
nonlinear solver starts from the HF mean-field solution and
reaches convergence after about 20 iteration steps. The re-
maining steps are used to estimate the error bars. The results
using the real quantum device closely follow that of the noise-
less simulations. The observed fluctuations stem from the
device’s noise. The maximal absolute value of the error vector
elements in Fig. 3(c) levels near 0.01(2%), which coincides
with the scale of the two-qubit CZ-gate fidelity of the de-
vice, which was about 95%. Because of the stochastic nature
of quantum computing on real devices, hereafter we report
results by mean values with estimated errors. The standard de-
viation is about 0.03(2%) for total energy and 0.01(2%) for Z
factor, estimated with the last 20 iterations in this calculation.

When the center of the conduction band is set to zero,
εc = 0, as in Fig. 3, the system is in the Kondo insulator
phase. The local correlated d orbital, which is also located
at zero energy, hybridizes with the c band and opens a Kondo
gap. The Z factor in Fig. 3(b) shows appreciable amount of
reduction from unity, manifesting the local on-site Coulomb
interaction effect, which effectively reduces the hybridization
energy.

Let us now consider the quantum phase diagram as we tune
the position of the conduction band εc. Even in this restricted
parameter space, where all other parameters are held fixed,
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FIG. 4. GQCE results of quantum phases and phase transitions in the periodic Anderson model. The Kondo insulator to metal and metal
to Mott insulator electronic phase transitions are induced by raising the conduction band position εc. Along the path, the variation of (a) total
energy, (b) renormalization Z factor, and (c) total electron filling per unit cell n are shown in the upper panels. We compare results from GQCE
calculations using a VQE Ansatz on (i) a noiseless state vector simulator (blue) and (ii) a real quantum device (Rigetti’s Aspen-4) (yellow). We
also show results of a purely classical Gutzwiller simulation using HF as the embedding Hamiltonian solver (green). The different phases (KI,
M, MI) are presented in different color shadings with numerically exact phase boundaries taken from DMFT + NRG method [39]. The grey
dotted line in panel (c) indicates the critical εc for Kondo insulator-metal transition described in HF theory. The lower panels show the coherent
part of spectral density of states (DOS) of the Kondo insulator (d), metal (e) and Mott insulator (f) phases, obtained from GQCE calculations
on the simulator and the real quantum device. The inset in (d) shows the DOS around the band gap with the HF results for comparison. The
dashed vertical line in (f) indicates the coherent states at Fermi level with spectral weight diminishing to zero in Mott state.

the PAM model goes through a series of quantum phase tran-
sitions from Kondo insulator to metal and from metal to Mott
insulator. We compare our GQCE findings to the numerically
exact phase boundaries at zero temperature that have been
determined by DMFT calculations using NRG as the impurity
solver [39,82]. To extract the phase boundaries, we calcu-
late the change of total energy E , renormalization Z factor
and total electron filling n as a function of εc. Results are
shown in the upper panels of Fig. 4, which also includes the
numerically exact phase boundaries from DMFT + NRG for
comparison.

As seen in Fig. 4(a), the total energy from noiseless simula-
tions monotonically increases with increasing εc and reaches
a constant as the system crosses the metal-Mott insulator tran-
sition. The GQCE calculations on Aspen-4 follows closely
the exact energy curve along the phase transformation path,
yet with a sizable error bar that originates from the noise of
the device. Gutzwiller theory offers an efficient treatment for

the (orbital-selective) Mott insulating phase, which exploits
the fact that Mott localized Gutzwiller quasiparticle bands are
pinned at the chemical potential at integer filling [41]. The
embedding Hamiltonian in the Mott phase has a doubly de-
generate ground state, which can be written as tensor product
states |00〉 and |11〉 in the two-qubit parity basis. In practice,
we choose one of the states to evaluate the energy and OPDM,
followed by a symmetrization in the spin-sector to recover
spin-symmetry.

We compare GQCE to HF calculations, where the embed-
ding Hamiltonian solver is chosen to be at HF mean-field level
(green curves in Fig. 4). Within HF, the total energy is mono-
tonically increasing and significantly larger than the GQCE
result. Crucially, it bears no signature of the metal-insulator
phase transitions. The important physical phenomenon that is
not captured by HF theory is the suppression of energetically
unfavorable doubly occupied sites in the Hilbert space of the
correlated d orbitals.
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In Fig. 4(b), we show the kinetic energy renormalization
Z factor [87], which is a key physical concept captured by
Gutzwiller theory. When the conduction band center rises
above the zero chemical potential, the renormalization Z fac-
tor drops gradually and vanishes at the metal to Mott-insulator
transition. Remarkably, for the model parameters studied in
this paper, GQCE predicts a metal-Mott insulator transition
phase boundary that is in perfect agreement with the nu-
merically exact value obtained from DMFT. The Z factor
obtained from GQCE calculations on the Aspen-4 quantum
device closely follows the exact state vector simulation data.
Within the HF approximation, the renormalization factor re-
mains constant, ZHF = 1, demonstrating that the metal-Mott
insulator transition is beyond the description of HF theory.

Finally, in Fig. 4(c), we show that the variation of the total
electron filling per unit cell is an effective way to locate the
phase boundaries. In the Kondo (Mott) insulator phases, the
electron filling is equal to two (one), while it is in between the
two values for the correlated metal phase. The electron filling
obtained from GQCE calculations on Aspen-4 agrees well
with the exact state vector simulations. Some underestimation
in the middle range is present, manifesting the effect of noise
in real devices. The electron filling behavior can be used to
locate the phase boundaries and the obtained critical parame-
ter values are in agreement with the numerically exact ones. In
contrast, the HF approach can only identify the transition from
the Kondo insulator to the metal. As the correlation-induced
renormalization of the hybridization is not captured within
HF theory, the Kondo energy scale is overestimated and the
Kondo insulator phase incorrectly persists up to larger values
of εc [see dotted line in Fig. 4(c)].

The Gutzwiller method adopts a Jastrow-type variational
wave function, which describes the ground state properties
of a correlated model beyond an effective single-particle
mean-field theory [88]. Although there is no efficient way
currently available to evaluate the full Green’s function within
Gutzwiller approach, the coherent part of it can be straightfor-
wardly calculated [40]. The resulting coherent spectral density
of states (DOS), which includes coherent quasiparticle excita-
tions, can be used to distinguish the different quantum phases
in the model. The coherent DOS of the PAM model is shown
in the lower panels of Figs. 4(d)–4(f), which correspond to
Kondo insulator, correlated metal and Mott insulator phases.
Data from GQCE calculations on Rigetti’s Aspen-4 device
are shown to be in excellent agreement with exact simulation
results.

In the Kondo insulator phase [Fig. 4(d)], the center corre-
lated d orbital hybridizes with the conduction band, resulting
in a finite hybridization gap. The inset shows that the hy-
bridization gap from GQCE calculations agrees well with the
exact simulation result, and is significantly reduced compared
with the HF mean-field value due to the correlation-induced
renormalization of the hybridization strength V → RV . As
the conduction band is lifted up to εc = 0.8, the system is
situated in a metallic phase. The hybridization gap is still
present but moves to higher energy, and the chemical poten-
tial is located at the sharp quasiparticle resonance peak. The
total coherent spectral weight decreases in accordance with
the smaller quasiparticle weight Z as shown in Fig. 4(b). At
εc = 1.3, the coherent spectral weight completely vanishes as

FIG. 5. GQCE calculations of PAM with spatially extended two-
site Gutzwiller projector. The left panel shows the total energy per
unit cell E of the PAM as a function of conduction band position
εc. Results are obtained from GQCE with single-site and two-site
Gutzwiller projector. This includes a single correlated d site and, for
the two-site projector, also its nearest-neighbor uncorrelated c site
(see right panels). Symbols (lines) show GQCE results using VQE-
UCCSD run on Qiskit state vector simulator (exact diagonalization)
as the embedding Hamiltonian solver [78]. The difference between
ED and VQE results are smaller than the symbol size. The Hubbard
interaction is set to U = 2 in the calculation.

the d orbital becomes Mott localized at half-filling. In the
Mott phase, the incoherent lower and upper Hubbard bands,
together with the conduction c band, define the band gap
size and distinguish between a Mott-Hubbard versus charge-
transfer insulator phase. Although the GQCE calculations at
this level cannot explicitly generate the Hubbard bands [68],
the band gap size and characteristics can still be resolved by
varying the chemical potential and monitoring the electron
filling [69].

V. SCALED UP GQCE CALCULATIONS

As discussed in Sec. II B, the GQCE approach is expected
to maintain the variational nature in practice, and converge
to the exact result by enlarging the Gutzwiller projector to
include more nearby sites. For illustrations, we consider an ex-
tended Gutzwiller projector over the Hilbert space defined by
both the correlated d orbital site and the nearest uncorrelated c
orbital site in the PAM model such that spin-orbital dimension
Nemb increases from 4 to 8, as shown in Fig. 5. The number of
variational parameters in the UCCSD Ansatz increases from
effectively 1 to 26, and the number of two-qubit controlled-
NOTs (CNOTs) in the VQE Ansatz circuit increases from 2
to 1096. The GQCE total energy with the two-site Gutzwiller
projector decreases due to the introduction of more variational
degrees of freedom encoded in matrix �i (6). As an example,
at U = 2 and εc = 0.7, the GQCE energy decreases by 4%
from −1.0878 to −1.1343 with VQE-UCCSD run on the state
vector simulator, which agrees with the GQCE result with
ED as the embedding Hamiltonian solver up to fifth decimal
place. Due to the fairly deep circuits with about 1000 CNOTs,
the GQCE calculation with the two-site Gutzwiller projector
on the current noisy real device is still very demanding, which
we will leave for future work.
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For a general f electron embedding Hamiltonian of spin-
orbital dimension 28 on the verge of classical computation
limit, the VQE-UCCSD state preparation circuit requires

about 1096 × (28/8)5 ≈ 5 × 105 CNOTs and
((7

1

)2 + (7
2

)2) ×
2 + (7

1

)4 = 3381 variational parameters, which poses a great
challenge for the NISQ devices and classical optimizer.
The hybrid quantum-classical optimization in VQE-UCCSD
becomes more complicated with the observation of exponen-
tially smaller probability of getting nonzero gradient at fixed
precision with increasing number of qubits [89]. Alternative
approaches to VQE-UCCSD as the many-body embedding
Hamiltonian ground state solver are available to be explored.
The variational Ansatz based on low-order Trotter approxima-
tion is simpler to implement and converges faster for model
Hamiltonian calculations [23]. The adaptive VQE approaches
have demonstrated to produce highly accurate ground state
energies with much simpler variational circuits in quantum
chemistry calculations [19,21,22,90]. The quantum imaginary
time evolution algorithm provides another axis to reach the
ground state without the explicit complex high-dimensional
optimizations [91–94]. Furthermore, symmetries beyond the
conservation of charge and spin, such as point group symme-
tries and approximate symmetries present in the embedding
Hamiltonian, can also be utilized to taper off qubits or identify
the relevant submanifold of the Hilbert space [95–97].

VI. CONCLUSION

To conclude, we have successfully implemented and
benchmarked a novel hybrid quantum-classical simulation
framework for interacting lattice models, which is based on
the Gutzwiller variational embedding theory. In combina-
tion with density functional theory, this GQCE approach can
describe ground state properties of correlated multiorbital
quantum materials. Using Rigetti’s quantum cloud service, we
have performed the first fully self-consistent hybrid quantum-
classical calculation of an infinite correlated electron model
on NISQ hardware. As a nontrivial benchmark study, we
apply GQCE to the periodic Anderson model on the Bethe
lattice using a single-site embedding scheme. We find excel-
lent agreement between GQCE results obtained from Rigetti’s
Aspen-4 QPU and known numerically exact results.

The GQCE method lends itself well to NISQ technology
as it maps the infinite lattice system to an effective, interacting
impurity model, which is self-consistently coupled to a nonin-
teracting fermionic bath. To obtain a self-consistent solution
of a set of coupled eigenvalue equations, the method requires
finding the ground state energy and single-particle density
matrix of the impurity model, which can be done efficiently
on QPUs. For the single and two-site decoupling used here,
we employ VQE with a unitary coupled cluster Ansatz. We
discuss the scaling of QPU resources with the size of the
embedding cluster and conclude that larger impurity clusters
may require using more efficient Ansätze such as produced
by adaptive VQE [19] or using algorithm that bypass high-
dimensional optimization such as the quantum imaginary time
evolution method [91,93].

Our work demonstrates the current capabilities of NISQ
devices in simulating infinite lattice models of correlated

materials. Even more importantly, exploiting the favorable
linear scaling of the number of qubits with the size of the
embedding Hamiltonian, we envision that VQE solutions of
small 14-site (28 spin-orbitals) Hubbard-type models will
boost GQCE to the limit of what is currently possible on
classical computers. This makes GQCE a promising frame-
work for performing challenging computations of correlated
materials in the near term, where NISQ devices may offer a
practical quantum advantage.

The GQCE code, calculations, and data are available at
figshare [98].
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APPENDIX A: GENERIC HAMILTONIAN

Consider a generic multiband interacting Hamiltonian for
periodic systems of the following form:

Ĥ =
∑

k

∑
μν

εkμν ĉ†
kμĉkν

+
∑
Ri

Ĥloc
i [R], (A1)

where k is the crystal momentum, conjugate to the unit cell
position vector R. μ, ν are composite indices of lattice site,
orbital and spin, with orbitals including both uncorrelated
orbitals such as s and p orbitals, as well as correlated orbitals
such as d and f orbitals. Likewise, the unit cell can refer
to a primitive unit cell or a supercell. For convenience, we
explicitly combine some sites and orbitals within the unit cell
into groups labeled by index i, which are correlated due to the
presence of Coulomb interactions. For example, a group i can
contain a fractionally occupied d shell only, or plus the neigh-
boring sites and orbitals to form a cluster. The Hamiltonian
defined in the domain of i group is denoted by

Ĥloc
i [R] =

∑
AB

[Hloc
i ]AB|A, Ri〉〈B, Ri|, (A2)

which includes two-body Coulomb interactions and all the
associated one-body terms such as crystal-field splitting and
spin-orbit coupling. A and B label the complete Fock state or
occupation number basis set of the local Hilbert space defined
by the spin orbitals in the i group,

|A, Ri〉 ≡
∏
α

(
ĉ†

Riα

)〈A| n̂Riα |A〉 |∅〉 , (A3)

with n̂ the number operator and |∅〉 the vacuum state. α runs
through the site, orbital and spin in the i group. The first
component of Eq. (A1) contains the remaining part of the
Hamiltonian, which are in quadratic form and mainly kinetic
energy terms. The Hamiltonian can describe lattice model
systems, such as Hubbard model, or real materials through
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mean-field electronic structure calculations such as density
functional theory.

APPENDIX B: GUTZWILLER VARIATIONAL ANSATZ

To solve for the ground state of the model beyond
Hartree-Fock mean-field level, the GQC framework adopts the
Gutzwiller variational wave function (GWF) Ansatz,

|
G〉 =
∏
Ri

P̂Ri |
0〉 , (B1)

with

P̂Ri =
∑
A,B

[�i]AB|A, Ri〉〈B, Ri|. (B2)

Variational parameters {�i} have been introduced in the
Gutzwiller projector P̂Ri to optimize local correlated sectors
of the noninteracting wave function |
0〉. A general square-
matrix form of �i is enforced by the invariance of the total
energy functional under unitary transformations in the linear
subspace of orbitals in the i group.

The expectation value of the Hamiltonian (A1) with re-
spect to GWF can not be evaluated analytically, except for
some simple cases in certain limits [76,99]. Therefore, numer-
ical results have to be obtained through variational quantum
Monte Carlo simulations without further approximation. To
express the total energy functional in a semianalytical form,
which enables more efficient numerical calculations, we adopt
the Gutzwiller approximation (GA) [34,35,40,100], which be-
comes exact for systems in infinite dimension or with infinite
coordination number [76]. GA is equivalent to rotationally in-
variant slave-boson method with saddle-point approximation
[41–43].

For nonlocal one-particle density operator or hopping oper-
ator ĉ†

RμĉR′ν , which cannot be fully represented in the reduced
local Hilbert space spanned by the spin orbitals at a single
group, the expectation value has a closed form as that of the
noninteracting wave function subject to additional renormal-
ization

〈
G| ĉ†
RμĉR′ν |
G〉 = RaμR†

νb〈
0| f̂ †
Rμ f̂R′ν |
0〉, (B3)

with R the so-called Gutzwiller renormalization matrix.
The quasiparticle f̂ operator is introduced to distinguish
it from the physical ĉ operators defined in the Hamilto-
nian. The expectation value (B3) manifests the local electron

correlation-induced renormalization effects on the kinetic en-
ergy of the systems.

For any local observable in i group Ôi[{ĉ†
iα}, {ĉiα}], which

is defined in a local correlated Hilbert space, the expectation
value can be rigorously evaluated through the local reduced
many-body density matrix, or equivalently the ground state
wave function i of the Gutzwiller embedding Hamiltonian
Ĥemb

i at site i

〈
G| Ôi |
G〉 = 〈i| Ôi |i〉, (B4)

with the embedding Hamiltonian of the following form

Ĥemb
i [D,D†; λc] = Ĥloc

i +
∑
aα

(
[Di]aα ĉ†

iα f̂ia + H.c.
)

+
∑

ab

[λc
i ]ab f̂ib f̂ †

ia. (B5)

The embedding Hamiltonian essentially describes a physical
impurity Ĥloc

i coupled to a quadratic bath λc of the same
orbital dimension, with a coupling matrix D.

The total energy of the system per unit cell can now be
written as

E = 〈
0| T̂G[R,R†] |
0〉 +
∑

i

〈i| Ĥloc
i |i〉, (B6)

with

T̂G[R,R†] = 1

Nk

∑
k

∑
μν

∑
ab

εkμνRaμR†
νb f̂ †

ka f̂kb. (B7)

It consists of contribution from the expectation value of an
effective quasiparticle Hamiltonian and that of the quantum
embedding Hamiltonians.

APPENDIX C: LAGRANGE EQUATIONS

The total energy in Eq. (B6) is to be minimized in the
parameter space defined the noninteracting wave function 
0

and local Hilbert space of each nonequivalent embedding
Hamiltonian, subject to the Gutzwiller constraints [35,101]

〈i| i〉 = 1, (C1)

〈i| f̂ib f̂ †
ia |i〉 = 〈
0| f̂ †

ia f̂ib |
0〉. (C2)

The constrained minimization can be conveniently formulated
with the following Lagrange function:

L[
0, Ep; , E c;R,R†, λ;D,D†, λc; �p] = 〈
0| T̂G[R,R†] |
0〉 + Ep(1 − 〈
0| 
0〉)

+
∑

i

[〈i| Ĥemb
i [D,D†; λc] |i〉 + E c

i (1 − 〈i| i〉)
]

−
∑

i

[∑
ab

([λi]ab + [λc
i ]ab)[�pi]ab +

∑
caα

(
[Di]aα[Ri]cα[�pi(1 − �pi )]

1
2
ca + c.c.

)]
. (C3)

The minimization of the Lagrange function with respect to all of the independent variables leads to the following Lagrange
equations

Ĥqp
G [R,R†; λ] |
0〉 = Ep |
0〉 , (C4)

〈
0| f̂ †
ia f̂ib |
0〉 = [�pi]ab, (C5)
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〈
0| ∂T̂G[R,R†]

∂Riaα

|
0〉 =
∑

c

[Di]cα[�pi(1 − �pi )]
1
2
ac, (C6)

∑
cbα

∂

∂dp
is

[�pi(1 − �pi )]
1
2
cb[Di]bα[Ri]cα + c.c. + [l + lc]is = 0, (C7)

Ĥemb
i [D,D†; λc] |i〉 = E c

i |i〉 , (C8)

[
F (1)

i

]
aα

≡
∑

c

[�pi(1 − �pi )]
− 1

2
ca 〈i| ĉ†

iα f̂ic |i〉 − [Ri]aα = 0, (C9)

[
F (2)

i

]
ab ≡ 〈i| f̂ib f̂ †

ia |i〉 − [�pi]ab = 0, (C10)

with

Ĥqp
G [R,R†; λ] ≡ T̂G[R,R†] +

∑
iab

[λi]ab f̂ †
ia f̂ib. (C11)

In the derivation, we have expanded the local one-particle ma-
trix λ, λc, and �p in a complete set of local symmetry-adapted
orthonormal Hermitian matrix basis {his} as follows:

λi =
∑

s

lishis, (C12)

λc
i =

∑
s

lc
ishis, (C13)

�pi =
∑

s

dp
is[h

T ]is. (C14)

APPENDIX D: PARITY REPRESENTATION OF THE
MOLECULE HAMILTONIAN

The Gutzwiller embedding Hamiltonian (B5) can be
rewritten as, apart from a constant,

Ĥemb =
∑
pqσ

tpqφ̂
†
pσ φ̂qσ + 1

2

∑
pqrs

∑
σσ ′

Upqrsφ̂
†
pσ φ̂

†
rσ ′ φ̂sσ ′ φ̂qσ ,

(D1)

where p, q, r, s labels the correlated d and bath f orbitals. For
the periodic Anderson model (PAM) presented in the main
text, the 2 × 2 matrix t has the form

t =
[
εd D
D −λc

]
. (D2)

The Coulomb tensor U is quite sparse with nonzero ele-
ments only between correlated d orbitals, which is U1111 in
the PAM model. To facilitate UCCSD-VQE calculations, a
self-consistent Hartree-Fock (HF) calculation is performed
for the embedding Hamiltonian. The orthonormal molecu-
lar orbitals can be generally express as χp = ∑

p′ Vpp′φp′ .
For PAM, The 2 × 2 unitary matrix V has the following
form:

V =
[

cos(x) sin(x)
− sin(x) cos(x)

]
, (D3)

where the angle x is determined by the HF solution. The
embedding Hamiltonian (D1) is then transformed from {d, f }
basis to χ basis:

Ĥemb =
∑
pqσ

∑
p′q′

Vpp′tp′q′V †
q′qχ̂

†
pσ χ̂qσ

+ 1

2

∑
pqrs

∑
σσ ′

∑
p′q′r′s′

Vpp′Vrr′Up′q′r′s′V †
q′qV †

s′s

× χ̂†
pσ χ̂

†
rσ ′ χ̂sσ ′ χ̂qσ . (D4)

Note that the sparsity of U matrix is generally removed in
the HF orbital representation. Standard procedures can be
followed to transform the embedding Hamiltonian in Eq. (D4)
from fermionic representation to qubit representation using
Jordan-Wigner encoding [70], parity encoding or Bravyi-
Kitaev encoding [71,102].

For PAM, the embedding Hamiltonian is reduced to the
following form with parity encoding and two-qubits tapered
off due to spin and particle number conservation:

Ĥemb = g01 + g1(Z0 − Z1) + g2(X0 + X1) + g3Z0Z1

+ g4(X0Z1 − Z0X1) + g5X0X1 . (D5)

As a numerical example, at U = 2 and εc = 0.5, the GQCE
solution leads to an embedding Hamiltonian with

t =
[ −1 −0.265
−0.265 0.095

]
. (D6)

The Hartree-Fock self-consistent solution yields two molecu-
lar orbitals

V =
[

0.729 0.685
−0.685 0.729

]
. (D7)

With a basis transformation to molecular orbital representa-
tion, t changes to

V tV † =
[−0.751 0.530

0.530 −0.154

]
. (D8)

and the Coulomb integral U changes from a sparse tensor
[[[[2.0, 0.0], [0.0, 0.0]], [[0.0, 0.0], [0.0, 0.0]]], [[[0.0, 0.0],
[0.0, 0.0]], [[0.0, 0.0], [0.0, 0.0]]]] in atomic or-
bital representation, to a dense tensor [[[[0.564,

−0.53], [−0.53, 0.498]], [[−0.53, 0.498], [0.498,−0.468]]],
[[[−0.53, 0.498], [0.498,−0.468]], [[0.498,−0.468],
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[−0.468, 0.44]]]] in molecular orbital representation. In
parity encoding the embedding Hamiltonian becomes

Ĥemb = −0.4051 − 0.267(Z0 − Z1) + 0.031(X0 + X1)

− 0.002Z0Z1 + 0.031(X0Z1 − Z0X1)

+ 0.498X0X1 . (D9)

APPENDIX E: HYBRID QUANTUM-CLASSICAL
COMPUTING

The Gutzwiller variational approach has been shown
to be highly effective to describe ground state properties
of correlated electron systems [40,41,52,55–58]. For cor-
related multiorbital systems, the ground state solution of
the Gutzwiller embedding Hamiltonian becomes the bottle-
neck for computational load in classical computers. However,
quantum computers offer a potentially exponential speedup
in solving ground state and dynamics of quantum systems,
taking advantage of the superposition and entanglement in
the qubit space. With the fast development of the near-term
noisy quantum (NISQ) computing technology, various hybrid
quantum eigensolvers with feasible shallow quantum circuits
have been proposed. Applications to simple molecules have
been demonstrated on real NISQ devices [12,14–16]. The
Gutzwiller quantum embedding Hamiltonian in Eq. (B5), in
a form similar to finite molecule but with simplified two-body
Coulomb interaction, can naturally be solved using NISQ
devices.

Gutzwiller theory can be combined with first-principles
electronic structure method such as density functional theory
(DFT), and readily simulate real correlated materials. Figure 6
illustrates the algorithmic flow of the GQC calculations of real
materials, in combination with DFT. Starting from the crys-
tal structure of real material, self-consistent DFT calculation
produces the band energies {εnk} and band wave functions
{ψnk}, which defines the quadratic part of the model. The
generic Hubbard model is obtained by adding explicitly the
local onsite Coulomb interactions for the correlated atomic

FIG. 6. Flowchart of hybrid quantum-classical simulations of
real materials within DFT + Gutzwiller approach.

shells, which is subsequently solved following the above
Gutzwiller Ansatz. Quantum computers are used to solve the
ground state of the Gutzwiller embedding Hamiltonian for
great potential scalability and efficiency. The solution of the
Gutzwiller Lagrange equations leads to renormalized electron
density, which is fed back to DFT for further iteration until
convergence. Such Gutzwiller hybrid quantum-classical simu-
lation framework will extend the impact of NISQ technologies
to infinite systems, addressing condensed matter physics and
material science problems.
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